
Ontology-Based Update in Virtual Knowledge
Graphs via Schema Mapping Recovery

Romuald Esdras Wandji1(B) and Diego Calvanese1,2

1 Department of Computing Science, Umeå Universitet, Umeå, Sweden
{romuald.esdras.wandji,diego.calvanese}@umu.se, diego.calvanese@unibz.it

2 Faculty of Engineering, Free University of Bozen-Bolzano, Bolzano, Italy

Abstract. In Virtual Knowledge Graphs (VKGs), access to a relational data
source is provided through an ontology, which is linked to the data source via
declarative mappings. VKGs stand as a predominant paradigm for the access to
(and integration of) heterogeneous data sources. However, little attention has been
paid so far to the issue of updates in VKGs expressed over the ontology, which
represents a crucial feature for fully managing data sources through the lens of an
ontology. In this paper, we consider the problem of updating a VKG instance by
specifying a set of insertions and deletions of ontology instances and propagat-
ing these updates to the underlying data source through the VKG mapping. We
consider ontologies specified in the DL-LiteR lightweight ontology language and
study the problem for the case where source queries in mappings are unions of
conjunctive queries. We rely on the notion of maximum recovery of VKG map-
pings, borrowed from the data exchange setting, and propose methods to compute
the set of source updates that translate an ontology update with a minimal side-
effect, considering both insertions and deletions of multiple ABox assertions.

Keywords: Knowledge Representation · Virtual Knowledge Graph (VKG) ·
Ontology-based Data Access · View Updates

1 Introduction

Virtual Knowledge Graphs (VKGs) provide a powerful paradigm to address data inte-
gration, which has been studied extensively for the case of relational data sources. In
VKGs, users interact with a high-level, conceptual representation of the domain of inter-
est given in the form of an ontology that is linked to the data source via declarative
mappings [6,23,25,26]. The ontology is typically expressed in the OWL 2 QL profile
of the Web Ontology Language (OWL 2) [22]. Such language, which has been specif-
ically designed to be used in this context, has its formal counterpart in DL-LiteR, a
Description Logic (DL) of the DL-Lite family of lightweight DLs [7].

The primary focus of research on VKGs has been on query answering i.e., the prob-
lem of computing the answers to a user query posed over the ontology by exploiting the
ontology axioms and the mapping layer to extract the relevant data from the underly-
ing data source. In this paper, instead, we are concerned with the challenging problem
of updating a VKG by operating on the ontology, which is a key task required in full-
fledged ontology-based data management systems, where all operations that involve the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

S. Kirrane et al. (Eds.): RuleML+RR 2024, LNCS 15183, pp. 59–74, 2024.
https://doi.org/10.1007/978-3-031-72407-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72407-7_6&domain=pdf
http://orcid.org/0009-0008-5036-2452
http://orcid.org/0000-0001-5174-9693
https://doi.org/10.1007/978-3-031-72407-7_6

60 R. E. Wandji and D. Calvanese

data source should be carried out through the lens of the ontology. Notice that this prob-
lem requires on the one hand to deal with potential inconsistencies between the update
and the axioms of the ontology TBox, and on the other hand to propagate the update via
the mappings to the underlying data source. The first problem is rooted in the vast litera-
ture on knowledge base update and belief revision [15,19,20,24], which includes work
dealing specifically with lightweight DLs [27]. The latter problem, instead, is tightly
connected to the problem of view-update, which has a long history in the database liter-
ature [4,12,18], but is still open in the general case. Instead, only very few works have
dealt with how mappings impact updates in the context of VKGs. In [14], it is proposed
to store ontology updates in additional tables, without affecting the original database,
and by adjusting the mapping to reconstruct the updated VKG from the original one
and the data in the additional tables. However, such approach cannot be applied in the
very common case where the user has access to the data sources at the data level, but is
not entitled to modify their schema or to add additional sources.

In this work, we are therefore interested in how to perform updates in VKGs by
directly propagating them to the underlying data source via the mappings. For this, we
have to address two key problems: (i) The update might not be realizable, since an
insertion on the data source guaranteeing that the requested ABox facts are inserted
from the VKG, might have as side-effect the insertion of additional ABox facts. Simi-
larly for deletions. (ii) The mappings might lose information (e.g., due to the presence
of disjunction or of existential variables in mapping queries), and therefore there might
be multiple ways to update the source data corresponding to a VKG update.

As a motivating example, consider a data source with two relations: RS (res, sup)
that relates researchers to their supervisor(s), and SG(sup, gr) that relates supervisors
to the grants they have access to. The information in this source has to be integrated
into a VKG whose ontology contains a role access , relating researchers to grants, and
a class Active containing active supervisors. We consider a mapping M between this
source schema and the ontology consisting of the following assertion:

∃y.RS (x, y) ∧ SG(y, z) � access(x, z). (1)

Let us assume a user wants to update the extensional content of the system by
inserting a new grant access with the ABox fact access(john, grant1). Due to the
existential variable in the mapping source query, there are (infinitely) many dis-
tinct translations of the given ABox insertion, e.g., the insertions in the data source
of {RS (john, sup1),SG(sup1, grant1)}, or of {RS (john, sup2),SG(sup2, grant1)}.
But in reality, which supervisor to choose for the researcher being inserted has no
importance in this context as this information is not visible to the user. So, it can be
randomly created, or a default value can be assigned to every added access. However,
if SG(x, y) � Active(x) is added to M, the choice of the supervisor for an inserted
access becomes important, because it may lead to an unintended effect over the VKG.
Depending on other facts in the source, inserting a new grant access might lead to a
side-effect, thus making the update unrealizable.

In this paper, we address this problem by proposing a comprehensive framework for
ABox updates in VKGs that builds on the work on schema mapping recovery introduced
in the context of data exchange [2] (see Sect. 4), and on data lineage in databases [9,10]

Ontology-Based Update in VKGs via Schema Mapping Recovery 61

(see Sect. 5). Specifically, we show that we can use a so-called maximum recovery to
characterize the source updates corresponding to ABox updates, and moreover, such
maximal recoveries can be computed from the mapping assertions using query rewrit-
ing techniques. Exploiting these notions, we provide algorithms for translating a set of
ABox deletions and insertions into suitable deletions or insertions over the source with
minimal side effects (see Sect. 6). Section 7 concludes the paper.

2 Preliminaries

We now introduce the notions on DLs, databases (DBs), and VKGs necessary to under-
stand the technical development in the paper, assuming familiarity with the syntax and
semantics of first-order logic (FOL). We consider distinct, countably infinite, and pair-
wise disjoint alphabets NC of concept names, NP of role names, and NI of constants.

