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Abstract. We describe a first experiment on automated activity and re-
lation identification, and more in general, on the automated identification
and extraction of computer-interpretable guideline fragments from clini-
cal documents. We rely on clinical entity and relation (activities, actors,
artifacts and their relations) recognition techniques and use MetaMap
and the UMLS Metathesaurus to provide lexical information. In partic-
ular, we study the impact of clinical document syntax and semantics on
the precision of activity and temporal relation recognition.

Keywords. Clinical entity and relation recognition, UMLS Metathe-
saurus, natural language processing, process fragment recognition.

1 Introduction

Clinical practice guidelines are systematically developed documents that specify
the activities, resources and personnel required to cure or treat a particular
illness or medical condition, see [6]. The necessity to instantiate them into clinic
and hospital protocols and workflows has given rise to computer-interpretable
guidelines (CIGs), see [3], viz., formal representations (constructed typically with
process representation languages) of the care process or plan. On the other hand,
several natural language processing (NLP) techniques have been developed to
fully or partially automate their processing, see [10], until now manual, and
therefore both time and cost consuming.

Clinical NLP approaches leverage on a number of clinical and biomedical an-
notation resources. Above all, they rely on the crucial US National Library of
Medicine’s Unified Medical Language System (UMLS) Metathesaurus1, which
thanks to the two annotation tools built upon it, MetaMap and SemRel (see
[1]), has become the key lexical semantics resource in this domain. The UMLS
Metathesaurus is a biomedical lexical resource (similar to WordNet) compris-
ing over 1 million biomedical concepts (identified by a CUI – concept unique
identifier) and covering over 5 million terms, which stem from the over 100

1 http://www.nlm.nih.gov/research/umls/
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incorporated controlled vocabularies, nomenclatures and classification systems
integrated in it. Concepts in UMLS are structured in a semantic network (or
ontology) composed of 150 categories (called “concept types”) and 54 semantic
relationships.

In this paper we describe some preliminary experiments on how to apply
fully-supervised clinical entity recognition techniques inspired by [2] to recog-
nize CIG fragments in medical documents, by leveraging on UMLS concept type
and relation annotations. The process dimension of CIGs consists of four pil-
lars: activities, resources, actors, and control flows. We focus on activities, the
main building block of CIGs, and their basic temporal relations (before/after).
To a lesser extent, we focus also on resources, actors and causal relations. We
rely on MetaMap annotations and evaluate our techniques over a small UMLS-
annotated clinical corpus, the SemRep corpus. We focus in particular on the
issue of feature extraction and selection, to assess which features, be them se-
mantic or (morpho)syntactic, are reasonably good predictors for activity and
temporal relation recognition.

This paper is structured as follows. In Section 2 we give an overview of related
work on clinical NLP, data mining and unsupervised CIG extraction methodolo-
gies. In Section 3 we provide the formal background of CIG fragment recognition.
In Section 4 we describe the SemRep corpus, our experimental setting and the
goals pursued. In Section 5 we describe and discuss the results of our experi-
ments. Finally, we sum up our conclusions in Section 6, and point out how we
intend in the future to study further automated CIG fragment extraction.

2 Related Work

The UMLS Metathesausus has been used for clinical text or data mining pur-
poses in many projects. In the medical domain, early works are MedLEE [8] or
MedSyndicate [9]. Also MedIE [21] and SeReMeD [4] apply semantic tagging us-
ing the UMLS, but their application is limited to processing radiology reports.
Meystre and Haug propose a NLP-based system to extract medical problems
from electronic patient records [14]. Clinical NLP frameworks such as cTAKES,
proposed by [17], use it for document indexing and retrieval. It has also given rise
to automated semi- and fully-supervised annotation techniques and resources:
It has inspired the annotation formats used to build clinical annotated corpora
such as the CLEF corpus from [16]. Furthermore, as Ben Abacha and Zwiegen-
baum in [2] show, it is a key tool for automated clinical entity recognition and
for clinical relation recognition and extraction.

