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Abstract. As it is well-known, querying and managing structured data in natu-
ral language is a challenging task due to its ambiguity (syntactic and semantic)
and its expressiveness. On the other hand, querying, e.g., a ralalatabase

or an ontology-based data access system is a well-defined and unamtzigh,
namely, the task of evaluating a formal query (e.g., an SQL query)lofited
expressiveness over such database. However these formgllgnguages may
be difficult to learn and use for the casual user and ambiguity may comge

the interface. To bridge this gap, the use of controlled language intsrfease
been proposed. As a measure of their efficiency for data accegmopese to
considerdata complexitywhich is the complexity of query evaluation measured
in the size of the dataNVe study a familiy of controlled languages that express
several fragments of OWL, ranging from tractallegSpaceandPTime) to in-
tractable §oNP-hard) in data complexity, singling out which constructs give rise
to each computational property.

1 Introduction

Controlled languages (CLs) are subsets of natural lang(Migewith minimal ambi-
guity tailored to fullfil data management tasks. Among thiesks, an important one
is to provide "lightweight” front-end languages for nonpext users of information
systems [30, 6, 7]. Data in information systems such asioelat databases (DBs) is
inserted, updated, deleted and queried using expresginefauery and data man-
agement languages such as, e.g., SQL, which are difficulanalla (let alone learn)
for casual users. Language technologies have endeavaufi#tdhis gap by proposing
wide coverage NL interfaces (NLIs) that allow the user tq 88§, everyday English, at
the cost of system accuracy [2]. This is because NL is riddémambiguity (while for-
mal languages are not) and thus NLIs have to choose betw@enamsnplex heuristics
or blowing up the translation process.

CL interfaces constitute a trade-off between the intuityppeal of NLIs and the
rigor of formal data query and management languages. Typi€L. expressions are
translated symbolically into expressions belonging eitbeéhose formal languages or
to some intermediate formalism (or logic) conveying a (fabhrepresentation of its
meaning (MR). Many different techniques, ranging from kivale.g., finite-state trans-
ducers) to deep (e.g., parsing), are used for defining sanhklations. Deep translations,
in particular, have the property of inducing absolute aacurwithout any significant
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loss in translation efficiency. Indeed, deep translatioescampositional, viz., the MR
of a complete utterance is a function of the MRs of its (sytitqconstituents, i.e.,
semantics mirrors syntax. Hence, no information is loshmtranslation [14]. When,
in addition, the CL is context-free, compositional tratiskas can be computed quite
efficiently, i.e., we "compile” the CL in time polynomial ifhé length|s| of the input
string s.

Recently [6, 19, 25, 27, 26, 28], CL interfaces to ontologygdd data access systems
(OBDASSs) centered mostly around the W3C standard ontolagyuage OWE (Web
Ontology Language) [11, 16] have been proposed. They hawn gise to a number
of applications and implementations [6, 19], among whichEAGWL [11, 16], which
maps to OWL DL and fragments of it. The formal underpinning IODL is provided
by description logics (DLs) [3, 13].

Given that OBDASs may contain large amounts of data, we &eedsted in know-
ing whether querying such systems through CL interfacelesda data. An ODBAS
can be modelled by a Dknowledge baséKB), whose information is accessed through
gueries belonging to some fragment of SQL. A fragment thebissidered sufficiently
expressive but still computationally manageable (sin@yganswering is decidable in
significant cases) is that of conjunctive queries [1]. Theibaroblem in this setting
is (conjunctive) query answerin@A) [8], which is a form of logical entailment [3].
To evaluate the efficiency of querying through CL interfases focus on the so-called
data complexityof QA, i.e., the computational complexity of the problem s@ad in
terms of the size of the data only [33]. Crucially, we want tmWw whether CL inter-
faces give way taractableor intractable QA and, more in general, whether they affect
positively or negatively the performance of OBDASSs.

Tractable data complexity (viz., when the data complexit@#4 is in PTime, that
is, can be decided in at most polynomial time in the size ofdat) indicates good
scalability to data of query answering and CL interfacetrakitable data complexity
(viz., when the data complexity of QA is at leagiNP-hard, hence beyonBTime)
indicates, on the other hand, low scalability. The data deriy of query answering
in OWL is known to be intractable [21]. Hence, CLs like ACE-OWh dot scale to
data, although they contain fragments that do. This contipui behaviour depends on
the language constructs they cover. It would be of intethstefore, for CL designers
working with OBDASSs to know which NL constructs (and in whichmbination) give
rise to different computational properties.

In this paper we pinpoint some of the English constructs afedteri of ACE, that
give rise to these computational properties by studyingaspf CLs that translate into
several fragments of OWL. In doing so, we make the followingtdbutions:

— We study DL-English, a CL that maps intd£CZ, an intractable DL contained in
OWL that is the smallest DL closed under boolean operatiorsoanepts [3].

— By constraining DL-English constituents, we define a farmfiyragments thereof,
viz., the {IS-A;}c[o,7) family, that are eithe(i) minimal w.r.t. intractability or
(if) maximalw.r.t. tractability, mirroring Pratt and Third in [23] (c&lso [29]).

— We pinpoint the NL/CL constructs that are responsible feirttifferent computa-
tional properties, in particular, for maximal tractalyiland minimal intractability.

Yhttp://ww. w3. org/ TR/ oW - ref/
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Table 1. Semantics of the DIALCZ.

