
Realizing Bidirectional Virtual Knowledge Graphs
Using Ontop

Romuald Esdras Wandji1[0009−0008−5036−2452] and
Diego Calvanese2[0000−0001−5174−9693]

1 Department of Computing Science, Umeå Universitet, Umeå, Sweden
romuald.esdras.wandji@umu.se

2 Faculty of Engineering, Free University of Bozen-Bolzano, Bolzano, Italy
diego.calvanese@unibz.it

Abstract. The Virtual Knowledge Graph (VKG) paradigm enables querying het-
erogeneous relational databases through a unified semantic layer comprising an
ontology and declarative mappings (typically in R2RML). While querying is
well-supported, propagating updates from the virtual RDF graph (ABox) back
to the source databases remains a challenge. This paper addresses the problem
of translating updates (expressed in SPARQL Update) applied over the ABox
into equivalent SQL updates over the underlying databases, specifically within
the Ontop VKG system. Key difficulties arise from the non-injectivity inherent
in R2RML mappings, where a single ABox update can correspond to multiple
source update possibilities, and the potential for these source updates to cause
unintended side effects—additional insertions or deletions in the ABox beyond
the user’s original intent. While relying on Ontop’s query rewriting engine, our
method employs lineage computation to identify source tuples for deletion and a
strategy for handling existential variables during insertion. It generates candidate
SQL translations, analyzes their potential side effects on the virtual ABox, and
selects the ones that minimize these unintended consequences. This work repre-
sents a step toward closing the Linked Data Life Cycle loop, allowing changes in
the knowledge graph to be reflected in the corresponding source.

Keywords: Knowledge Representation · Virtual Knowledge Graph (VKG) ·
Ontology-based Data Access · View Updates

1 Introduction

In the evolving landscape of data integration, Virtual Knowledge Graphs (VKGs), pre-
viously known as Ontology-Based Data Access (OBDA), have emerged as a power-
ful paradigm for querying relational data sources through an ontological lens. VKGs
enable users to pose high-level semantic queries using standards like SPARQL over
an ontology, which are automatically rewritten and unfolded into executable low-level
queries (e.g., SQL) via declarative schema mappings, typically expressed in languages
like R2RML [10]. These mappings link a lightweight ontology, often specified in a de-
scription logic such as DL-Lite [5], to the underlying data source, facilitating efficient
query answering through query rewriting and unfolding [38]. Current approaches, such



2 R. E. Wandji and D. Calvanese

as Ontop [4], Morph [29], SparqlMap [32], and Mastro [6] primarily focus on exposing
structured data as virtual RDF for integration into Linked Data workflows without the
need for costly data extraction, transformation, and loading (ETL) processes. However,
these systems lack mechanisms for bidirectional integration, where updates applied to
the virtual layer are propagated back to the source.

The task of updating VKGs, particularly translating instance-level (ABox) updates
into equivalent updates over relational data sources, is a relatively underexplored area
that intersects OBDA [36], view updates in databases [1], and SPARQL-to-SQL trans-
lation [31]. Updating the extensional data (ABox) of a knowledge base (KB) while
preserving the ontology is a well-studied problem in description logics (DLs) and
knowledge representation. The complexity arises from logical inference in the ontology,
which can lead to inconsistencies and therefore to multiple update outcomes, aiming at
(minimally) removing the inconsistencies [22,16]. Existing semantics for ABox updates
are broadly classified into formula-based and model-based approaches. Formula-based
semantics represent updates as logical formulas, achieving consistency by minimally
removing conflicting ABox facts [7,14]. For instance, [7] proposed a formula-based se-
mantics for DL-Lite, leveraging its first-order rewritability to ensure a unique repaired
ABox after an update. Model-based semantics, conversely, update all models of the
KB [35,13]. The ComputeUpdate algorithm proposed in [13] extends [35] to compute
ABox updates for DL-LiteF KBs. More expressive DLs, however, face expressibility
challenges for updates [26].

Translating KB updates into source data updates is closely related to the view up-
date problem in relational databases, where updates to a view must be reflected in the
base tables [12,11,1]. The ambiguity introduced by mappings, where multiple source
updates may correspond to a single view update, poses significant challenges [24,25].
SPARQL-to-SQL translation is a cornerstone of OBDA systems, enabling relational data
to be queried as virtual RDF. State-of-the-art systems like Ontop [4], Morph-RDB [29],
and SparqlMap [32] use R2RML mappings [10] to rewrite SPARQL queries into SQL.
However, these systems primarily focus on read-only access, with no support for up-
dates. SPARQL Update [19] provides a standardized mechanism for modifying RDF
data, but translating such updates into SQL DML statements remains challenging due
to schema constraints and mapping ambiguity.

D2RQ/update [15] introduced a schema-aware SPARQL Update processor that opti-
mizes SQL statement generation and prevents constraint violations by grouping related
triples. D2RQ++ [30] proposed integrating a native triple store to handle unmapped
triples or those violating constraints, later propagating them to the database when fea-
sible. OntoAccess [21] developed a custom mapping language (R3M) for bidirectional
mappings, addressing insert and delete operations considering schema constraints. Ad-
ditionally, [18] systematically explored SPARQL-to-SQL translations for both read and
write scenarios, building on [8]. However, this work is conceptual and lacks detailed
handling of complex R2RML templates or empirical evaluation.

The literature reveals several gaps: existing KB update semantics do not account for
source data translation via mappings, which limit their application to VKG, (1) view
update solutions are not tailored to the complex, ontology-driven mappings in VKGs,
and (2) SPARQL-to-SQL update mechanisms lack robust strategies for minimizing side



Realizing Bidirectional Virtual Knowledge Graphs Using Ontop 3

effects. In this paper, we addresse these gaps by proposing a comprehensive framework
for bidirectional VKGs within Ontop that translates ABox updates into source updates
using the mappings, allowing combined insertion and deletion operations to achieve
minimal or no side effects. Thus we improve on our prior work [33], which restricted
the translation of ABox insertions and deletions to corresponding source updates of
the same type. Building upon the Ontop system, we propose an implementation of the
translation algorithms proposed in [33] that prioritizes translations with minimal side
effects, with R2RML mappings to ensure precise propagation of updates.

The rest of the paper is organized as follows. In Section 2 we provide some techni-
cal preliminaries on VKGs, the Ontop system, and updates in VKGs. In Section 3 we
discuss how maximum recoveries are computed in Ontop, and in Section 4 how Ontop
performs the translation of updates. In Section 5 we present some experimental results,
and in Section 6 we conclude the paper.

