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ABSTRACT
Nowadays, it is widely accepted that the data warehouse design
task should be largely automated. Furthermore, the data warehouse
conceptual schema must be structured according to the multidimen-
sional model and as a consequence, the most common way to au-
tomatically look for subjects and dimensions of analysis is by dis-
covering functional dependencies (as dimensions functionally de-
pend on the fact) over the data sources. Most advanced methods
for automating the design of the data warehouse carry out this pro-
cess from relational OLTP systems, assuming that a RDBMS is the
most common kind of data source we may find, and taking as start-
ing point a relational schema. In contrast, in our approach we pro-
pose to rely instead on a conceptual representation of the domain
of interest formalized through a domain ontology expressed in the
DL-Lite Description Logic. We propose an algorithm to discover
functional dependencies from the domain ontology that exploits the
inference capabilities of DL-Lite, thus fully taking into account the
semantics of the domain. We also provide an evaluation of our ap-
proach in a real-world scenario.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Types of Systems—
Decision Support; H.2.1 [Database Management]: Logical De-
sign

General Terms
Algorithms, Design, Experimentation, Management, Performance
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Functional dependencies, Ontologies, Multidimensional design
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1. INTRODUCTION
Like in most information systems, the data warehouse design

has been typically carried out manually, and the experts’ ability
and experience are crucial to successfully perform the modeling
task and eventually give rise to the desired data warehousing sys-
tem. The data warehouse conceptual schema must be derived by
a reengineering process from the data sources and to some extent,
this process should be automatic. In this sense, some efforts have
proposed the automation of the data warehouse design to free this
task from being (completely) performed by an expert, and facilitate
the whole process. Mostly, these approaches carry out this process
from relational OLTP (On-Line Transaction Processing) systems,
assuming that a RDBMS is the most common kind of data source
we may find, and taking as a starting point a relational (i.e., logical)
schema.

Furthermore, it is widely accepted that the conceptual schema
of the data warehouse must be structured according to the multi-
dimensional model. As a consequence, the most common way to
automatically look for subjects (i.e., facts) and dimensions of anal-
ysis is by discovering functional dependencies (since dimensions
functionally depend on the fact) over the data sources [22].

Starting from a logical schema may present some inconve-
niences, however. A logical schema is tied to the design decisions
made when devising the system and these decisions either made
to fulfill the system requirements (for instance, improve query an-
swering, avoid insertion / deletion anomalies, preserve features in-
herited from legacy systems, etc.) or naively made by non-expert
users, have a big impact on the quality of the multidimensional
schemas obtained by current automatable approaches. In fact, these
approaches require a certain degree of normalization in the input
logical schema to guarantee that it captures as much as possible the
to-one relationships (i.e., functional dependencies) existing in the
domain. Discovering this kind of relationships is crucial in the de-
sign of the data warehouse [22], and the most common way to rep-
resent them at the logical level is by means of “foreign” (FK) and
“candidate key” (CK) constraints. Therefore, the accuracy of the
obtained results (and specially, the quality of the found dimension
hierarchies) depends on the degree of normalization of the logical
schema, since some FK’s and CK’s are lost if we do not consider a
schema up to third normal form.

This scenario can be avoided by modeling the data warehouse
from a conceptual formalization of the domain. The role of a con-



ceptual layer on the top of information systems has been discussed
in depth in the literature and in case of reengineering processes,
like the data warehouse conceptual design, the benefits are clear:
the conceptual layer provides more and better knowledge about the
domain to carry out this task. In [26] we introduced AMDO (Au-
tomating Multidimensional Design from Ontologies), our approach
for automatically deriving the multidimensional schema from a do-
main ontology. Our goals are mainly two: (i) to improve the quality
of the obtained output (by working over a conceptual formalization
of the domain instead of a logical one) and (ii) to automate the pro-
cess. Because of this second assumption we choose ontologies as
input for our method.

Nowadays ontology languages are widely used in different areas
like data integration and the Semantic Web, but in other areas, like
software engineering, UML and ER are the most common choices.
Nevertheless, UML / ER are graphical languages that do not auto-
mate reasoning per se. Consequently, current automated reasoning
tools and techniques for UML / ER class diagrams perform an ex-
plicit or implicit translation to languages that do allow automates
reasoning. There are two main approaches for automated reasoning
over UML / ER: translating the class-diagram into first order logic
or into description logics (DL). The first approach is able to rea-
son with very expressive schemas but it is not decidable whereas
the second one provides decidable reasoning by restricting the lan-
guage expressivity. We follow the latter, and in those scenarios
where the domain is formalized by a UML / ER class-diagram we
automatically translate it to DL (see Section 2 for further details).