The much more complex domain of clinical guidelines and CIGs has been tack-
led on the other hand, using unsupervised techniques. Serban et al. [18] defined
a set of linguistic patterns, which can be used to formally represent the knowl-
edge about medical actions contained in guideline text. By semantic tagging of
guidelines, these patterns were identified in the document. After combining them
with medical domain knowledge this enables an easier formalization and mainte-
nance of guideline models. A similar approach was pursued by Kaiser et al. [10],
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who defined syntactic and semantic patterns that are used to develop extraction
rules to identify and extract actions and processes out of guidelines. The pat-
terns were based on the UMLS Semantic Network and its semantic relations. But
unsupervised techniques are problematic, because the expert knowledge needed
to hand-craft such rules is typically much scarce than training corpora.

We believe that UMLS-based supervised clinical entity recognition and an-
notation techniques and CIG extraction techniques can be successfully com-
bined by following recent advances from the business process modeling com-
munity. Friederich et al. [7] and Di Ciccio and Metella [5] have experimented
with pipelines combining lexical resources plus supervised (e.g., parsing, entity
recognition) and unsupervised (e.g., control flow patterns) NLP techniques to
extract, resp., model fragments from formal requirement documents, and process
fragments from emails, both with reasonable amounts of success. Following this
intuition we experiment in this paper with a UMLS-driven supervised approach
that aims at recognizing activities and temporal relations in clinical documents.

3 Process Fragment Recognition

CIG Fragments. There are several ways to formally characterize CIGs. For
convenience, we use terminology coming from the Business Process Modeling and
Notation (BPMN) standard (see [13]). A CIG is a complex object constituted
by the following basic components:

– static components: (i) activities (e.g., providing advice, controlling blood
glucose levels), representing units of execution in the process; (ii) activity
agents, viz., the actors (e.g., doctors, nurses, patients); (iii) artifacts and
data used or consumed by activities or resources (e.g., metmorfin);

– dynamic components: (iv) control flows (e.g., sequence and “if. . . then. . . else”
control structures) that specify the acceptable orderings among activities.

To extract CIG components the parse trees and MetaMap annotations of
guidelines must be mined. Firstly, noun phrases (NPs) and verbs must be iden-
tified in the parse or constituency trees. At a second step linguistic and domain
knowledge in the form of semantic annotations and constituency relations must
be considered. In Figure 1 (top) the reader can see a guideline fragment (recom-
mendation 1.4.1 of the NICE diabetes-2 guideline2) with its entities highlighted
and their candidate annotations. Activities are not only referred to by verbs
but also by nouns and noun phrases: to correctly extract the “deep” intended
CIG fragment (see Figure 1, bottom left) it is necessary to “filter out” the two
wrong “clinical attribute” annotations. Moreover, we need to realize that the
verb “continue” introduces a third activity, and rely on syntactic structure to
properly order the activities.

We would like to know if the CIG fragment extraction, and in particular
the recognition of the activities and control flows intended in clinical documents

2 http://www.nice.org.uk/nicemedia/pdf/CG66NICEGuideline.pdf
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clinical attribute
⇑

Continue with metformin if blood glucose control remains

⇓ ⇓ ⇓
reg. activity pharm. substance laboratory procedure

clinical attribute
⇑

inadequate and another oral glucose-lowering medication is added .

⇓ ⇓ ⇓
ql. concept therapeutic procedure fc. concept

...continue
adequate?

"deep"

continue

blood adequate

and glucose

medication added?

"shallow"

added?
control

met-
morphin

glu-
cose

glu-
cose
medi-
cation

met-
morphin

administer...

... ...

Fig. 1. Top: MetaMap UMLS (automated) annotations of the NICE diabetes guide-
line fragment; boxes surround entities, annotations are MetaMap’s. Bottom: Two can-
didate CIG fragments (represented in BPMN): to the left, the intended “deep” CIG,
to the right a “shallow” CIG. Control flows (diamonds) specify the acceptable order-
ings of the activities (rounded rectangles); activities consume resources (folded-corner
rectangles).

can be pursued via supervised clinical entity and relation recognition using an
UMLS-annotated corpus for training.