Syntax Semantics
C CI =c
A AT ca
T Tr:=A
3R:.C (3R:C)* := {d | existsd’ s.t.(d,d') € R* andd' € C7}
-C (~C)* = A\ C*
cne’ (cncHt=ctnc*
P P C AxA
P~ (P7)* := {(d,d') | (d',d) € R"}
CCEC, | TEGECEC, iff ¢f cCF
Alc) T Ae) iff & € AT
P(c,c) T = P(c, ) iff (c,cT) € AT
@) ZEOiffforal a € 0,7 =«
D ZEDiffforall a e D, T«
(0, D) I E{(0,D)iff Tk OandZ =D

2 Ontologies and Query Answering

2.1 Ontologies, Knowledge Bases and Queries

In an OBDAS, an ontology provides a conceptual view on tha dabred in a rela-

tional database. OBDASs are formally underpinned by DL Kedge bases [8, 3]. DLs
are logics which structure the domain of discourse in terfmsncepts (representing
classes, i.e., sets of objects) and roles (representiragybielations between objects).
We are interested in DLs of different expressiveness, Bik.,ALCZ and its fragments

(such asDL-Lite [8]). In ALCZ, concept androles R are formed according to the
following syntax:

R— P| P C—T|A|3IRC|-C|CNC

where A stands for a concept name (a unary predicatejor a role name (a binary
predicate), and®~ for its inverse. We can enrich the setAf2CZ concepts, modulo
the following (explicit) definitions(i) VR:C := —3R:~C, (ii)) CUC" := —(=-CM-C"),
(i) L :=-=T,and(iv) 3R := JR:T.

In a DL ontologyO, intensional knowledge is specified by means of a set of (con-
cept inclusion)assertionsof the formC; C C,., stating inclusion (or 1S-A) between
the instances of the conceft on theleft and those of the concept,. on theright.
In ALCZ, C; andC,. may be arbitrary concepts, while fragments4£CZ, such as
DL-Lite [8], can be obtained by suitably restricting the syntax @rand forC,.. A
databasgDB), expressing extensional knowledge, is a finiteRBetf unary and binary
ground atoms of the formi(c), P(c, ). A knowledge baséKB) is a pair (O, D),
whereQ is an ontology and® a DB.
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The semantics of DL concepts, assertions, ontologies, &@wliKspecified by con-
sidering FOinterpretationsZ := (A, -Z), whereA is thedomain a possibly countably
infinite set of constants, and is aninterpretationfunction that mapsi) each concept
nameA to a subset of the domaifij) each role namé to a binary relation over the
domain, andiii) each constantsto itself. It can be extended to complex concefts
and rolesR by structural recursion, as shown in Table 1.

An interpretationZ is said to be anodelof an inclusion assertio; C C,., in
symbolsZ = C; C C,, if CZ C CZ. Similarly, Z is said to be a model of a ground
atom A(c) (or P(c,c')), in symbolsZ = A(c) (resp.Z = P(c,c)), if c € AT (resp.
{e,c') € PT). Itis said to be anodelof an ontology®, in symbolsZ = O (resp. a DB
D, in symbolsZ |= D) ifitis a model of all of O’s assertions (resf@’s ground atoms).
It is said to be anodelof a KB (O, D), in symbolsZ = (O, D), if it is a model ofO
andD. Two concept€ andC’ are said to bequivalentff, for all Z, C* = C'*. Two
assertionsy andca’ are said to bequivalentff, forall Z, 7 |= «iff 7 |= «'.

We use queries to retrieve information from KBs. As queryglaages, we con-
siderconjunctive querie§CQs) [1], i.e.,SELECTPROJECTJOIN SQL queries antlee
shaped conjunctive queri¢$CQs) [21], which are those CQs built using only unary
and binary relations and that are tree-isomorphic.

A conjunctive quer§CQ) q is an expression of the form

q(z) — &(2,9),

whereq(z) is thehead Z denotes a (finite) sequence of variabledesfgth |Z|, the
query’sdistinguished variablesand®(z, ) is thebody, a conjunction of FO relational
atoms over the variablesandj.

Intuitively, non-distinguished variables combined wittetrelational conjunctions
stand for relational DB table joins and selections, andrdisished variables for the
information we want to project in the result: CQs thus cdntia declarative specifi-
cation of a SQLSELECTFPROJECTJOIN query result table [1].

A tree-shaped conditiofTSC) of rootz;, for i € N, is a FO formulap(z;) induc-
tively defined as follows:

— every atomA(z;) or R(z;, z;+1) isa TSC,
— if (p(ZiJrl) isaTSC, so |SQ(ZZ, Zi+1) A QD(ZZ'Jrl), and
— if p(z;) andy’(z;) are TSCs, s0 i®(z;) A ¢'(z;).

Note that, for all; € N, z; # z;,1, i.e., each time we apply the second rule we have
to introduce a new variable. Furthermore, wheneRet;, z;1 1), occurs ing(z;), for
J =i, we say that;; is connectedo z;.

Every TSCy(z;) rooted inz; and variables:; 1, ..., 2,1+, can be (bijectively)
mapped to a directed adorned tfEge each variable;, for j € [i,i+m], givesrise to a
nodez;, each atomR(z;, z;41) to an edg€z;, z;11) with tag R and each atom(z;)
to tag A over nodez; [3].

A tree-shaped conjunctive queffCQ) ¢ [21] is a CQ with one distinguished vari-
ablex and non distinguished variablgs, . . . , y,, whose body®(x, 1, ..., y,) can be
written as a TS@(z) of rootz whereiny, is connected te and eachy;  ; is connected
to y;.
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Letq(z) «— @(z,y) be a (T)CQ. Agrounded substitutioor grounding of; is a (not
necessarily total) functiom(-) that maps the (free) variables/y of g to A. Groundings
are extended to complex syntactic objects in the usual way:Bwe will denote the
composition of grounding with groundingd. We denote byjo the groundingof ¢'s
body byo(-), i.e., #(Z,y)o. Notice that (T)CQ bodies are positive FO formulas. An
interpretatior is said to be anodelof go whenevefZ = ¢(z, y)o (following standard
FO semantics, based on truth and satisfaction).

We say that a sequene®f constants is annswerto a (T)CQq with distinguished
variablesz over a KB (O, D), whenever there exists a groundiagmappingz to ¢,
s.t. qo is logically entailedby (O, D), viz., whenever, for alf, Z = (O, D) implies
T = go; in symbols:{O, D) = qo.

