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Abstract. As it is well-known, querying and managing structured data in natu-
ral language is a challenging task due to its ambiguity (syntactic and semantic)
and its expressiveness. On the other hand, querying, e.g., a relational database
or an ontology-based data access system is a well-defined and unambigous task,
namely, the task of evaluating a formal query (e.g., an SQL query) ofa limited
expressiveness over such database. However these formal query languages may
be difficult to learn and use for the casual user and ambiguity may compromise
the interface. To bridge this gap, the use of controlled language interfaces has
been proposed. As a measure of their efficiency for data access, wepropose to
considerdata complexity, which is the complexity of query evaluation measured
in the size of the data. We study a familiy of controlled languages that express
several fragments of OWL, ranging from tractable (LogSpaceandPTime) to in-
tractable (coNP-hard) in data complexity, singling out which constructs give rise
to each computational property.

1 Introduction

Controlled languages (CLs) are subsets of natural language(NL) with minimal ambi-
guity tailored to fullfil data management tasks. Among thesetasks, an important one
is to provide ”lightweight” front-end languages for non-expert users of information
systems [30, 6, 7]. Data in information systems such as relational databases (DBs) is
inserted, updated, deleted and queried using expressive formal query and data man-
agement languages such as, e.g., SQL, which are difficult to handle (let alone learn)
for casual users. Language technologies have endeavoured to fill this gap by proposing
wide coverage NL interfaces (NLIs) that allow the user to use, say, everyday English, at
the cost of system accuracy [2]. This is because NL is ridden with ambiguity (while for-
mal languages are not) and thus NLIs have to choose between using complex heuristics
or blowing up the translation process.

CL interfaces constitute a trade-off between the intuitiveappeal of NLIs and the
rigor of formal data query and management languages. Typically, CL expressions are
translated symbolically into expressions belonging either to those formal languages or
to some intermediate formalism (or logic) conveying a (formal) representation of its
meaning (MR). Many different techniques, ranging from shallow (e.g., finite-state trans-
ducers) to deep (e.g., parsing), are used for defining such translations. Deep translations,
in particular, have the property of inducing absolute accuracy without any significant
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loss in translation efficiency. Indeed, deep translations are compositional, viz., the MR
of a complete utterance is a function of the MRs of its (syntactic) constituents, i.e.,
semantics mirrors syntax. Hence, no information is lost in the translation [14]. When,
in addition, the CL is context-free, compositional translations can be computed quite
efficiently, i.e., we ”compile” the CL in time polynomial in the length|s| of the input
strings.

Recently [6, 19, 25, 27, 26, 28], CL interfaces to ontology-based data access systems
(OBDASs) centered mostly around the W3C standard ontology language OWL1 (Web
Ontology Language) [11, 16] have been proposed. They have given rise to a number
of applications and implementations [6, 19], among which ACE-OWL [11, 16], which
maps to OWL DL and fragments of it. The formal underpinning of OWL DL is provided
by description logics (DLs) [3, 13].

Given that OBDASs may contain large amounts of data, we are interested in know-
ing whether querying such systems through CL interfaces scales to data. An ODBAS
can be modelled by a DLknowledge base(KB), whose information is accessed through
queries belonging to some fragment of SQL. A fragment that isconsidered sufficiently
expressive but still computationally manageable (since query answering is decidable in
significant cases) is that of conjunctive queries [1]. The basic problem in this setting
is (conjunctive) query answering(QA) [8], which is a form of logical entailment [3].
To evaluate the efficiency of querying through CL interfaces, we focus on the so-called
data complexityof QA, i.e., the computational complexity of the problem measured in
terms of the size of the data only [33]. Crucially, we want to know whether CL inter-
faces give way totractableor intractableQA and, more in general, whether they affect
positively or negatively the performance of OBDASs.

Tractable data complexity (viz., when the data complexity of QA is in PTime, that
is, can be decided in at most polynomial time in the size of thedata) indicates good
scalability to data of query answering and CL interfaces. Intractable data complexity
(viz., when the data complexity of QA is at leastcoNP-hard, hence beyondPTime)
indicates, on the other hand, low scalability. The data complexity of query answering
in OWL is known to be intractable [21]. Hence, CLs like ACE-OWL do not scale to
data, although they contain fragments that do. This computational behaviour depends on
the language constructs they cover. It would be of interest,therefore, for CL designers
working with OBDASs to know which NL constructs (and in whichcombination) give
rise to different computational properties.

In this paper we pinpoint some of the English constructs and afortiori of ACE, that
give rise to these computational properties by studying a space of CLs that translate into
several fragments of OWL. In doing so, we make the following contributions:

– We study DL-English, a CL that maps intoALCI, an intractable DL contained in
OWL that is the smallest DL closed under boolean operations onconcepts [3].

– By constraining DL-English constituents, we define a familyof fragments thereof,
viz., the {IS-Ai}i∈[0,7] family, that are either(i) minimal w.r.t. intractability or
(ii) maximalw.r.t. tractability, mirroring Pratt and Third in [23] (cf.also [29]).

– We pinpoint the NL/CL constructs that are responsible for their different computa-
tional properties, in particular, for maximal tractability and minimal intractability.

1 http://www.w3.org/TR/owl-ref/
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Table 1.Semantics of the DLALCI.

Syntax Semantics
c cI := c

A AI ⊆ ∆

⊤ ⊤I := ∆

∃R:C (∃R:C)I := {d | existsd′ s.t.〈d, d′〉 ∈ RI andd′ ∈ CI}

¬C (¬C)I := ∆ \ CI

C ⊓ C′ (C ⊓ C′)I := CI ∩ C′I

P P I ⊆ ∆ × ∆

P− (P−)I := {〈d, d′〉 | 〈d′, d〉 ∈ RI}

Cl ⊑ Cr I |= Cl ⊑ Cr iff CI
l ⊆ CI

r

A(c) I |= A(c) iff cI ∈ AI

P (c, c′) I |= P (c, c′) iff 〈cI , c′I〉 ∈ AI

O I |= O iff for all α ∈ O, I |= α

D I |= D iff for all α ∈ D, I |= α

〈O,D〉 I |= 〈O,D〉 iff I |= O andI |= D

2 Ontologies and Query Answering

2.1 Ontologies, Knowledge Bases and Queries

In an OBDAS, an ontology provides a conceptual view on the data stored in a rela-
tional database. OBDASs are formally underpinned by DL knowledge bases [8, 3]. DLs
are logics which structure the domain of discourse in terms of concepts (representing
classes, i.e., sets of objects) and roles (representing binary relations between objects).
We are interested in DLs of different expressiveness, viz.,DL ALCI and its fragments
(such asDL-Lite [8]). In ALCI, conceptsC androlesR are formed according to the
following syntax:

R → P | P− C → ⊤ | A | ∃R:C | ¬C | C ⊓ C

whereA stands for a concept name (a unary predicate),P for a role name (a binary
predicate), andP− for its inverse. We can enrich the set ofALCI concepts, modulo
the following (explicit) definitions:(i) ∀R:C := ¬∃R:¬C, (ii) C⊔C ′ := ¬(¬C⊓¬C ′),
(iii) ⊥ := ¬⊤, and(iv) ∃R := ∃R:⊤.