Clinical Entity Recognition. To identify activities and relations in clinical
documents, we need to recognize CIG fragments. Let tc = (c1, . . . , cn)

T denote
a vector of n entity type labels drawn from a set {c1, . . . , ck} of k clinical enti-
ties; or, resp., a vector tr = (r1, . . . , rn)

T of n relation labels drawn from a set
{r1, . . . , rp} of p clinical relations. Let α = (α1, . . . , αn)

T be a vector of n input
noun phrases (NPs) or entities (the n NPs of a sentence), or resp., a vector
α = ((α1, α1), (α1, α2), . . . , (αn, αn))

T of n×n input NP pairs or relation argu-
ments (the n×n possible pairs of NPs in a sentence). The goal of clinical entity
or, resp., relation recognition, see [2], can be formulated as the task of finding
the best scoring vector t∗β:

t∗β = argmax
tβ

μ(ρ(α, tβ)) (1)

where: β ∈ {c, r}; μ(·) denotes a recognizer built using a classification model
(e.g., a logistic regression or neural network algorithm); and ρ(·, ·) is a feature
extraction function, that maps tβ and α into a high-dimensional space of nu-
meric, categorical or ordinal features over which the classifier is defined. We study
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this task w.r.t. the set {activity, resource, actor, other} of entity type labels and
the set {temporal, causal, other} of relation labels, and consider supervised rec-
ognizers, viz., recognizers that can be estimated from a training corpus.

4 Experiments

Features. Our experiments focused in understanding the predictive power of
syntax and semantics for recognizing both clinical activities and their temporal
relations. Thus, we decided to use linguistically “deep” features extracted from
constituency parse trees in addition to semantic annotations. Following strategies
similar to the work proposed by [20] we used the Stanford parser (see [12]) to
extract syntactic features, and MetaMap to harvest clinical entities and relations
via the UMLS concept types they subsume (see Table 1, top), and to compute
the lexical semantic features.

By mining parse trees we extracted fromNPs the following syntactic features:
(1) depth nest of nesting; (2) position pos in the phrase; and (3) occurrence
sub in a subordinated phrase. The lexical semantic features were extracted by
computing several measures of label overlap and frequency. We extracted also
the following semantic features: (4) the (raw) frequency of the NP entity type
c in the corpus; (5) the degree of annotation overlap ϕhd between the (possibly
repeated) labels labs collected using MetaMap from all the constituent nouns of
a NP, and the (possibly repeated) labels of its head noun labsh; (6) the relative
frequency ϕlf of the NP entity type c w.r.t. labs; and (7) label overlap ϕls that
takes into account the taxonomic structure of the UMLS Metathesaurus; viz.,
respectively,

ϕhd=
||labs � labsh||
||labs||+||labsh|| ϕlf=

||labs � {c}||
||labs|| ϕls =

||labs � sub(c)||
||labs||+||sub(c)|| (2)

where || · || and � denote resp. bag cardinality and intersection, and sub(c) is the
bag of all the UMLS concept types that the entity type label c subsumes. In all
cases a simple Laplace smoothing was later applied to prevent division by zero
errors. See Table 1, bottom.

The SemRep Corpus. Since no UMLS annotated guideline corpora are avail-
able for research purposes we ran our experiments over the SemRep corpus
(see [11]), a small annotated clinical corpus. It consists of 500 clinical excerpts
(MedLine/PubMed) and contains 13, 948 word tokens, manually annotated by
clinicians and domain experts, covering the whole clinical domain. UMLS con-
cept types annotate a total of 827 NPs (at an average of 2 per sentence). In
addition to this, UMLS relations annotate around 200 NP pairs.

The domain of SemRep largely overlaps with that of clinical guidelines. Fur-
thermore, they are similar in syntactic structure. Such syntactic structure can be
approximated by observing the distribution of function “process-evoking” words
(PEWs)3. PEWs are tokens belonging to the following word categories:

3 For the part-of-speech tagging we relied on a 3-gram tagger, with 2-gram and uni-
gram backoffs, trained over the Brown corpus; the trained tagger had 0.8 accuracy.
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Table 1. Top: Entity types and sample UMLS concept types they subsume; relations
and sample UMLS relations they subsume. Bottom: Features considered.

activity actor resource other

laboratory organization pharmacological qualitative
procedure substance concept

temporal causal other

precedes prevents located in

coexists with produces part of

feature F description value f

nest nesting level in tree integer ∈ N

pos position w.r.t. verb subject, predicate
sub occurs in clause? yes, no
freq freq. of label in corpus integer ∈ N

ϕlf relative frequency of label in NP real ∈ [0, 1]
ϕhd head/NP overlap real ∈ [0, 1]
ϕls label/NP overlap real ∈ [0, 1]

class NP entity type activity, actor, resource, other

rel relation temporal, causal, other

– conjunctions and prepositions: subordinating prepositions and conjunctions,
e.g., “if”; coordinating conjunctions, e.g., “and”, “or”;

– adverbs: base adverbs, e.g., “after”; comparative adverbs, e.g., “later”; su-
perlative adverbs, e.g., “latest”; and adverbial particles, e.g., “go back”.