2.2 Query Answering and Data Complexity

We first recall some basic notions of complexity theory thatwse in the following,
and refer to [22] for more details. Becision problemP is a pair constituted by a set
of inputsand aquestion viz., a property to be verified for the inputs. Computationa
complexity refers to the (worst case) space and time reeswg algorithm (i.e., a Tur-
ing machine) uses to solve a decision problén.e., to determine whether an arbitrary
input satisfies or not the problem. domplexity clas®r computational propertys a
class of decision problemkogSpacedenotes the class of problemissolvable by a
deterministic algorithm usin@(log n) space, where denotes the size dP’s input(s).
NLogSpacedenotes the class of problems solvable by a non-determgialgbrithm in,
again,O(log n) spacePTime denotes the class of problems solvable by a deterministic
algorithm inO(p(n)) time, wherep(-) denotes a polynomial functiomoNP denotes
the class of problems whose complement is solvable by a eterdinistic algorithm

in O(p(n)) time. We have thatogSpaceC NLogSpaceC PTime C coNP. Higher
complexity classes are defined similarly.

Given a clas<C, a problemP is said to beC-hard whenever for each problem
P’ € Cthere exists an algorithm, calleeduction that embed#”’ into P and that runs
in O(logn) space in the size of the input forP’. A C-hard problemP is as hard as
any problem inC, possibly harder, i.e., reductions makea complexity lower bound
for P. If, in addition, C is a complexity upper bound faP, i.e., if P can be shown
to be inC, P is said to beC-complete Since log-space reductions are closed under
composition, to show that a problemis C-hard it suffices to reduce tB a problem
P’ that is already known to b&-hard.

Problems inPTime are said to bdractable and problems beyonBTime (e.g.,
coNP-hard problemsintractable insofar as polynomial time traces the boundary up to
which problems can be efficiently solved.

Thequery answerindQA) decision problem for (T)CQs and KBs is the entailment
problem stated as follows:

— Input: aKB (O, D), a (T)CQq with distinguished variables, and a sequenceof
|Z| constants,

— Question: does there exist a grounded substitutiqn) s.t. (i) o(z) = ¢ and(ii)
(0,D) E go?
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Table 2. An overview of some CLs.

CL (English) |Compositional| Mapsto | Parser Goal
ACE [12] yes FO APE KR/User specifications
ACE-OWL [15] yes OWL-DL APE  |Ontology authoring + querying
PENG [27] yes OWL-DL | ECOLE |Ontology authoring + querying
SOS [26] N.A. OWL-DL N.A.  |Ontology authoring + querying
CLCE [31] yes FO compiler KR
English Query [7 N.A. SQL N.A. DB querying/management
OWL-CNL [28] yes OWL-DL |DCG parser Ontology authoring
Lite English[5] yes DL-Lite | CG parser, KR/Ontology authoring
A-SQL [19] yes SQL compiler DB querying
nRQL [25] yes FO queriesDCG parser Ontology querying
Rabbit [26] no OWL GATE Ontology authoring
ACE-PQL [6] yes PQL |DCG parser Ontology querying

We are interested in thegata complexityf QA, namely, in its computational com-
plexity when we consideP as the only input of this problem [33]. The optimal data
complexity for QA (w.r.t. (T)CQs) lies ilLogSpace which is roughly the complexity
of answering SQL queries over plain D#E]. Such complexity is attained w.r.t. KBs
from the DL-Lite fragment of the DLALCT [8]. OWL and ALCZ are, on the other
hand,coNP-hard anccoNP-complete, respectively [21]. Tractable data complexity i
plies OBDAS scalability (to data).

3 Controlled Languages

CLs have been proposed as a means of overcoming the ambgoitiem inherent to
NLIs to information systems, but this is not the only knovgedepresentation (KR)
or information management task CLs have been develope®fber important tasks
have been, e.g(i) ontology authoring andi) declaring (and reasoning about) formal
specifications. In such a setting, we are required to dealaheCL complex structured
information, such as OWL ontology assertions, or FO axiotsaftxpressive and com-
positional CLs such as ACE, ACE-OWL, PENG, SOS, etc., [2527526, 28] have
been developed with such purpose in mind. See Table 2 forenview (CG stands for
"categorial grammar”, DCG for "definite clause grammar” ahd other acronyms for
known English parsers and/or parser APIs such as GATE).

ACE-OWL, for instance, supports English verb phrase, nolfrinan and noun
pharse-coordination, (full) negation, universal, exisigd, and counting quantifiers, and
gap-filler dependencies induced by relative sentenceso(aih quantification, mirror-
ing quantification in OWL, is somewhat restricted [15, 3])h&tconstructs, inherently
ambiguous in English, such as prepositional phrases (dahn saw a man with the
telescope”) are, on the other hand, not supported. Nor geetaes (attributes are ex-
pressed by ad hoc transitive verbs, as is common in DLshnisitive verbs (atomic

2 Data complexity for DB query evaluation is actuallyAC®, a circuit-based complexity class
that strictly included.ogSpace[1, 22].



Controlled English Ontology-Based Data Access 7

concepts are expressed by means of common nouns) or quedyg {aho”, "which,
"what”, etc.), although ACE-OWL can be extended to an intgative fragments that
translates into TSQs [15].

But if syntactic (i.e., parsing) complexity or ambiguityeanot an issue for CLs,
semantic complexityhowever, is(i) The formal model of a compositional translation
for any fragment of NL, such as CLs, are formal semantics amsitipnal translations
7(+) [14, 10] wherein NL utterances are mapped to formal logic MRsically higher
order logic (HO) or first order logic (FO) MRs. To be more peggithey are mapped to
FO extended with the types, theabstraction, the application affdinormalization of
the simply-typed lambda calculus [1@{i) Such a translation is semantics-preserving.
Observationgi) and(ii) together imply that the NL fragment will inherit both the rea
soning problems and computational properties of its MRdo8uch decision problems
and computational properties have been called by Pratt &Tihi[23] the semantic
complexityof an NL fragment/CL. QA is one such decision problem and dataplex-
ity one such computational property.