In a DL ontologyO, intensional knowledge is specified by means of a set of (con-
cept inclusion)assertionsof the formCl ⊑ Cr, stating inclusion (or IS-A) between
the instances of the conceptCl on theleft and those of the conceptCr on theright.
In ALCI, Cl andCr may be arbitrary concepts, while fragments ofALCI, such as
DL-Lite [8], can be obtained by suitably restricting the syntax forCl and forCr. A
database(DB), expressing extensional knowledge, is a finite setD of unary and binary
ground atoms of the formA(c), P (c, c′). A knowledge base(KB) is a pair 〈O,D〉,
whereO is an ontology andD a DB.
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The semantics of DL concepts, assertions, ontologies, and KBs is specified by con-
sidering FOinterpretationsI := 〈∆, ·I〉, where∆ is thedomain, a possibly countably
infinite set of constants, and·I is aninterpretationfunction that maps(i) each concept
nameA to a subset of the domain,(ii) each role nameP to a binary relation over the
domain, and(iii) each constantsc to itself. It can be extended to complex conceptsC
and rolesR by structural recursion, as shown in Table 1.

An interpretationI is said to be amodelof an inclusion assertionCl ⊑ Cr, in
symbolsI |= Cl ⊑ Cr, if CI

l ⊆ CI
r . Similarly, I is said to be a model of a ground

atomA(c) (or P (c, c′)), in symbolsI |= A(c) (resp.I |= P (c, c′)), if c ∈ AI (resp.
〈c, c′〉 ∈ P I). It is said to be amodelof an ontologyO, in symbolsI |= O (resp. a DB
D, in symbolsI |= D) if it is a model of all ofO’s assertions (resp.D’s ground atoms).
It is said to be amodelof a KB 〈O,D〉, in symbolsI |= 〈O,D〉, if it is a model ofO
andD. Two conceptsC andC ′ are said to beequivalentiff, for all I, CI = C ′I . Two
assertionsα andα′ are said to beequivalentiff, for all I, I |= α iff I |= α′.

We use queries to retrieve information from KBs. As query languages, we con-
siderconjunctive queries(CQs) [1], i.e.,SELECT-PROJECT-JOIN SQL queries andtree
shaped conjunctive queries(TCQs) [21], which are those CQs built using only unary
and binary relations and that are tree-isomorphic.

A conjunctive query(CQ) q is an expression of the form

q(x̄)← Φ(x̄, ȳ),

whereq(x̄) is the head, x̄ denotes a (finite) sequence of variables oflength |x̄|, the
query’sdistinguished variables, andΦ(x̄, ȳ) is thebody, a conjunction of FO relational
atoms over the variables̄x andȳ.

Intuitively, non-distinguished variables combined with the relational conjunctions
stand for relational DB table joins and selections, and distinguished variables for the
information we want to project in the result: CQs thus constitute a declarative specifi-
cation of a SQLSELECT-PROJECT-JOIN query result table [1].

A tree-shaped condition(TSC) of rootzi, for i ∈ N, is a FO formulaϕ(zi) induc-
tively defined as follows:

– every atomA(zi) or R(zi, zi+1) is a TSC,
– if ϕ(zi+1) is a TSC, so isR(zi, zi+1) ∧ ϕ(zi+1), and
– if ϕ(zi) andϕ′(zi) are TSCs, so isϕ(zi) ∧ ϕ′(zi).

Note that, for alli ∈ N, zi 6= zi+1, i.e., each time we apply the second rule we have
to introduce a new variable. Furthermore, wheneverR(zj , zj+1), occurs inϕ(zi), for
j ≥ i, we say thatzj+1 is connectedto zj .

Every TSCϕ(zi) rooted inzi and variableszi+1, . . . , zi+m can be (bijectively)
mapped to a directed adorned treeTϕ: each variablezj , for j ∈ [i, i+m], gives rise to a
nodezj , each atomR(zj , zj+1) to an edge〈zj , zj+1〉 with tagR and each atomA(zj)
to tagA over nodezj [3].

A tree-shaped conjunctive query(TCQ) q [21] is a CQ with one distinguished vari-
ablex and non distinguished variablesy1, . . . , yn whose bodyΦ(x, y1, . . . , yn) can be
written as a TSCϕ(x) of rootx whereiny1 is connected tox and eachyi+1 is connected
to yi.
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Let q(x̄)← Φ(x̄, ȳ) be a (T)CQ. Agrounded substitutionor grounding ofq is a (not
necessarily total) functionσ(·) that maps the (free) variablesx̄∪ȳ of q to∆. Groundings
are extended to complex syntactic objects in the usual way. By σθ we will denote the
composition of groundingσ with groundingθ. We denote byqσ thegroundingof q’s
body byσ(·), i.e., Φ(x̄, ȳ)σ. Notice that (T)CQ bodies are positive FO formulas. An
interpretationI is said to be amodelof qσ wheneverI |= Φ(x̄, ȳ)σ (following standard
FO semantics, based on truth and satisfaction).

We say that a sequencec̄ of constants is ananswerto a (T)CQq with distinguished
variablesx̄ over a KB〈O,D〉, whenever there exists a groundingσ, mappingx̄ to c̄,
s.t. qσ is logically entailedby 〈O,D〉, viz., whenever, for allI, I |= 〈O,D〉 implies
I |= qσ; in symbols:〈O,D〉 |= qσ.

2.2 Query Answering and Data Complexity

We first recall some basic notions of complexity theory that we use in the following,
and refer to [22] for more details. Adecision problemP is a pair constituted by a set
of inputsand aquestion, viz., a property to be verified for the inputs. Computational
complexity refers to the (worst case) space and time resources an algorithm (i.e., a Tur-
ing machine) uses to solve a decision problemP , i.e., to determine whether an arbitrary
input satisfies or not the problem. Acomplexity classor computational propertyis a
class of decision problems.LogSpacedenotes the class of problemsP solvable by a
deterministic algorithm usingO(log n) space, wheren denotes the size ofP ’s input(s).
NLogSpacedenotes the class of problems solvable by a non-deterministic algorithm in,
again,O(log n) space.PTime denotes the class of problems solvable by a deterministic
algorithm inO(p(n)) time, wherep(·) denotes a polynomial function.coNP denotes
the class of problems whose complement is solvable by a non-deterministic algorithm
in O(p(n)) time. We have thatLogSpace⊆ NLogSpace⊆ PTime ⊆ coNP. Higher
complexity classes are defined similarly.