2.1 Description Logic Knowledge Bases

Description Logics (DLs) [3] allow for modeling a domain of interest in terms of con-
cepts and roles, which correspond to unary and binary predicates, respectively. A DL
knowledge base (KB) K = 〈T ,A〉 consists of a TBox T , capturing intensional infor-
mation, and an ABox A, providing extensional information. We consider DLs of the
DL-Lite family [7,23], and specifically DL-LiteR, which is the formal counterpart of
the tractable OWL 2 QL profile of the Web Ontology Language (OWL 2) [22].

A DL-LiteR TBox is a finite set of assertions of the form B1 � B2 (concept inclu-
sion), B1 � ¬B2 (concept disjointness), R1 � R2 (role inclusion), or R1 � ¬R2 (role
disjointness). Here, R (possibly sub-scripted) denotes an atomic role P ∈ NP or its
inverse P−, while B (possibly sub-scripted) denotes a basic concept, which is either an
atomic concept A ∈ NC , or a concept of the form ∃R. For a TBox T , we use T + to
denote the set of concept and role inclusions in T , and T − to denote the set of concept
and role disjointness assertions in T , hence T = T +∪T −. A DL-LiteR ABox is a finite
set of assertions of the form A(c) or P (c, c′), with A ∈ NC , P ∈ NP , and c, c′ ∈ NI .

The semantics of a DL KB is given in terms of first-order interpretations [3], where
an interpretation I = 〈ΔI , ·I〉 consists of an interpretation domain ΔI and an inter-
pretation function ·I , which maps each A ∈ NC to AI ⊆ ΔI , each P ∈ NP to
P I ⊆ ΔI × ΔI , and each c ∈ NI to cI ∈ ΔI . The interpretation functions is
extended to arbitrary concepts and roles as follows: (P−)I = {(o′, o) | (o, o′) ∈ P I},
(∃R)I = {o | there exists o′ s.t. (o, o′) ∈ RI}, (¬B)I = ΔI \ BI , and (¬R)I =
(ΔI × ΔI) \ RI . An interpretation I is a model of (or satisfies) A(c) if cI ∈ AI ,
P (c, c′) if (cI , c′I) ∈ P I), and E1 � E2 if EI

1 ⊆ EI
2 . Also, I is a model of T , A, and

K = 〈T ,A〉 if it is a model of all assertions in T , A, and T ∪A, respectively. We denote
with Mod(K) the set of all models of K, and say that K is consistent if Mod(K)
= ∅.
We say that A is T -consistent, if 〈T ,A〉 is consistent. A TBox or ABox assertion α is
logically implied by T (resp., K), denotes T |= α (resp., K |= α) if each model of T
(resp., K) satisfies α. We denote by clT (A) the closure of A w.r.t. T , that is, the set of
ABox assertions over individuals in A that are logically implied by 〈T ,A〉. Similarly,
the deductive closure of a TBox T , denoted cl(T) is the set of inclusions assertions that

62 R. E. Wandji and D. Calvanese

are logically implied by T . Finally, given two ABoxes A1 and A2, we say that A1 is
logically equivalent to A2 w.r.t. T , denoted A1 ≡T A2, if clT (A1) = clT (A2).

We adopt here the standard name assumption, i.e., for each interpretation I of a KB
K = 〈T ,A〉, ΔI contains all individuals of A, and for each such individual c, cI = c.

2.2 Relational Databases and Queries

A database schema is a finite set S = {r1/n1, . . . , rk/nk} of relation schemas, where
each ri is a predicate name of arity ni. A database instance D over S maps each
predicate r/n in S to an n-ary relation, denoted rD. An atom for r/n has the form
r(t1, . . . , tn), or simply r(t), where each tj is a term, which can be a constant from NI

or a variable. If all tj’s are constants, the atom is called ground, or simply a tuple.
A (FOL) formula over a relational schema S is constructed by using the relation

names in S, the equality predicate =, and the constants in NI . A formula ϕ with free
variables x is denoted ϕ(x), and is also called a (relational) query with answer vari-
ables x. The formula is closed when x is empty. The closed formula obtained from
ϕ(x) by replacing every variable in x by the corresponding constant in c is denoted
ϕ(c). For an instance D over S, we use D |= ϕ(c) to denote that ϕ(c) holds in D. For
a closed formula ϕ and a set Σ of closed formulae over S, we use Σ |= ϕ to indicate
that ϕ is implied by Σ, i.e., ϕ holds in all instances in which all formulae of Σ hold.

A conjunctive query (CQ) Q(x) over the schema S is a query defined by a formula
of the form ∃y.ϕ(x,y), where ϕ = r1(t1)∧· · ·∧rn(tn) is a conjunction of atomic for-
mulae whose variables belong to x∪y. The variables y are called existential variables.
We also express such CQ as a logical rule of the form Q(x) ← r1(t1), . . . , rn(tn),
where Q(x) is called the head and r1(t1), . . . , rn(tn) the body of the rule. A union of
conjunctive queries (UCQ) is a finite disjunction of CQs with the same answer vari-
ables, also represented as a finite set of rules with the same head.

2.3 Schema Mappings

In VKGs, mappings are used to (virtually) populate ontology concepts and roles with
individuals and values derived from the data in the underlying data source. We con-
sider mappings specified in the standard language R2RML [11], but adopt a simpli-
fied abstract notation [23], which is also close to the one of plain second-order tuple-
generating dependency (plain SO-tgds) introduced in data exchange [1].

Formally, a VKG mapping M from a source schema S to an ontology (TBox) T
consists of a set of mapping assertions of the form Q(x) � E(t(x)), where Q(x) is
a CQ (called source query) over S of arity n > 0, and E(t(x)) is an atom (called
target atom) over T with variables in x. Such atom has the form A(t1(x1)), with
A ∈ NC , or P (t1(x1), t2(x2)), with P ∈ NP , where the terms t1(x1) and t2(x2)
denote so-called IRI-templates, obtained by applying (skolem) functions to the answer
variables of the source query. Such IRI-templates1 are used to generate strings repre-
senting object IRIs (Internationalized Resource Identifiers) or (RDF) literals, starting

1 IRI-templates correspond to the R2RML string templates.

Ontology-Based Update in VKGs via Schema Mapping Recovery 63

from DB values retrieved by the source query in the mapping. Notice that in prac-
tice, it is desired that the union of all templates corresponds to an injective function,
i.e., there is a unique way to reconstruct from a string s, the actual IRI-template t(x)
and the constituent values v used to generate s = t(v). Moreover we assume that for
each IRI-template f(x1, . . . , xn), we have also n inverse templates2 f1, . . . , fn such
that f i(f(v1, . . . , vn)) = vi, for each i ∈ [1..n] and for all possible values v1, . . . , vn

instantiating the variables in t(x1, . . . , xn).
Such a VKG mapping M from S to T , which we also call a source-to-ontology

mapping (so-mapping), maps a DB instance D of S to the (unique) ABox

M(D) = {as(E(t(x)),x �→ o) | (x �→ o) ∈ Q(x)D, (Q(x) � E(t(x))) ∈ M}

where x �→ o represents a solution mapping from the evaluation Q(x)D of the source
query Q(x) over the DB instance D, and the term as(E(t(x)),x �→ o)) denotes the
ABox assertion obtained by applying the solution mapping x �→ o to E(t(x)). This
application typically involves replacing x with o in the templates in t(x) (using appro-
priate string concatenation operations). It is also convenient to consider an so-mapping
M as the set of pairs {(D,M(D)) | D is a DB instance of S}, so that (D,A) ∈ M
is an alternative notation for A = M(D). Notice that, since a concept name A (or role
name P) might appear as target atom of multiple mapping assertions, the source query
that generates the instances of A (or P) is in general a UCQ.

