
Camilo Thorne

Diego Calvanese

Tractability and Intractability
of Controlled Languages for
Data Access

Abstract. In this paper we study the semantic data complexity of several controlled

fragments of English designed for natural language front-ends to OWL (Web Ontology
Language) and description logic ontology-based systems. Controlled languages are frag-

ments of natural languages, obtained by restricting natural language syntax, vocabulary

and semantics with the goal of eliminating ambiguity. Semantic complexity arises from
the formal logic modelling of meaning in natural language and fragments thereof. It can

be characterized as the computational complexity of the reasoning problems associated to
their semantic representations. Data complexity (the complexity of answering a question

over an ontology, stated in terms of the data items stored therein), in particular, provides

a measure of the scalability of controlled languages to ontologies, since tractable data
complexity implies scalability of data access. We present maximal tractable controlled

languages and minimal intractable controlled languages.

Keywords: Controlled languages, Semantic data complexity, Controlled language interfaces
to description logic ontologies, Query answering.

1. Introduction

Controlled languages are ambiguity-free fragments of natural languages, ob-
tained by simplifying, modifying and constraining the vocabulary, syntax
and semantics of natural languages so that their utterances give rise to a
unique parsing and semantic interpretation. Such semantic interpretation is
obtained compositionally and can map controlled language utterances into
logic expressions using the machinery of Montague semantics [13].

The tight integration with logic of controlled languages has lead to the
proposal of controlled languages and of controlled language interfaces to
ontology-based systems centered around the W3C ontology language stan-
dard, OWL1 (Web Ontology Language) [16, 8, 11], which is formally un-
derpinned by description logics [3, 9], a family of knowledge representation
formalisms based on decidable fragments of first order logic (FO). One such
example is ACE-OWL, which maps into OWL DL [11, 8].

1http://www.w3.org/TR/owl-ref/

Special issue: Logic and Natural Language
Edited by Nissim Francez and Ian Pratt-Hartmann

Studia Logica (2012) 100: 787–813 c©Springer 2012

788 C. Thorne and D. Calvanese

OWL ontologies give a global, unified view of the the system’s domain
of interest in terms of a high level conceptualization that describes the basic
concepts, relations, and constraints that hold in such a domain. The data
itself can be stored in different formats but is typically structured and stored
in relational databases or triple stores [17]. Controlled language interfaces
make ontology-based systems more usable for casual users. In this context,
two tasks are targeted: (i) authoring ontologies (i.e., declaring and updating
domain constraints, or declaring and updating factual information about
the domain) (ii) accessing information stored in ontologies (i.e., evaluating
information requests). This means that controlled languages need to map
not only into ontology languages such as OWL, but also into the (formal)
query languages used to access information [16, 8, 11].

An important issue that arises is the computational cost of semanti-
cally processing and reasoning with controlled languages, also known as
their semantic complexity. Semantic complexity is particularly relevant for
ontology-based system front-ends, given the nature of the data management
tasks targeted. Moreover, as data in ontology-based systems is usually very
large, it is important to focus on the so-called data complexity of semantic
processing and reasoning. Data complexity has been formally characterized
as the computational complexity of managing ontologies measured w.r.t. the
size of the dataset [20, 6], and provides a measure of scalability of inference
and data management tasks in ontology-based systems based on OWL [17].

Data complexity depends on the different combinations of constructs
supported by the controlled language and the controlled language interface
(the controlled language’s function and content words). Hence, different
controlled language design choices will have a positive or negative impact
on this measure. The data complexity of accessing ACE-OWL Lite (the
fragment of ACE-OWL that maps to OWL Lite) is coNP-complete. This
is because the data complexity of query answering in the description logic
that underpins OWL Lite, SHIF [D], is known to be data complete for
coNP [14]. Hence, controlled languages like ACE-OWL do not scale to data,
but might contain fragments that do. This raises the issue of determining
which English constructs the tractable fragments cover.

This paper makes three contributions. Firstly, we define several declar-
ative controlled fragments of English that express distinct fragments of
OWL Lite and SHIF [D] (and can be seen as fragments of ACE-OWL).
Secondly, we define an interrogative controlled language that expresses a
significant number of so-called conjunctive queries, viz., select-project-
join SQL queries, one of the standard query languages for OWL. Thirdly,
we study the data complexity of accessing data via those controlled (declar-

Tractability and Intractability of Controlled Languages for Data Access 789

ative and interrogative) languages and show which maximal combinations
of controlled language constructs allow for tractable data complexity and
which minimal combinations give rise to intractable data complexity.

2. Controlled Languages and Semantic Complexity

The semantics, semantic processing and semantic complexity of controlled
languages can be modelled using the standard formal and computational
Montagovian analysis for English as developed in [4, 13]. Formal semantics
provides a logic-based account of natural language semantics and seman-
tic compositionality by assigning meaning representations to controlled lan-
guage constituents, viz., logical expressions that model meaning. The logic
from which these logical expressions are taken is λ-FO, viz., FO enriched
with the constructs of the simply-typed lambda calculus. While this takes
us beyond FO, the key issue is that λ-FO constructs serve only to “glue” to-
gether semantic representations compositionally, and to obtain FO semantic
semantic representations for full utterances. Controlled languages and frag-
ments can be defined using, essentially, context-free grammars with seman-
tic actions of compiler theory (see [10], Chapter 18) or Montague grammars
(see [13]). Semantic actions ensure that the controlled fragment maps into
a logic by defining a compositional translation τ(·).

Meaning Representations. Let {vi | i ∈ N} be a set of λ-FO variables,
and {ki | i ∈ N} a set of λ-FO constants. Let t stand for the type of Boolean
values and e for the type of individual constants. The set of λ-FO expressions
u and types T are defined, resp., by the grammars u ::= ki | vi | λvi.u | u(u′)
and T ::= e | t | T→T ′.

A typing is a function χ(·) from λ-FO expressions into types. If χ(u) = T
we write u:T . The typing rule is the following application rule:

u:T u′:T→T ′
app

u′(u):T ′

We say that an expression λvi.u(u′) reduces to an expression u′′, if u′′

is the result of deleting the prefix λvi and substituting, consistently with
typings and typing rules, each occurrence of vi in u by u′. The beta reduction
! relation, is the reflexive and transitive closure of the reduction relation.

Note that λ-FO variables, constants and expressions are used in a more
general way than their FO or description logic counterparts and may denote
arbitrary objects of arbitrary complexity. A variable or constant of type
e will denote an individual (a simple object, such as an integer), whereas

790 C. Thorne and D. Calvanese

a variable or constant of type e→t, will denote a characteristic function (or
set, a complex object).

In what follows we will avoid explicit typing and adopt instead the follow-
ing conventions. Expressions of type e (denoting individuals) will be written
with lower case letters (x, y, z, etc.), expressions of type e× · · ·×e→t (denot-
ing sets and relations) will be written with upper case letters (P,Q,R, etc.)
and expressions of type (e→t)→t (denoting so-called generalized quantifiers)
with Greek letters (α,β, γ, etc.).

Controlled Fragments. Semantically enriched grammars are context-
free grammars G built from (i) a set Sig of words, (ii) a set Cat of syntactic
categories, (iii) a lexicon Lex ⊆ Cat× Sig, (iv) a set Rul ⊆ Cat× (Sig ∪
Cat)+ of phrase structure rules, (v) a distinguished category S (or Q) called
the start category, and (vi) a compositional translation τ(·). If (C,w) ∈ Lex
or (C,w) ∈ Rul we write C ::= w. Any sequence w ∈ (Sig×Cat)∗ is called
a syntactic constituent.

The notions of derivation in one step, denoted =⇒, of derivation, denoted
=⇒∗ (the reflexive and transitive closure of =⇒), and of parse tree are
defined as for standard context-free grammars (see [10], Chapter 18). By
=⇒k we denote derivations of ≤ k steps.

Compositional translations τ(·) map syntactic constituents to λ-FO
meaning representations. By exploiting the phrase structure rules and lex-
icon of a grammar G, τ(·) can be recursively defined on syntactic con-
stituents by means of semantic actions: (i) for each C ::= w ∈ Lex, we
specify τ(C), and (ii) for each C ::= C1 · · ·Cn ∈ Rul, we write τ(C) :=
τ(Cπ(1))(. . . τ(Cπ(n)) . . .), where π(·) is a permutation (necessary to allow
for different word orders in the target and source languages). Complete sen-
tences translate into FO sentences (closed formulas without free variables).

Meaning representations induce a partitioning of the lexicon into a set
of content words, wherein words (nouns and verbs) denote sets, relations,
or individuals, and a set of function words, in which words (determiners,
pronouns, articles, coordinating particles, etc.) denote operations over such
sets, relations, and individuals.