2 Preliminaries

Formerly referred to as Ontology-Based Data Access (OBDA), the VKG paradigm
is designed to facilitate access to heterogeneous data sources, in particular relational
databases, through a high-level conceptual schema called ontology [4]. Formally, a
VKG specification is a triple P = ⟨T ,M,S⟩ consisting of (i) an ontology, which
provides to the user a convenient and familiar vocabulary (of classes and properties),
and extends the data with background knowledge, (ii) a relational source schema S for
the underlying repositories, and (iii) a schema mapping M, which describes through
queries over the signature of S how to populate the classes and properties in T . A VKG
instance is given as a pair ⟨P, D⟩ where P is a VKG specification and D is a source
instance compliant with S. While component (ii) is specified in standard SQL, W3C
published recommended languages for specifying components (i) and (iii), namely
OWL 2 QL [27] and R2RML [10], respectively.

In practice, each assertion in the provided mapping M of a traditional VKG has one
of the forms

sql(y) ⇝ f(x) :rdfType C,
sql(y) ⇝ f1(x1) :P f2(x2),

where x ⊆ y, x1 ⊆ y, x2 ⊆ y, sql is an SQL query over the signature of S pro-
jecting the columns y, and f(x), f1(x1), and f2(x2) are IRI-templates3, obtained by
embedding the answer variables of the source query (enclosed in curly brackets) into
a fixed string. For instance, if we have the IRI-template :univ/student/{id}, where
id is a placeholder for a student ID, then we can obtain an IRI :univ/student/7 by
instantiating the variable id with the value “7”. In this paper, we make the common
assumption that IRIs in VKGs are generated in a unique way by IRI-templates, i.e., IRI-
templates are injective. Moreover we assume that for each IRI-template f(x1, . . . , xn),
we have also n inverse templates f1, . . . , fn such that f i(f(v1, . . . , vn)) = vi, for each
i ∈ [1..n] and for all possible values v1, . . . , vn instantiating the variables x1, . . . , xn.
When a mapping M is applied over a source instance D, we obtain a set M(D) of
(virtual) RDF triples that represent a knowledge graph (also called ABox).

3 IRI-templates correspond to the R2RML string templates.



4 R. E. Wandji and D. Calvanese

In VKGs, queries are expressed over the terms in the ontology T and are formulated
in SPARQL [27]. They are evaluated over the knowledge base ⟨T ,M(D)⟩. Notice that
the knowledge graph is not materialized, but is kept virtual, which ensures that the VKG
system always exposes the actual up-to-date information.

2.1 The Ontop System

The Ontop framework is an open-source4 VKG system designed to expose relational
databases as virtual RDF graphs, allowing SPARQL queries to be answered over a se-
mantic layer defined by an ontology [4]. Its virtual approach avoids materializing RDF
triples by rewriting SPARQL queries into optimized SQL queries, which are then exe-
cuted by the underlying database engine.

Ontop supports all W3C standards relevant to VKG, including SPARQL 1.0 (with
partial SPARQL 1.1 support), OWL 2 QL [28], RDFS [3] and is compatible with major
relational databases (e.g., PostgreSQL, MySQL, Oracle) and data federation systems,
such as Teiid5, Dremio6, and Denodo7, enabling data integration across heterogeneous
sources. A core feature of Ontop is its query rewriting mechanism, which translates
SPARQL queries over the ontology into SQL queries executable on the underlying
database. Since version 3, Ontop has adopted an algebra-based data structure called
Intermediate Query (IQ) to facilitate this translation. While Ontop focuses on query an-
swering, understanding its query rewriting process is crucial for exploring update trans-
lation in VKGs, where similar techniques may be adapted to propagate ontology-level
updates to the database.

IQ is a variant of relational algebra designed to represent both SPARQL queries
and SQL queries from the mapping, bridging the semantic gap between the two [37].
Based on that notion, when the user poses a SPARQL query over a VKG instance,
Ontop proceeds as follows: (i) the query is translated into IQ; (ii) the translated IQ is
expanded taking into account the ontology (e.g., subclass and subproperty axioms, and
domain and range assertions); (iii) the expanded IQ is unfolded using the mapping; and
(iv) after a series of optimizations carried out by Ontop, the optimized IQ is converted
into an SQL query for the underlying data source.

Example 1. As an example, assume that our mapping M has the following assertions:
T_1(x,y) ⇝ :b/{x} :p y ,

T_2(x,y) ⇝ :b/{x} :p y .

where T_1 and T_2 are source relations with x as primary key of type TEXT, and y of type
INTEGER. Each assertion in M translates the tuples in the source relation into RDF triples
with IRI subjects :b/{x}, predicate :p and object y. Assume that the user poses the
following SPARQL query:
SELECT ?x ?y WHERE { ?x :p ?y. }

Then, in Step (i), the query is translated into the following IQ:

4 https://github.com/ontop/ontop
5 https://teiid.io/
6 https://www.dremio.com/
7 https://www.denodo.com/

https://github.com/ontop/ontop
https://teiid.io/
https://www.dremio.com/
https://www.denodo.com/


Realizing Bidirectional Virtual Knowledge Graphs Using Ontop 5

ans(x,y) INTENSIONAL triple(x,:p,y)

For simplicity, we assume that the ontology does not contain any axiom, hence Step (ii)
leaves the IQ unchanged. In Step )iii, the triple atom obtained in the previous step is
replaced with the mapping assertions for :p, which in this case involve T_1 and T_2.
The unfolded IQ is:
ans(x,y)

CONSTRUCT [x,y] [x/RDF(:b{}(z),IRI), y/RDF(i2t(z1), xsd:integer)]

UNION [z,z1]

EXTENSIONAL T_1(z,z1)

EXTENSIONAL T_2(z,z1)

In Step (iv), the final one, the IQ is translated into SQL, tailored to the DBMS dialect.
For example, in PostgreSQL, it might become:
SELECT z AS x, CAST(z1 AS TEXT) AS y FROM T_1
UNION ALL
SELECT z AS x, CAST(z2 AS TEXT) AS y FROM T_2 ◁

In the above example, we observe that using IQ facilitates handling complex
SPARQL queries and aligns with SQL semantics, which is a potential foundation for
update translation in VKGs. Extending this framework to support ontology-to-database
updates involves defining update operations in IQ and ensuring consistency, which is
what we are investigating in this paper.