2.4 Virtual Knowledge Graphs

We recall the main elements of the VKG framework, also known as Ontology-based
Data Access (OBDA) [23,25]. A VKG specification is a tuple P = 〈T ,M,S〉, where
T is a DL-LiteR TBox (typically expressed in OWL 2 QL), S is a data source schema,
and M is a set of so-mappings from S to T . A VKG instance is a pair 〈P,D〉 where D
is a source instance of S. Its semantics is defined in terms of FO interpretations over T .
An interpretation I is a model of 〈P,D〉 if it is a model of the DL KB 〈T ,M(D)〉.

We recall also the notion of mapping saturation [21], which allows one to compile
into the mapping M the inclusion assertions of T that do not involve an existential
quantification ∃R in the right-hand side. Specifically, to compute the mapping satura-
tion satT (M) of M w.r.t. T , we start from M, and repeatedly add implied mapping
assertions. E.g., if Q(x) � A1(t(x)) is in satT (M) and A1 � A2 is in T , we add to
satT (M) also Q(x) � A2(t(x)); similarly for inclusions ∃R � A and R1 � R2.

3 Instance-Level Updates in VKGs

We consider instance-level updates that consist of basic operations of two types, namely
deletions and insertions of ABox assertions, and the key problem we are interested in is
the translation of ABox updates into suitable source updates. In this paper, we restrict
our attention to the two cases of updates consisting either of a set U−

A of ABox deletions,
or of a set U+

A of ABox insertions, each given as a set of ABox facts, and consider

2 These correspond to the rr:inverseExpression of R2RML.

64 R. E. Wandji and D. Calvanese

translations that are of the same type as the ABox updates, i.e., U−
A translates to a set

U−
D of source deletions, and U+

A to a set U+
D of source insertions. We leave the case of

combined deletions and insertions and of more general translations for future work.
We concentrate here on the problem of propagating updates to the data source via

the mappings and do not deal explicitly with possible inconsistencies w.r.t. the TBox
and (virtual) ABox that an update might cause. Hence, we take the simple approach of
rejecting updates that would lead to an inconsistency. Since for DL-LiteR, inconsisten-
cies are due to the violation of disjointness assertions only and deletions of ABox facts
cannot cause such violations, we need to pay attention to inconsistency only for ABox
insertions. Formally, we reject an insertion update U+

A if 〈T ,A ∪ U+
A 〉 is inconsistent.

Instead of rejecting inconsistent updates, we could also rely on the many approaches
that have been proposed for handling inconsistency in KB updates, which typically are
based on computing some form of ABox repair that removes the inconsistencies from
the KB [19,20,24]. We can then consider the original update combined with the ABox
repair as the overall consistent VKG update to which we apply our techniques.

Apart from possible inconsistencies, the TBox has additional effects on updates
that we need to take into account. Since DL-LiteR is Horn [7], an entailed ABox fact
is already entailed by the TBox T together with a single ABox fact [27]. For an ABox
insertion U+

A , we can, therefore account for T by adding to U+
A all facts in clT (U+

A).
For an ABox deletion U−

A , instead, we can account for T by (repeatedly) adding to U−
A

all those facts from the ABox A that would entail a fact already in U−
A . We denote such

set of facts by invclAT (U−
A). Notice that clT (U+

A) and invclAT (U−
A) can be computed in

polynomial time in the combined size of U+
A , U−

A , T , and A [7,27]. Based on this, we
will assume in the following that U+

A is already closed w.r.t. T , i.e., that U+
A = clT (U+

A),
and that U−

A is already “inverse-closed” w.r.t. T and A, i.e., that U−
A = invclAT (U−

A).
Considering (inverse-)closed updates brings us nearer to the case where we can

restrict the attention to VKG specifications where the TBox does not contain any inclu-
sion assertion, but only disjointness assertions. However, we have to consider that prop-
agating ABox updates to the data source might lead to source updates that have side-
effects in the ABox. Since we are interested in minimizing such side-effects, we also
have to take into account how they are affected by the TBox. In the case of insertions,
the TBox axioms might amplify side-effects, while for deletions, they might amplify
them but also reduce them, as illustrated in the following example.

Example 1. Let P0 = 〈T0,M0,S0〉 be a VKG specification, where T0 = {A1 � B1,
A1 � B2}, S0 = {r1/1, r2/1, r3/1}, and M0 = {r1(x) � A1(x), r2(x) � B1(x),
r3(x) � A2(x)}, and let J0 = 〈P0,D0〉 be a corresponding VKG instance, where
D0 = {r1(c), r2(c), r3(c)}. We obtain M0(D0) = {A1(c), B1(c), A2(c)}, and
clT0(M0(D0)) = M0(D0) ∪ {B2(c)}. Suppose we want to delete the ABox fact
B1(c). We express this as the (inverse-closed) deletion request U−

A = {B1(c), A1(c)}.
It is easy to see that a source deletion translating U−

A is U−
D = {r1(c), r2(c)}, which has

as side-effect also the deletion of B2(c) from clT0(M0(D0)). However, if T0 contained
also the inclusion assertion A2 � B2, then U−

D would have no side-effect. �

In DL-LiteR, disjointness assertions might lead to inconsistency, but do not con-
tribute to the implication of ABox assertions [7]. Moreover, inclusion assertions of the

Ontology-Based Update in VKGs via Schema Mapping Recovery 65

form B � ∃R directly3 imply only facts that involve an existentially quantified object,
hence they do not directly contribute to the closure of an ABox. Therefore, to account
for implied insertions and deletions of ABox facts, we can compute (in polynomial
time) the deductive closure cl(T) of the TBox T , and use only the set of inclusion
assertions in cl(T) of the form A′ � A or ∃R � A (i.e., with an atomic concept on
the right-hand side), or R1 � R2, which we denote red(T). Considering then that in
VKGs we want to account for the side-effects caused by red(T) on the (virtual) ABox
generated from a source instance via a mapping M, we can do so while compiling away
red(T), and using instead of M the saturated mapping satred(T)(M) [21]. Based on
these considerations, we assume from now on that mappings are already saturated, and
w.l.o.g. we restrict the attention to the case where the TBox contains only disjointness
assertions, i.e., T = T −.