Parsing and semantic interpretation occur as follows. Firstly, a parse
tree is computed. Secondly, semantic actions are applied bottom-up, from
leaves to root. Thirdly, applications and beta reductions are effectuated, in
observance with typing rules. If parsing and semantic interpretation suc-
ceed, utterances are considered grammatical, otherwise non-grammatical.
Accordingly, the language generated by grammar G is defined as L(G) :=
{w ∈ Sig∗ | S =⇒∗ w and τ(w) is defined}.

Tractability and Intractability of Controlled Languages for Data Access 791

Semantic Complexity. Controlled languages and fragments give rise to
logic fragments with specific computational properties. Given a fragment
L (defined by a grammar G), the logic fragment expressed by L is the FO
fragment τ(L) := {τ(w) | w ∈ L}. Following Pratt in [15], we define the
semantic complexity of a (controlled) fragment of English L as the compu-
tational complexity of reasoning with the formulas belonging to τ(L).

3. Ontology Languages and Semantic Complexity

OWL-based systems are underpinned by description logics [6, 3], which are
fragments of FO written in an object-oriented syntax. They structure the
domain of discourse in terms of concepts (representing classes, i.e., sets of
objects) and roles (representing binary relations between objects). Data is
accessed by means of formal queries, based on the SQL (Structured Query
Language) standard for relational databases. Since ontology-based systems
may store and manage large amounts of data, determining the data com-
plexity of data access, i.e., the complexity measured in terms of the size of
the data only, is a key issue. In this paper we will focus on description logics
defined by restricting the syntax of the logic ALCI and hence of OWL DL
and OWL Lite (which correspond to a superlanguage of ALCI) [3].

Description Logic Ontologies and Knowledge Bases. In an ALCI
ontology O, intensional knowledge is specified by means of a set of (concept
inclusion) assertions σ of the form Cl (Cr, stating inclusion (or IS-A)
between the instances of the left concept Cl and those of the right concept
Cr. Consider a countable signature of concept names A (unary predicates)
and role names R (binary predicates). A role S is either a role name R
or its inverse R−. A left or right concept is either a concept name A, an
unqualified existential restriction ∃R, the negation ¬A, ¬∃R of A or ∃R, or,
if Cf and C ′

f are concepts, for f ∈ {l, r}, (i) a qualified existential restriction
∃S:Cf , (ii) an intersection Cf *C ′

f , (iii) an union Cf +C ′
f , or (iv) a qualified

universal restriction ∀S:Cf .
Different combinations of left and right concepts give rise to different

fragments of ALCI and hence, to different description logics. An important
description logic defined in this manner is DL-Lite$ [6, 2], of syntax

S ::= R | R−, Cl ::= A | ∃S | Cl * C ′
l , Cr ::= ¬A | ¬∃S | Cl | Cr * C ′

r,

which is contained in the Horn fragment of the two-variable fragment of FO.

792 C. Thorne and D. Calvanese

Rtx :=R(x, y) Rty :=R(y, x)
(R−)tx :=R(y, x) (R−)ty :=R(x, y)

Atx :=A(x) Aty :=A(y)
(∃S)tx := ∃y(Stx) (∃S)ty := ∃x(Sty)

(¬Af)tx :=¬Atx
f (¬Af)ty :=¬Aty

f

(¬∃S)tx :=¬∃y(Stx) (¬∃S)ty :=¬∃x(Sty)

(∃S:Cf)tx := ∃y(Stx ∧C
ty
f) (∃S:Cf)ty := ∃x(Sty ∧Ctx

f)

(Cf * C ′
f)

tx :=Ctx
f ∧ C ′

f
tx (Cf *C ′

f)
ty :=C

ty
f ∧ C ′

f
ty

(Cf + C ′
f)

tx :=Ctx
f ∨ C ′

f
tx (Cf +C ′

f)
ty :=C

ty
f ∨ C ′

f
ty

(∀S:Cf)tx := ∀y(Stx ⇒ C
ty
f) (∀S:Cf)ty := ∀x(Sty ⇒ Ctx

f)

(Cl (Cr)tx := ∀x(Ctx
l ⇒ Ctx

r) (Cl (Cr)ty := ∀y(Cty
l ⇒ C

ty
r)

Figure 1. The canonical ·tx and ·ty translations (where f ∈ {l, r}).

It is important because it can capture the fundamental features of concep-
tual modelling formalisms (UML class diagrams, ER-diagrams, etc.) and
formally underpins efficient ontology-based systems [6, 2].

A database, expressing extensional knowledge, is a finite set D of FO
unary and binary ground atoms (a.k.a. facts) of the form A(c), R(c, c′), where
A is a concept name, R a role, name and c and c′ constants. A knowledge
base is a pair (O,D), where O is an ontology and D a database.

The semantics of description logic concepts and roles can be specified by
means of a pair of so-called canonical translations ·tx and ·ty into FO (specif-
ically, to the two-variable guarded fragment of FO), as shown in Figure 1.

We consider FO semantics under the so-called standard names assump-
tion. That is, we consider a fixed countably infinite domain Dom := {ci |
i ∈ N} of constants (interpreted by themselves) and define (FO) interpreta-
tions as tuples I := (DI , ·I) where DI ⊆ Dom and ·I is an interpretation
function. Thereafter, the notions of entailment, truth, and satisfaction are
defined as usual. In particular, we say that an interpretation I is a model
of a formula ψ, written I |= ψ, if ψ evaluates to true under some satisfying
assignment over I. For every set Γ of formulas, we write I |= Γ if I |= ψ
for all ψ ∈ Γ. We say that ψ′ (resp., Γ) entails ψ, written ψ′ |= ψ (resp.,
Γ |= ψ), if every model of ψ′ (resp., Γ) is a model of ψ. When also the
converse holds, we say that ψ and ψ′ are equivalent.

An interpretation I is said to be a model of an inclusion assertion σ =
Cl (Cr, in symbols I |= σ, if I |= (Cl (Cr)tx . It is said to be a model of
a knowledge base (O,D), in symbols I |= (O,D), if it is a model of every

Tractability and Intractability of Controlled Languages for Data Access 793

assertion in O and every fact P (c), R(c, c′) in D. Notice that we interpret
databases under the open world assumption, and thus facts not in D may or
may not hold in the model I.

Formal Queries. We use queries to retrieve information from knowledge
bases. In the setting of ontology languages it is customary to consider frag-
ments of SQL. In this paper we will consider two such fragments.

A conjunctive query (CQ) ϕ is a (positive existential) FO formula of the
form ∃ȳ(ϕ′(x̄, ȳ)), where x̄ denotes a (finite) sequence of variables of length
|x̄| (the free variables of ϕ), called the query’s distinguished variables, and
ϕ′(x̄, ȳ) is a conjunction of FO relational atoms over the variables x̄ and ȳ.
If x̄ is the empty sequence, we say that the query is boolean. CQs constitute
a FO specification of an SQL select-project-join query [1].

Graph-shaped conjunctive queries (GCQs) are a restricted kind of CQs
with at most one distinguished variable x, which are inductively defined by2

ϕ(x) ::= A(x) | R(x, x) | R(x, c) | ∃y(R(x, y)) | ∃y (S(x, y) ∧ ϕ′(y)) |
ϕ′(x) ∧ ϕ′′(x),

S(x, y) ::= R(x, y) | R(y, x) | S′(x, y) ∧ S′′(x, y)

GCQs are a linguistically motivated class of CQs, easily expressible by En-
glish sentence subordination. Moreover, they allow (as we shall see later)
to consider some interesting phenomena, such as anaphora. See also [18],
Ch. 4.

Let ϕ be a (G)CQ. A grounding is a (not necessarily total) function θ(·)
that maps the variables of ϕ to Dom. Groundings are extended to complex
syntactic objects in the usual way. We denote by ϕθ the grounding of ϕ by
θ(·). Queries are FO formulas. Consequently, following FO semantics, an
interpretation I is a model of ϕθ, if ϕθ evaluates to true in I under some
variable assignment.

We say that a sequence c̄ of constants is an answer to (G)CQ ϕ with
distinguished variables x̄ over a knowledge base (O,D), if there exists a
grounding θ(·), mapping x̄ to c̄, such that ϕθ is logically entailed by (O,D),
viz., whenever, for all I, I |= (O,D) implies I |= ϕθ; in symbols: (O,D) |=
ϕθ. We illustrate these notions with a simple example.

2A CQ can be mapped into a labelled graph, with each variable or constant giving rise
to a vertex, each unary atom A(x) to a label A of vertex x, and each binary symbol R(x, y)
to a directed edge from x to y with label R. For a GCQ, such a graph has the structure
of a tree (possibly with multiple labels on the same edge).