Given a classC, a problemP is said to beC-hard whenever for each problem
P ′ ∈ C there exists an algorithm, calledreduction, that embedsP ′ into P and that runs
in O(log n) space in the sizen of the input forP ′. A C-hard problemP is as hard as
any problem inC, possibly harder, i.e., reductions makeC a complexity lower bound
for P . If, in addition, C is a complexity upper bound forP , i.e., if P can be shown
to be inC, P is said to beC-complete. Since log-space reductions are closed under
composition, to show that a problemP is C-hard it suffices to reduce toP a problem
P ′ that is already known to beC-hard.

Problems inPTime are said to betractable and problems beyondPTime (e.g.,
coNP-hard problems)intractable, insofar as polynomial time traces the boundary up to
which problems can be efficiently solved.

Thequery answering(QA) decision problem for (T)CQs and KBs is the entailment
problem stated as follows:

– Input: a KB 〈O,D〉, a (T)CQq with distinguished variables̄x, and a sequencēc of
|x̄| constants,

– Question: does there exist a grounded substitutionσ(·) s.t. (i) σ(x̄) = c̄ and(ii)
〈O,D〉 |= qσ?
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Table 2.An overview of some CLs.

CL (English) Compositional Maps to Parser Goal
ACE [12] yes FO APE KR/User specifications

ACE-OWL [15] yes OWL-DL APE Ontology authoring + querying
PENG [27] yes OWL-DL ECOLE Ontology authoring + querying
SOS [26] N.A. OWL-DL N.A. Ontology authoring + querying

CLCE [31] yes FO compiler KR
English Query [7] N.A. SQL N.A. DB querying/management
OWL-CNL [28] yes OWL-DL DCG parser Ontology authoring
Lite English[5] yes DL-Lite CG parser KR/Ontology authoring

λ-SQL [19] yes SQL compiler DB querying
nRQL [25] yes FO queriesDCG parser Ontology querying
Rabbit [26] no OWL GATE Ontology authoring

ACE-PQL [6] yes PQL DCG parser Ontology querying

We are interested in thedata complexityof QA, namely, in its computational com-
plexity when we considerD as the only input of this problem [33]. The optimal data
complexity for QA (w.r.t. (T)CQs) lies inLogSpace, which is roughly the complexity
of answering SQL queries over plain DBs2[1]. Such complexity is attained w.r.t. KBs
from theDL-Lite fragment of the DLALCI [8]. OWL andALCI are, on the other
hand,coNP-hard andcoNP-complete, respectively [21]. Tractable data complexity im-
plies OBDAS scalability (to data).

3 Controlled Languages

CLs have been proposed as a means of overcoming the ambiguityproblem inherent to
NLIs to information systems, but this is not the only knowledge representation (KR)
or information management task CLs have been developed for.Other important tasks
have been, e.g.,(i) ontology authoring and(ii) declaring (and reasoning about) formal
specifications. In such a setting, we are required to declarewith CL complex structured
information, such as OWL ontology assertions, or FO axiomatics. Expressive and com-
positional CLs such as ACE, ACE-OWL, PENG, SOS, etc., [25, 15,27, 26, 28] have
been developed with such purpose in mind. See Table 2 for an overview (CG stands for
”categorial grammar”, DCG for ”definite clause grammar” andthe other acronyms for
known English parsers and/or parser APIs such as GATE).

ACE-OWL, for instance, supports English verb phrase, nominal/noun and noun
pharse-coordination, (full) negation, universal, existential, and counting quantifiers, and
gap-filler dependencies induced by relative sentences (although quantification, mirror-
ing quantification in OWL, is somewhat restricted [15, 3]). Other constructs, inherently
ambiguous in English, such as prepositional phrases (e.g.,”John saw a man with the
telescope”) are, on the other hand, not supported. Nor are adjectives (attributes are ex-
pressed by ad hoc transitive verbs, as is common in DLs), intransitive verbs (atomic

2 Data complexity for DB query evaluation is actually inAC0, a circuit-based complexity class
that strictly includesLogSpace[1, 22].
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concepts are expressed by means of common nouns) or query words (”who”, ”which,
”what”, etc.), although ACE-OWL can be extended to an interrogative fragments that
translates into TSQs [15].

But if syntactic (i.e., parsing) complexity or ambiguity are not an issue for CLs,
semantic complexity, however, is.(i) The formal model of a compositional translation
for any fragment of NL, such as CLs, are formal semantics compositional translations
τ(·) [14, 10] wherein NL utterances are mapped to formal logic MRs, typically higher
order logic (HO) or first order logic (FO) MRs. To be more precise, they are mapped to
FO extended with the types, theλ-abstraction, the application andβ-normalization of
the simply-typed lambda calculus [10].(ii) Such a translation is semantics-preserving.
Observations(i) and(ii) together imply that the NL fragment will inherit both the rea-
soning problems and computational properties of its MR logic. Such decision problems
and computational properties have been called by Pratt & Third in [23] thesemantic
complexityof an NL fragment/CL. QA is one such decision problem and datacomplex-
ity one such computational property.

As a result, whenever a (logical) reasoning problem is invoked in the back-end,
the semantic complexity of the (otherwise ambiguity-free and efficiently processable)
front-end CL can still affect the overall performance of a information system that, like
OBDASs, relies heavily on FO reasoning. Moduloτ(·) such impact can be studied
construct by construct.

4 Expressing Ontologies with Controlled English

We make use of the standard formal semantics analysis for fragments of English as
developed in [10, 4, 20]. We recall the so-called HOtyping rule, which allows us to dis-
card (when parsing) constituents that do not yield well-typed expressions. In particular,
this rule fails whenever the types of the MRs acting as premises do not unify [10]:

Γ ⊢ u : τ Γ ′ ⊢ v : τ→τ ′
app

Γ, Γ ′ ⊢ u(v) : τ ′

whereτ denotes an arbitrary type,u, v arbitrary HO expressions andΓ , Γ ′ typing
contexts(sets of possibly empty variable typings). An HO expressionis said to bewell-
typedwhenever(i) it is typed and(ii) Γ = ∅.

We usedefinite clause grammars(DCGs), albeit written in phrase structure gram-
mar style for simplicity, as grammar formalism for defining our CLs. Parsing amounts
to walking or searching (depth or breadth first) a tree-shaped space ofparse states
〈α,ϕ, τ, Γ 〉, whereα stands for a CL syntactic constituent,ϕ for its MR, τ for its type
andΓ for its typing context. Transition between states is based on unification and type-
checking [14], and is fired by the grammar rules. MRs are computed on the fly, during
parsing. The states may also encode morphosyntactic information.