We now characterize the translation of ABox deletions and insertions. For deletions,
we can rely on the fact that they do not cause violations of disjointness assertions.

Definition 1 (Deletion translation). Given a VKG instance J = 〈〈T ,M,S〉,D〉
and a set U−

A of ABox deletions, a source update U−
D is a translation of U−

A in J if
U−

A ∩ M(D \ U−
D) = ∅. U−

D is an exact translation if M(D) \ U−
A = M(D \ U−

D). �

Hence, an exact translation of U−
A in J ensures that exactly all assertions of U−

A are
deleted from the (virtual) ABox generated by the mapping from the data sourcex, while
a non-exact translation might also cause the deletion of additional assertions not in U−

A .

Example 2. Consider the VKG specification P1 = 〈∅,M1,S1〉, where S1 =
{RS/2,SG/2,RG/2}, and M1 consists of the mapping assertion in Eq. (1) and the
assertion RG(x, z) � access(x, z). Let J1 = 〈P1,D1〉 be a VKG instance, where D1

consist of the following source tables (we have used names of components for clarity):

RS :

researcher supervisor
r1 s1

r1 s2

r2 s2

SG :

supervisor grant
s1 g1

s2 g1

s1 g2

RG :
researcher grant

r1 g1

We obtain the ABox M1(D1) = {access(s1, g1), access(r2, g1), access(r1, g2)}.
Consider now the ABox deletion U−

A = {access(r1, g1)}. Then, U−
D = {RS (r1, s2),

SG(s1, g1),RG(r1, g1)} is an exact translation of U−
A in J1. Instead, U−

D =
{RS (r1, s1),SG(s1, g1),RS (r1, s2),SG(s2, g1),RG(r1, g1)} is a translation of U−

A

in J1 but not an exact one, because it deletes from the ABox also access(r1, g2). �

For insertions, we have ruled out a priori insertions of ABox facts that are inconsis-
tent with T (hence with T −), but we still have to consider that side effects might cause
an inconsistency.

Definition 2 (Insertion translation). Given a VKG instance J = 〈〈T −,M,S〉,D〉
and a set U+

A of ABox insertions, a source update U+
D is a translation of U+

A in J if
M(D) ∪ U+

A ⊆ M(D ∪ U+
D) and 〈T −,M(D ∪ U+

D)〉 is consistent. U+
D is an exact

translation of U+
A if M(D) ∪ U+

A = M(D ∪ U+
D). �

3 B � ∃R might indirectly imply a proper ABox fact, e.g., for T = {A1 � ∃R, ∃R � A2}
and A = {A1(c)}, we have that A2(c) ∈ clT (A).

66 R. E. Wandji and D. Calvanese

Hence, an exact translation of U+
A in J ensures that exactly all assertions of U+

A are
inserted in the (virtual) ABox generated by the mapping from the data source, while a
translation U+

D that is non-exact might also cause the insertion of additional assertions
not in U+

A . If the additional assertions cause an inconsistency w.r.t. T −, we rule out U+
D .

Example 3. Consider J2 = 〈〈∅,M2,S1〉,D2〉, where M2 consists of the mapping
assertion of Eq. (1) and D2 contains the single tuple RS (r1, s1), and the ABox insertion
U+

A = {access(r2, g2)}. Then U+
D = {RS (r2, s2),SG(s2, g2)} is an exact translation

of U+
A in J2. Instead, U+

D = {RS (r2, s1),SG(s1, g2)} is a translation of U+
A , but not

an exact one, because it also leads to the insertion of access(r1, g2) in the ABox. �

ABox insertions and deletions can have more than one translation over the data
source, which is mainly due to the information loss caused by VKG mappings. More-
over, the application of a translation over the source may lead to a side-effect due to
unwanted deletions or insertions in the ABox. Our aim is to find the translations that
minimize the side-effects, ideally exact translations without side effects.

4 Schema Mapping Recovery in VKGs

In our approach to VKG update, we propose to rely on a reverse mapping that maps the
TBox back to the source schema. To define such reverse mapping, we make use of the
notion of mapping recovery introduced in [2], but suitably adapted to our setting.

For an so-mapping M, from a source schema S to a TBox T , a reverse mapping
describes a novel mapping now going from T back to S, which we call ontology-to-
source mapping (os-mapping). We consider such a mapping M̂ as a set of pairs (A,D),
with A an ABox for T and D a DB instance of S, called solution of A under M̂.
Moreover, we define M̂(A) = {D | (A,D) ∈ M̂}. Notice that, while an so-mapping
M generates from a DB instance D a unique ABox M(D) (hence, M is a function
by definition), a reverse mapping M̂, in general, is not a function but a relation that
associates to an ABox a set of DB instances. This is because an so-mapping is in general
not injective, i.e., it might map two different instances of S to the same ABox.

We are interested in os-mappings that maintain semantic consistency with the rela-
tionship established by M, and which intuitively represent the inverse of such relation-
ship, in line with the notion of inverse mapping for the relational setting [16].

Definition 3 (Recovery of a mapping [2]). Let P = 〈T ,M,S〉 be a VKG specifica-
tion and M̂ an os-mapping. We say M̂ is a recovery of M, if D ∈ M̂(M(D)) for
every source instance D of S. �

For a source instance D, if M̂ is a recovery of a mapping M, then the smaller the
set of DB instances provided by M̂(M(D)), the more informative is M̂ about D. This
leads to the definition of maximum recovery, which intuitively is among the best options
to bring the exchanged data back.

Definition 4 (Maximum recovery of a mapping [2]). Let P = 〈T ,M,S〉 be a VKG
specification. A recovery M̂ of M is a maximum recovery, if for every recovery M̂′ of
M, we have that M̂(M(D)) ⊆ M̂′(M(D)). �

Ontology-Based Update in VKGs via Schema Mapping Recovery 67

Although VKG mappings do not allow for existential variables in the target, IRI-
templates (which account for skolem terms) give VKG mappings the expressive power
to simulate st-tgds that contain existential variables in the target [13,17]. In fact, IRI-
templates can also capture plain SO-tgds, which are a form of mappings that always
admit a maximum recovery [1]. In [1], an algorithm called POLYSOINVERSE is pro-
posed that, given a schema mapping M specified as plain SO-tgds, computes a SO-tgd
mapping M̂ that represents the maximum recovery of M, by rewriting each atom in
the target part of the SO-tgds as a query over the source. We make use of an adaptation
of that algorithm to our setting, which we describe next. To do so, we make the simpli-
fying assumption4 that all mapping assertions for a concept or role E (including those
introduced with mapping saturation) make use of the same IRI-template.