About AMDO, it considers all the multidimensional concepts in
depth by analyzing their semantics and how they should be iden-
tified from an ontology. As a result, it proposes new and original
design patterns. These patterns demand to compute the closure of
the functional dependencies stated in the conceptual domain. Due
to space limitations, we refer to [26] for a detailed discussion on
how to use the functional dependencies for discovering every mul-
tidimensional concept. As a major drawback, AMDO was not able
to take advantage of generic reasoning algorithms provided by DL
to compute these patterns and therefore, was not exploiting the rea-
soning capabilities provided by ontology languages.

To match our approach to traditional reasoning over ontology
languages and better exploit their reasoning capabilities, in this pa-
per we introduce an approach for discovering functional dependen-
cies from a domain ontology. Therefore, we propose to redesign
AMDO’s core. Unlike in our previous approach, we do use generic
reasoning algorithms so that no ad-hoc techniques and tools are
needed but just a generic reasoner such as FaCT++ [20] or Racer
[18].

The paper is structured as follows. Section 2 introduces DL-
LiteA, a well-behaved DL with a good expressive power, that we
will use as AMDO’s input ontology language. Thus, AMDO will
be able to handle any ontology expressible in DL-LiteA as well as
UML / ER class-diagrams. For the latter, we also discuss briefly
how they should be translated to DL-LiteA. Section 3 presents our
approach for discovering fd’s for DL-LiteA ontologies, and Sec-
tion 4 introduces the algorithm for computing them. In Section 5,
we consider the case of a DL-LiteA ontology that has been derived
from a UML / ER schema. Finally, Section 6 wraps up the discus-
sion with a practical use of our approach.

2. CONCEPTUAL MODELING USING DE-
SCRIPTION LOGICS

Description Logics (DLs) [3] originate in the mid ’80s to provide
a formal basis to structured knowledge representation languages.

We make use of DL-LiteA, a DL of the DL-Lite family [7, 6],
which is particularly well suited for conceptual modeling due its
ideal trade-off between expressive power and computational prop-
erties. We first present DL-LiteA, and then illustrate its modeling
capabilities by means of an example.

2.1 A Tractable Description Logic: DL-LiteA
In DLs, objects with common properties are grouped into con-

cepts, and the properties are represented through roles, denoting
binary relations over the domain of interest. Complex concepts
and roles are built inductively by starting from atomic ones (i.e.,
simply concept and role names) and applying a set of constructs.
Different from traditional DLs, and following what done in other
conceptual modeling formalisms such as UML class diagrams, DL-
LiteA distinguishes between (abstract) objects and (data) values.
Hence, it distinguishes concepts, denoting sets of objects, from
value-domains, denoting sets of values, and roles, denoting binary
relations between objects, from attributes, denoting binary rela-
tions between objects and values. More precisely, concepts, roles,
value-domains, and attributes in DL-LiteA are formed starting from
atomic elements according to the following syntax (where the dis-
tinction between basic and arbitrary elements is relevant in what
follows):

atomic basic arbitrary
concept

role
value-domain

attribute

A
P

U

B −→ A | ∃Q | δ(U)

Q −→ P | P−

E −→ ρ(U)
V −→ U

C −→ B | ¬B
R −→ Q | ¬Q
F −→ >D | T1 | · · · | Tn

W −→ V | ¬V

Above, δ(U) denotes the domain of U , i.e., the set of objects that
U relates to values; ρ(U) denotes the range of U , i.e., the set of
values that U relates to objects; >D is the universal value-domain;
T1, . . . , Tn are n pairwise disjoint unbounded value-domains, cor-
responding to data types, such as string, integer, etc. In the
following, let Inv(Q) = P− when Q = P , and Inv(Q) = P when
Q = P−.