We consider, when defining our CLs, the following syntactic constituents. We con-
sider as content word categories proper nouns (Pns), common nouns (Ns), transitive
and intransitive verbs (TVs andIV s) and adjectives (Adj s). By way of function word
categories, we consider determiners (Dets), (indeterminate) pronouns (Pros), relative
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pronouns (Pros), conjunctions (Crds) and negations (Negs). Finally, regarding non-
primitive (whether recursive or not) constituents, we consider verb phrases (VPs), noun
phrases (NPs) nominals (Noms) and complete sentences (Ss). For simplicity we have
barred out of the language, subordinate clauses, which are captured, basically, byVPs
combining withRelps andNoms.

Given a constituentγ, parsing yields a unique DL MR up tostructural equivalence.
A conceptC (resp. an assertionα) is said to bestructurally equivalentto (a HO for-
mula)ϕ:e→ t iff C is equivalent to the DL conceptϕ. Following DL conventions [3],
we associate (and map) the non-recursive word categoriesN, Adj , and IV to atomic
concepts. CategoryTV is associated to role names. Recursive constituents, by contrast,
are associated to arbitrary concepts.

We have shown elsewhere [5] how to express the optimal (for data complexity)
fragment ofALCI, DL-Lite. In this section we(i) express thecoNP-complete (in data
complexity for QA)ALCI and then we show(ii) how to define and express in CL the
maximal tractable fragments ofALCI and the minimal intractable fragments ofALCI.
This will lead us to define in the first place the CL DL-English,expressingALCI, and
by restricting DL-English’s grammar the IS-Ai∈[0,7] family of CLs and EL-English,
viz., the minimal intractable and maximal tractable fragments of DL-English.

4.1 DL-English

Figure 1 introduces DL-English’s grammarGDL. For reasons of simplicity and space,
we disregard morphology and polarity issues. We also omit specifying the (open) class
of content words.

Lemma 1. For all sentencesS in L(GDL), there exists an assertionα in ALCI s.t.
τ(S) ≡ α.

Proof. In order to prove this lemma we will prove something more general, namely,
that,

for eachVP or Nom constituent, there exists a conceptC in ALCI
s.t.τ(VP) ≡ C (resp.τ(Nom) ≡ C).

(†)

We prove (†) by mutual induction on the lengthn (for n ≥ 1) of GDL derivations
rooted in aVP or a Nom. We make use of unification to prune away undesired parse
(sub)trees when walking through the space of parsing states, whenever (semantic) types
and (morphosyntactic) features fail to unify. See Figures 2and 3 for examples.

– (n = 1). We consider in this case the derivations

VP⇒ IV ⇒ A, Nom⇒ is aN⇒ is aA, VP⇒ is Adj ⇒ A,

which are inDDL provided that we consider as part of our content lexicon the
productions

IV→A, τ(IV ) :=A:e→ t, N→A, τ(N) :=A:e→ t,

Adj→A, τ(Adj ) := A : e→ t,

whenceτ(TV) = τ(Nom) ≡ A, whereA is an atomic concept.
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(Prase structure rules)

S → NP VP NP → Det Nom
VP → TV NP VP → is aNom VP → is TV by NP NP → Pro Relp VP
VP → is Adj VP → IV VP → is Neg TV by NP NP → Pro
VP → doesNeg IV VP → is NegaNom Nom → Nom Relp VP Nom→ Adj Nom
VP → is Neg Adj VP → VP Crd VP Nom → Nom Crd Nom Nom → N

(Semantic actions)

τ(S) :=τ(NP)(τ(VP))
τ(VP) :=τ(NP)(τ(TV)) τ(VP) :=τ(Crd)(τ(VP))(τ(VP))
τ(VP) :=τ(Neg)(τ(NP)(τ(TV))) τ(VP) :=τ(Neg)(τ(Adj ))
τ(VP) :=τ(Adj ) τ(VP) :=τ(Nom)
τ(VP) :=τ(Neg)(τ(Nom)) τ(VP) :=τ(Neg)(τ(IV ))
τ(NP) :=τ(Pro) τ(VP) :=τ(IV )
τ(NP) :=τ(Det)(τ(Nom)) τ(NP) :=τ(Pro)(τ(Relp)(τ(VP)))
τ(Nom) :=τ(Nom)(τ(Relp)(τ(VP))) τ(Nom) :=τ(Crd)(τ(Nom))(τ(Nom))
τ(Nom) :=τ(Adj )(τ(Nom)) τ(Nom) :=τ(N)

(Function lexicon)

Pro → anybody τ(Pro) :=λC.λC′.C ⊑ C′ (e→ t)→((e→ t)→ t)
Pro → somebodyτ(Pro) :=λR.∃R (e→(e→ t))→(e→ t)
Pro → nobody τ(Pro) :=λC.λC′.C ⊑ ¬C′ (e→ t)→((e→ t)→ t)
Pro → nobody τ(Pro) :=λR.¬∃R (e→(e→ t))→(e→ t)
Crd → and τ(Crd) :=λC.λC′.C ⊓ C′ (e→ t)→((e→ t)→(e→ t))
Crd → or τ(Crd) :=λC.λC′.C ⊔ C′ (e→ t)→((e→ t)→(e→ t))
Relp → who τ(Relp) :=λC.C (e→ t)→(e→ t)
Relp → who τ(Relp) :=λC.λC′.C : C′ (e→ t)→((e→ t)→(e→ t))
Neg→ not τ(Neg) :=λC.¬C (e→ t)→(e→ t)
Pro → only τ(Pro) :=λC.λR.∀R:C (e→ t)→((e→(e→ t)→(e→ t)
Pro → everybodyτ(Pro) :=λC.⊤ ⊑ C (e→ t)→ t

Pro → nobody τ(Pro) :=λC.C ⊑ ⊥ (e→ t)→ t

Det → some τ(Det) :=λC.λR.∃R:C (e→ t)→((e→(e→ t)→(e→ t)
Det → every τ(Det) :=λC.λC′.C ⊑ C′ (e→ t)→((e→ t)→ t)
Det → no τ(Det) := λC.λC′.C ⊑ ¬C′ (e→ t)→((e→ t)→ t)

Fig. 1.The grammarGDL of DL-English.
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– (n = k + 1). By induction hypothesis, for every derivation of lengthi ≤ k rooted
in VP or Nom, there exists a conceptC s.t.