Given an n-ary tuple t(x) = (t1(x), . . . , tn(x)) of terms over variables x, ut(x) is
an n-tuple (u1, . . . , un) of variables such that if ti(x) = tj(x), then ui = uj , other-
wise ui
= uj . We then define Vt(x) = V 1 ∧ · · · ∧ V n, where each V i is obtained as
follows: (a) if ti(x) is a variable y in x, then V i is the equality y = ui, (b) otherwise,
if ti(x) is an IRI-template f(y1, . . . , yk), where each yj is a variable in x, then V i is
(y1=f1(ui))∧ · · · ∧ (yk=fk(ui)), where each f j is the j-th inverse template of f . We
are now ready to define, given an so-mapping M, a specific os-mapping M̂mr .

Definition 5 (MR-os-mapping). Let M =
⋃

E in T ME be an so-mapping, where

ME =
⋃k

�=1{∃w�.ϕ�(x,w�) � E(t(x)} are all mapping assertions with concept or
role E in the target (where t(x) is the tuple of IRI-templates specific for E). Then, the

set of os-mappings M̂mr =
⋃

E in T

{
E(ut(x)) �

∨k
�=1 ∃x.∃w�.ϕ�(x,w�) ∧ Vt(x)

}

is called the MR-os-mapping of M. �

Example 4. Consider the VKG mapping M = {∃z.r(x, y, z) � P (f(x, y), x)}. Then
we have t(x, y, z) = (f(x, y), x), and we obtain ut(x,y,z) = (u1, u2). Hence M̂mr

consists of the os-mapping assertion P (u1, u2) � ∃x.∃y.∃z.r(x, y, z)∧x = f1(u1)∧
y = f2(u1) ∧ x = u2. Notice that we can simplify this os-mapping assertion into the
equivalent form P (u1, u2) � ∃z.r(f1(u1), f2(u1), w) ∧ f1(u1) = u2. �

The following result can be shown by following the same line of proof as the anal-
ogous result for plain SO-tgds in [1].

Theorem 6. Let P = 〈T ,M,S〉 be a VKG specification. The os-mapping M̂mr is a
maximum recovery of M.

In the following, we restrict the attention to the maximum recovery of a VKG map-
ping M constructed as the MR-os-mapping M̂mr of M. In fact, we exploit the con-
struction in the proof of the following result.

Theorem 7. Let P = 〈T ,M,S〉 be a VKG specification, M̂mr the MR-os-mapping of
M, andD an instance of S. Then, for every f ∈ M(D), we have f ∈ M(M̂mr ({f})).

4 Such assumption is quite restrictive in practice, but it can be lifted by resorting to the original
version of the POLYSOINVERSE algorithm in [1]. We will address this in future work.

68 R. E. Wandji and D. Calvanese

5 Data Lineage in VKGs

Data lineage (a.k.a. provenance) is concerned with identifying and managing the origin
of data in a data management system, and has been studied extensively in the relational
setting [9,12]. We now adapt the notions of lineage and exclusive lineage to virtual
ABox assertions in the VKG setting. Specifically, we are interested in the subsets of the
data source tuples that generate a fact in the virtual ABox.

Definition 8 (Lineage). Let P = 〈T ,M,S〉 be a VKG specification, 〈P,D〉 a VKG
instance, and f ∈ M(D) an ABox assertion. A subset B ⊆ D is a lineage branch
of f if f ∈ M(B), and for every B′ � B, f /∈ M(B′). The lineage of f , denoted
lineage(f,P,D), is the set of all lineage branches of f . �

Example 5 (Continued from Example 2). For f = access(r1, g1), lineage(f,P,D) =
{{RS (r1, s1),SG(s1, g1)}, {RS (r1, s2),SG(s2, g1)}, {RG(r1, g1)}} �

We are also interested in the subsets of the data source tuples that contribute to
generating an ABox fact f but do not contribute to any ABox fact other than f .

Definition 9 (Exclusive lineage). Let P = 〈T ,M,S〉 be a VKG specification, 〈P,D〉
a VKG instance, and f ∈ M(D) an ABox assertion. A subset B∗ of a lineage branch
of f is an exclusive lineage branch of f if for every f ′ ∈ M(D) \ {f} and every
B ∈ lineage(f ′,P,D), we have that B∗ ∩ B = ∅. The exclusive lineage of f , denoted
elineage(f,P,D), is the set of all exclusive lineage branches of f . �

Example 6 (Continued from Example 5). The exclusive lineage of the assertion f is
elineage(f,P,D)={{SG(s1, g1)}, {RS (r1, s2)}, {RG(r1, g1)}}. Tuples RS (r1, s1)
and SG(s2, g1) from f ’s lineage are not in f ’s exclusive lineage because RS (r1, s1) is
also in a lineage branch of access(r1, g2) and SG(s2, g1) in one of access(r2, g1). �

Note that an exclusive lineage branch of an ABox fact f is in general not a lineage
branch of f , i.e., its facts might not generate f via the mapping. Finding minimal subsets
of the source instance D that generate via the VKG mapping M an ABox fact f is in
general challenging. We now show that we can use a maximum recovery of M to guide
that search.

Definition 10 (M̂-instance recovery). Let J = 〈〈T ,M,S〉,D〉 be a VKG instance
and M̂ a maximum recovery of M. The M̂-instance recovery for D is the function
M̂D from M(D) to 22

D

such that

M̂D(f) = {B | B ⊆ D,B ∈ M̂({f}), and for every B′ � B,B′
∈ M̂({f})}.

�

Notice that, based on the definition and properties of maximum recovery as shown
in Sect. 4, for two distinct maximum recoveries M̂1 and M̂2 and a source instance D,
it holds that M̂1

D = M̂2
D. This actually follows from the next result.

Ontology-Based Update in VKGs via Schema Mapping Recovery 69

Proposition 11. Let P = 〈T ,M,S〉 be a VKG specification, 〈P,D〉 a VKG instance,
M̂mr the MR-os-mapping of M, and M̂mr

D the M̂mr -instance recovery for D. Then,
for every ABox assertions f ∈ M(D), we have that M̂mr

D (f) = lineage(f,P,D).

Proof. Let f = E(a) for some concept or role E and some tuple a of ground terms.
We recall that, by Theorem 6, M̂mr is a maximum recovery of M.

(⊆) Let B ∈ M̂mr
D (f), we need to show that B ∈ lineage(f,P,D). By

definition of M̂mr
D (f), we have that B ⊆ D. Let E(ut(x)) � α(ut(x)) be

the (unique) os-mapping assertion in M̂mr for concept/role E, where α(ut(x)) =
∨k

�=1 ∃x.∃w�.ϕ�(x,w�) ∧ Vt(x) is a UCQ over S by construction. Since f = E(a)
and B ∈ M̂mr ({f}), we have that B |= α(a), which means that there is an � ∈ [1..k]
such that B |= β(a), where β(a) = ∃x.∃w�.ϕ�(x,w�) ∧ (Vt(x)[ut(x)/a]) and
Vt(x)[ut(x)/a] is the formula obtained from Vt(x) by instantiating ut(x) with a. By
the form of β(a), there exists a tuple b of constants such that b = t̂(a), where t̂ is
the sequence of inverse templates corresponding to the IRI-templates t(x), such that
B |= ∃w�.ϕ�(b,w�). From the construction of M̂mr , we have that M contains the
mapping assertion ∃w�.ϕ�(x,w�) � E(t(x)), and since B |= ∃w�.ϕ�(a,w�), we
have that f ∈ M(B). Moreover, by the definition of M̂-instance recovery, there is no
B′ � B such that B′ |= ∃w�.ϕ�(a,w�). Hence, B ∈ lineage(f,P,D).