As a result, whenever a (logical) reasoning problem is iedokn the back-end,
the semantic complexity of the (otherwise ambiguity-fred afficiently processable)
front-end CL can still affect the overall performance of foimation system that, like
OBDASS, relies heavily on FO reasoning. Modul¢) such impact can be studied
construct by construct

4 Expressing Ontologies with Controlled English

We make use of the standard formal semantics analysis fgmiats of English as
developed in [10, 4, 20]. We recall the so-called B@ing rule which allows us to dis-

card (when parsing) constituents that do not yield welktypxpressions. In particular,
this rule fails whenever the types of the MRs acting as presnit not unify [10]:

I'w:t I'v:ir—71

a|
PP LI bku(v): 7

wherer denotes an arbitrary type,, v arbitrary HO expressions anfl, I typing
contextgsets of possibly empty variable typings). An HO expres#aaid to bevell-
typedwheneveil(i) it is typed andii) I" = 0.

We usedefinite clause grammaf®CGs), albeit written in phrase structure gram-
mar style for simplicity, as grammar formalism for definingr €Ls. Parsing amounts
to walking or searching (depth or breadth first) a tree-stiagpace ofparse states
(o, @, 7, T"), wherea stands for a CL syntactic constituentfor its MR, 7 for its type
andI for its typing context. Transition between states is basedrofication and type-
checking [14], and is fired by the grammar rules. MRs are cdatpan the fly, during
parsing. The states may also encode morphosyntactic iatam

We consider, when defining our CLs, the following syntactiostituents. We con-
sider as content word categories proper nolss), common nounsNs), transitive
and intransitive verbsTV's andlV s) and adjectivesA(djs). By way of function word
categories, we consider determineb®e(s), (indeterminate) pronoun®10s), relative
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pronouns Pros), conjunctions @rds) and negationsNegs). Finally, regarding non-
primitive (whether recursive or not) constituents, we ¢desverb phrases/Ps), noun
phrasesNPs) nominals loms) and complete sentence3s). For simplicity we have
barred out of the language, subordinate clauses, whichagtered, basically, byPs
combining withRelps andNoms.

Given a constituent, parsing yields a uniqgue DL MR up 8iructural equivalence
A conceptC' (resp. an assertion) is said to bestructurally equivalento (a HO for-
mula) p:e — t iff C is equivalent to the DL concept. Following DL conventions [3],
we associate (and map) the non-recursive word categhriéslj, andIV to atomic
concepts. CategoffV is associated to role names. Recursive constituents, byasbn
are associated to arbitrary concepts.

We have shown elsewhere [5] how to express the optimal (fta damplexity)
fragment ofALCZ, DL-Lite. In this section wei) express theoNP-complete (in data
complexity for QA).ALCZ and then we shouii) how to define and express in CL the
maximal tractable fragments gf£CZ and the minimal intractable fragments4LCZ.
This will lead us to define in the first place the CL DL-Englisipressingd£CZ, and
by restricting DL-English’s grammar the 1S;4A, 7 family of CLs and EL-English,
viz., the minimal intractable and maximal tractable fragitseof DL-English.

4.1 DL-English

Figure 1 introduces DL-English’'s grammé@fp . For reasons of simplicity and space,
we disregard morphology and polarity issues. We also onaiti§ging the (open) class
of content words.

Lemma 1. For all sentencesS in L(Gp1), there exists an assertiam in ALCZ s.t.
7(5) = .

Proof. In order to prove this lemma we will prove something more gahexamely,
that,
for eachVP or Nom constituent, there exists a concéptn ALCT )
s.t.7(VP) = C (resp.r(Nom) = C).

We prove () by mutual induction on the length (for n > 1) of Gp derivations
rooted in avVP or aNom. We make use of unification to prune away undesired parse
(sub)trees when walking through the space of parsing statenever (semantic) types
and (morphosyntactic) features fail to unify. See Figuras@ 3 for examples.

— (n = 1). We consider in this case the derivations
VP=1IV = A Nom=isaN=isad, VP = isAdj= A4,

which are inDp;, provided that we consider as part of our content lexicon the
productions

IV —-A7(IV):=Ae—t, N— A, 7(N):=Ae—t,
Adj — A, 7(Ad)) := A: e—t,

whencer(TV) = 7(Nom) = A, whereA is an atomic concept.
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(Prase structure rules)

S— NPVP NP — DetNom
VP — TV NP VP — isaNom VP — isTV by NP NP — ProRelp VP
VP — is Adj VP — IV VP — isNeg TV by NP NP — Pro

VP — doesNeg IV VP — is NegaNom Nom — NomRelpVP Nom— AdjNom
VP — isNeg Adj VP — VPCrdVP Nom — Nom Crd Nom Nom — N

(Semantic actions)

7(S):=7(NP)(7(VP))
7(VP):=7(NP)(r(TV)) 7(VP):=7(Crd)(r(VP))(r(VP))
7(VP):=7(Neg)(r(NP)(7(TV)))  7(VP):=7(Neg)(r(Adj))
7(VP):=7(Adj) 7(VP):=7(Nom)
7(VP):=7(Neg)(r(Nom)) 7(VP):=7(Neg)(7(IV))
7(NP):=7(Pro) 7(VP):=7(IV)
7(NP):=7(Det)(7(Nom)) 7(NP):=7(Pro)(r(Relp) (7 (VP)))
7(Nom) :=7(Nom)(7(Relp)(7(VP))) 7(Nom):=7(Crd)(7(Nom))(7(Nom))
7(Nom) :=7(Adj)(7(Nom)) 7(Nom):=7(N)

(Function lexicon)

Pro — anybody 7(Pro):=AC.AC'.CCC’ (e—t)—((e—t)—t)

Pro — somebodyr(Pro):=AR.3R (e—(e—t))—(e—t)

Pro — nobody 7(Pro):=AC.\C'.C E ~C' (e—t)—((e—t)—t)

Pro — nobody 7(Pro):=AR.—-3R (e—(e—t))—(e—t)

Crd — and 7(Crd):=ACXC".CNC"  (e—t)—((e—t)—(e—t))
Crd — or 7(Crd):=ACAC".CUC" (e—t)—((e—t)—(e—1))
Relp — who 7(Relp):=)C.C (e—t)—(e—1)

Relp — who 7(Relp):=ACAC'.C: C'  (e—t)—((e—t)—(e—t))
Neg— not 7(Neg):=\C.-C (e—t)—(e—1)

Pro — only 7(Pro):=AC.ARVR:C (e—t)—((e—(e—t)—(e—t)
Pro — everybodyr(Pro):=XC.T C C (e—t)—t

Pro — nobody r(Pro):=XC.C C L (e—t)—t

Det — some 7(Det):=AC.AR.IR:C (e—t)—((e—(e—t)—(e—t)
Det — every 7(Det):=ACAC'.CC C" (e—t)—((e—t)—t)

Det — no 7(Det) := A\CAC'.C E =C' (e—t)—((e—t)—t)

Fig. 1. The grammar= o, of DL-English.
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— (n = k + 1). By induction hypothesis, for every derivation of lengtk k rooted

in VP or Nom, there exists a concept s.t.