In DL-LiteA, knowledge about the domain is represented by
means of an ontology (or knowledge base), consisting of a TBox,
encoding intensional knowledge, and an ABox, encoding exten-
sional knowledge on specific objects. Specifically, a DL-LiteA
TBox is constituted by a set of assertions of the form

B v C, Q v R, E v F, V v W, (funct Q), (funct U),

which respectively denote an inclusion between a basic and an ar-
bitrary concept, role, value-domain, and attribute, and functionality
on a role and on an attribute. As for the ABox, we introduce two
disjoint alphabets, ΓO of object constants denoting objects, and ΓV

of value constants denoting data values. A DL-LiteA ABox is a fi-
nite set of membership assertions of the form (where a, b ∈ ΓO

and c ∈ ΓV ):

A(a), P (a, b), U(a, c).

Definition 1. A DL-LiteA ontology O is a pair 〈T ,A〉, where
T is a DL-LiteA TBox, A is a DL-LiteA ABox, and the following
conditions are satisfied:

(1) for each atomic role P , if either (funct P ) or (funct P−)
occur in T , then T does not contain assertions of the form
Q v P or Q v P− (for Q a basic role);

(2) for each atomic attribute U , if (funct U) occurs in T , then
T does not contain assertions of the form V v U (for V an
atomic attribute).



Intuitively, these two conditions say that, in a DL-LiteA TBox,
roles and attributes occurring in functionality assertions cannot be
specialized. These conditions are crucial for the tractability of rea-
soning [24].

The semantics of DL-LiteA is given in terms of FOL interpre-
tations. An interpretation I = (∆I , ·I) consists of a first or-
der structure over the interpretation domain ∆I that is the disjoint
union of ∆I

O and ∆I
V , and of an interpretation function ·I such

that aI ∈ ∆I
O for all a ∈ ΓO , cI ∈ ∆I

V for all c ∈ ΓV , and such
that the following conditions are satisfied (below, o, o′ ∈ ∆I

O , and
v ∈ ∆I

V ):

AI ⊆ ∆IO
(∃Q)I = {o | ∃o′. (o, o′) ∈ QI}

(δ(U))I = {o | ∃v. (o, v) ∈ UI}
(¬B)I = ∆IO \ BI

TIi ⊆ ∆IV
>ID = ∆IV

(ρ(U))I = {v | ∃o. (o, v) ∈ UI}

PI ⊆ ∆IO ×∆IO
(P−)I = {(o, o′) | (o′, o) ∈ PI}
(¬Q)I = (∆IO ×∆IO) \QI

UI ⊆ ∆IO ×∆IV
(¬V )I = (∆IO ×∆IV ) \ V I

We assume that the unique name assumption holds, i.e., different
(object and value) constants are interpreted as different domain el-
ements.

We define now when an interpretation I satisfies a TBox or
ABox assertion. Specifically, I satisfies:

• α1 v α2, if αI1 ⊆ αI2 ;

• (funct β), where β is either P , P−, or U , if (o, e1) ∈ βI

and (o, e2) ∈ βI implies e1 = e2, for each o ∈ ∆I
O , and e1,

e2 in either ∆I
O or ∆I

V ;

• A(a) if aI ∈ AI , P (a, a′) if (aI , a′I) ∈ P I , and U(a, c)
if (aI , cI) ∈ UI .

A model of an ontology O (resp., TBox T ) is an interpretation I
that satisfies all assertions in O (resp., T ). An ontology O (resp.,
TBox T ) is satisfiable if it has at least one model, and O (resp., T )
logically implies an assertion α, denoted O |= α (resp., T |= α),
if α is satisfied in all models of O (resp., T ).

A conjunctive query (CQ) q over an ontology O is an expres-
sion of the form q(~x) ← body(~x, ~y), where ~x are the so-called
distinguished variables, ~y are the non-distinguished variables, and
body(~x, ~y) is a set of atoms of the form A(xo), P (xo, x

′
o), Ti(xv),

or U(xo, xv), where xo, x′o are variables in ~x or ~y or constants in
ΓO , and xv is a variable in ~x or ~y or a constant in ΓV . Notice
that CQs corresponds to SELECT-PROJECT-JOIN SQL queries, and
hence are the queries most commonly posed to relational DBs. The
query q(~x) ← body(~x, ~y) is interpreted in I as the set qI of tuples
~e ∈ ∆I ×· · ·×∆I such that, when we assign ~e to the variables ~x,
the first-order logic formula ∃~y.ϕ(~x, ~y), where ϕ(~x, ~y) is the con-
junction of atoms in body(~x, ~y), evaluates to true in I. The reason-
ing service we are interested in is (conjunctive) query answering:
given an ontology O and a query q over O, return the certain an-
swers to q over O, i.e., all tuples ~t of elements of ΓV ∪ ΓO such
that ~tI ∈ qI for every model I of K, denoted K |= q(~t).