(⊇) Let B ∈ lineage(f,P,D), we need to show that B ∈ M̂mr
D (f). From Defini-

tion 8 we know that f ∈ M(B). Hence there is a mapping assertion ∃w.β(x,w) �
E(t(x)) ∈ M and a tuple b of constants such that b = t̂(a), where t̂ is the sequence of
inverse templates corresponding to the IRI-templates t(x), such that B |= ∃w.β(b,w).
Moreover, for every B′ � B, since by the definition of lineage f /∈ M(B′), we have
that B′
|= ∃w.β(b,w). From the definition and construction of M̂mr , we have that
E(ut(x)) �

∨k
�=1 ∃x.∃w�.ϕ�(x,w�) ∧ Vt(x) ∈ M̂mr , where for some � ∈ [1..k],

ϕ�(x,w�) = β(x,w). Hence, we have B |= ∃w�.ϕ�(b,w�), which entails that
B ∈ M̂mr ({f}) and B′
∈ M̂mr ({f}). Since by the definition of lineage, B ⊆ D, we
conclude that B ∈ M̂mr

D (f). ��

6 Update Framework in VKGs

When the translated ABox updates are propagated back through the mappings they
might produce side effects, and we are interested in minimizing them, where we con-
sider as measure the set difference between the desired and the obtained ABoxes. We
use the function flatten(X) =

⋃
S∈X S, which flattens a set X of sets into a set.

6.1 ABox Deletions

We first consider ABox deletions. We formalize the relationship between data lineage
and translation of ABox deletions, and based on that, we provide an algorithm that
translates ABox deletions into suitable source deletions.

Example 7 (Continued from Example 2). The set U−
D = flatten(lineage(f,P,D)) of

source tuples is a translation of U−
A = {f} but is not an exact translation. Instead,

U−
D = flatten(elineage(f,P,D)) is an exact translation of U−

A . �

70 R. E. Wandji and D. Calvanese

Algorithm 1: TRANSLATEDELETION

input : A VKG instance J = 〈P, D〉 with P = 〈T , M, S〉.
A set U−

A of ABox deletions.
output: A set U−

D of translations over the source of the set U−
A .

1 B∗ ← flatten(
⋃

f∈U−
A
elineage(f, P, D)); // Compute flattening of elineage

2 D′ ← D \ B∗; // Remove from D tuples in the exclusive lineage
3 if M(D) \ U−

A = M(D′) then return U−
D = B∗;

B = {B1, . . . , Bn} ←
⋃

f∈U−
A
lineage(f, P, D′); // Compute lineage branches in D′

4 S ← {{t1, . . . , tn} | ti ∈ Bi, for i ∈ [1..n]};
5 U−

D ← {};
6 for each translation T ∗ ∈ S do
7 add ← true;
8 for each translation T ∈ U−

D do
9 if COMPARE−

J (T ∪ B∗, T ∗ ∪ B∗) = ’<’ then add ← false

10 else if COMPARE−
J (T ∗ ∪ B∗, T ∪ B∗) = ’<’ then U−

D ← U−
D \ {T}

11 if add then U−
D ← U−

D ∪ {T ∗}
12 return {T ∪ B∗ | T ∈ U−

D}

We observe that, in principle, since no proper subset of a lineage branch of an asser-
tion f generates f under the VKG mapping, we can delete f from the ABox by simply
removing one tuple from each lineage branch of f , and we should do so while ensuring
a minimal side-effect. E.g., in Example 7, by deleting one tuple per lineage branch of f ,
we can obtain the set T = {RS (r1, s2),SG(s1, g1)RG(r1, g1)}, which is a translation
of U−

A = {f} over the source data (which in this case has no side effect).

Proposition 12. Let P = 〈T ,M,S〉 be a VKG specification, 〈P,D〉 a VKG instance,
f ∈ M(D) such that lineage(f,P,D) = {B1, . . . , Bn}, andT = {{t1, . . . , tn} | ti ∈
Bi}. Then for every T ∈ T, we have that f /∈ M(D \ T).

Proof. Let T = {t1, . . . , tn} ∈ T. We have to show that f /∈ M(D \ T). From the
definition of lineage for an ABox assertion f , it follows that, for every i ∈ [1..n] and
B′

i = Bi \ {ti}, we have that f /∈ M(B′
i). This means that, by removing ti from D,

the branch Bi will not be anymore in lineage(f,P,D \ {ti}). Therefore, by removing
T from D, lineage(f,P,D \ T) will be empty, hence f /∈ M(D \ T). ��

From Definition 6, we can see that none of the source tuples contained in the exclu-
sive lineage of an ABox assertion contribute to generating via the mapping any other
assertion in the ABox, which means that their deletion is guaranteed to be side-effect
free. Unfortunately, as observed also in [8], deleting from the source the exclusive lin-
eage of a given ABox assertion will not always lead to its deletion in the ABox.

We propose the algorithm TRANSLATEDELETION, which takes as input a VKG
instance J and a set U−

A of ABox deletions. It first computes the exclusive lineage
branch list B∗ of every assertion in U−

A and checks whether deleting the tuples in B∗

will delete U−
A from the ABox. If so, it returns the tuples in B∗ as an exact translation.

Instead, if some assertions of U−
A still persist in the ABox, the algorithm searches for

Ontology-Based Update in VKGs via Schema Mapping Recovery 71

translations of U−
A with minimum side effects by considering one tuple per branch in

the remaining lineage list. However, the notion of right translation is not unique, as
it depends on the metric used to evaluate the distance between the updated ABox and
the desired one. In this regard, we use an abstract function called COMPARE−

J that
compares two translations T1 and T2 in terms of their side-effect and returns either
’=’ or ’<’, if T1 has equal, resp., less side-effect than T2 based on the metric under
consideration. Our algorithm returns the set of translations with a minimum side effect.

The number of iterations in the search loop is bounded by k|B| where B =⋃
f∈U−

A
lineage(f,P,D′) and U−

A in D′ = D\flatten(
⋃

f∈U−
A
elineage(f,P,D)) (i.e.,

D after removing the exclusive lineage of all tuples in U−
A) and k is the size of the largest

branch of B. Note that, in general, we expect k and |B| to be small.