VP =, vandr(VP)=C or Nom=; vandr(Nom)=C, (IH)

where~ stands for a component derived () from VP (resp.Nom) ini < k
steps. We want to prove that the property holdsvBr=-;; v andNom =, ~.
We have several cases to consider, namely as many as theezarsive rules for
VP andNomin Gpy,.

e Nom = AdjNom =, v+'. By induction hypothesis, there exists a concept

C’'st.7(y) = C'. Now, Adj is aqualificativeadjective and we know from
Gpy that in this casédj = A with MR 7(Adj) := AD“*.(AT1 D): (e —
t)—(e—t). Thus,

T(AY') =4 AD* (AN D)(7()): e—t
=in AD' (AN D)(C"): e—t
>g ANC': e—t,

andA 1 C" is the concept we were looking for.

VP = TVNP = TV DetNom =;_; vy'+". By induction hypothesis, there
exists a concepf”’ s.t.7(v") = C”. We know that inGpr TV = P, with
7(TV) = P. There are only two possibilities f@et:

Det = only or Det = some

Let us focus, w.l.0.g. on the former. We know that in such adabolds that
7(Det) := ADH* AR (VR:O): (e — (e —t)) — ((e—t) — (e = 1)).
Therefore,

T(Ponly~") =4 AD* AR (VR:D) (1(v"))(7(P)): e—t
=in ADP AR (VR:D)(C")(P): e—t
>g VP:C": e—t,

and, clearly,r(VP) = VP:C”. Notice that any other choice f@et would
prevent any derivation of the whole constituent. For ins¢éarwhile Det =
every, constituent of (partial) MR (Det) := AD*?* AE<*.D C E: t, we
cannot apph\E*.C" C E: e —tto P: e — (e — t), due to our HO type
system. See Figure 3.

e All the other cases are dealt with analogously.

We now turn to complete utterances, viz. to DL-English secgs. There are three

different ways in which a sentencéecan be generated in our CL, namely:

— S= NPVP = DetNomVP =, vy'4" (with S = v+'+"). We know that-(y') =

C’ and thatr(y"”) = C”. Due to the typing constraints, the only possibilities for
Detare:

Det = every or Det = no,



Controlled English Ontology-Based Data Access 11

(S,a,7,I)
(NP - VP, B(v),app(r’, 7"), " U T")

(NP, B, 7", T") (VP ~, 7" Ty

/R N
(Pro, 8,7/, I") L. .. (IV,~, 7", ") LN

(everybody \P. T C P, (e—t)—t,0) = - > (left, leavese —t, Q) - -

Fig.2. A succesful derivation for "everybody left”. The dots indicate transgicto fail-
ing states. The information propagated from leaves to root via unificaieldsy ultimately,
(everybody left T C leavest, 0), i.e., a well-typed string and MR of type sentencetjor

with MR 7(Det) := AD**AE*.D C E: (e —t) — ((e — t) — t) (resp.
7(Det) := AD** \E“*. D C -E: (e—t)—((e—t)—t)). Hence,

T(everyyy") =g AD* AE“.D C E(r(y))(r(y")): t
— ADAES.D T B(C))(C"): t
I>[3 Cl E C”I t.

— S= NPVP = ProRelpVPVP =, vy'+"+"" (with S = y9'~"~""). Similar
argument.

— S= NPVP = ProVP =, v (with S = v+'). Similar argument.

Therefore, for eacly in L(Gpy) there exists an assertiens.t. 7(S) = «. This com-
pletes the proof. ad

The negation normal form(NNF) of an ALCZ conceptC is defined by pushing
negation down to atomic concepts using the De Morgan lawd-[#] every concepf’
in ALCT there exists an equivalestLCZ conceptC” in NNF.

Lemma 2. For each assertionv in ALCZ, there exists a sentencein L(Gpr) S.t.
() 7(S) = o/, whered' is an ALCT assertion, and (iiy’ is equivalent tax.

Proof. Again, in order to prove this lemma, we prove a more generhtlnamely,
that
for each concept’ in NNF, there exists either@P or aNom )
s.t.7(VP) = ¢’ or 7(Nom) = C’,
where(C” is equivalent ta”. This we prove by induction o6
— (Basis). There are two cases to consider, givendhatin NNF.
e C := A. Notice thatA is already in NNF. Include in the function lexicon of

G py, the (terminal) productioll — A with lexical semantics(N) := A: e—
t. There are two possibilities:
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(VP,a,7,I)

(TV - NP, 3(y),app(r’,7"), I" U I'")

\//

TV, 8,7, 1) (NP, vy, 7", 1)

|

(loves loves ¢ — (e—1), 0) (Det- N, 8(n), app(””, 7""), "' U I"")

D

<Det7 5’ 7_///7 F//l> <N,777 7_////7 F/lll>

| J

(every AP.AQ.P C Q, (e—t)—((e—t)—t),0) (man Man e—t, D)

Fig. 3. A failed derivation for theVP "loves every man”, sincapp(e — (e — t),e — t) =T,
whence the string is not well-typed and is devoid of a (partial) MR.