VP⇒i γ andτ(VP) ≡ C or Nom⇒i γ andτ(Nom) ≡ C, (IH)

whereγ stands for a component derived (inGDL) from VP (resp.Nom) in i ≤ k
steps. We want to prove that the property holds forVP⇒k+1 γ andNom⇒k+1 γ.
We have several cases to consider, namely as many as there arerecursive rules for
VP andNom in GDL.
• Nom ⇒ Adj Nom ⇒k γγ′. By induction hypothesis, there exists a concept

C ′ s.t. τ(γ′) ≡ C ′. Now, Adj is a qualificativeadjective and we know from
GDL that in this caseAdj ⇒ A with MR τ(Adj ) := λDe→t.(A ⊓ D) : (e→
t)→(e→ t). Thus,

τ(Aγ′) =df λDe→t.(A ⊓D)(τ(γ′)) : e→ t
=ih λDe→t.(A ⊓D)(C ′) : e→ t
⊲β A ⊓ C ′ : e→ t,

andA ⊓ C ′ is the concept we were looking for.
• VP ⇒ TV NP ⇒ TV Det Nom ⇒k−1 γγ′γ′′. By induction hypothesis, there

exists a conceptC ′′ s.t. τ(γ′′) ≡ C ′′. We know that inGDL TV ⇒ P , with
τ(TV) ≡ P . There are only two possibilities forDet:

Det⇒ only or Det⇒ some.

Let us focus, w.l.o.g. on the former. We know that in such a case it holds that
τ(Det) := λDe→t.λRe→(e→t).(∀R:C) : (e→ (e→ t))→ ((e→ t)→ (e→ t)).
Therefore,

τ(P only γ′′) =df λDe→t.λRe→(e→t).(∀R:D)(τ(γ′′))(τ(P )) : e→ t
=ih λDe→t.λRe→(e→t).(∀R:D)(C ′′)(P ) : e→ t
⊲β ∀P :C ′′ : e→ t,

and, clearly,τ(VP) ≡ ∀P :C ′′. Notice that any other choice forDet would
prevent any derivation of the whole constituent. For instance, whileDet ⇒
every, constituent of (partial) MRτ(Det) := λDe→t.λEe→t.D ⊑ E : t, we
cannot applyλEe→t.C ′′ ⊑ E : e→ t to P : e→ (e→ t), due to our HO type
system. See Figure 3.

• All the other cases are dealt with analogously.

We now turn to complete utterances, viz. to DL-English sentences. There are three
different ways in which a sentenceS can be generated in our CL, namely:

– S⇒ NP VP⇒ Det Nom VP⇒∗ γγ′γ′′ (with S = γγ′γ′′). We know thatτ(γ′) ≡
C ′ and thatτ(γ′′) ≡ C ′′. Due to the typing constraints, the only possibilities for
Det are:

Det⇒ every or Det⇒ no,
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〈S, α, τ, Γ 〉

〈NP · VP, β(γ), app(τ ′, τ ′′), Γ ′ ∪ Γ ′′〉

〈NP, β, τ ′, Γ ′〉

〈Pro, β, τ ′, Γ ′〉

〈everybody, λP.⊤ ⊑ P, (e→ t)→ t, ∅〉 . . .

�

. . .

�

. . .

�

. . .

�

〈VP, γ, τ ′′, Γ ′′〉

〈IV , γ, τ ′′, Γ ′′〉

〈left, leaves, e→ t, ∅〉 . . .

�

. . .

�

. . .

�

. . .

�

. . .

�

. . .

�

Fig. 2. A succesful derivation for ”everybody left”. The dots indicate transitions to fail-
ing states. The information propagated from leaves to root via unification yields, ultimately,
〈everybody left,⊤ ⊑ leaves, t, ∅〉, i.e., a well-typed string and MR of type sentence (ort).

with MR τ(Det) := λDe→t.λEe→t.D ⊑ E : (e → t) → ((e → t) → t) (resp.
τ(Det) := λDe→t.λEe→t.D ⊑ ¬E : (e→ t)→((e→ t)→ t)). Hence,

τ(everyγ′γ′′) =df λDe→t.λEe→t.D ⊑ E(τ(γ′))(τ(γ′′)) : t
=† λDe→t.λEe→t.D ⊑ E(C ′)(C ′′) : t
⊲β C ′ ⊑ C ′′ : t.

– S⇒ NP VP ⇒ Pro Relp VP VP ⇒∗ γγ′γ′′γ′′′ (with S = γγ′γ′′γ′′′). Similar
argument.

– S⇒ NP VP⇒ Pro VP⇒∗ γγ′ (with S = γγ′). Similar argument.

Therefore, for eachS in L(GDL) there exists an assertionα s.t.τ(S) ≡ α. This com-
pletes the proof. ⊓⊔

The negation normal form(NNF) of anALCI conceptC is defined by pushing
negation down to atomic concepts using the De Morgan laws [3]. For every conceptC
in ALCI there exists an equivalentALCI conceptC ′ in NNF.

Lemma 2. For each assertionα in ALCI, there exists a sentenceS in L(GDL) s.t.
(i) τ(S) ≡ α′, whereα′ is anALCI assertion, and (ii)α′ is equivalent toα.

Proof. Again, in order to prove this lemma, we prove a more general claim, namely,
that

for each conceptC in NNF, there exists either aVP or aNom
s.t.τ(VP) ≡ C ′ or τ(Nom) ≡ C ′,

(†)

whereC ′ is equivalent toC. This we prove by induction onC.

– (Basis). There are two cases to consider, given thatC is in NNF.
• C := A. Notice thatA is already in NNF. Include in the function lexicon of

GDL the (terminal) productionN→A with lexical semanticsτ(N) := A : e→
t. There are two possibilities:



12 Camilo Thorne and Diego Calvanese

〈VP, α, τ, Γ 〉

〈TV · NP, β(γ), app(τ ′, τ ′′), Γ ′ ∪ Γ ′′〉

�

〈TV , β, τ ′, Γ ′〉

〈loves, loves, e→(e→ t), ∅〉

〈NP, γ, τ ′′, Γ ′′〉

〈Det · N, δ(η), app(τ ′′′, τ ′′′′), Γ ′′′ ∪ Γ ′′′′〉

〈Det, δ, τ ′′′, Γ ′′′〉

〈every, λP.λQ.P ⊑ Q, (e→ t)→((e→ t)→ t), ∅〉

〈N, η, τ ′′′′, Γ ′′′′〉

〈man, Man, e→ t, ∅〉

Fig. 3. A failed derivation for theVP ”loves every man”, sinceapp(e → (e → t), e → t) =↑,
whence the string is not well-typed and is devoid of a (partial) MR.

∗ eitherNom⇒ N⇒ A,
∗ or VP⇒ is aNom⇒ is aN⇒ is aA

Notice, furthermore that we can express⊤ with the ad hocN ”thing”, which is
the usual DL convention [3].

• C := ¬A. then VP ⇒ is NegaNom ⇒ is not aN ⇒ is not aA, with
τ(VP) ≡ ¬A, by the same argument as before, which is in NNF.