6.2 ABox Insertions

Inserting new ABox assertions is more challenging than deletions because, for these
new assertions, we do not yet have a lineage in the database that we can manipulate.
Also, the existential variables in source queries of mappings can result in infinitely
many possible source insertions. Similar to the translation of ABox deletions, we want
to minimize side effects in the ABox.

Example 8 (Continued from Example 3). From M, we get the MR-os-mapping
M̂mr = {access(r, g) → ∃w.RS (r, w)∧SG(w, g)}, which is a maximum recovery of
M. Then, for U+

A = {access(r2, g2)}, we have that M̂mr (U+
A) = {∃w.RS (r2, w) ∧

SG(w, g2)}. However, the source update is incompletely specified because of the exis-
tential variable w. By analyzing our data source D, we see that if we assign to w the
value s2, we obtain the source insertion {RS (r2, s2),SG(s2, g2)}, which is an exact
translation of U+

A . If we assign to w any value other than s2, we still get a translation
(but not an exact translation). �

This example shows that the choice of the assignment to the existential variables in
the translated insertion request plays a crucial role in minimizing the side effects in the
ABox. Also, since an ABox insertion can have several translations over the source, one
has to find the one that, with a proper assignment, leads to a minimal side effect.

Towards computing an optimal translation of an ABox insertion request, let us first
provide the definition of insertion branch and insertion tree of a set of ABox insertions.
For convenience, we make use of γ, defined as γ(

∧n
i=1 ri(ai)) =

⋃n
i=1{ri(ai)}, to

transform a conjunction of facts into a set of tuples.

Definition 13 (Insertion tree). Let P = 〈T ,M,S〉 be a VKG specification, 〈P,D〉
a VKG instance, M̂mr the MR-os-mapping of M, and U+

A = {f1, . . . , fn} an ABox
insertion. Then B =

⋃n
i=1{∃wi.ϕi(ai,wi)} is an insertion branch of U+

A for M̂mr if
for i ∈ [1..n] we have that γ(ϕi(ai, ηi(wi))) ∈ M̂mr ({fi}), where wi is the set of
existential variables in ∃wi.ϕi(xi,wi), ai is a tuple of ground terms instantiating all
free variables in ∃wi.ϕi(xi,wi), and ηi is an arbitrary assignment of constants inNI

to wi. The insertion tree of U+
A for M̂mr is the set of its insertion branches. �

72 R. E. Wandji and D. Calvanese

Algorithm 2: TRANSLATEINSERTION

input: A VKG instance J = 〈〈T , M, S〉, D〉.
A set U+

A of ABox insertions.
output: A set U+

D of translations over the source of the set U+
A .

1 Compute the MR-os-mapping M̂mr of M;

2 Compute the insertion tree B = {B1, . . . , Bn} of U+
A for M̂mr ;

3 U+
D ← {};

4 for each branch Bi ∈ B of the form
⋃n

i=1{∃wi.ϕi(ai,wi)} do
5 Δw i ← {b1, . . . , b|w i|} ∪ ΔA ∪ ΔD , where ΔA and ΔD are the constants in U+

A

and D respectively, and each bi is a fresh value from NI not in ΔA ∪ ΔD;
6 for each assignment η(wi) ⊆ Δw i do
7 T ∗ ←

⋃n
i=1 γ(ϕi(ai , η(wi)));

8 add ← true;
9 for each translation T ∈ U+

D do
10 if COMPARE+

J (T, T ∗) = ’<’ then add ← false

11 else if COMPARE+
J (T ∗, T) = ’<’ then U+

D ← U+
D \ {T}

12 if add then U+
D ← U+

D ∪ {T ∗}

13 return U+
D

Example 9 (Continued from Example 8). The insertion tree of the ABox insertion U+
A =

{access(r2, g2)} is B = {{∃w.RS (r2, w) ∧ SG(w, g2)}}. �

We now show that, for every instantiation of its existential variables with constants
in NI , an insertion branch provides a set of source tuples that generates through the
mapping a set of ABox assertions that includes U+

A .

Theorem 14. Let P = 〈T ,M,S〉 be a VKG specification, 〈P,D〉 a VKG instance,
M̂mr the MR-os-mapping of M, U+

A = {f1, . . . , fn},
⋃n

i=1{∃wi.ϕi(ai,wi)} an
insertion branch of U+

A for M̂mr , and ηi an assignment to wi, for i ∈ [1..n]. Then,
the source update U+

D =
⋃n

i=1 γ(ϕi(ai, ηi(wi))) is a translation of U+
A .

Proof. By Theorem 7, we know that fi ∈ M(M̂mr ({fi})), and since we have
γ(ϕi(ai, ηi(wi)))) ∈ M̂mr ({fi}), we obtain fi ∈ M(γ(ϕi(ai, ηi(wi)))). By com-
bining all the assertions fi in U+

A , we obtain U+
A ⊆

⋃n
i=1 M(ϕi(ai, ηi(wi))), hence

U+
A ⊆ M(

⋃n
i=1 ϕi(ai, ηi(wi))), since M is specified as UCQs over the source and

UCQs are monotone queries. Again, by the monotonicity of UCQs, we finally obtain
U+

A ∪ M(D) ⊆ M(
⋃n

i=1 ϕi(ai, ηi(wi)) ∪ D). ��

This result shows that applying M̂mr to an ABox insertion request always leads to
a translation in the source data. Hence, we need to compute an insertion branch and an
assignment to its existential variables that leads to a minimal side-effect. We propose
the algorithm TRANSLATEINSERTION, which takes as input a VKG instance J and a
set U+

A of ABox insertions, computes the insertion tree of U+
A , and for every branch B

in the tree, assigns to each of its existential variables (if it has any) a constant that might
be from the source instance, from the insertion request, or fresh. In some situations,

Ontology-Based Update in VKGs via Schema Mapping Recovery 73

assigning arbitrary values to these variables, known as “do not care” variables, may be
viable, allowing the translation process to fill in any value to maintain semantic consis-
tency [12]. Similar to the deletion algorithm, we use COMPARE+

J to compare insertion
translations (resulting from the instantiation of existential variables) in terms of side
effects in the ABox, and we keep the ones with minimal side effects. The algorithm
needs to compute the insertion tree, and to do so it uses the MR-os-mapping M̂mr . The
size of the insertion tree is |U+

A |k, where k = maxfi∈U+
A
(|M̂mr ({fi})|).

7 Conclusions and Discussion

We have studied an instance-level approach for updates in the context of VKGs through
the lens of an ontology, where an update is specified through either a set of ABox
deletions or a set of ABox insertions over the ontology. Based on the notion of maxi-
mum recovery of a VKG mapping, we have proposed algorithms that compute the set of
changes in the source that realize a given ontology-based update with the minimum side
effect. The computation is, in the worst case, exponential in the size of the update. For
ABox deletions, the translation is computed at run-time, but our algorithm can compute
at compile-time the maximum recovery and the lineage of all assertions in the ABox.