794 C. Thorne and D. Calvanese

Example 3.1. Consider an ontology about people, defined byOp := {Man (
Person, Woman (Person, Man (∃Loves, ∃Loves (∃Likes}, which
states that men and women are persons, that men love somebody, and
that who loves also likes. Consider now the database Dp := {Man(john),
Woman(mary)} stating that John is a man and that Mary is a woman. Sup-
pose we want to know which man likes somebody. This information request
can be captured by the GCQ ϕp := ∃y (Man(x)∧Likes(x, y)). Clearly, John
is the only answer: the only grounding satisfying the entailment condition
is θp := {x /→ john}. ♣

Semantic Data Complexity. As we said earlier, the semantic complex-
ity of a controlled language L consists in the computational complexity of
the logical reasoning problems for the logic τ(L) it expresses. For controlled
languages designed for controlled language front-ends to ontology-based sys-
tems, and which, therefore, express formal ontology and query languages,
this means focusing on the complexity of one key problem: accessing infor-
mation.

The query answering problem for (G)CQs and knowledge bases (KBQA)
is the reasoning (entailment) problem stated as follows: Input: a knowledge
base (O,D), a (G)CQ ϕ with distinguished variables x̄, and a sequence c̄ of
|x̄| constants, Question: does there exist a grounding θ(·) s.t. θ(x̄) = c̄ and
(O,D) |= ϕθ?

In addition, we are interested in the data complexity of KBQA, namely,
in its computational complexity when we consider D as the only input of the
problem [20]. This is because in real-world ontology-based systems data can
be very large, and in particular much larger than the intensional specification
O. Thus, one can abstract away from ontologies and queries and assume that
tractable (i.e., PTime) data complexity for KBQA provides an upper bound
for the system’s scalability to large data repositories.

Notice moreover, that all the other data management or reasoning tasks
and problems relevant to ontologies and ontology-based systems, reduce to
KBQA, and thus KBQA provides (data) complexity upper bounds for all of
them (see, e.g., [6]).

4. Expressing Ontology Languages

In this section we describe a methodology for defining controlled languages
that express all the possible combinations of left and right concepts and
concept descriptions discussed in the preceding section. The main ideas

Tractability and Intractability of Controlled Languages for Data Access 795

T
ab

le
1.

E
x
p
re
ss
in
g
co
n
ce
p
ts

C
f
w
it
h
co
n
st
it
u
en

ts
w

C
f
,
w
it
h
f
,f

′
∈

{l
,r
}.

W
e
om

it
co
n
te
n
t
le
x
ic
on

en
tr
ie
s.

T
h
e
ru
le
s
ar
e
d
iv
id
ed

in
to

gr
am

m
ar

ru
le
s
an

d
fu
n
ct
io
n
le
x
ic
on

en
tr
ie
s
(i
f
an

y
).

N
ot
ic
e
th
e
u
se

of
n
on

-s
ta
n
d
ar
d
m
ea
n
in
g
re
p
re
se
n
ta
ti
on

s
fo
r
“s
om

eb
o
d
y
”
an

d
“o

n
ly
”.

C
f

w
C

f
R
u
le
s
a
n
d

S
em

a
n
ti
c
A
ct
io
n
s

G
C

f

V
P

f
::
=
is

a
N

f
τ
(V

P
f
)
:=
τ
(N

f
)

N
f
,

V
P

f
::
=
IV

τ
(V

P
f
)
:=
τ
(I
V
)

A
V
P

f
.

V
P

f
::
=
is

A
d
j

τ
(V

P
f
)
:=
τ
(A

d
j)

N
f
::
=
N

τ
(N

f
)
:=
τ
(N

)

V
P

f
::
=
T
V

N
P

f
τ
(V

P
f
)
:=
τ
(T

V
)(
τ
(N

P
f
))

N
P

f
::
=
P
ro

f
τ
(N

P
f
)
:=
τ
(P

ro
f
)

∃R
T
V

so
m
et
h
in
g.

P
ro

f
::
=
so
m
et
h
in
g

τ
(D

et
f
)
:=
λ
P
.∃
x
P
(x
)

V
P

f
::
=
d
oe
s
N
eg

T
V

τ
(V

P
f
)
:=
τ
(N

eg
)(
τ
(T

V
))

¬A
,

is
n
ot

A
d
j,

V
P

f
::
=
is

N
eg

A
d
j

τ
(V

P
f
)
:=
τ
(N

eg
)(
τ
(A

d
j)
)

¬(
∃R

)
d
oe
s
n
ot

T
V
,

V
P

f
::
=
is

N
eg

a
N

f
′

τ
(V

P
f
)
:=
τ
(N

eg
)(
τ
(N

f
′)
)

is
n
ot

a
N

f
′ .

N
eg

::
=
n
ot

τ
(N

eg
)
:=
λ
P
.λ
x
.¬
P
(x
)

V
P

f
::
=
T
V

N
P

f
′

τ
(V

P
f
)
:=
τ
(T

V
)(
τ
(N

P
f
′)
)

V
P

f
::
=
T
V

P
ro

f
′
R
e
lp

f
′
V
P

f
′
τ
(V

P
f
)
:=
τ
(T

V
)(
τ
(P

ro
f
′)
(τ
(R

e
lp

f
′)
(τ
(V

P
f
′)
))
)

T
V

so
m
e
N

f
′ ,

N
P

f
::
=
D
et

f
′
N

f
′

τ
(N

P
f
)
:=
τ
(D

et
f
′)
(τ
(N

f
′)
)

∃R
:C

f
′

T
V

so
m
eb

od
y

w
h
o
V
P

f
′ .

D
et

f
′
::
=
so
m
e

τ
(D

et
f
′)
:=
λ
P
.λ
Q
.∃
x
(P

(x
)
∧
Q
(x
))

P
ro

f
′
::
=
so
m
eb

od
y

τ
(D

et
f
′)
:=
λ
P
.λ
Q
.∃
x
(P

(x
)
∧
Q
(x
))

R
e
lp

f
′
::
=
w
h
o

τ
(D

et
f
′)
:=
λ
P
.λ
x
.P

(x
)

796 C. Thorne and D. Calvanese

C
f

w
C

f
R
u
les

a
n
d

S
em

a
n
tic

A
ctio

n
s

G
C

f

V
P

f
::=

V
P

f
′C

rd
V
P

f
′

τ
(V

P
f)

:=
(τ
(C

rd
)(τ

(V
P

f
′)))(τ

(V
P

f
′))

N
f
::=

A
d
jN

f
′

τ
(N

f)
:=
τ
(A

d
j)(τ

(N
f
′))

A
d
jN

f
′,

N
f
::=

N
f
′C

rd
N

f
′

τ
(N

f)
:=

(τ
(C

rd
)(τ

(N
f
′)))(τ

(N
f
′))

C
f
′*

C
′f
′
N

f
′
w
h
o
V
P

f
′,

N
f
::=

N
f
′R

e
lp

f
′ V

P
f
′

τ
(N

f)
:=

(τ
(R

e
lp

f
′)(τ

(N
f
′)))(τ

(V
P

f
′))

N
f
′
an

d
N

f
′,

V
P

f
′
an

d
V
P

f
′.
R
e
lp

f
′ ::=

w
h
o

τ
(R

e
lp

f
′)
:=
λ
P
.λ
Q
.λ
x
.(Q

(x
)∧

P
(x
))

R
e
lp

f
′ ::=

th
at

τ
(R

e
lp

f
′)
:=
λ
P
.λ
Q
.λ
x
.(Q

(x
)∧

P
(x
))

C
rd

::=
an

d
τ
(C

rd
)
:=
λ
P
.λ
Q
.λ
x
.(P

(x
)∧

Q
(x
))

V
P

f
::=

V
P

f
′C

rd
V
P

f
′

τ
(V

P
f)

:=
(τ
(C

rd
)(τ

(V
P

f
′)))(τ

(V
P

f
′))

N
f
′
or

N
f
′,

N
f
::=

N
f
′C

rd
N

f
′

τ
(N

f)
:=

(τ
(C

rd
)(τ

(N
f
′)))(τ

(N
f
′))

C
f
′+

C
′f
′

V
P

f
′
or

V
P

f
′.

C
rd

::=
or

τ
(C

rd
)
:=
λ
P
.λ
Q
.λ
x
.(P

(x
)∨

Q
(x
))

V
P

f
::=

T
V

N
P

f
′

τ
(V

P
f)

:=
τ
(T

V
)(τ

(N
P

f
′))

V
P

f
::=

T
V

P
ro

f
′R

e
lp

f
′ V

P
f
′
τ
(V

P
f)

:=
τ
(T

V
)(τ

(P
ro

f
′)(τ

(R
e
lp

f
′)(τ

(V
P

f
′))))

T
V

on
ly

N
f
′,

N
P

f
::=

D
et

f
′N

f
′

τ
(N

P
f)

:=
τ
(D

et
f
′)(τ

(N
f
′))

∀
R
:C

f
′

T
V

on
ly

w
h
o
V
P

f
′.