– (Inductive step). By inductive hypothesis we know that, forall subconceptsC ′ of
C, there exists a componentγ rooted in aVP or Nom s.t.:

VP⇒∗ γ andτ(VP) ≡ C ′′ or Nom⇒∗ γ andτ(Nom) ≡ C ′′, (IH)

whereC ′′ is a concept equivalent toC ′. This leaves two cases to consider, namely:
• C := ∃P :C ′. By (IH), there exists aγ′ s.t. eitherVP⇒∗ γ′ andτ(VP) ≡ C ′′,

or Nom⇒∗ γ′, τ(Nom) ≡ C ′′, andC ′′ is equivalent toC ′. This gives us two
possibilities for∃P :C ′, namely:
∗ VP ⇒ TV NP ⇒ TV Det Nom ⇒∗ P someγ′, with τ(VP) ≡ ∃P :C ′,

which is equivalent to∃P :C, or
∗ VP ⇒ TV NP ⇒ TV Pro Relp VP ⇒∗ P somebody whoγ′, where

τ(VP) ≡ ∃P :C ′, which is equivalent to∃P :C.
• C := C ′ ⊓ C ′′. Similar argument.

Let nowC ⊑ C ′ be anALC assertion withC, C ′ in NNF. We can capture this assertion
in one of two ways in DL-English:

– eitherS⇒∗ everyNom VP⇒∗ everyγγ′,
– or S⇒∗ everybody whoVP VP⇒∗ everybody whoγγ′,
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for some (two) componentsγ′ andγ′ whose existence is guaranteed by (†). Clearly, in
both casesτ(S) ≡ C ′′ ⊑ C ′′′. Moreover, it is evident thatC ′′ ⊑ C ′′′ is equivalent to
C ⊑ C ′. This completes the proof. ⊓⊔

From Lemmas 1 and 2, it follows immediately that DL-English expressesALCI
(up to equivalence).

Theorem 1 (DL-English).DL-English expressesALCI.

Corollary 1. QA for DL-English and (T)CQs iscoNP-complete in data complexity.

Example 1.Examples of sentences in DL-English (we spell out the MRs underneath)
are:

No man who runs some business that does not make some money is shrewd.
Man⊓ ∃run:(Business⊓ ¬(∃make:Money)) ⊑ ¬Shrewd

(1)

Nobody eats only apples.
∀eats:Apple⊑ ⊥

(2)

Everybody sleeps.
⊤ ⊑ Sleep

(3)

Every married man has some wife.
Man⊓Married⊑ ∃has:Wife

(4)

Anybody who has some car drives some new car or old car.
∃has:Car⊑ ∃drives:((Car⊓ New) ⊔ ((Car⊓Old)

(5)

4.2 The family {IS-Ai}i∈[0,7] of CLs

We now turn to the computational properties of each of the constructs of DL-Englishin
isolation. We do it by essentially restricting the kind ofright (i.e.,Cr) andleft (i.e.,Cl)
concepts we may express. All utterances comply with the sentence patterns

”everyγl γr” and ”everybody whoγl γr”.

The constituentsγl andγr map to, respectively, left and right concepts, while sentences
map to IS-A assertions of the formCl ⊑ Cr. We consider in this paper only8 out
of all possible combinations obtained by allowing inCl andCr some subset of the
DL constructs in Table 3, giving rise to the family{IS-Ai}i∈[0,7] of CLs shown in
Table 4. The basic kind of assertion they all express is IS-A among atomic concepts,
viz., A ⊑ A′, captured by IS-A0. Notice that this can be easily achieved by, so to speak,
merging the grammars from Table 3 expressing (in isolation)theCls andCrs occuring
in the DL assertions of Table 4 into a grammar for each CL IS-Ai.

Theorem 2 (IS-Ais).For eachi ∈ [0, 7] and each sentenceSi in IS-Ai, there exists an
assertionαi s.t.τ(Si) ≡ αi. Conversely, for each assertionαi there exists a sentence
Si in IS-Ai s.t.τ(Si) ≡ α′

i andα′
i is equivalent toαi.
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Table 3. Expressing conceptsCf , for f ∈ {l, r}, and assertionsCl ⊑ Cr, by restricting and
subcategorizing rules inGDL.

S→ NPl VPr NPl → Prol Relpl VPl NPl → DetlNoml

Prol → anybody Relpl → who Detl → every

ConceptCf Constituent γf Grammar Rules

∃P :A
TV someNomf

TV somebody whoVPf

VPf → is aNomf | IV | is Adj
Nomf → N

∃P−:A
is TV by someNomf

is TV by somebody
whoVPf

VPf → is aNomf | IV
| is Adj | TV NPf

Nomf → N
NPf → Detf Nomf

| Prof Relpf VPf

Detf → some
Relpf → who
Prof → somebody

∀P :A
TV only VPf

TV only whoVPf

VPf → is aNomf | IV
| is Adj | TV NPf

Nomf → N
NPf → Detf Nomf

| Prof Relpf VPf

Detf → only
Relpf → who
Prof → only

A
Nomf

VPf

VPf → is aNomf | IV | is Adj
Nomf → N

A1⊓. . .⊓An

Adj Nomf

Nomf whoVPf

Nomf andNomf

VPf andVPf

VPf → is aNomf | IV
| is Adj | VPf Crdf VPf

Nomf → N | Adj Nomf

| Nomf Crdf Nomf

| Nomf Relpf VPf

Relpf → who
Crdf → and

∃P
TV something
TV somebody

VPf → TV Prof

Prof → somebody| something

A1⊔. . .⊔An VPf or VPf

VPf → is aNomf | IV
| is Adj | VPf andVPf

Nomf → N | Nomf andNomf

¬A

is notAdj
does notIV
is not aNomf

Nomf → N
VPf → does notIV

| is notAdj
| is not aNomf
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Table 4. Defining the{IS-Ai}i∈[0,7] CLs. IS-Ai, for all i > 0, contains also the assertions of
IS-A0.

Assertionsαi Example(s)
IS-A0 A ⊑ A1 ⊓ . . . ⊓ An Every businessman is a cunning man

is a cunning man.
IS-A1 A ⊑ ∀P :A Every herbivorous eats only herbs

eats only herbs.
IS-A2 A1 ⊓ . . . ⊓ An ⊑ ∀P :(A1 ⊓ . . . ⊓ Ak) Every Italian man drinks

only strong coffee.
IS-A3 ∃P :A ⊑ A1 ⊓ · · · ⊓ An Anybody who murders some

person is a heartless killer.
∃P−:A ⊑ A1 ⊓ · · · ⊓ An Anybody who is loved by

some person is a happy person.
A ⊑ ∃P Every driver drives something.