We thus compared to SemRep: (1) a subset of the NICE diabetes-2 guideline
(therapy recommendations, 7,109 words); (2) a subset of the NICE eating disor-
ders guideline4 (therapy recommendations, 5,078 words); and (3) a subset of the
NICE schizophrenia guideline5 (therapy recommendations, 5,367 words). We also
tried to assess whether there is a significant bias in clinical documents towards
PEWs. To this end we compared SemRep and the guideline corpora to: (4) a
subset of the Brown corpus6 (A: press articles, 1,391,708 words); (5) Friederich’s
corpus of business process specifications [7] (3,824 words). See Figure 3. We ran
two statistical tests:

1. A t-test with the null hypothesis H0 that cross-corpora PEW mean relative
frequency is μ0 = 0.20 (p = 0.01 significance level). This test showed no (sta-
tistically) significant differences in PEW distribution across corpora, where
about 17 to 20% of word tokens are PEWs (see Section 3).

2. A χ2-test of (in)dependence, with the null hypothesis H0 that PEW relative
frequency is correlated to (or depends on) corpus domain (p = 0.01 signif-
icance level). This test gave no (statistically) significant differences across
domains (see Section 3).

Figure 2 seems to indicate that syntax is uniform across domains. This seems to
justify at the same time the use of SemRep to experiment with CIG fragment

4 http://www.nice.org.uk/nicemedia/live/10932/29218/29218.pdf
5 http://www.nice.org.uk/nicemedia/live/11786/43607/43607.pdf
6 http://nltk.googlecode.com/svn/trunk/nltk_data/index.xml

http://www.nice.org.uk/nicemedia/live/10932/29218/29218.pdf
http://www.nice.org.uk/nicemedia/live/11786/43607/43607.pdf
http://nltk.googlecode.com/svn/trunk/nltk_data/index.xml
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recognition techniques, as well as the general syntactic features (see Section 3)
we extracted. It also suggests that UMLS annotations are independent from
syntax. In the following experiments we will thus try to empirically validate the
following claim:

Semantic features and environment are more significant
for activity and temporal relation recognition than syntactic features.

(3)

corpus tests

χ2 p df. t-score p df.

1.03 0.36 5 43.13 0.00 2

Fig. 2. By “mmcorpus” we
mean SemRep

Feature Vectors. Our main goal was to study
feature performance rather than model perfor-
mance per se; we thus relied on standard clas-
sification models from the known Weka7 data
mining framework rather than on more sophisti-
cated models. The performance of simple mod-
els might be suboptimal, but will nevertheless
exhibit recognizable (cross-classifier) trends rel-
atively to the independent features selected for
training and prediction. We extracted three sets
of observations for our experiments:

1. a set of NP observations: for each NP α
in SemRep, we extracted the feature vector
(fα

1 , . . . , f
α
7 , c

α)T ;
2. a set of sentence observations: for each

vector (α1, . . . , αk)
T of (manually anno-

tated) NPs in a SemRep sentence, we ex-
tracted the feature vectors of the form
(fα1

1 , . . . , fα1
7 , cα1 , . . . , fαk

1 , . . . , fαk
7 , cαk)T ;

3. a set of relation observations: for each vec-
tor (α, α′, r)T of UMLS annotated NPs and
their UMLS relation r, we extracted the fea-
ture vectors (fα

1 , . . . , f
α
7 , c

α, fα′
1 , . . . , fα′

7 , cα
′
, r)T .