2.2 Updates in VKGs and Instance Recoveries

In this paper, we focus on two types of instance-level updates in VKGs: either a set
of deletions or a set of insertions over the retrieved ABox M(D). We are interested
in translating such ABox update requests into suitable source update requests. For our
techniques to be applicable, We need to make the simplifying assumption that the source
of each mapping assertion in M is a union of conjunctive queries (UCQs). Considering
more general forms of mappings is left for future work.

We now present the notion of update translation in VKGs as introduced in [33]. We
start with the definition of translation for ABox deletions U−

A in a VKG instance J .
The goal is to find a set of source deletions U−

D that can be applied over the database
D to generate the desired (virtual) ABox through the mapping M. We consider here
direct translations, which are translations that are of the same nature as the original
ABox update, i.e., ABox deletions translate to source deletions, and similarly, ABox
insertions translate to source insertions.8

Definition 1 (Direct deletion translation). Let U−
A be a set of ABox deletions. A

source deletion U−
D is a direct translation of U−

A in J if U−
A ∩ M(D \ U−

D ) = ∅. We
say that U−

D is an exact direct translation of U−
A in J if M(D \ U−

D ) = M(D) \ U−
A .◁

Note that in our definition, we use the term exact translation for translations whose
execution over the data source would create a (virtual) ABox that perfectly reflects the

8 More general forms of translations, where ABox deletions (or insertions) are translated using
both deletions and insertions are considered in [34].



6 R. E. Wandji and D. Calvanese

requested deletion. However, translations that are not exact will lead to extra deletions
in the ABox, and these unintendedly deleted ABox assertions are referred to as side
effects. We provide a similar definition of translation for ABox insertions.9

Definition 2 (Direct insertion translation). Let U+
A be a set of ABox insertions. A

source insertion U+
D is a direct translation of U+

A in J if U+
A ⊆ M(U+

D) and
⟨T −,M(D ∪ U+

D)⟩ is consistent. U+
D is an exact direct translation of U+

A in J if
M(D ∪ U+

D) = M(D) ∪ U+
A . ◁

We also require that translations comply with the minimal change principle, i.e.,
the state of the new VKG system should remain as close as possible to the previous
one [16,17].

Definition 3 (Minimal direct translation). Let U−
A be a set of ABox deletions. A di-

rect translation U−
D of U−

A in J is minimal if every proper subset of U−
D is not a transla-

tion of U−
A in J . Similarly, let U+

A be a set of ABox insertions. A direct translation U+
D

of U+
A in J is minimal if every proper subset of U+

D is not a translation of U+
A in J . ◁

The main challenge related to translating instance-level updates in VKGs (which is
also strongly related to the view update problem), is to compute the set of source tuples
from which a given set of ABox assertions (to be deleted or inserted) can be generated
through the provided schema mapping. In other words, given an ABox deletion U−

A ,
how can we compute its lineage in the source? Similarly, given an ABox insertion U+

A ,
how can we compute the minimal sets of source tuples that generate U+

A ? Given the non-
injective nature of VKG mappings, there is no unique way to map ABox assertions to
their corresponding tuples in the source. To address this, [33] has proposed to compute
a reverse mapping M̂ that approximates the inverse of the original VKG mapping M.
This reverse mapping, called the MR-os-mapping10 of M, is constructed by associating
each target atom in T with its rewriting over S via M. Conceptually, applying M̂ to an
ABox assertion f computes its logical rewriting over the source, thereby capturing all
possible source tuples that could produce f .

Example 2. Assume that our mapping M contains the assertion T1(x,y,z) ⇝ :b/{x}

:p y. Then, when the MR-os-mapping M̂ of M is applied to the ABox assertion
f =(:b/{a} :p c), it generates M̂({f}) = ∃z.T1(a,c,z). ◁

Our goal is to compute the source tuples from which a set of ABox assertions can
be derived. To achieve this, we leverage the MR-os-mapping recovery of each assertion,
producing a logical condition over S that describes all generating source sets. We for-
malize this with the notion of instance recovery, defined as follows, where we assume
that databases are expressed over a predefined domain ∆ of values, and we use S(∆) to
express the set of all facts obtained by applying the predicates in S to the values in ∆.

9 Notice that we adopt here the definition of direct translation of ABox insertions proposed
in [34], where the translation contains all source tuples necessary to generate the inserted
ABox facts, including tuples already present in the data source, as opposed to the definition
of [33], where the translation contains only the new tuples to be added to the data source to
accomplish the ABox insertion.

10 MR-os-mapping stands for maximum recovery from the ontology to the source schema.



Realizing Bidirectional Virtual Knowledge Graphs Using Ontop 7

Definition 4 (M̂-instance recovery [33]). Let P = ⟨T ,M,S⟩ be a VKG instance
and M̂ the MR-os-mapping of M. The M̂-instance recovery is the function M̂S from
ABox facts over T to 22

S(∆)

such that

M̂S(f) = {B ⊆ S(∆) | B is true in M̂({f}), and
∀B′ ⊊ B,B′ is not true in M̂({f})}. ◁

Notice that the above definition of instance recovery differs from the one provided
in [33], which relied on a specific source instance D. Here instead, we abstract from
such a source instance and consider instead the minimal source instances B contained
in the (infinite) set S(∆) of facts from which an ABox fact f can be generated through
M. Notice that, while each B in M̂S(f) is finite (since minimal), in general M̂S(f)
will contain an infinite number of such source instances. For ABox deletions, we will
restrict the set of such source instances to those contained in the given source instance
D (for S). Instead, for ABox insertions we will have to find suitable representatives in
M̂S(f) that lead to minimal insertion side-effects through M.

3 Maximum Recovery in Ontop

As we mentioned earlier, Ontop excels at exposing relational databases as virtual RDF
graphs through the ontologies and the mappings, which allows SPARQL queries to be
answered without materializing the triples. Ontop ’s query answering process relies on
rewriting SPARQL queries into SQL queries using mappings and ontology inference [4].
However, translating ABox assertions (instance-level facts) into database tuples for up-
dates is not supported in Ontop. In this section, we show how we can exploit the rewrit-
ing capabilities of Ontop to efficiently compute the rewriting of ABox assertions, which
then allows us to compute source updates for ABox updates.

In Ontop, given a VKG specification ⟨T ,M,S⟩, a SPARQL query QT over T is
translated into an SQL query QS over S by using Intermediate Query (IQ), which is a
language combining basic algebraic operations like UNION, JOIN, PROJECT, and SLICE.
In our proposed method, we leverage that translation by deriving from the target triple
(e.g., f = (:b/{a} :p b)) a ground ASK query (e.g., ASK { f .}), and Ontop’s query
engine then translates this SPARQL query into an IQ. For ASK queries, the unfolded IQ
typically includes a SLICE (or LIMIT 1) construct which checks for the existence of any
set of source tuples satisfying the IQ. By programmatically removing this SLICE con-
struct from the unfolded IQ, the resulting IQ transforms the existential check (with the
SLICE constructor) into a comprehensive retrieval mechanism.