We are currently working on a technique to combine ABox deletions and insertions.
We are also interested in studying optimization techniques when searching for possible
translations, and in particular in understanding how constraints in the data source can be
used to reduce the space of possible translations of ABox updates. We are also planning
to implement our techniques in state-of-the-art VKG tools such as Ontop [5].

Acknowledgments. This research has been partially supported by the Province of Bolzano and
DFG through the project D2G2 (DFG grant n. 500249124), by the HEU project CyclOps (grant
agreement n. 101135513), and by the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP), funded by the Knut and Alice Wallenberg Foundation.

References

1. Arenas, M., Pérez, J., Reutter, J., Riveros, C.: The language of plain SO-tgds: composition,
inversion and structural properties. JCSS 79(6), 763–784 (2013). https://doi.org/10.1016/j.
jcss.2013.01.002

2. Arenas, M., Pérez, J., Riveros, C.: The recovery of a schema mapping: Bringing exchanged
data back. ACM TODS 34(4), 1–48 (2009). https://doi.org/10.1145/1620585.1620589

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press (2003). https://doi.org/10.1017/CBO9780511711787

4. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM TODS 6(4), 557–
575 (1981). https://doi.org/10.1145/319628.319634

5. Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases. Semantic
Web J. 8(3), 471–487 (2017). https://doi.org/10.3233/SW-160217

6. Calvanese, D., et al.: Ontologies and databases: the DL-Lite approach. In: Tessaris, S., et al.
(eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03754-2_7

https://doi.org/10.1016/j.jcss.2013.01.002
https://doi.org/10.1016/j.jcss.2013.01.002
https://doi.org/10.1145/1620585.1620589
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1145/319628.319634
https://doi.org/10.3233/SW-160217
https://doi.org/10.1007/978-3-642-03754-2_7

74 R. E. Wandji and D. Calvanese

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: the DL-Lite family. JAR 39, 385–429
(2007). https://doi.org/10.1007/s10817-007-9078-x

8. Cui, Y., Widom, J.: Run-time translation of view tuple deletions using data lineage. Tech.
rep., Stanford University (2001). http://ilpubs.stanford.edu:8090/496/1/2001-24.pdf

9. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. VLDBJ
12(1), 41–58 (2003). https://doi.org/10.1007/s00778-002-0083-8

10. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environ-
ment. ACM TODS 25(2), 179–227 (2000). https://doi.org/10.1145/357775.357777

11. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recom-
mendation, W3C (2012). http://www.w3.org/TR/r2rml/

12. Dayal, U., Bernstein, P.A.: On the correct translation of update operations on relational
views. ACM TODS 7(3), 381–416 (1982). https://doi.org/10.1145/319732.319740

13. De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Using ontologies for
semantic data integration. In: Flesca, S., Greco, S., Masciari, E., Saccà, D. (eds.) A Compre-
hensive Guide Through the Italian Database Research Over the Last 25 Years. SBD, vol. 31,
pp. 187–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61893-7_11

14. De Giacomo, G., Lembo, D., Oriol, X., Savo, D.F., Teniente, E.: Practical update manage-
ment in ontology-based data access. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F.,
Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017. LNCS, vol. 10587,
pp. 225–242. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_14

15. De Giacomo, G., Oriol, X., Rosati, R., Savo, D.F.: Instance-level update in DL-Lite ontolo-
gies through first-order rewriting. JAIR (2021). https://doi.org/10.1613/jair.1.12414

16. Fagin, R.: Inverting schema mappings. ACM TODS 32(4), 2–53 (2007). https://doi.org/10.
1145/1292609.1292615

17. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings: second-order
dependencies to the rescue. ACM TODS 30(4), 994–1055 (2005). https://doi.org/10.1145/
1114244.1114249

18. Fagin, R., Ullman, J.D., Vardi, M.Y.: On the semantics of updates in databases. In: Proceed-
ings of the PODS, pp. 352–365 (1983). https://doi.org/10.1145/588058.588100

19. Flouris, G.: On belief change in ontology evolution. AI Commun. 19(4), 395–397 (2006)
20. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and

revising it. In: Proceedings of the KR, pp. 387–394 (1991)
21. Kontchakov, R., Rezk, M., Rodríguez-Muro, M., Xiao, G., Zakharyaschev, M.: Answering

SPARQL queries over databases under OWL 2 QL entailment regime. In: Mika, P., et al.
(eds.) ISWC 2014. LNCS, vol. 8796, pp. 552–567. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11964-9_35

22. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontol-
ogy Language profiles (second edition). W3C Recommendation, W3C (2012). http://www.
w3.org/TR/owl2-profiles/

23. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. J. on Data Semantics 10, 133–173 (2008). https://doi.org/10.1007/978-3-
540-77688-8_5

24. Winslett, M.: Updating Logical Databases. Cambridge University Press (1990)
25. Xiao, G., et al.: Ontology-based data access: a survey. In: Proceedings of the IJCAI, pp.

5511–5519. IJCAI Org (2018).https://doi.org/10.24963/ijcai.2018/777
26. Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: an overview of

systems and use cases. Data Intell. (2019). https://doi.org/10.1162/dint_a_00011
27. Zheleznyakov, D., Kharlamov, E., Nutt, W., Calvanese, D.: On expansion and contraction of

DL-Lite knowledge bases. J. Web Semantics 57, 100484 (2019). https://doi.org/10.1016/j.
websem.2018.12.002

https://doi.org/10.1007/s10817-007-9078-x
http://ilpubs.stanford.edu:8090/496/1/2001-24.pdf
https://doi.org/10.1007/s00778-002-0083-8
https://doi.org/10.1145/357775.357777
http://www.w3.org/TR/r2rml/
https://doi.org/10.1145/319732.319740
https://doi.org/10.1007/978-3-319-61893-7_11
https://doi.org/10.1007/978-3-319-68288-4_14
https://doi.org/10.1613/jair.1.12414
https://doi.org/10.1145/1292609.1292615
https://doi.org/10.1145/1292609.1292615
https://doi.org/10.1145/1114244.1114249
https://doi.org/10.1145/1114244.1114249
https://doi.org/10.1145/588058.588100
https://doi.org/10.1007/978-3-319-11964-9_35
https://doi.org/10.1007/978-3-319-11964-9_35
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1016/j.websem.2018.12.002
https://doi.org/10.1016/j.websem.2018.12.002

	Ontology-Based Update in Virtual Knowledge Graphs via Schema Mapping Recovery
	1 Introduction
	2 Preliminaries
	2.1 Description Logic Knowledge Bases
	2.2 Relational Databases and Queries
	2.3 Schema Mappings
	2.4 Virtual Knowledge Graphs

	3 Instance-Level Updates in VKGs
	4 Schema Mapping Recovery in VKGs
	5 Data Lineage in VKGs
	6 Update Framework in VKGs
	6.1 ABox Deletions
	6.2 ABox Insertions

	7 Conclusions and Discussion
	References