D
et

f
′::=

on
ly

τ
(D

et
f
′)
:=
λ
P
.λ
Q
.∀
x
(Q

(x
)
⇒

P
(x
))

P
ro

f
′::=

on
ly

τ
(P

ro
f
′)
:=
λ
P
.λ
Q
.∀
x
(Q

(x
)
⇒

P
(x
))

R
e
lp

f
′ ::=

w
h
o

τ
(R

e
lp

f
′)
:=
λ
P
.λ
x
.P

(x
)

Tractability and Intractability of Controlled Languages for Data Access 797

are three. (i) We consider grammar rules that express each such concept.
(ii) Syntactic categories and constituents are subcategorized (or multiplied)
into left and right categories and constituents (by means of the indexes or
features l and r, respectively), to capture the distinction between left and
right concepts. (iii) By combining such rules we express the concept combi-
nations. We will see that this is essential to determine maximally tractable
and minimally intractable controlled fragments w.r.t. data complexity.

We consider as content words common nouns (non-recursive Ns), tran-
sitive and intransitive verbs (TVs and IVs) and adjectives (Adjs). Words
from these categories denote (atomic) concept names and (atomic) role
names. Content words are glued together into complete sentences by func-
tion words: determiners (Dets), (indeterminate) pronouns (Pros), relative
pronouns (Relps), conjunctions, disjunctions (Crds) and negations (Negs).
Regarding non-lexical categories, we consider verb phrases (VPs), noun
phrases (NPs), nominals (recursive Ns 3), and complete sentences (Ss).
In particular, recursive (i.e., nominals) and non-recursive (i.e., nouns) Ns
and VPs map into arbitrary description logic concepts, or, more precisely,
into set-typed expressions (of type e→t). Finally, our fragments allow for
sentence subordination; subordinate clauses are captured, basically, by com-
bining VPs with Relps and Ns. See Table 1.

When designing controlled declarative languages that map into descrip-
tion logics, all such languages will share the following common features.
Sentences map to IS-A assertions of the form Cl (Cr. Therefore, all utter-
ances will comply with the sentence patterns:

“every wCl wCr” and “everybody who wCl wCr”.

The controlled languages are defined around the core grammar rules G%
from Table 2, which are then combined with the subset of the rules GCf

from Table 1, defining the constituents wCf , for f ∈ {l, r}, that correspond
to the description logic constructs allowed respectively in the left and right
hand side of inclusion assertions. We impose that all such fragments must
express IS-A among atomic concepts, i.e., they will all contain also the rules
G% ∪ GAl ∪ GAr . Notice that we do not consider passives, and hence do
not directly express (qualified) inverted roles. However, this can be easily
accomplished by adding rules like:

VPp
f ::= is TV by NPf τ(VPp

f) := τ(TV)(τ(NPf)),

3We follow the tradition in using the same category for both nominals and nouns.

798 C. Thorne and D. Calvanese

Table 2. Grammar rules and function lexicon capturing IS-A. Notice the use of non-stan-
dard meaning representations for “anybody” and “anything”.

Rules and Semantic Actions G%

S ::=NPl VPr τ(Sl) := τ(NPl)(τ(VPr))

NPl ::=Prol Relpl VPl τ(NPl) := τ(Prol)(τ(Relpl)(τ(VPl)))

NPl ::=DetlNl τ(NPl) := τ(Detl)(τ(Nl))

Prol ::= anybody τ(Prol) := λP.λQ.∀x(P (x) ⇒ Q(x))

Relpl ::=who τ(Relpl) := λP.λx.P (x)

Prol ::= anything τ(Prol) := λP.λQ.∀x(P (x) ⇒ Q(x))

Relpl ::= that τ(Relpl) := λP.λx.P (x)

Detl ::= every τ(Detl) := λP.λQ.∀x(P (x) ⇒ Q(x))

to the rules G(∃R)f , G¬(∃R)f , G(∃R:Cf ′)f
and G(∀R:Cf ′)f

, for f, f ′ ∈ {l, r}.
This gives as a result a large number of possible fragments, even if we dis-
regard passives, morphosyntactic features (number, gender, tense, person,
polarity, etc.) and agreement.

Notice that, while a certain degree of lexical ambiguity may remain,
we will obtain fragments whose complete utterances map into a unique
meaning representation (a unique assertion Cl (Cr). To ensure this, as
well as to ensure that complete utterances correctly express assertions, non-
standard meaning representations are sometimes associated to English (func-
tion) words and constituents (e.g., the Pro “anybody” in Table 2 has been
assigned the same semantics and typing of the Det “every”, see also [5]).

At each state of parsing (which can be seen as a walk through a tree-
shaped space of so-called partial parse trees or parsing states), a constituent
wCf of index (or feature) f , for f ∈ {l, r}, of meaning representation Cf ,
and of type T will be generated. The typing rules and features will prune
undesired parse trees (or parse states), thereby yielding only the left or right
concepts the grammar rules from Table 1 express.

5. Expressing DL-Lite$ and GCQs

To study the semantic data complexity of controlled languages for ontology-
based data access three requirements must be fulfilled. (i) We need to con-

Tractability and Intractability of Controlled Languages for Data Access 799

sider the different combinations of English content and function words and
the description logics they give rise to. (ii) We need to consider a con-
trolled language that expresses GCQs. (iii) We need to derive data com-
plexity results for answering such controlled questions over the ontologies
the declarative languages defined by Table 1 express. The results in this
section generalize results from [5] and [18], Ch. 4.

Lite-English. Controlled languages for which KBQA is in AC0 in data
complexity can be considered optimal for data access over ontologies and
ontology-based data access systems, since this complexity matches the one
of query evaluation in plain relational databases. One such declarative con-
trolled language is Lite-English, which expresses DL-Lite$. Lite-English is
defined by considering the following combination of grammar rules from Ta-
ble 1: G% ∪G(¬A)r ∪G(¬∃R)r ∪GAf ∪G(∃R)f ∪G(Cf$Cf)f , for f ∈ {l, r}.

To simplify the proofs that follow, we introduce the notion of structural
equivalence and equivalence. A λ-FO expression u = λvi1 . . .λvin .u

′ is said to
be structurally equivalent to a FO formula ψ with n free variables, in symbols
ψ ≡s u, whenever u′ and ψ are FO equivalent. Two λ-FO expressions u =
λα1 . . . λαk.λP1 . . .λPm.λvi1 . . .λvin .u

′′ and u′ = λα′
1 . . .λα′

k′ .λP
′
1 . . .λP ′

m′ .
λv′i1 . . .λv

′
in′ .u

′′′ are said to equivalent, in symbols u ≡ u′, whenever u′′ and
u′′′ are FO equivalent. Clearly, if u is a FO formula (or sentence), equiv-
alence and structural equivalence coincide. The FO standard substitution
and replacement properties trivially hold for equivalence thus understood.

Theorem 5.1 (Lite-English). (a) For each sentence D in Lite-English, there
exists an assertion σ s.t. τ(D) ≡ σtx . (b) For each DL-Lite$ assertion σ,
there exists a sentence D in Lite-English s.t. τ(D) ≡ σtx .

Proof sketch. To prove Claim (a), we need to show that, for f ∈ {l, r}:

for each Lite-English VPf or Nf constituent, there is

a DL-Lite$ concept Cf s.t. τ(VPf) ≡s Cf
tx or τ(Nf) ≡s Cf

tx ,
(†)

by mutual induction on the length of derivations rooted in VPf s and Nf s.

(Basis) There are eight possibilities. Either Nf =⇒ N, VPf =⇒ IV,
VPf =⇒ is a N, or VPf =⇒ is Adj, for f ∈ {l, r}. In all eight cases
τ(·) maps them to λx.A(x), where A(x) is a concept name or atomic
formula.

(Inductive step) We look at one case only, the argument is similar for
all the remaining ones. Nf =⇒k+1 Nf Relpf =⇒k NRelpf VPf , for

800 C. Thorne and D. Calvanese

f ∈ {l, r}. Now VPf =⇒k−1 w′′ for some sequence w′′ of terminal and
non-terminal symbols. By IH, on derivations of length ≤ k rooted in
VPf , τ(VPf) ≡s C ′′

f
tx , for some formula C ′′

f
tx . On the other hand,

Nf =⇒k−1 w′; whence τ(Nf) ≡s C ′
f
tx , again by IH.