Example 3 (Example 1 cont’d). If we have the RDF triple f = (:b/{a} :p b), from
which we form the ASK query ASK { f . }, the unfolded IQ will be:
ans1() SLICE limit=1

UNION []

SLICE limit =1 EXTENSIONAL T_1(0:a^^TEXT ,1:b^^ INTEGER)

SLICE limit =1 EXTENSIONAL T_2(0:a^^TEXT ,1:b^^ INTEGER) ◁

Another challenge in computing the MR-os-mapping is matching the assertions’
IRIs to mapping assertions, which requires handling IRI templates and their inverses.



8 R. E. Wandji and D. Calvanese

For an ABox assertion f = (:b/{a} :p b), Ontop identifies mappings whose target
triples unify with f . This involves: (i) matching p to the mapping’s predicate, (ii) ap-
plying the inverse templates to :b/{a} and b to extract database values, and (iii) using
the extracted values to construct the unfolded IQ. In the next sections, we will show
how the notion of MR-os-mapping can be used in the translation of updates within the
Ontop framework.

4 Update Translation in Ontop

SPARQL [20] is known as the standard query language for RDF graphs, however, it
is limited to read-only access to a knowledge graph. In order to overcome the limita-
tion, W3C introduced SPARQL Update [19] as a standardized language for modifying
RDF graphs, supporting operations such as insertions and deletions of RDF triples. In-
sertions are specified using the INSERT DATA construct, which adds new triples to the
graph. For example, INSERT DATA { :student/1 :hasName "Alice" } adds a triple
stating that a student has a specific name. Similarly, deletions are specified using DELETE
DATA to remove specific triples from the graph. In VKGs, these update operations must
be translated into equivalent SQL update statements that modify the underlying database
through mappings. In this section, we first provide a running example that we use
throughout the rest of the paper to illustrate the update problems in VKGs and our
solution in Ontop.

4.1 Running Example

We present a running example involving a university database with two relational ta-
bles: Student(id,name,faculty) and Faculty(id,course). The Student table stores
student records with a unique identifier (id), name (name), and their enrolled faculty
(faculty). The Faculty table specifies the mandatory courses (course, e.g., “Math”)
for each faculty. Based on that source schema, we define the following mappings:

– Mapping m1 maps Student records to the :hasName data property:
SELECT id , name FROM Student
⇝ :uni/student /{id} :hasName {name}.

– Mapping m2 maps Student and Faculty records to the :isTaking data property:
SELECT s.id AS id , f.course AS course
FROM Student s JOIN Faculty f ON s.faculty = f.id
⇝ :uni/student /{id} :isTaking {course }^^ xsd:string .

The above mapping M = {m1,m2} is specified in Ontop’s native mapping lan-
guage11, where each mapping assertion consist of (i) a source, which is an SQL query,
and (ii) a target, which is an RDF triple pattern with placeholders (enclosed in ‘{’ and
‘}’) for the values of answer variables from the source query. When applied over a

11 See https://github.com/ontop/ontop/wiki/ontopOBDAModel for a full description of On-
top’s mapping language.

https://github.com/ontop/ontop/wiki/ontopOBDAModel


Realizing Bidirectional Virtual Knowledge Graphs Using Ontop 9

source instance, these mappings create a virtual RDF graph where students are linked
to their names and the courses they are taking. Consider the database D shown below
on the left-hand side:

Student
id name faculty
s1 john f1

s1 john f2

s2 paul f2

Faculty
id course
f1 ethics

f2 ethics

f1 law

M(D):

:uni/student/s1 :hasName "john"

:uni/student/s2 :hasName "paul"

:uni/student/s1 :isTaking "ethics"

:uni/student/s1 :isTaking "law"

:uni/student/s2 :isTaking "ethics"

By applying the mapping M over D, we obtain the (virtual) ABox M(D) shown above
on the right-hand side. Assume now that we have also an OWL 2 QL ontology containing
the following inclusion assertion:
:isTaking rdfs:subPropertyOf :isStudying

By using T-mappings [23] w.r.t. the above ontology (which essentially encode
the TBox axioms into the mapping), the ABox is enriched with the asser-
tions: (:uni/student/s1 :isStudying "ethics"), (:uni/student/s1 :isStudying
"law"), and (:uni/student/s2 :isStudying "ethics").

4.2 Translation of SPARQL DELETE

To translate a SPARQL DELETE operation into an update over the underlying data source
in Ontop, we propose an approach grounded in the notion of data lineage [12,9] and
MR-os-mapping for VKG mappings (see Section 3). When a user requests the deletion
of an ABox assertion f , our goal is to compute the minimal set of deletions over the
source instance that ensures f is no longer entailed in the virtual ABox generated by
the VKG. Central to our approach is the observation that if f currently holds in the
virtual ABox, it must have been generated by at least one mapping assertion applied to
a subset of the database. We define the lineage of f as the set of all minimal subsets
of the source instance (called lineage branches) that individually suffice to produce f .
This is captured by the following definition:

Definition 5 (Lineage [33]). Let P = ⟨T ,M,S⟩ be a VKG specification, ⟨P, D⟩ a
VKG instance, and f ∈ M(D) an ABox assertion. A subset B ⊆ D is a lineage
branch of f if f ∈ M(B), and for every B′ ⊊ B, f /∈ M(B′). The lineage of f ,
denoted lineage(f,P, D), is the set of all lineage branches of f . ◁

Each lineage branch represents a distinct witness of f in the data source through M.
It was proven in [33] that for the MR-os-mapping M̂, every set B in M̂S(f) such that
B ⊆ D is a lineage branch of f . Hence, to formally capture these branches in a source
instance D, we select from its instance recovery M̂S(f) those sets that are included in
D. In practice, these branches are obtained by searching sets of tuples in D that are true
in M̂({f}) (which is the source IQ).

Example 4 (Continued from Section 4.1). The lineage in D of the ABox assertion f =
(:uni/student/s1 :isTaking "ethics") is lineage(f,P, D) = {B1, B2}, where

B1 = {Student(s1,john,f1), Faculty(f1,ethics)},
B2 = {Student(s1,john,f2), Faculty(f2,ethics)}. ◁



10 R. E. Wandji and D. Calvanese

Since the lineage branches are minimal (according to their definition), removing at
least one tuple from each of them is enough to delete f from M(D). However, to min-
imize side effects on other ABox assertions, we select combinations of deletions that
include exactly one tuple per branch, and that intersect minimally with the lineage of
other assertions. This corresponds to computing a hitting set over the lineage branches,
constrained to avoid tuples that also contribute to other assertions in the ABox.