x eitherNom = N = A,
x orVP = isaNom=-isaN = isad
Notice, furthermore that we can expressvith the ad hod\ "thing”, which is

the usual DL convention [3].
e C := —A. thenVP = isNegaNom = isnotaN = isnotaA, with
7(VP) = -4, by the same argument as before, which is in NNF.
— (Inductive step). By inductive hypothesis we know that, dirsubconceptg” of
C, there exists a componefntrooted in aVP or Nom s.t.:

VP =, yandr(VP)=C" or Nom=,yandr(Nom)=C",  (IH)

whereC” is a concept equivalent 10’. This leaves two cases to consider, namely:

e C:=3P:C’. By (IH), there exists &' s.t. eitheVP =, 4/ andr(VP) = C”,
orNom =, 7/, 7(Nom) = C”, andC"” is equivalent ta_’. This gives us two
possibilities fordP:C’, namely:

x* VP = TVNP = TVDetNom =, P somey’, with 7(VP) = 3P:C",

which is equivalent talP:C, or
x VP = TVNP = TVProRelpVP =, P somebodywho’, where

7(VP) = 3P:C’, which is equivalent taP:C.
e C:=C'MC". Similar argument.

Let nowC C C’ be anALC assertion withC', C’ in NNF. We can capture this assertion
in one of two ways in DL-English:

— eitherS =, everyNomVP =, every~y~/,
— or S =, everybody who/P VP =, everybody whoyy’,
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for some (two) componentg and~’ whose existence is guaranteed by Clearly, in
both cases (S) = C” C C". Moreover, it is evident tha®” C C" is equivalent to
C C C'. This completes the proof. O

From Lemmas 1 and 2, it follows immediately that DL-EnglistpeessesALCT
(up to equivalence).

Theorem 1 (DL-English).DL-English expressed LCT.
Corollary 1. QA for DL-English and (T)CQs isoNP-complete in data complexity.

Example 1.Examples of sentences in DL-English (we spell out the MRseumekath)
are:

No man who runs some business that does not make some motegnisls

Manm 3run:(Busines$1 —(ImakeMoney) C —Shrewd (1)
Nobody eats only apples. @)

YeatsAppleC L
Everybody sleeps. 3)

T C Sleep
Every married man has some wife. (@)
Manr1 Married C JhasWife
Anybody who has some car drives some new car or old car. (5)
JhasCar C Idrives((Car 1 New U ((Car1 Old)

4.2 The family {IS-A;};c[o,7) Of CLs

We now turn to the computational properties of each of thestants of DL-Englishn
isolation We do it by essentially restricting the kindfht (i.e., C,.) andleft (i.e.,C)
concepts we may express. All utterances comply with theesestpatterns

everyy; ;" and "everybody whoy; ,".

The constituents; and~,. map to, respectively, left and right concepts, while serg¢en
map to I1S-A assertions of the fori; C C,.. We consider in this paper only out

of all possible combinations obtained by allowing@h and C,, some subset of the
DL constructs in Table 3, giving rise to the fami{yS-A; };c(0,7) of CLs shown in
Table 4. The basic kind of assertion they all express is 1SyrEg atomic concepts,
viz., A C A’, captured by I1S-A. Notice that this can be easily achieved by, so to speak,
merging the grammars from Table 3 expressing (in isolatie@y’;s andC'.s occuring

in the DL assertions of Table 4 into a grammar for each CL IS-A

Theorem 2 (IS-A;s).For eachi € [0, 7] and each sentenc® in I1S-A;, there exists an
assertionw; s.t.7(S;) = «;. Conversely, for each assertien there exists a sentence
S; inIS-A; s.t.7(S;) = o} andc, is equivalent tay;.
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Table 3. Expressing conceptSy, for f € {l,r}, and assertion§; C C., by restricting and

subcategorizing rules iG'pr..

S— NP; VP,
Pro; — anybody Relp, — who

Camilo Thorne and Diego Calvanese

NP; — Pro; Relp, VP; NP, — Det;Nom,

Det; — every

ConceptC Constituent v Grammar Rules
P A TV someNomy VP; —isaNomy | IV |isAdj
’ TV somebody wh&/P; | Nomy — N
VPf — is aNomf | \Y
|isAdj | TVNP;
. Nomy — N
_ IS TV by someNom; |\ ™ per Nom;
dPT:A is TV by somebody
| Pros Relp, VP
who VP f
Det; — some
Relp, — who
Proy — somebody
VP; —isaNom;y | IV
|isAdj | TVNP
Nomf — N
VP A TV only VP NP; — Det; Nomy
’ TV only whoVP | Proy Relp, VP
Det; — only
Relp; — who
Pro; — only
A Nom¢ VP; —isaNomg | IV |isAdj
VP Nomy — N
VP; — isaNom;y | IV
AdjNom \lsAdj_ | VP;Crd ; VP,
Nom; — N | AdjNom s
Nom; who VP
Ain...NA, | Nomy Crd y Nomy
Nom; andNomy | Nom,Relp, VP
VP, andVP; FReEIpy VES
Relp; — who
Crd; — and
ap TV something VP; — TVProy
TV somebody Pro; — somebodyl something
VP; — isaNom;y | IV
AU, . .UA, VP, or VP, | isAdj | VP andVP;
Nom; — N | Nom; andNom;
. . Nomy; — N
IS NOtAd| VP; — does notV
-A does notV . .
) | is notAdj
is not aNom;y

| is not aNomy
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Table 4. Defining the{IS-A;};cj0,7) CLs. IS-A;, for all i > 0, contains also the assertions of
IS-Ao.

Assertionsa; Example(s)
IS-Ao AC AN ...MNA, Every businessman is a cunning man
is a cunning man.
IS-A; ALCVPA Every herbivorous eats only herbs
eats only herbs.
IS-Az | AtTT...MA, CVP:(AM...MAg) Every Italian man drinks
only strong coffee.
IS-As dJP:AC Ain---MA, Anybody who murders some
person is a heartless Kkiller.
JPTIAC A M---MA, Anybody who is loved by
some person is a happy person.
AC3P Every driver drives something.
I1S-Ay AiM...MA, C A M...MAg Every cruel man is a bad man.
IP:(A1MN...MA,) C A MN...MAx | Anybody who runs some bankrupt
company is a bad businessman.
IS-As VPAC AiM...MA, Anybody who values only money is a
greedy person.
I1S-Ag AC A U...UA, Every mammal is male or is female.
IS-A7 SAC A M...MA, Anybody who is not selfish is a
reasonable person.