Therefore, τ(Nf) := (τ(Relpf)(τ(Nf)))(τ(VPf)) ≡ih λP.λQ.λx.(Q(x)

∧P (x))(λx.C ′
f
tx)(λx.C ′′

f
tx) ! λx.C ′

f
tx ∧C ′′

f
tx , and τ(Nf) ≡s C ′

f
tx ∧C ′′

f
tx ,

the FO translation of a left or right concept.

We are now ready to associate a complete meaning representation to each
Lite-English sentenceD. We have two cases to consider: S =⇒∗ DetlNlVPr

and S =⇒∗ Prol Relpl VPr. In both cases, modulo (†) is easy to see that
τ(S) ≡ ∀x(Cl

tx ⇒ Cr
tx).

To prove Claim (b), we need to show that, for f ∈ {l, r}:

for each DL-Lite$ concept Cf , there is a Lite-English constituentw

s.t. VP =⇒∗ w and τ(w) ≡s Cf
tx , or N =⇒∗ w and τ(w) ≡s Cf

tx ,
(‡)

by (a tedious, albeit simple) structural induction on formulas Cf
tx . We

do it only for left formulas. Moreover, we will deal with only one of the
inductive cases. The proof for right concepts and for the other cases proceeds
analogously.

(Basis) There are two possibilities. Either Cl
tx = A(x), for which we con-

sider Nl =⇒∗ N =⇒∗ A (resp., VPl =⇒∗ is a N =⇒∗ is a A), or Cl
tx =

∃yR(x, y),for which we consider VPl =⇒∗ TV NPl =⇒∗ TV Prol =⇒∗

Rs somebody. Clearly, τ(A) ≡s A and τ(Rs somebody) ≡s ∃yR(x, y).

(Inductive step) Cl
tx = C ′

l
tx ∧ C ′′

l
tx . There are four sub-cases. We con-

sider only one. By IH there exists a VP′
l and a VP′′

l s.t. VP′
l =⇒∗ w′

and VP′′
l =⇒∗ w′′ with, τ(VP′

l) ≡s C ′
l
tx and τ(VP′′

l) ≡s C ′′
l
tx , respec-

tively. The desired constituent w rooted inVPl is obtained viaVPl =⇒∗

VP′
l Crd VP′′

l =⇒∗ w′ and w′′. Clearly, τ(w) = τ(w′ and w′′) ≡s

C ′
l
tx ∧ C ′′

l
tx . Similarly for the other cases.

We now need to show that, when such concepts or formulas are put to-
gether into assertions, such assertions can be captured by a Lite-English sen-
tence. Let σ = ∀x(Ctx

l ⇒ Ctx
r) be a DL-Lite$ assertion. There are two pos-

sibilities: either (i) S =⇒∗ Detl Nl VPr =⇒∗ no/every w w′, or (ii) S =⇒∗

Prol Relpl VPf VPr=⇒∗ anybody who VPl VPr =⇒∗ anybodywho ww′.
Modulo (‡), it follows that (i) “no/every Nl VPr”, or (ii) “anybody who
VPf VPr” are the desired Lite-English sentences (or sentence patterns).

Tractability and Intractability of Controlled Languages for Data Access 801

τ(S)=∀x(Man(x) ⇒ ∃y(Loves(x, y)))

τ(NPl)=λQ.∀x(Man(x)⇒Q(x))

τ(Detl)=λP.λQ.∀x(P (x)⇒Q(x))

Every

τ(Nl)=λx.Man(x)

τ(N)=λx.Man(x)

man

τ(VPr)=λx.∃y(Loves(x, y))

τ(TV)=λβ.λy.β(λx.Loves(x, y))

loves

τ(NPr)=λP.∃yP (y)

τ(Pror)=λP.∃yP (y)

somebody.

Content Lexicon

N ::=woman τ(N) :=λx.Woman(x)

N ::=man τ(N) :=λx.Man(x)

Adj ::= happy τ(Adj) :=λx.Happy(x)

TV ::= loves τ(TV) :=λβ.λx.β(λy.Loves(x, y))

TV ::= likes τ(TV) :=λβ.λx.β(λy.Likes(x, y))

Figure 2. Above: Translating “Every man loves somebody.” expresses the DL-Lite#
assertion Man " ∃Loves. Below: A sample content lexicon for Lite-English, denoting
individuals, sets and relations. The number of content words can be arbitrarily large but
there can be only finitely many function words.

Example 5.2. By considering the content lexicon shown in Figure 2, we can
generate sentences like:

Every man loves somebody. (1)

Anybody who loves somebody likes somebody. (2)

Figure 2 shows that sentence (1) is indeed a Lite-English declarative sen-
tence expressing the FO formula ∀x(Man(x)⇒∃y(Loves(x, y))), which cor-
responds to the DL-Lite$ ontology assertion Man (∃Loves. At each node,
the meaning representation built is the (beta) reduct of its immediate suc-
cessors, down to the yield.

On the other hand, English sentences like:

*Somebody who loves anybody is a happy man. (3)

do not belong to Lite-English. Why? Because (i) “somebody” cannot occur
in subject position, and (ii) “anybody” cannot occur in predicate position.

802 C. Thorne and D. Calvanese

Overgeneration is thus prevented by types and λ-FO typing rules. For in-
stance, the right VP “loves anybody” will be discarded because the pronoun
“anybody” is typed in Lite-English as a determiner of type (e→t)→((e→t)→
t), but transitive verbs take generalized quantifiers of type (e→t)→t as ar-
guments: “loves” cannot combine with “anybody” because τ(loves) cannot
be applied to τ(anybody). ♣

GCQ-English. GCQs are captured by the interrogative fragment GCQ-
English. Questions in GCQ-English fall in two main classes: (i) Wh-ques-
tions, which will map into non-Boolean GCQs, and (ii) Y/N-questions,
which will map into Boolean GCQs. Table 3 shows GCQ-English’s grammar
GGCQ. Some basic morphosyntactic and semantic features are attached to
(some) constituents. The feature ·− means that the constituent is of nega-
tive polarity. Absence of features indicates that constituents are of positive
polarity. Notice that, as for Lite-English, we disregard all other morphosyn-
tactic features.

GCQ-English covers personal, reflexive, and relative pronouns and can
capture a restricted form of anaphora, the phenomenon by which pronouns
co-refer with the NPs that dominate them and that occur earlier in the
utterance. Personal pronouns (e.g., “him”) co-refer with the closest NP in
argument position. Reflexive pronouns (e.g., “himself”), like relative pro-
nouns, co-refer with their closest NP in subject position. The co-reference of
pronouns is captured by indexing constituents. A reflexive pronoun (resp.,
a personal pronoun) dominated by a NP of index i co-refers with an NP of
index i− 1 (resp., an NP of index i− 2).

Example 5.3. Consider again the content lexicon in Figure 2. The English
question:

Who loves some woman who likes somebody? (4)

belongs to GCQ-English and expresses the GCQ ∃y(Loves(x, y) ∧Woman(y)
∧ ∃z(Likes(y, z))). Likewise, the questions:

Does somebody love some man who loves him? (5)

Who loves himself? (6)

are GCQ-English questions. The personal pronoun “him” co-refers with “so-
me man”; thus, Y/N-question (5) translates into the GCQ ∃x(∃y(Loves(x, y)
∧ Man(y) ∧ Loves(y, x))). Similarly, the pronoun “himself” co-refers with
“who”, and question (6) translates (up to structural equivalence) into the
GCQ Loves(x, x) (see Figure 3). On the other hand:

Tractability and Intractability of Controlled Languages for Data Access 803

Table 3. Phrase structure rules and function lexicon of GCQ-English. Note the use of
indexes to resolve co-references. For simplicity, we use empty noun phrases ε as subjects
of subordinated sentences. Notice the non-standard meaning representation of “someone”.

Rules and Semantic Actions GGCQ

Qwh ::= Intpro Ni Sgi? τ(Qwh) := τ(Intpro)(τ(Ni))(τ(Sgi))

Qwh ::= Intproi Sgi? τ(Qwh) := τ(Intproi)(τ(Sgi?))