Example 5 (Continued from Example 4). The hitting set over the lineage branches of f
is T = {T1, T2, T3, T4} where

T1 = {Student(s1,john,f1), Student(s1,john,f2)},
T2 = {Student(s1,john,f1), Faculty(f2,ethics)},
T3 = {Faculty(f1,ethics), Student(s1,john,f2)},
T4 = {Faculty(f1,ethics), Faculty(f2,ethics)}. ◁

We observe that each hitting set over the lineage branches of an ABox assertion
represents a minimal set of source tuples to delete in D to realize the deletion of that
assertion. Algorithm 1 formalizes the translation of a SPARQL DELETE request into a
minimal SQL DELETE request over the source instance of J . Our algorithm takes as in-
put J , a SPARQL DELETE request Q−

T , and a distance metric ∆−
J to guide side-effect

minimization12. The algorithm begins by extracting from Q−
T the set F of ABox as-

sertions targeted for deletion (at Line 1), and the lineage B of F in D (which is the
union of the lineage branches of all assertions in F ). Since deleting the set F amounts
to deleting at least one tuple in each lineage branch of its elements, the algorithm com-
putes the hitting set of B (at Line 3) using the COMPUTEHITTINGSETS algorithm.
Then the algorithm selects the subset U−

D ⊆ T of minimal translations according to
∆−

J . Finally, each selected translation is converted into a concrete SQL DELETE over S
(using CONVERTTODELSQL) and returned to the user as a possible translation.

Example 6 (Cont.’d from Example 5). Consider the request Q−
J : DELETE DATA { f }.

For any comparison metric ∆−
J , the only set of tuples to delete is T3, since its deletion

leads to an empty side-effect. Therefore, Algorithm 1 returns the SQL DELETE:
DELETE FROM Student WHERE id="s1" AND name="john" AND faculty="f2";
DELETE FROM Faculty WHERE id="f1" AND course="ethics". ◁

4.3 Translation of SPARQL INSERT

Unlike deletions, the translation of a SPARQL INSERT request for a set F of ABox
assertions in VKGs presents a fundamentally different challenge: the ABox assertions
targeted for insertion do not yet exist in the database. Therefore, we cannot simply
manipulate the database to realize the intended insertion. Instead, we must construct
new source tuples such that, when the VKG mapping is applied, the desired assertion
appears in the virtual ABox. To address this, we apply the MR-os-mapping over the set
of ABox assertions to be inserted. This leads to an unfolded IQ, which serves as a logical

12 ∆−
J can also encode heuristics such as tuple preservation or data provenance cost.



Realizing Bidirectional Virtual Knowledge Graphs Using Ontop 11

Algorithm 1: IMPTRANSDEL

input : A VKG instance J = ⟨P, D⟩ with P = ⟨T ,M,S⟩ where T is specified in
OWL 2 QL andM in R2RML.
A SPARQL DELETE requestQ−

T in T and distance metric ∆−
J .

output: A set of SQL DELETE request expressed in S.
1 F ← Set of ABox assertions contained inQ−

T ;
2 B←

⋃
f∈F lineage(f,P, D);

3 T← COMPUTEHITTINGSETS(B);
4 U−

D ← Translations in T that are minimal according to ∆−
J ;

5 return {CONVERTTODELSQL(T ) | T ∈ U−
D}

specification of the source data needed to generate F . The problem then becomes one
of finding a suitable set of source tuples that satisfy the unfolded IQ.

To accomplish this, we propose to rewrite the set F as a whole in the source schema.
A key advantage of using Ontop to achieve this, lies in the fact that the resulting rewrit-
ten IQ reflects a unified logical condition that captures all possible ways to jointly gener-
ate F through the original VKG mapping M. Ontop leverages a unification mechanism
at the level of the source schema S, which merges repeated variables and shared join
paths across the different assertions in F , and also correctly deals with IRI templates.
This avoids redundancy and reveals shared existential dependencies.

Example 7 (Cont.’d from Section 4.1). Consider the set F of ABox assertions:
{ (:uni/student/s3 :hasName "smith ");

(:uni/student/s3 :isTaking "art") }

Rewriting each assertion separately yields two IQs that are respectively equivalent to
the CQs ∃id .Student("s3", "smith", id) and ∃name, id .Student("s3",name, id) ∧
Faculty(id , "art"). Instead, by rewriting the entire set F as a single query, Ontop pro-
duces the unified IQ ∃id .Student("s3", "smith", id) ∧ Faculty(id , "art"), where the
only existential variable id is shared across the two atoms. ◁

The first challenge when translating SPARQL INSERT operations arises when the set
of RDF triples includes multiple distinct subjects. Since each subject typically corre-
sponds to a distinct entity in the domain, a set of triples with different subjects will
generate several distinct IQs in the source. Therefore, to ensure an efficient translation,
we group the ABox assertions by subject before applying the rewriting. Within each
group, the triples collectively represent attributes or relationships of the same entity
and are therefore more likely to share a common source predicate or join path.

Once an MR-os-mapping M̂ is applied to each group of ABox assertions in the pro-
vided SPARQL INSERT request, we obtain an unfolded IQ M̂(F ) over the source, from
which we have to search for sets B of source tuples such that B is true in M̂(F ) with
minimum side-effect. Since the sets B are not restricted to B ⊆ D (as is the case for
deletion), the search space of such B can be infinite, due to the presence of existential
variables in M̂(F ). To narrow this space, we decompose each CQ q in M̂(F ) and com-
pute its maximum satisfiable subsets [2] — the subqueries that evaluate to true over D,
with the additional condition that all variables that occur in such a maximum satisfiable



12 R. E. Wandji and D. Calvanese

Algorithm 2: IMPTRANSINS

input : A VKG instance J = ⟨P, D⟩ with P = ⟨T ,M,S⟩, where T is specified in
OWL 2 QL andM in R2RML.
A SPARQL INSERT requestQ+

T in T and distance metric ∆+
J .

output: A set of SQL INSERT request expressed in S.
1 T← {}; F ← set of ABox assertions contained inQ+