Proof. The theorem can be proved for each fragment in a manner analdg DL-
English. Basically, we consider two cases both on ta€ ‘and the =" directions of
the proof, viz., a (mutual) induction on eith@y Nom; andVP; constituents ofii) on

theNom,. andVP,. constituents for the if direction and a (mutual) inductiomi(i) a

C; or (i) a C, concept for the only if direction. With some routine adjustits to
the specific syntax of the fragments and their MRs, we adagt &#me the proof of
Theorem 1.

4.3 Data Complexity of the I1S-As

In [5], we have shown how to express the DL-Lite for which QA (w.r.t. (T)CQs) is
in LogSpace[8], with the CLs Lite-English. We want now to know which fragnts
of ACE-OWL and DL-English aréi) maximalw.r.t. tractable data complexity (i.e., in
PTime), and hence scale to data, giigminimal w.r.t. intractable data complexity (i.e.,
coNP-hard), and hence do not scale.

Theorem 3. The data complexity of QA for (T)CQs is (i) lnogSpace for IS-A,
(i) PTime-complete for I1S-4 1S-A;, and 1S-A and (iii) coNP-complete for IS-4A
IS-As, and I1S-A.

Proof. The CL IS-Ay is subsumed by the CL Lite-English, which as we have shown
elsewhere [5] expresses the DIL-Lite for which QA w.r.t. CQs is inLogSpacein data
complexity ([8], Theorem 2).
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The lower bounds for IS-A 1S-A3, and IS-A; follow from the results in [8]. For
IS-A, the result is derived from Theorem 7, case 2. For ES4is derived from The-
orem 6, case 1. Finally, the lower bound for IS-follows from Theorem 7, case 3.
Basically, this is because our CLs subsume the DLs for wHicise theorems hold.
PTime-hardness in all three cases holds already for atomic cgi€Fiee complexity
upper bounds, on the other hand, follow from results in [I8]the DL ££, which
subsumes the DL assertions 135;AS-As and IS-A,.

The lower bounds for IS-A IS-Ag, and I1S-A follow also from [8]: for I1S-A;,
we apply Theorem 8, case 3; for ISsAwe apply Theorem 8, case 2; and for 1$;A
Theorem 8, case 1. In these three cases, TCQs are used to aeédection from
the NP-complete satisfiability problem for 2+2-clauses (definay studied by [24]).
The coNP upper bounds for these fragments, on the other hand, dedrethecoNP
data complexity upper bounds for QA over expressive DLst@aimg.4£CZ) shown
in [21] and hold, again, for CQs. ad

Theorem 4 (Data complexity of 1S-A). QA for IS-A and (T)CQs isNLogSpace-
complete w.r.t. data complexity.

Proof. (Hardnesg Calvanese et al. show in [8] (by reduction from the readitgbi
problem for directed graphs) that any DL capable of expngsassertions of the form
A C VP.A, or, equivalently, of the formlP~.A C A’, is NLogSpacehard for QA.
This result holds already for atomic queries. Note that saagdertions are expressed in
our fragments by sentences of the form "Evdry’s only A’s”, rather than by sentences
like "Every A Ps everyA’”.

(Membership) Let ¢(z) «— &(z,y) be afixed CQ, ¢ afixedtuple, O a fixed set
of universally quantified IS-A MRs andD a set of facts s.t#(D) = n. We will
reduce QA for IS-A to QA for linear Datalog, which is known to be MLogSpace
in data complexity [1]. The only inclusion assertions exsgible in our fragment are
A C Band3dR.A C B, which can be transformed into an (equivalent) Bet of
clauses-A(x) Vv B(z) and—R(z,y) vV —A(x) V B(y), called a linear Datalogrogram
On the other hand, C@ might not be a linear Datalog goal, but its bodyz, ) [1]
consists of a conjunction @f atomsA; (z1)A- - -AAp, (Zm), wherezUg = z1U- - -UZ,,.
Note that, sincey is fixed, m is constant (a fixed positive integer), and so giieand
|z;|, for ¢ € [1,m]. If we were to transform such atoms into a family of atomicripse
(which are linear Datalog goals), by means of some satisfagreserving reduction
that requires onl(log n) space, the data complexity upper bound would immediately
follow.

Start by computing the prograf» as described above. Sin€gis fixed, trans-
forming it into P does not affect data complexity. We transform nb@Z, i), in space
logarithmic inn, into a family of linear Datalog goals, thus reducing ansmgey over
O andD to answering a family of atomic goals ovB% andD. Let [¢/z] denote the
grounding mapping to the constants. Groundg by ¢ := [¢/Z]. Groundingg by o,
which returns the CQ of bod¥ (¢, 5), does not affect, once again, data complexity.
Next, consider all the possible groundir{gs/y] with & € ador(D)!¥! and apply them
to ¥ (¢, 7). There areO(nl?!) such groundings. This yields a family of CQs of body
¥ (¢, ), whose atoms can be stored in a registrgfog n) size (we can encode such
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Table 5. Summmary of data complexity results. For a comparison, note that AGVE-© coNP-
hard (upper bounds for OWL-DL are not, as yet, known) [21].

CL |Data Complexity ((T)CQs) CL  |Data Complexity ((T)CQs)
I1S-Ag LogSpace EL-English PTime-complete
IS-A;| NLogSpacecomplete IS-As coNP-complete
IS-A, PTime-complete IS-Ag coNP-complete
IS-As PTime-complete IS-A7 coNP-complete
I1S-Ay PTime-complete DL-English coNP-complete

grounded atoms usin@(log n) bits). This reduction is sound and complete. Indeed

(0,D) =¥(e,y) iff PouD = A;(¢"), foralli e [1,k] and
somec” € adom(D)!* | "compatible” withe,

()

where by "compatible” we mean thét coincides withc on the distinguished variables
(note thatz; may contairbothdistinguished and non-distinguished variables).