QY/N ::= does NP−
i VP−

i ? τ(QY/N) := τ(NP−
i)(τ(VP−

i))

QY/N ::= is NPi VPi τ(QY/N) := τ(NPi)(τ(VPi))

Sgi ::=NPgiVPi τ(Sgi) := τ(NPgi)(τ(VPi))

Ni ::=Adj Ni τ(Ni) := τ(Adj)(τ(Ni))

Ni ::=Ni Relpi Sgi τ(Ni) := τ(Relpi)(τ(Ni))(τ(Sgi)))

VPi ::= is Adji τ(VPi) := τ(Adji)

VPi ::= is a Ni τ(VPi) := τ(Ni)

VPi ::=VPi Crd VPi τ(VPi) := τ(Crd)(τ(VPi))(τ(VPi))

VP−
i ::=VP−

i Crd VP−
i τ(VP−

i) := τ(Crd)(τ(VP−
i))(τ(VP−

i))

VPi ::= IVi τ(VPi) := τ(IVi)

VP−
i ::= IV−

i τ(VP−
i) := τ(IV−

i)

VPi ::=TVi,i+1 NPi+1 τ(VPi) := τ(TVi,i+1)(τ(NPi+1))

VP−
i ::=TV−

i,i+1 NPi+1 τ(VP−
i) := τ(TV−

i,i+1)(τ(NPi+1))

NPi ::=Proi τ(NPi) := τ(Proi)

NP−
i ::=Pro−

i τ(NP−
i) := τ(Pro−

i)

NPi ::=Det Ni τ(NPi) := τ(Det)(τ(Ni))

NPi ::=Pni τ(NPi) := τ(Pni)

NPgi ::= ε τ(NPgi) := λP.P

Det ::= some τ(Det) := λP.λQ.∃x(P (x) ∧Q(x))

Proi ::= somebody τ(Proi) := λP.∃xP (x)

Pro−i ::= anybody τ(Pro−
i) := λP.∃x.P (x)

Crd ::= and τ(Crd) := λP.λQ.λx.(P (x) ∧Q(x))

Relpi ::=who τ(Relpi) := λP.λQ.λx.(P (x) ∧Q(x))

Intpro ::=which τ(Intpro) := λP.λQ.λx.(P (x) ∧Q(x))

Intproi ::=who τ(Intproi) := λP.λx.P (x)

Proi−2 ::= him τ(Proi−2) := λP.P (x)

Proi−1 ::= himself τ(Proi−1) := λP.P (x)

804 C. Thorne and D. Calvanese

τ(Qwh)=λx.Loves(x, x)

τ(Intproi)=λP.λx.P (x)

Who

τ(Sgi)=λx.Loves(x, x)

τ(NPgi)=λQ.Q

ε

τ(VPi)=λx.Loves(x, x)

τ(TVi,i)=λβ.λx.β(λy.Loves(x, y))

loves

τ(NPi) = λP.P (x)

τ(Proi)=λP.P (x)

himself ?

Figure 3. Translating “Who loves himself?” into the GCQ Loves(x, x). Note how indexes
capture co-references, since i = (i+ 1) − 1.

*Which man loves some woman who likes some woman who loves him? (7)

lies outside this controlled language (and does not express a GCQ). Why?
Because “him” cannot co-refer with “which man”: co-reference cannot span
beyond the most immediate nesting phrase. ♣

Theorem 5.4 (Expressing GCQs). (a) For every GCQ-English question Q,
there exists a GCQ ϕ s.t. τ(Q) ≡s ϕ. (b) For every GCQ ϕ, there exists a
GCQ-English question Q s.t. τ(Q) ≡s ϕ.

Proof sketch. The proof of Claim (a) is similar to the proof of Claim (a)
of Theorem 5.1. We show, by mutual induction on the length of derivations
rooted in Nis and VPis, that:

for each Ni or VPi GCQ-English constituent,

there is a GCQ ϕ(x) s.t. τ(Ni) ≡s ϕ(x) or τ(VPi) ≡s ϕ(x), resp.
(†)

(Basis) Trivial.

(Inductive step) We show only one case, as all the other cases are anal-
ogous. Let VPi =⇒k+1 TVi,i+1NPi+1 =⇒k TVi,i+1DetNi+1 =⇒k−1

Rs some w, with Ni =⇒k−2 w. By IH, τ(Ni) ≡s ϕ(x). Thus, we have
that τ(VPi) := λβ.λx.β(λy.R(x, y))(λP.λQ.∃z(P (z)∧Q(z)))(τ(Ni)) ≡ih

λβ.λx.β(λy.R(x, y))(λP.λQ.∃z(P (z)∧Q(z)))(λz.ϕ(z)) ! λx.∃y(R(x, y)∧
ϕ(y)), which is structurally equivalent to a GCQ.

Tractability and Intractability of Controlled Languages for Data Access 805

With Claim (†) established, we can consider full questions. Since the argu-
ment is similar both for Y/N and Wh-questions, we only deal with one of the
four possible cases. Let Qwh =⇒ IntproNi Sgi =⇒ IntproNiVPi =⇒∗

which w′ w′′. Therefore, τ(Qwh) := λP.λQ.∃x(P (x) ∧ Q(x))(λy.ϕ′(y))
(λz.ϕ′′(z)) ! λx.ϕ′(x) ∧ ϕ′′(x), which is structurally equivalent to a GCQ.

The proof of Claim (b) is similar to the proof of Claim (b) of Theorem 5.1.
We prove, by induction on ϕ(x), a non-Boolean GCQ ϕ of distinguished
variable x, that:

for each GCQ ϕ(x), there is a GCQ-English constituent w s.t.

VPi =⇒∗ w and τ(w) ≡s ϕ(x), or Ni =⇒∗ w and τ(w) ≡s ϕ(x).
(‡)

(Basis) There are four possibilities.
Ifϕ(x) = A(x), thenwe considerNi =⇒∗ A (resp.,VPi =⇒∗ is a Ni =⇒∗

is a A). If ϕ(x) = R(x, x), we consider VPi =⇒∗ TVi,iNPi =⇒∗

TVi,iProi =⇒∗ Rs himself. If ϕ(x) = R(x, c), we consider VPi =⇒∗

TVi,i+1NPi+1 =⇒∗ TVi,i+1Pni+1 =⇒∗ Rs c. If ϕ(x) = ∃y(R(x, y)),
we consider VPi =⇒∗ TVi,i+1NPi+1 =⇒∗ TVi,i+1Proi+1 =⇒∗

Rs somebody. Now, τ(A) ≡s A(x), τ(Rs himself) ≡s R(x, x), τ(Rs c)
≡s R(x, c) and, finally, τ(Rs somebody) ≡s ∃y(R(x, y)).

(Inductive step) Again, we look at one case only. Let ϕ(x) = ∃y(S(x, y)∧
ϕ′(y)). By IH there exists a GCQ-English constituent w′ rooted in a
VP′

i+1 or a nominal N′
i+1 s.t. τ(w′) ≡s ϕ′(y). This gives rise to several

alternative GCQ-English constituents rooted in category VPi. We con-
sider only one possible case. Notice that we need to show by an easy
induction on relations, that there exists a GCQ-English constituent w′′

s.t. τ(w′′) ≡s S(x, y). We consider only the base case, where S(x, y) =
R(x, y). Then, VPi =⇒∗ TVi,i+1NPi+1 =⇒∗ TVi,i+1DetNi+1 =⇒∗

Rs some w′. Whence, τ(Rs some w′) ≡s ∃y(R(x, y) ∧ ϕ′(y)).

Full Boolean and non-Boolean GCQs are captured in several, alternative
ways by GCQ-English questions. As the argument is similar for all cases, we
deal only with Boolean GCQs and exhibit one (of possibly many) GCQ-
English derivations. Consider a Boolean GCQ ϕ = ∃x(ϕ′(x) ∧ ϕ′′(x)).
If QY/N =⇒∗ is NPiVPi =⇒∗ is DetNiVPi =⇒∗ is some Ni VPi ?,
then, by Claim (‡), Ni =⇒∗ w′ with τ(w) ≡s ϕ′(x), and VPi =⇒∗ w′′ with
τ(w) ≡s ϕ′′(x). This means that “is some w′ w′′ ?” is the desired (controlled)
question: Firstly, QY/N =⇒∗ is some w′ w′′ ?. Secondly, “is” and “?” have
no meaning by themselves. Thus τ(is some w′ w′′ ?) = τ(some w′ w′′) =
τ(some)(τ(w′))(τ(w′′)) ≡ ∃x(ϕ′(x) ∧ ϕ′′(x)) = ϕ. This concludes the proof.

806 C. Thorne and D. Calvanese

Data Complexity Results. Lite-English in combination with GCQ-
English gives rise to “optimal” data complexity for KBQA. What we mean
by this is that, in this case, KBQA reduces to plain database query evalu-
ation (thus allowing to exploit in theory all the optimizations available for
relational databases).

Theorem 5.5. KBQA is in AC0 w.r.t. data complexity for Lite-English and
GCQ-English.

Proof. It is shown in [2], Theorem 7.1, that KBQA is in AC0 in data
complexity for DL-LiteRhorn knowledge bases and CQs. The DL-LiteRhorn logic
strictly contains DL-Lite$ and CQs strictly contain GCQs by definition.
Since we have shown that Lite-English expresses DL-Lite$ (Theorem 5.1)
and GCQ-English GCQs (Theorem 5.4), the result follows.