IS-A4 A1 ⊓ . . . ⊓ An ⊑ A1 ⊓ . . . ⊓ Ak Every cruel man is a bad man.
∃P :(A1 ⊓ . . . ⊓ An) ⊑ A1 ⊓ . . . ⊓ Ak Anybody who runs some bankrupt

company is a bad businessman.
IS-A5 ∀P :A ⊑ A1 ⊓ . . . ⊓ An Anybody who values only money is a

greedy person.
IS-A6 A ⊑ A1 ⊔ . . . ⊔ An Every mammal is male or is female.
IS-A7 ¬A ⊑ A1 ⊓ . . . ⊓ An Anybody who is not selfish is a

reasonable person.

Proof. The theorem can be proved for each fragment in a manner analogous to DL-
English. Basically, we consider two cases both on the ”⇒” and the ”⇐” directions of
the proof, viz., a (mutual) induction on either(i) Noml andVPl constituents or(ii) on
theNomr andVPr constituents for the if direction and a (mutual) induction over (i) a
Cl or (ii) a Cr concept for the only if direction. With some routine adjustments to
the specific syntax of the fragments and their MRs, we adapt each time the proof of
Theorem 1.

4.3 Data Complexity of the IS-Ais

In [5], we have shown how to express the DLDL-Lite for which QA (w.r.t. (T)CQs) is
in LogSpace[8], with the CLs Lite-English. We want now to know which fragments
of ACE-OWL and DL-English are(i) maximalw.r.t. tractable data complexity (i.e., in
PTime), and hence scale to data, and(ii) minimal w.r.t. intractable data complexity (i.e.,
coNP-hard), and hence do not scale.

Theorem 3. The data complexity of QA for (T)CQs is (i) inLogSpace for IS-A0,
(ii) PTime-complete for IS-A2, IS-A3, and IS-A4 and (iii) coNP-complete for IS-A5,
IS-A6, and IS-A7.

Proof. The CL IS-A0 is subsumed by the CL Lite-English, which as we have shown
elsewhere [5] expresses the DLDL-Lite for which QA w.r.t. CQs is inLogSpacein data
complexity ([8], Theorem 2).
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The lower bounds for IS-A2, IS-A3, and IS-A4 follow from the results in [8]. For
IS-A2 the result is derived from Theorem 7, case 2. For IS-A3, it is derived from The-
orem 6, case 1. Finally, the lower bound for IS-A4 follows from Theorem 7, case 3.
Basically, this is because our CLs subsume the DLs for which those theorems hold.
PTime-hardness in all three cases holds already for atomic queries. The complexity
upper bounds, on the other hand, follow from results in [18] for the DL EL, which
subsumes the DL assertions IS-A2, IS-A3 and IS-A4.

The lower bounds for IS-A5, IS-A6, and IS-A7 follow also from [8]: for IS-A5,
we apply Theorem 8, case 3; for IS-A6, we apply Theorem 8, case 2; and for IS-A7,
Theorem 8, case 1. In these three cases, TCQs are used to definea reduction from
the NP-complete satisfiability problem for 2+2-clauses (defined any studied by [24]).
ThecoNPupper bounds for these fragments, on the other hand, derive from thecoNP
data complexity upper bounds for QA over expressive DLs (containingALCI) shown
in [21] and hold, again, for CQs. ⊓⊔

Theorem 4 (Data complexity of IS-A1). QA for IS-A1 and (T)CQs isNLogSpace-
complete w.r.t. data complexity.

Proof. (Hardness) Calvanese et al. show in [8] (by reduction from the reachability
problem for directed graphs) that any DL capable of expressing assertions of the form
A ⊑ ∀P.A′, or, equivalently, of the form∃P−.A ⊑ A′, is NLogSpace-hard for QA.
This result holds already for atomic queries. Note that suchassertions are expressed in
our fragments by sentences of the form ”EveryA Ps onlyA′s”, rather than by sentences
like ”Every A Ps everyA′”.

(Membership) Let q(x̄) ← Φ(x̄, ȳ) be afixed CQ, c̄ a fixed tuple,O a fixed set
of universally quantified IS-A1 MRs andD a set of facts s.t.#(D) = n. We will
reduce QA for IS-A1 to QA for linear Datalog, which is known to be inNLogSpace
in data complexity [1]. The only inclusion assertions expressible in our fragment are
A ⊑ B and∃R.A ⊑ B, which can be transformed into an (equivalent) setPO of
clauses¬A(x)∨B(x) and¬R(x, y)∨¬A(x)∨B(y), called a linear Datalogprogram.
On the other hand, CQq might not be a linear Datalog goal, but its bodyΦ(x̄, ȳ) [1]
consists of a conjunction ofm atomsA1(z̄1)∧· · ·∧Am(z̄m), wherex̄∪ȳ = z̄1∪· · ·∪z̄m.
Note that, sinceq is fixed,m is constant (a fixed positive integer), and so are|ȳ| and
|z̄i|, for i ∈ [1,m]. If we were to transform such atoms into a family of atomic queries
(which are linear Datalog goals), by means of some satisfaction-preserving reduction
that requires onlyO(log n) space, the data complexity upper bound would immediately
follow.

Start by computing the programPO as described above. SinceO is fixed, trans-
forming it intoPO does not affect data complexity. We transform nowΦ(x̄, ȳ), in space
logarithmic inn, into a family of linear Datalog goals, thus reducing answering q over
O andD to answering a family of atomic goals overPO andD. Let [c̄/z̄] denote the
grounding mappinḡz to the constants̄c. Groundq by σ := [c̄/x̄]. Groundingq by σ,
which returns the CQ of bodyΨ(c̄, ȳ), does not affect, once again, data complexity.
Next, consider all the possible groundings[c̄′/ȳ] with c̄′ ∈ adom(D)|ȳ| and apply them
to Ψ(c̄, ȳ). There areO(n|ȳ|) such groundings. This yields a family of CQs of body
Ψ(c̄, c̄′), whose atoms can be stored in a registry ofO(log n) size (we can encode such
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Table 5.Summmary of data complexity results. For a comparison, note that ACE-OWL is coNP-
hard (upper bounds for OWL-DL are not, as yet, known) [21].

CL Data Complexity ((T)CQs)
IS-A0 LogSpace
IS-A1 NLogSpace-complete
IS-A2 PTime-complete
IS-A3 PTime-complete
IS-A4 PTime-complete

CL Data Complexity ((T)CQs)
EL-English PTime-complete

IS-A5 coNP-complete
IS-A6 coNP-complete
IS-A7 coNP-complete

DL-English coNP-complete

grounded atoms usingO(log n) bits). This reduction is sound and complete. Indeed

〈O,D〉 |= Ψ(c̄, ȳ) iff PO ∪ D |= Ai(c̄
′′), for all i ∈ [1, k] and

somec̄′′ ∈ adom(D)|z̄i| ”compatible” with c̄,
(†)

where by ”compatible” we mean thatc̄′′ coincides with̄c on the distinguished variables
(note that̄zi may containbothdistinguished and non-distinguished variables).