The "=" direction is immediate. To prove the=2" direction, we reason as follows.
Assume for contradiction that there exists an interpretefi s.t. Z = P» U D but
T - A;(e"), for somei € [1, k] and eveng” € adom(D)!*| "compatible”, again, with
¢. SinceZ = Po U D, we have that = (O, D) andZ | &(¢, i). Therefore, for some
groundingd from g into adomD), Z = A;(z;)o6. Now, clearly,¢” = &/ U & with
¢ C ¢ andz; = zj U Zip With Zo C Z. Therefored(z,) € adon(D)/Z2l. On the
other handZ [~ A;(¢”), for all &’. Hence§(z2) # ¢4 andf(z) ¢ adon(D)/Z:=l,
Contradiction.

The algorithm then proceeds by loopifn/?!) times over thed(¢”)s (stored in
the O(log n) registry), checking each time whether, foral [1, k], there exists some
"compatible”c” s.t.Po UD = A;(¢”) holds. For each atom the algorithm runs a linear
Datalog non-deterministic check that uses at ni$og n) space. Clearly, such a non-
deterministic algorithm decides QA using, overall, at n@8&bg n) space. O

We can now individuate the constructs of DL-English, and ridd of any CL
expressing @oNP-hard ontology language that negatively affect the schtialoif CL
interfaces to ODBASS, namely:

— "only” in subject position (coNP-hardness of I1S-4),
— disjunction in predicate positiom@NP-hardness of 1S-4),
— negation in subject positiom@dNP-hardness of IS-A).

4.4 EL-English: A Maximal Tractable Fragment of DL-English

The constructs from Fig 3 also allow us to identifyaximal CLs contained in DL-
English (and a fortiori ACE-OWL) w.r.t. scalability (i.ergtictable data complexity). By
merging the (tractable) fragments 1S;4or i < 4, we essentially express ti&C7
ontology language, with syntax (notice that the asserfion VP: A’ is equivalent to
IpP~: AC A'):

R— P| P~ C—T|A|3R:C|CNC
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Thatis, the DL where negation- and disjunction free exisa¢ooncepts are allowed
to arbitrarily nest orbothsides of—. QA for ££Z is PTime-complete in data complex-
ity for (T)CQs [18] and thus inducesRiTime-complete fragment of DL-English, that
we term EL-English, which captures most of the constraintsaxioms of real-world
large-scale biomedical ontologies such as GALEN or SNOWMER).[EL-English is
defined top-down by removing frofd p;, the grammar rules for negation, disjunction,
and universal quantification, and the negative functiondsowhence:

Proposition 1. QA for EL-English and (T)CQs iBTime-complete in data complexity.

In such a CL arbitrary sentence subordination (and relsitjye combination with,
existential quantification and conjunction amoviBs or Noms is allowed. Universal
quantification is highly controlled and negation and disjion are ruled out.

4.5 Discussion

In general, intractability (w.r.t. data complexity) wiltige in every CL that induces a
partitioning of the data of the OBDAS'’s DB. This will happem&never their MRs can
simulate full negation, conjunction and disjunction: teettnicalcoNP-hardness results
from [8], on which we ground our own work, are based on thigititin. We can thus

say that CLs like IS-A, 1S-Ag, I1S-A7, and a fortiori DL-English (which contains them
all) are "booleanly closed”. EL-English, on the other hahg,being a negation-free
fragment of DL-English, remains tractable.

5 Conclusions

In this paper we have studied the data complexity of quer@BiPASs in controlled
English. We have shown that optimal (i.eqgSpacg and tractable (i.ePTime) data
complexity (w.r.t. (T)CQs) is basically attained by coasting the behaviour of certain
function words, namely those expressing universal regtris, negations and disjunc-
tions of concepts and roles in the underlying DL ontologig®y must not be allowed
to occurbothin the subject and predicate of CL sentences. Moreover,daeynly oc-
cur in carefully sought positions of CL sentences. This ésdhse with the CLs IS-A
IS-Aq, IS-Ay, IS-A3, IS-A4, and EL-English. Relaxing the constraints on negation, dis
junction, universal determiners, and pronouns, as in iSk8-Ag and IS-A, until the
components in sentence subjects and predicates becomeesiyoaias in DL-English
(or more expressive CLs), yieldoNP-hardness. Table 6 summarizes the computa-
tional properties associated to each such combinationamit(@lled) English function
words.

Computational complexity will be higher if we considemsmbined complexitie.,
when we consider as inputs not only the data but also theagydland possibly the
query). Satisfiability fotALCZ is ExpTime-complete ExpTime is the class of prob-
lems solvable by a deterministic algorithm in exponentiak) [3]. Since DL-English
expressesALCZ and for this DL QA of TCQs (but not CQs) reduces to unsatisfia-
bility, this entails that QA for TCQs i€xpTime-complete. Instead, QA for CQs is
2ExpTime-complete [9, 17] iINALCZ, and hence in DL-English.
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Table 6. Data complexity of CL constructs.

Tractable negation in predicatéPs, relatives and conjunction
(PTimeorless) relatives in predicaty’Ps, |in subjectNPs and predicate
conjunction in predicate/Ps VPs, but no negation
Intractable relatives and negation in negation in subjediPs
(coNP-hard) |subjectNPs and in predicat&’Ps|  "only” in subjectNPs

As related work we must mention the computational compjerdsults regarding
the satisfiability problem for several fragments of (and @bsained from) English
by Slavkovic [29] and Pratt and Third [23], from which upperddower complexity
bounds for the combined complexity of QA can be derived insaases. Such frag-
ments and CLs are orthogonal in expressiveness to the Ctliedtim this paper. In the
case of Pratt and Third’s declarative fragments, termeghfients of English (FOES),
we have provided in [328lata complexityresults for QA (albeit w.r.t. TCQs only). In
particular, we show that "booleanly closed” FOEs are irtable not only w.r.t. com-
bined complexity and/or satisfiability, but exhibit inttable data complexity for QA.
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