6. The Family {IS-Ai}i∈[0,7] of Controlled Languages

In this section we study a family of controlled fragments, the {IS-Ai}i∈[0,7]
family, which show the boundary between maximally tractable and mini-
mally intractable controlled languages for data access, when considered to-
gether with queries. The results in this section generalize results from [19].
We consider CQs when deriving data complexity upper bounds and GCQs
(and fragments) when deriving lower bounds. These fragments are also ob-
tained by conveniently combining the grammar rules from Table 1 and by
consequently constraining what can be said in the subject NP and in the
predicate VP of complete sentences. Specifically, each fragment IS-Ai is
generated by the grammar whose phrase structure rules are the union of
G% ∪GAl ∪GAr with the rules shown in Table 4. Each set of phrase struc-
ture rules and function lexicons can be clearly combined with an appropriate
content lexicon.

Each IS-Ai fragment generates a fragment of ALCI that might contain,
besides inclusion assertions that are allowed in DL-Lite$, also inclusion as-
sertions σi of the form shown in Table 5, which go beyond what can be
expressed in DL-Lite$, and are responsible for the complexity lower bounds
given in Table 4, as shown next.

Data Complexity Results. We state now the main data complexity re-
sults for the {IS-Ai}i∈[1,7] fragments. All of them are orthogonal in expressive
power to each other and, most importantly, to Lite-English and DL-Lite$,
covering English constructs and expressing concepts none of the latter can.

Tractability and Intractability of Controlled Languages for Data Access 807

Table 4. Grammars and computational complexity of KBQA for the {IS-Ai}i∈[0,7] family.
Each fragment IS-Ai is generated by the rules G% ∪ GAl ∪ GAr combined with the rules
shown in the grammar column.

Grammar Data Compl.

IS-A1 G(∀R:Cr)r NLSpace-complete

IS-A2 G(∀R:Cr)r ∪G(Cl$C′
l)l

∪G(Cr$C′
r)r PTime-complete

IS-A3 G(∃R:Cl)l ∪G(∃R−:Cl)l ∪G(Cr$C′
r)r ∪G(∃R)r PTime-complete

IS-A4 G(∃R:Cl)l ∪G(Cl$C′
l)l

∪G(Cr$C′
r)r PTime-complete

IS-A5 G(∀R:Cl)l ∪G(Cr$C′
r)r coNP-complete

IS-A6 G(Cr*C′
r)r coNP-complete

IS-A7 G(¬Cr)r coNP-complete

For all of them, KBQA lies beyond AC0. In particular, note that coNP-
hardness arises for those fragments that are powerful enough to express
Boolean satisfiability (which we may accordingly term “Boolean-closed”).
Table 5 spells out for each IS-Ai fragment the assertions that cause the in-
crease in complexity, and gives some examples of utterances, while Table 4
summarizes the complexity results for the IS-Ai fragments.

Theorem 6.1. KBQA is (a) PTime-complete w.r.t. data complexity for
IS-A2, IS-A3, IS-A4 and (G)CQs, and (b) coNP-complete w.r.t. data com-
plexity for IS-A5, IS-A6, IS-A7 and (G)CQs.

Proof. The lower bounds for IS-A2, IS-A3 and IS-A4 follow from the results
in [6]. For IS-A2 the result is derived from Theorem 7, case 2. For IS-A3,
it is derived from Theorem 6, case 1. Finally, the lower bound for IS-A4

follows from Theorem 7, case 3. Basically, this is because our controlled
languages subsume the description logics for which those theorems hold.
PTime-hardness in all three cases holds already for atomic queries, viz.,
GCQs of the form A(c) or R(c, c′). The complexity upper bounds, on the
other hand, follow from results in [12] for answering CQs in the description
logic EL, which subsumes the description logic assertions that IS-A2, IS-A3,
and IS-A4 express. For IS-A4 we need to observe that each assertion A (
∀R:A′ can be replaced by the equivalent assertion ∃R−:A (A′. Moreover,
after such a replacement, only inverse roles are present in the resulting TBox,
so each inverse roleR− can be replaced by a new role Rinv , which results in an
EL TBox. The lower bounds for IS-A5, IS-A6, and IS-A7 follow also from [6]:

808 C. Thorne and D. Calvanese

Table 5. The {IS-Ai}i∈[1,7] controlled languages.

C-hard Assertion(s) σi Sentence(s) Di

IS-A1 A (∀R:A′ Every herbivore eats only herbs.

IS-A2 A *A′ (∀R:(A′′ *A′′′) Every Italian man drinks only strong
coffee.

IS-A3 ∃R:A (A *A′ Anybody who murders some person

is a heartless killer.

∃R−:A (A *A′ Anybody who is loved by some person

is a happy person.

A (∃R Every driver drives something.

IS-A4 A *A′ (A′′ *A′′′ Every cruel man is a bad man.

∃R:(A *A′) (A′′ *A′′′ Anybody who runs some bankrupt
company

is a bad businessman.

IS-A5 ∀R:A (A′ *A′′ Anybody who values only money

is a greedy person.

IS-A6 A (A′ +A′′ Every mammal is male or is female.

IS-A7 ¬A (A′ Anybody who is not selfish is altruistic.

for IS-A5, we apply Theorem 8, case 3; for IS-A6, we apply Theorem 8,
case 2; and for IS-A7, Theorem 8, case 1. The coNP upper bounds for
these fragments, on the other hand, derive from the coNP data complexity
upper bounds for KBQA over expressive description logics shown in [14] and
hold, again, for CQs.

Theorem 6.2. KBQA is NLSpace-complete w.r.t. data complexity for
IS-A1 and (G)CQs.

Proof. For the hardness part, it is shown in [6] (by a reduction of the reach-
ability problem for directed graphs) that for any description logic capable
of expressing assertions of the form A (∀R:A′, or, equivalently, of the form
∃R−:A (A′, KBQA is NLSpace-hard w.r.t. data complexity. This result
holds already for atomic queries. Note that such assertions are expressed in
our fragments by sentences of the form “Every A Rs only A′s”.

Tractability and Intractability of Controlled Languages for Data Access 809

For the membership part, let ϕ := ∃ȳ(ϕ′(x̄, ȳ)) be a fixed CQ, c̄ a fixed
tuple, O a fixed set of universally quantified IS-A1 meaning representations,
and D a set of facts. We sketch a data complexity reduction of KBQA for
IS-A1 to KBQA for linear Datalog, which is known to be NLSpace-complete
in data complexity (see [7], Theorem 4.3). Such a reduction will be space
logarithmic in |adom(D)| (and time polynomial in |adom(D)|). By combining
the reduction with a query answering algorithm for linear Datalog, we derive
the desired result. The correctness of the reduction entails the correctness
of the overall non-deterministic (space logarithmic in |adom(D)|) decision
procedure.

A Datalog clause is a disjunction ±S1(z̄1)∨¬S2(z̄2)∨ · · ·∨¬Sn(z̄). A re-
lational atom or clause with no free variables is said to be ground. If a clause
contains no positive (i.e., non-negated) relational atom, it is called a goal ; if
it contains no negative (i.e., negated) relational atom(s), it is called a fact ;
and if it contains both a positive and at least one negative relational atoms,
it is called a rule. Given a clause S1(z̄1)∨ ¬S2(z̄2)∨ · · · ∨¬Sn(z̄n), S1(z̄1) is
said to be the clause’s head and ¬S2(z̄2) ∨ · · · ∨ ¬Sn(z̄n) the clause’s body.
Every atom occuring as head of a Datalog clause is said to be intensional.
A set of Datalog clauses is called a program. A linear Datalog clause is a
Datalog clause in which intensional atoms are allowed to occur at most once
in the clause’s body.

The only inclusion assertions expressible by the IS-A1 fragment are of
the form A (A′ and ∃R:A (A′, which can be transformed into a set PO of
linear Datalog clauses of the form ¬A(x)∨A′(x) and ¬R(x, y)∨¬A(y)∨A′(x),
respectively. Since O is fixed, transforming it into PO does not affect data
complexity. Moreover, D is already a set of linear Datalog clauses (a set of
ground facts). Now, the CQ ϕ is not a linear Datalog goal. However, ϕ′(x̄, ȳ)
consists of a conjunction of k relational atoms S1(z̄1) ∧ · · · ∧ Sk(z̄k), where
x̄∪ ȳ = z̄1∪ · · ·∪ z̄k. Ground ϕ by θc̄ := {x̄ /→ c̄}, which returns (the Boolean
CQ) ∃ȳ(ϕ′(c̄, ȳ)). This does not affect, once again, data complexity. Next,
consider all the possible groundings θc̄′ := {ȳ /→ c̄′} with c̄′ ∈ adom(D)|ȳ|.
There are O(|D||ȳ |) such groundings, and each of them can be stored in a
register of O(log |D|) size. Applying a θc̄′(·) grounding to ϕ′(c̄, ȳ) yields a
family of CQs ϕ′(c̄, c̄′) = S1(c̄′′1)∧ · · ·∧Sk(c̄′′k), which can be stored (because
the query is fixed) in a registry of O(log |D|) size. We now claim that:

(O,D) |= ∃ȳ(ϕ′(c̄, ȳ)) iff there exists a θc̄′ s.t., for all i ∈ [1, k],

PO ∪D |= Si(c̄′′i) and c̄′′i ⊆ c̄′ ∪ c̄′′.