T ;
2 for each group G ∈ GROUPBYSUBJECT(F ) do
3 for each q ∈ M̂(G) do
4 Σ ← SATSUBSET(q,D) ∪ {(∅, ∅)};
5 for each (Bσ, σ) ∈ Σ do
6 vq ← vars(q \Bσ);
7 ∆q = {b1, . . . , b|vq|} ∪∆A, where ∆A are the constants in G and each bi

is a fresh value not in ∆A and not appearing in D;
8 Γ ← ASSIGN(q \Bσ,∆q, D);
9 for each (Bγ , γ) ∈ Γ do

10 T← T ∪ {Bσ[σ] ∪Bγ [γ]};

11 U+
D ← translations in T that are minimal according to ∆+

J

12 return {CONVERTTOINSSQL(T ) | T ∈ U+
D}

subset s ⊆ q do not occur in any atom of q not in s. These satisfiable fragments allow
for partial grounding of variables, from which we infer the values of the remaining ex-
istential variables. Notice that the additional condition that no variable x occurring in
s occurs also outside of s is necessary in order to ensure that we do not lose solutions
with minimal side-effect. Indeed, when considering a maximum satisfiable subset s, we
enforce the instantiation of all variables in s via the facts already in D, and we want
to avoid that such instantiation constains also atoms (not already in D) that need to be
inserted to accomplish the ABox insertion according to q.

Algorithm 2 outlines the process of translating a SPARQL INSERT request into SQL
INSERT statements over a VKG instance J . The algorithm begins by grouping the target
ABox assertions F by subject to ensure that related triples are rewritten together (using
GROUPBYSUBJECT), capturing shared existential dependencies. For each group G, the
algorithm applies the MR-os-mapping to get M̂(G) (at Line 3), returning a set of CQs
in S. Each CQ is then analyzed to identify its maximal satisfiable subsets with respect
to the current database D (with the additional condition on variables described above).
This is achieved by using the SATSUBSET algorithm, which takes as input a CQ q and
a source instance D, and returns a set of pairs (Bσ, σ), where σ is a partial binding of
variables in q with values in D, and Bσ ⊆ q is the set of atoms corresponding to σ. For
a variable binding σ and a set Bσ of atoms, we use Bσ[σ] to denote the set of atoms
obtained from q by binding the variables in q according to σ.

The remaining variables in q \Bσ (from the unsatisfiable subset) are instantiated ei-
ther from known values in D or by introducing fresh values (at Line 8). This is achieved
with the ASSIGN function, which takes as input q \Bσ and by using its existential vari-
ables as answer variables, queries from D the set of possible assignments, on top of
which the fresh values from ∆q are added. For each assignment returned by the ASSIGN



Realizing Bidirectional Virtual Knowledge Graphs Using Ontop 13

function, we create an insertion candidate, which we add to T (at Lines 10) from which
a minimal subset U+

D is selected using a comparison metric ∆+
J . The selected instan-

tiations are then translated into SQL INSERT statements (using CONVERTTOINSSQL),
ensuring that the intended ABox assertions are derivable from the updated source.

Example 8 (Cont.’d from Example 7). Consider the request Q+
T : INSERT DATA { F }.

From its unified source IQ (which in this case has no satisfiable subset), we observe that
a fresh value assigned to the variable id will lead to an empty side-effect (assuming ∆+

J
is based on cardinality). Therefore, a possible source translation is the following:
INSERT INTO student VALUES (s3 , "smith", f8)
INSERT INTO faculty VALUES (f8 , "art") ◁

5 Empirical Results

To evaluate the practical applicability and scalability of our proposed translation algo-
rithms for SPARQL Update, we conducted two complementary experiments based on
our running example. In the first experiment, we varied the database size from 1 to 2,000
students and from 1 to 500 faculties (with each faculty having two students). For inser-
tion, we tested adding a fresh grouped triple that requires creating new source tuples,
since no satisfiable rewriting exists. For deletion, we focused on removing an existing
foaf:isTaking triple, which consists of two relations in the source schema. The results
show that insertion time grows significantly with database size due to the need to search
for translations that minimize side effects, while deletion time remains relatively stable
since it depends only on the fixed lineage branch of the target assertion.

In the second experiment, we fixed the database size but progressively increased the
number of lineage branches per assertion from 1 to 15. We observed that deletion time
can grow exponentially with the number of branches, reaching up to 23 minutes for 15
branches. However, by employing early stopping strategies (terminating as soon as an
exact translation is found or one below a side-effect threshold), runtime was drastically
reduced. Together, these experiments show that the insertion cost scales primarily with
the database size, while the deletion cost scales with lineage complexity, and both can
be significantly optimized using practical heuristics such as early stopping, prioritizing
fresh value insertions, or even allowing null values in the data source.

6 Conclusions

In this paper, we addressed the challenge of translating instance-level update requests
in Virtual Knowledge Graphs into executable source-level operations within the On-
top framework. We introduced a novel approach based on maximum recovery, which
enables us to systematically rewrite ABox assertions into source queries and thus com-
pute the minimal source updates. We have demonstrated how such a mapping can be
obtained by leveraging the Ontop rewriting engine, and we proposed translation algo-
rithms for both insertion and deletion of ABox assertions. Through extensive experi-
ments, we demonstrated how the insertion cost scales with the database size, while the
deletion cost scales with lineage complexity, and we showed that practical heuristics



14 R. E. Wandji and D. Calvanese

1102010
0
20
0

1,
00
0

2,
00
0

103

104

105

Number of Students

Tr
an

sl
at

io
n

Ti
m

e
(m

s)
Insertion
Deletion

1 5 10 15
103
104
105
106

Lineage Branches per Assertion

D
el

et
io

n
Ti

m
e

(m
s)

Full Search
Early Stop

Fig. 1: Translation time scaling: (a) with database size; (b) with lineage branch com-
plexity.

such as early stopping can significantly improve performance. Our results highlight the
feasibility of supporting precise and side-effect-aware updates in VKG systems like On-
top, paving the way for more expressive and update-capable virtualized semantic data
management.

Acknowledgments. This research has been partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP), funded by the Knut and Alice Wallenberg
Foundation, by the HEU project CyclOps (GA n. 101135513), by the Province of Bolzano and
FWF through project OnTeGra (DOI 10.55776/PIN8884924). by the Province of Bolzano and EU
through projects ERDF-FESR 1078 CRIMA, and ERDF-FESR 1047 AI-Lab, by MUR through
the PRIN project 2022XERWK9 S-PIC4CHU, and by the EU and MUR through the PNRR
project PE0000013-FAIR.