The ”⇒” direction is immediate. To prove the ”⇐” direction, we reason as follows.
Assume for contradiction that there exists an interpretation I s.t. I |= PO ∪ D but
I 6|= Ai(c̄

′′), for somei ∈ [1, k] and everȳc′′ ∈ adom(D)|z̄i| ”compatible”, again, with
c̄. SinceI |= PO ∪D, we have thatI |= 〈O,D〉 andI |= Φ(c̄, ȳ). Therefore, for some
groundingθ from ȳ into adom(D), I |= Ai(z̄i)σθ. Now, clearly,c̄′′ = c̄′′1 ∪ c̄′′2 with
c̄′′2 ⊆ c̄, andz̄i = z̄i1 ∪ z̄i2 with z̄i2 ⊆ x̄. Therefore,θ(z̄i2) ∈ adom(D)|z̄i2|. On the
other hand,I 6|= Ai(c̄

′′), for all c̄′′. Hence,θ(z̄i2) 6= c̄′′2 andθ(z̄i2) 6∈ adom(D)|z̄i2|.
Contradiction.

The algorithm then proceeds by loopingO(n|ȳ|) times over theA(c′′)s (stored in
theO(log n) registry), checking each time whether, for alli ∈ [1, k], there exists some
”compatible”c̄′′ s.t.PO ∪D |= Ai(c̄

′′) holds. For each atom the algorithm runs a linear
Datalog non-deterministic check that uses at mostO(log n) space. Clearly, such a non-
deterministic algorithm decides QA using, overall, at mostO(log n) space. ⊓⊔

We can now individuate the constructs of DL-English, and a fortiori of any CL
expressing acoNP-hard ontology language that negatively affect the scalability of CL
interfaces to ODBASs, namely:

– ”only” in subject position (coNP-hardness of IS-A5),
– disjunction in predicate position (coNP-hardness of IS-A6),
– negation in subject position (coNP-hardness of IS-A7).

4.4 EL-English: A Maximal Tractable Fragment of DL-English

The constructs from Fig 3 also allow us to identifymaximalCLs contained in DL-
English (and a fortiori ACE-OWL) w.r.t. scalability (i.e., tractable data complexity). By
merging the (tractable) fragments IS-Ai, for i ≤ 4, we essentially express theELI
ontology language, with syntax (notice that the assertionA ⊑ ∀P : A′ is equivalent to
∃P− : A ⊑ A′):

R → P | P− C → ⊤ | A | ∃R : C | C ⊓ C
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That is, the DL where negation- and disjunction free existential concepts are allowed
to arbitrarily nest onbothsides of⊑. QA for ELI is PTime-complete in data complex-
ity for (T)CQs [18] and thus induces aPTime-complete fragment of DL-English, that
we term EL-English, which captures most of the constraints and axioms of real-world
large-scale biomedical ontologies such as GALEN or SNOWMED [18]. EL-English is
defined top-down by removing fromGDL the grammar rules for negation, disjunction,
and universal quantification, and the negative function words. Whence:

Proposition 1. QA for EL-English and (T)CQs isPTime-complete in data complexity.

In such a CL arbitrary sentence subordination (and relatives), in combination with,
existential quantification and conjunction amongVPs or Noms is allowed. Universal
quantification is highly controlled and negation and disjunction are ruled out.

4.5 Discussion

In general, intractability (w.r.t. data complexity) will arise in every CL that induces a
partitioning of the data of the OBDAS’s DB. This will happen whenever their MRs can
simulate full negation, conjunction and disjunction: the technicalcoNP-hardness results
from [8], on which we ground our own work, are based on this intuition. We can thus
say that CLs like IS-A5, IS-A6, IS-A7, and a fortiori DL-English (which contains them
all) are ”booleanly closed”. EL-English, on the other hand,by being a negation-free
fragment of DL-English, remains tractable.

5 Conclusions

In this paper we have studied the data complexity of queryingOBDASs in controlled
English. We have shown that optimal (i.e.,LogSpace) and tractable (i.e.,PTime) data
complexity (w.r.t. (T)CQs) is basically attained by constraining the behaviour of certain
function words, namely those expressing universal restrictions, negations and disjunc-
tions of concepts and roles in the underlying DL ontologies.They must not be allowed
to occurboth in the subject and predicate of CL sentences. Moreover, theycan only oc-
cur in carefully sought positions of CL sentences. This is the case with the CLs IS-A0,
IS-A1, IS-A2, IS-A3, IS-A4, and EL-English. Relaxing the constraints on negation, dis-
junction, universal determiners, and pronouns, as in IS-A5, IS-A6 and IS-A7, until the
components in sentence subjects and predicates become symmetrical, as in DL-English
(or more expressive CLs), yieldscoNP-hardness. Table 6 summarizes the computa-
tional properties associated to each such combination of (controlled) English function
words.

Computational complexity will be higher if we considercombined complexityi.e.,
when we consider as inputs not only the data but also the ontology (and possibly the
query). Satisfiability forALCI is ExpTime-complete (ExpTime is the class of prob-
lems solvable by a deterministic algorithm in exponential time) [3]. Since DL-English
expressesALCI and for this DL QA of TCQs (but not CQs) reduces to unsatisfia-
bility, this entails that QA for TCQs isExpTime-complete. Instead, QA for CQs is
2ExpTime-complete [9, 17] inALCI, and hence in DL-English.
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Table 6.Data complexity of CL constructs.

Tractable negation in predicateVPs, relatives and conjunction
(PTime or less) relatives in predicateVPs, in subjectNPs and predicate

conjunction in predicateVPs VPs, but no negation
Intractable relatives and negation in negation in subjectNPs
(coNP-hard) subjectNPs and in predicateVPs ”only” in subjectNPs

As related work we must mention the computational complexity results regarding
the satisfiability problem for several fragments of (and CLsobtained from) English
by Slavkovic [29] and Pratt and Third [23], from which upper and lower complexity
bounds for the combined complexity of QA can be derived in some cases. Such frag-
ments and CLs are orthogonal in expressiveness to the CLs studied in this paper. In the
case of Pratt and Third’s declarative fragments, termed fragments of English (FOEs),
we have provided in [32]data complexityresults for QA (albeit w.r.t. TCQs only). In
particular, we show that ”booleanly closed” FOEs are intractable not only w.r.t. com-
bined complexity and/or satisfiability, but exhibit intractable data complexity for QA.
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