(†)

810 C. Thorne and D. Calvanese

The “if” direction is immediate. To prove the “only-if” direction, we rea-
son as follows. Assume for contradiction that there exists an interpretation I
s.t. I |= PO∪D, but for every assignment θc̄′(·) we have that I 3|= Si(c̄′′i), for
some i ∈ [1, k], with c̄′′i ⊆ c̄∪ c̄′. Since I |= PO ∪D, we have that I |= (O,D)
and I |= ∃ȳ(ϕ′(c̄, ȳ)). By FO semantics, this implies that there exists some
grounding θ(·) from ȳ into adom(D), s.t. I |= Si(z̄i)θ. But then, as θ(·) is
among the θc̄′(·)s, this implies that I |= Si(c̄′′i) as well. Contradiction.

The algorithm then proceeds by looping k times over the Si(c̄′′i)s (stored
in the O(log |D|) registry), each time running a linear Datalog non-deter-
ministic check that uses at most O(log |D|) space. This sketches a non-deter-
ministic algorithm that decides KBQA using, overall, O(log |D|) space.

7. Conclusions

We have proposed to study the semantic complexity of controlled languages
for managing OWL ontologies and ontology-based systems, such as ACE
OWL and ACE OWL Lite (and similarly, of every controlled language that
expresses OWL), which do not scale to data, by considering the data com-
plexity of the description logics and the formal query language(s) these con-
trolled languages and their fragments express. Our fine-grained analysis of
the English constructs expressing all the possible combinations of descrip-
tion logic concepts (i.e., the concepts that may occur to the left and to the
right of the concept inclusion symbol (in ontology assertions) shows that
such controlled languages, which in general do not scale to data, contain,
however, several significant fragments that scale when considered alongside
GCQs and GCQ-English questions.

Table 6 provides a high-level summary of the data complexity associated
to each of the combinations of constructs studied in declarative controlled
English sentences. The upper row shows the maximal combinations of con-
structs that are tractable (i.e., in PTime w.r.t. data complexity), while the
lower row, shows the minimal combinations of constructs that are intractable
(i.e., coNP-hard w.r.t. data complexity), viz., the constructs that when
added, yield an exponential data complexity blowup. The use of relatively
standard semantic (FO and λ-FO) meaning representations may indicate one
reason for intractability: intractable combinations are “Boolean-closed”, giv-
ing rise to logics that can express (when combined with (G)CQs) full Boolean
complementation and intersection. If negation is constrained to occur only
within predicate VP constituents (however complex), tractability ensues.

These results, which generalize those in [5, 19] and [18], Ch. 4., extend
and refine the notion of semantic complexity proposed by Pratt and Third

Tractability and Intractability of Controlled Languages for Data Access 811

Table 6. Controlled English constructs for which (G)CQ query answering is respectively
tractable and intractable in data complexity.

Complexity Constructs Fragment(s)

Negation (“not”) in predicate position.

Relatives (“who”, “which”) everywhere. Lite-English,

Tractable Conjunction (“and”) everywhere. IS-A1, IS-A2,

Transitive verbs (“loves”) everywhere. IS-A3, IS-A4

Existential quantification (“some”) everywhere.

Negation (“not”) in subject position. IS-A5

Intractable Universal quantification (“only”) in subject position. IS-A6

Disjunction (“or”) in predate position. IS-A7

in [15] for English (controlled) fragments. As further work we would like to
understand if further constraining English syntax, vocabulary, and seman-
tics with the goal of achieving tractability, in the manner outlined by the
tractable controlled languages defined in this paper, may negatively impact
usability.

Acknowledgements. The authors wish to thanks Ian Pratt-Hartmann,
Raffaella Bernardi, and Norbert Fuchs for their useful comments on the
results presented here.

References

[1] Abiteboul, Serge, Richard Hull, and Victor Vianu, Foundations of Databases,
Addison-Welsey, 1995.

[2] Artale, Alessandro, Diego Calvanese, Roman Kontchakov, and Michael
Zakharyashev, The DL-Lite family and relations, Journal of Artificial Intelligence

Research 36:1–69, 2009.

[3] Baader, Franz, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, The Description Logic Handbook: Theory, Implemen-

tation, and Applications, Cambridge University Press, 2007.

[4] Barwise, Jon, and Robin Cooper, Generalized quantifiers and natural language,
Linguistics and Philosophy 4(2):159–219, 1980.

[5] Bernardi, Raffaella, Diego Calvanese, and Camilo Thorne, Lite natural lan-
guage, in Proc. of the 7th Int. Workshop on Computational Semantics (IWCS-7),

2007.

[6] Calvanese, Diego, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, and Riccardo Rosati, Data complexity of query answering in description

812 C. Thorne and D. Calvanese

logics, in Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), 2006, pp. 260–270.

[7] Eiter, Thomas, Georg Gottlob, Evgeny Dantsin, and Andrei Voronkov,

Complexity and expressive power of logic programming, ACM Computing Surveys
33(3):374–425, 2001.

[8] Fuchs, Norbert E., and Kaarel Kaljurand, Mapping Attempto Controlled En-

glish to OWL-DL, in Demos and Posters of the 3rd European Semantic Web Conf.
(ESWC 2006), 2006.

[9] Horrocks, Ian, Peter F. Patel-Schneider, and Frank van Harmelen, From
SHIQ and RDF to OWL: The making of a web ontology language, Journal on Web

Semantics 1(1):7–26, 2003.

[10] Jurafsky, Daniel, and James Martin, Speech and Language Processing, 2nd edn.,
Prentice Hall, 2009.

[11] Kaljurand, Kaarel, and Norbert E. Fuchs, Bidirectional mapping between

OWL DL and Attempto Controlled English, in Proc. of the 4th Int. Workshop on
Principles and Practice of Semantic Web Reasoning (PPSWR 2006), 2006, pp. 179–

189.
[12] Krisnadhi, Adila, and Carsten Lutz, Data complexity in the EL family of de-

scription logics, in Proc. of the 14th Int. Conf. on Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR 2007), 2007, pp. 333–347.
[13] Montague, Richard, Universal grammar, Theoria 36(3):373–398, 1970.

[14] Ortiz, Magdalena, Diego Calvanese, and Thomas Eiter, Data complexity of

query answering in expressive description logics, Journal of Automated Reasoning
41(1):61–98, 2008.

[15] Pratt, Ian, and Allan Third, More fragments of language, Notre Dame Journal

of Formal Logic 47(2):151–177, 2006.
[16] Schwitter, Rolf, Kaarel Kaljurand, Anne Cregan, Catherine Dolbear,

and Glen Hart, A comparison of three controlled natural languages for OWL 1.1, in
Proc. of the 4th Int. Workshop on OWL: Experiences and Directions (OWLED 2008),

2008.

[17] Staab, Steffen, and Rudi Studer (eds.), Handbook on Ontologies, Int. Handbooks
on Information Systems, Springer, 2004.

[18] Thorne, Camilo, Query Answering over Ontologies Using Controlled Natural Lan-

guage, KRDB Dissertation Series, Faculty of Computer Science, Free University of
Bozen-Bolzano, 2010.

[19] Thorne, Camilo, and Diego Calvanese, Exploring Controlled English ontology-
based data access, in Proc. of the 2009 Workshop on Controlled Natural Language

(CNL 2009), vol. 448 of CEUR Electronic Workshop Proceedings, http://ceur-ws.

org/, 2009.
[20] Vardi, Moshe Y., The complexity of relational query languages, in Proc. of the 14th

Annual ACM Symposium on Theory of Computing, 1982, pp. 137–146.

Tractability and Intractability of Controlled Languages for Data Access 813

Camilo Thorne
KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano
Piazza Domenicani 3, 39100 Bolzano, Italy
cthorne@inf.unibz.it

Diego Calvanese
KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano
Piazza Domenicani 3, 39100 Bolzano, Italy
calvanese@inf.unibz.it