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans. on Database
Systems 6(4), 557–575 (1981). https://doi.org/10.1145/319628.319634

2. Bendík, J.: On decomposition of maximal satisfiable subsets. In: Proc. of Formal Methods
in Computer Aided Design (FMCAD). pp. 212–221. IEEE (2021). https://doi.org/10.
34727/2021/ISBN.978-3-85448-046-4_30

3. Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF Schema. W3C
Recommendation, World Wide Web Consortium (Feb 2004), https://www.w3.org/TR/
rdf-schema/

4. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., Rodriguez-
Muro, M., Xiao, G.: Ontop: Answering SPARQL queries over relational databases. Semantic
Web J. 8(3), 471–487 (2017). https://doi.org/10.3233/SW-160217

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,
Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Reasoning Web: Semantic
Technologies for Informations Systems – 5th Int. Summer School Tutorial Lectures (RW),
Lecture Notes in Computer Science, vol. 5689. Springer (2009). https://doi.org/10.1007/
978-3-642-03754-2_7

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro,
M., Rosati, R., Ruzzi, M., Savo, D.F.: The Mastro system for ontology-based data access.
Semantic Web J. 2(1), 43–53 (2011). https://doi.org/10.3233/SW-2011-0029

https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/319628.319634
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_30
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_30
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_30
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_30
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://doi.org/10.3233/SW-160217
https://doi.org/10.3233/SW-160217
https://doi.org/10.1007/978-3-642-03754-2_7
https://doi.org/10.1007/978-3-642-03754-2_7
https://doi.org/10.1007/978-3-642-03754-2_7
https://doi.org/10.1007/978-3-642-03754-2_7
https://doi.org/10.3233/SW-2011-0029
https://doi.org/10.3233/SW-2011-0029


Realizing Bidirectional Virtual Knowledge Graphs Using Ontop 15

7. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Updating ABoxes in DL-Lite.
In: Proc. of the 4th Alberto Mendelzon Int. Workshop on Foundations of Data Management
(AMW). CEUR Workshop Proceedings, vol. 619, pp. 3.1–3.12. CEUR-WS.org (2010)

8. Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL translation.
Data and Knowledge Engineering 68(10), 973–1000 (2009). https://doi.org/10.1016/J.
DATAK.2009.04.001

9. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. The VLDB
J. 12(1), 41–58 (2003). https://doi.org/10.1007/s00778-002-0083-8

10. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recom-
mendation, World Wide Web Consortium (Sep 2012), https://www.w3.org/TR/r2rml/

11. Dayal, U., Bernstein, P.A.: On the updatability of relational views. In: Proc. of the 4th Int.
Conf. on Very Large Data Bases (VLDB). vol. 78, pp. 368–377 (1978). https://doi.org/
10.14778/3415478.3415503

12. Dayal, U., Bernstein, P.A.: On the correct translation of update operations on relational
views. ACM Trans. on Database Systems 7(3), 381–416 (1982). https://doi.org/10.1145/
319732.319740

13. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update and erasure
in description logic ontologies. J. of Logic and Computation 19(5) (2009). https://doi.
org/10.1093/logcom/exn051

14. De Giacomo, G., Oriol, X., Rosati, R., Savo, D.F.: Instance-level update in DL-Lite on-
tologies through first-order rewriting. J. of Artificial Intelligence Research 70, 1335–1371
(2021). https://doi.org/10.1613/jair.1.12414

15. Eisenberg, V., Kanza, Y.: D2RQ/update: Updating relational data via virtual RDF. In: Proc.
of the 21st Int. World Wide Web Conf. (WWW). pp. 497–498 (2012). https://doi.org/10.
1145/2187980.2188095

16. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates
and counterfactuals. Artificial Intelligence 57, 227–270 (1992). https://doi.org/10.1016/
0004-3702(92)90018-S

17. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology
change: Classification and survey. Knowledge Engineering Review 23(2), 117–152 (2008).
https://doi.org/10.1017/S0269888908001367

18. Garrote Hernandez, A., García, M.N.M.: RESTful writable APIs for the web of Linked Data
using relational storage solutions. In: Proc. of WWW Workshop on Linked Data on the
Web (LDOW). CEUR Workshop Proceedings, vol. 813. CEUR-WS.org (2011), https://
ceur-ws.org/Vol-813/ldow2011-paper04.pdf

19. Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 update. W3C Recommendation, World
Wide Web Consortium (Mar 2013), https://www.w3.org/TR/sparql11-update/

20. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation, World Wide
Web Consortium (Mar 2013), https://www.w3.org/TR/sparql11-query

21. Hert, M., Reif, G., Gall, H.C.: Updating relational data via SPARQL/update. In: Proc. of the
EDBT/ICDT Workshops. pp. 1–8 (2010). https://doi.org/10.1145/1754239.1754266

22. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and
revising it. In: Proc. of the 2nd Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR). pp. 387–394 (1991)

23. Kontchakov, R., Rezk, M., Rodriguez-Muro, M., Xiao, G., Zakharyaschev, M.: Answering
SPARQL queries over databases under OWL 2 QL entailment regime. In: Proc. of the 13th
Int. Semantic Web Conf. (ISWC). Lecture Notes in Computer Science, Springer (2014).
https://doi.org/10.1007/978-3-319-11964-9_35

24. Kotidis, Y., Srivastava, D., Velegrakis, Y.: Updates through views: A new hope. In: Proc. of
the 22nd IEEE Int. Conf. on Data Engineering (ICDE). p. 2 (2006). https://doi.org/10.
1109/ICDE.2006.167