We proceeded to build three parallel sets of training and evaluation observations
based on a 2/5 vs. 3/5 split. We considered as feature performance metric, for
τ ∈ {activity, temporal}, activity precision and temporal relation precision

PR =
|true τs|

|true τs|+ |false τs| . (4)

First Experiment: Feature Significance for Activity Recognition. Our
first experiment was designed to measure the significance of each single feature for
the activity recognition task. To this end we removed each time a feature Fi from
the set {F1, . . . , F7} of (syntactic and semantic) independent features fromTable 1,
retrained and measured activity precision w.r.t. {F1, . . . , Fi−1, Fi+1, . . . , F7}.
7 http://www.cs.waikato.ac.nz/~ml/weka/

http://www.cs.waikato.ac.nz/~ml/weka/
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We considered only NP observations. We trained and evaluated the following
(Weka) classifiers: logistic classifier, support vector machine, neural network,
Bayes classifier, decision tree and a 10-nearest neighbor classifier (baseline).

Second Experiment: Feature Significance for Relation Extraction. Our
second experiment was designed to measure the significance of each single feature
for the relation recognition task. We proceeded as before, with the difference that
we considered an extended set {F1, . . . , F8} of 8 independent features including
the semantic class (i.e., entity type labels) feature, since it arguably describes the
type of the relation, viz., its domain and range. We considered for this experiment
the set of relation observations. We trained and evaluated the following (Weka)
classifiers: logistic classifier, neural network, Bayes classifier (baseline) and a
decision tree.

Third Experiment: Context Significance. Our third experiment had the
aim of understanding whether sentence context as opposed to NP context yields
a significant improvement of (average) activity recognition precision. Also, we
tried to determine which kind of classifier may perform better. We trained and
evaluated the following (Weka) classifiers: logistic classifier, support vector ma-
chine, neural network, Bayes classifier, decision tree, and 10-nearest neighbor
classifier (baseline) over (i) NP observations and (ii) sentence observations.

5 Evaluation and Discussion

The first experiment (see Figure 3, left), shows a statistically significant drop
in cross-classifier average precision when label/NP overlap is disregarded, viz.,
a drop from 0.72 (the precision of the decision tree over the full set on NP
observations) to 0.56. The removal of syntactic features had little to no effect,
and the removal of label relative frequency and head/NP overlap gave rise to
a slight performance decrease. These results suggest that the (lexical) semantic
environment of NPs is more relevant (on average) for activity recognition than
its syntactic environment.

The second experiment shows a statistically significant drop in cross-classifier
average precision w.r.t. the best performing classifier, when head/NP overlap
and label frequency are disregarded, viz., a drop from 0.66 (the precision of the
decision tree over the full set on relation observations) to 0.4 and 0.33 resp.. It
also showed a statistically significant improvement when subordination is disre-
garded (viz., from 0.66 to 0.58). This may suggest also that the (lexical) semantic
environment of relations is more relevant (on average) for relation recognition.
Interestingly, and contrary to our expectation, disregarding the typing of the
relation seemed also to boost performance.

In the third experiment (see Figure 3, right) the classifier that performed bet-
ter w.r.t. NP observations was the decision tree classifier (0.69 precision), likely
because of its exploiting better the categorical features (position, subordination).
It also matched over sentence observations the best performing classifier, the neu-
ral network, which showed a statistically significant improvement (from 0.60 to
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experiment one

χ2 p-value df.

408242025.00 0.0 6

experiment two

χ2 p-value df.

18550249.00 0.0 7

experiment three

χ2 p-value df.

18576100.02 0.0 5

Fig. 3. Left: Experiment one: impact of removing a feature on activity precision, by
classifier. Center: Experiment two: impact of removing a feature on relation precision,
by classifier. Right: Experiment three: impact of context on activity precision. For the
significance tests we considered as null hypothesis H0 the uniform distribution.

0.73). This experiment seems to indicate overall that sentence environment is an
important factor for activity recognition.

While the experiments seem to substantiate claim (3), in some cases (e.g.,
experiment two) we obtained also results that may seem to infirm it: a relation’s
argument type should be a relevant feature for relation recognition. The SemRep
corpus is a small and sparsely annotated corpus – for, e.g., experiment two we
extracted only 200 observations. Indeed, the patterns identified in Figure 3 were
noisy and error-prone: the average cross-experiment classifier accuracy was in
general low, see Table 2. Such behavior contrary to our expectations is likely
due to the small size of the dataset.