https://doi.org/10.1016/J.DATAK.2009.04.001
https://doi.org/10.1016/J.DATAK.2009.04.001
https://doi.org/10.1016/J.DATAK.2009.04.001
https://doi.org/10.1016/J.DATAK.2009.04.001
https://doi.org/10.1007/s00778-002-0083-8
https://doi.org/10.1007/s00778-002-0083-8
https://www.w3.org/TR/r2rml/
https://doi.org/10.14778/3415478.3415503
https://doi.org/10.14778/3415478.3415503
https://doi.org/10.14778/3415478.3415503
https://doi.org/10.14778/3415478.3415503
https://doi.org/10.1145/319732.319740
https://doi.org/10.1145/319732.319740
https://doi.org/10.1145/319732.319740
https://doi.org/10.1145/319732.319740
https://doi.org/10.1093/logcom/exn051
https://doi.org/10.1093/logcom/exn051
https://doi.org/10.1093/logcom/exn051
https://doi.org/10.1093/logcom/exn051
https://doi.org/10.1613/jair.1.12414
https://doi.org/10.1613/jair.1.12414
https://doi.org/10.1145/2187980.2188095
https://doi.org/10.1145/2187980.2188095
https://doi.org/10.1145/2187980.2188095
https://doi.org/10.1145/2187980.2188095
https://doi.org/10.1016/0004-3702(92)90018-S
https://doi.org/10.1016/0004-3702(92)90018-S
https://doi.org/10.1016/0004-3702(92)90018-S
https://doi.org/10.1016/0004-3702(92)90018-S
https://doi.org/10.1017/S0269888908001367
https://doi.org/10.1017/S0269888908001367
https://ceur-ws.org/Vol-813/ldow2011-paper04.pdf
https://ceur-ws.org/Vol-813/ldow2011-paper04.pdf
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/sparql11-query
https://doi.org/10.1145/1754239.1754266
https://doi.org/10.1145/1754239.1754266
https://doi.org/10.1007/978-3-319-11964-9_35
https://doi.org/10.1007/978-3-319-11964-9_35
https://doi.org/10.1109/ICDE.2006.167
https://doi.org/10.1109/ICDE.2006.167
https://doi.org/10.1109/ICDE.2006.167
https://doi.org/10.1109/ICDE.2006.167


16 R. E. Wandji and D. Calvanese

25. Langerak, R.: View updates in relational databases with an independent scheme. ACM Trans.
on Database Systems 15(1), 40–66 (1990). https://doi.org/10.1145/77643.77645

26. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Foundations of instance level updates in expressive
description logics. Artificial Intelligence 175(18), 2170–2197 (2011). https://doi.org/10.
1016/J.ARTINT.2011.08.003

27. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontol-
ogy Language profiles (second edition). W3C Recommendation, World Wide Web Consor-
tium (Dec 2012), https://www.w3.org/TR/owl2-profiles/

28. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontol-
ogy Language profiles (second edition). W3C Recommendation, World Wide Web Consor-
tium (Dec 2012), http://www.w3.org/TR/owl2-profiles/

29. Priyatna, F., Corcho, O., Sequeda, J.F.: Formalisation and experiences of R2RML-based
SPARQL to SQL query translation using morph. In: Proc. of the 23rd Int. World Wide Web
Conf. (WWW). pp. 479–490 (2014). https://doi.org/10.1145/2566486.2567981

30. Ramanujam, S., Khadilkar, V., Khan, L., Seida, S., Kantarcioglu, M., Thuraisingham, B.:
Bi-directional translation of relational data into virtual RDF stores. In: Proc. of the 4th IEEE
Int. Conf. on Semantic Computing (ICSC). pp. 268–276. IEEE Computer Society (2010).
https://doi.org/10.1109/ICSC.2010.61

31. Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings. J. of
Web Semantics 33, 141–169 (2015). https://doi.org/10.1016/j.websem.2015.03.001

32. Unbehauen, J., Martin, M.: Executing SPARQL queries over mapped document store with
SparqlMap-M. In: Proc. of the 12th Int. Conf. on Semantic Systems (SEMANTICS). pp.
137–144. ACM (2016). https://doi.org/10.1145/2993318.2993326

33. Wandji, R.E., Calvanese, D.: Ontology-based update in Virtual Knowledge Graphs via
schema mapping recovery. In: Proc. of the 8th Int. Joint Conf. on Rules and Reasoning
(RuleML+RR). Lecture Notes in Computer Science, vol. 15183, pp. 59–74. Springer (2024).
https://doi.org/10.1007/978-3-031-72407-7_6

34. Wandji, R.E., Calvanese, D.: Minimizing side-effects in virtual knowledge graph updates.
In: Proc. of the 9th Int. Joint Conf. on Rules and Reasoning (RuleML+RR). Lecture Notes
in Computer Science, Springer (2025)

35. Winslett, M.: A model-based approach to updating databases with incomplete informa-
tion. ACM Trans. on Database Systems 13(2), 167–196 (1988). https://doi.org/10.1145/
42338.42386

36. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Zakharyaschev,
M.: Ontology-based data access: A survey. In: Proc. of the 27th Int. Joint Conf. on Artifi-
cial Intelligence (IJCAI). pp. 5511–5519. IJCAI Org. (2018). https://doi.org/10.24963/
ijcai.2018/777

37. Xiao, G., Lanti, D., Kontchakov, R., Komla-Ebri, S., Güzel-Kalayci, E., Ding, L., Corman,
J., Cogrel, B., Calvanese, D., Botoeva, E.: The virtual knowledge graph system Ontop. In:
Proc. of the 19th Int. Semantic Web Conf. (ISWC). Lecture Notes in Computer Science, vol.
12507, pp. 259–277. Springer (2020). https://doi.org/10.1007/978-3-030-62466-8_17

38. Zheleznyakov, D., Kharlamov, E., Nutt, W., Calvanese, D.: On expansion and contraction of
DL-Lite knowledge bases. J. of Web Semantics 57, 100484 (2019). https://doi.org/10.
1016/j.websem.2018.12.002

https://doi.org/10.1145/77643.77645
https://doi.org/10.1145/77643.77645
https://doi.org/10.1016/J.ARTINT.2011.08.003
https://doi.org/10.1016/J.ARTINT.2011.08.003
https://doi.org/10.1016/J.ARTINT.2011.08.003
https://doi.org/10.1016/J.ARTINT.2011.08.003
https://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
https://doi.org/10.1145/2566486.2567981
https://doi.org/10.1145/2566486.2567981
https://doi.org/10.1109/ICSC.2010.61
https://doi.org/10.1109/ICSC.2010.61
https://doi.org/10.1016/j.websem.2015.03.001
https://doi.org/10.1016/j.websem.2015.03.001
https://doi.org/10.1145/2993318.2993326
https://doi.org/10.1145/2993318.2993326
https://doi.org/10.1007/978-3-031-72407-7_6
https://doi.org/10.1007/978-3-031-72407-7_6
https://doi.org/10.1145/42338.42386
https://doi.org/10.1145/42338.42386
https://doi.org/10.1145/42338.42386
https://doi.org/10.1145/42338.42386
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.1007/978-3-030-62466-8_17
https://doi.org/10.1007/978-3-030-62466-8_17
https://doi.org/10.1016/j.websem.2018.12.002
https://doi.org/10.1016/j.websem.2018.12.002
https://doi.org/10.1016/j.websem.2018.12.002
https://doi.org/10.1016/j.websem.2018.12.002

	Realizing Bidirectional Virtual Knowledge Graphs Using Ontop