On way to estimate how much data we actually need to obtain reasonably
accurate predictions is to apply the theory of probably approximately correct
(PAC) learning [19]. This theory implies that to learn from categorical data
with 1 − δ confidence a decision tree classifier m of bounded depth ≤ k and n
attributes that is is 1− ε accurate8, we need to train m over

N ≥ 1

ε
× (ln

1

δ
+ ln |M|) (5)

observations, where M denotes the space of all decision trees m.

8 Parameters ε and δ denote classification and learning error, resp.
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Table 2. Precision, recall and accuracy (all features). In gray, the results for the
decision tree classifier.

NP obs. sentence obs. relation obs.

model PR RE AC

logit 0.63 0.71 0.64
SMV 0.60 0.78 0.62
Bayes 0.64 0.64 0.55
neural 0.60 0.76 0.64
tree 0.69 0.75 0.69
10-nn 0.43 0.72 0.42

(avg) 0.60 0.73 0.59

model PR RE AC

logit 0.62 0.69 0.63
SMV 0.60 0.73 0.63
Bayes 0.56 0.51 0.54
neural 0.73 0.74 0.73
tree 0.71 0.79 0.73
10-nn 0.43 0. 28 0.41

(avg) 0.61 0.62 0.61

model PR RE AC

logit 0.50 0.50 0.67
Bayes 0.45 0.62 0.71
neural 0.44 0.50 0.73
tree 0.66 0.50 0.73

(avg) 0.51 0.54 0.71

We can apply this result to our setting as follows. We restrict attention to
the decision tree models and “discretize” our continuous numeric features from
Table 1. Consider experiments one and three where we consider n = 7 features.
Set to k = 5 the depth bound (viz., the number of “good” features for activity or
temporal relation recognition suggested by our experiments). Then |M| ≈ O(75).
To learn with 1−δ ≥ 0.95 confidence a decision tree m with 1− ε ≥ 0.8 accuracy
we need to train it, by applying equation (5), on approx.N ≥ 84050 observations.
In other words, to reach reasonably accurate results we would need approx. 100
times more UMLS-annotated NPs than the 827 extracted from SemRep.

6 Conclusions and Further Work

We have conducted a preliminary experiment on how to automatically recognize
activities and temporal relations using MetaMap and the UMLS Metathesaurus.
We used the UMLS-annotated SemRep corpus as our training and evaluation
corpus. We focused in the issue of feature selection, seeking to determine if
semantics is more relevant than syntax for this task, and hence on feature per-
formance rather than on classifier performance.

Our experiments have shown that in general the lexical semantic environment
of an entity is more significant than its syntactic environment for identifying
activities. Corpus analysis on SemRep and other clinical and non-clinical corpora
showed moreover that the syntax of clinical text is not significantly different both
within and across domains. Taking into consideration sentence context gave rise
to a slight gain in performance. In all of our experiments the best performing of
all the simple annotators used turned out to be the decision tree, better adapted
to the categorical features we considered. The small size of the corpus and in
particular the small number of relation annotations made our results much less
conclusive however regarding temporal relations.

In the future, we plan to consider more powerful techniques, more complex
feature sets, and larger corpora to improve our results. Regarding techniques, we
intend to use more powerful classification models for NLP such as conditional
random fields (CRFs), which can exploit possible dependencies among inde-
pendent features. Furthermore, such models allow for very complex linguistic
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features and context models (based on n-grams) that we did not, for the sake of
simplicity and scope, consider in this paper, such as the bag of n-words or n-POSs
surrounding an entity, or the n-typed dependencies in which it participates, to
name three. We intend also to consider a bigger corpus by integrating SemRep
with the i2b2 clinical corpus as suggested by [2]. Finally, we will experiment with
temporal relation extraction methods (à la TimeML) to tackle CIG control flow
extraction. In fact, the current investigation focuses only on before/after tem-
poral relations among tasks, but our final objective is the extraction of complex
CIG fragments encompassing also gateways and more elaborated constraints on
the process control-flow. Since the nature of the extracted constraints is declar-
ative, we will not only focus on “procedural” specification languages (such as
Asbru, Glare, BPMN), but we will also consider, at least as an intermediate
format, constraint-based languages such as CigDec [15].

Acknowledgments. The present work has been done within the context of
the VeriCliG project supported by a grant from the Free University of Bozen-
Bolzano Foundation.
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