As shown in [7, 24], all forms of inference over a DL-Lite on-
tology (e.g., satisfiability, logical implication, and CQ answering)
can be done in polynomial time in the size of the TBox, and in
AC0

1 in the size of the ABox (i.e., w.r.t. data complexity [32]).
In particular, to compute the certain answers of a CQ q, we can:
(i) by using the assertions in the TBox, rewrite q to a union Q of

1AC0 is the complexity class that corresponds to the complexity in
the size of the data of evaluating a first-order (i.e., SQL) query over
a relational database (see, e.g., [1]).

CQs (which is directly translatable to an SQL query), and (ii) eval-
uate Q over the database corresponding to the ABox assertions. In
this way, all forms of inference in DL-LiteA can be carried out by
exploiting standard commercial relational DB technology for ma-
nipulating the data (i.e., the ABox).

2.2 DLs and Conceptual Schemas
DLs share many similarities with representation formalisms used

in different contexts, such as UML class diagrams2 (UML-CDs),
and the correspondence with these formalisms has been analyzed
in detail [11, 4]. By virtue of this correspondence, automated in-
ference algorithms developed for DLs can be used to reason over
UML-CDs. Specifically, DL-LiteA has been designed so as to cap-
ture the most important features of such diagrams, while keeping
the complexity of inference low. We illustrate how a DL-LiteA
TBox can capture a UML-CD by means of an example, and refer
to [9] for more details.

Consider the UML-CD in Figure 1. Intuitively, each UML class
in the diagram is represented by an atomic concept in the TBox,
each UML (binary)3 association by an atomic role, and each UML
attribute by an atomic attribute (we assume here that the name of
the class is part of the attribute name). We describe how suitable
TBox assertions capture the constraints imposed on the domain by
the UML-CD.

• A generalization between two classes is represented by
means of an inclusion assertion between the corresponding
concepts, e.g., Reservation v RentalAgreement.

• To represent the domain (i.e., first component) and range
(i.e., second component) of an association P , we use ∃P
and ∃P−, respectively. E.g., to represent that the domain
of the LocatedAt association is contained in Branch we use
∃LocatedAt v Branch, and to represent that the range is
contained in Country, we use ∃LocatedAt− v Country.

• To represent domain and range of an attribute U , we
use δ(U) and ρ(U), respectively. E.g., to represent that
bestPrice is an attribute with domain RentalAgreement and
range Money, we use δ(bestPrice) v RentalAgreement
and ρ(bestPrice) v Money.

• To capture mandatory participation in an association (i.e., a
min. multiplicity 1), we use e.g., Branch v ∃IsOfType or
Customer v ∃Makes−.

• To capture functionality of an association (i.e., a max.
multiplicity 1), we use e.g., (funct LocatedAt) or
(funct Makes−).

• Finally, to capture disjointness between classes, we use nega-
tion on concepts, as e.g., in Car v ¬Branch.

By virtue of the reasoning capabilities of DL-LiteA and of the
encoding described above, inference over UML-CDs can be carried
out by relying on the reasoning services provided by reasoners for
DL-LiteA, e.g., by the system QuOnto [2, 25].

3. DISCOVERING FDS
In this section, we present our approach to discovering functional

dependencies by relying on the assertions in an ontology.
2Our considerations apply, mutatis mutandis, also to ER
schemas [12].
3Associations of arity greater than 2 can be handled through reifi-
cation [11, 9].



We first recall some basic definitions regarding functional depen-
dencies in the standard relational model (see, e.g., [1]). Consider
a relation schema R, i.e., a relation symbol with an associated set
of attributes, each denoting one component of R. A functional de-
pendency (fd) over R has the form R : X→Y , where X and Y
are sets of attributes of R. We say that a relation r for R satisfies
such a dependency if for each pair t1, t2 of tuples in r such that
πX(t1) = πX(t2), we have πY (t1) = πY (t2) (where, as usual,
πX(t) denotes the projection of tuple t on the attributes in X).

It is well known (cf. [1]) that the following set of inference rules
is sound and complete for implication of fds over a relation schema
R (below, X , Y , and Z are sets of attributes of R, and juxtaposition
of two sets stands for their union):

• If Y ⊆ X , then R : X→Y (reflexivity).
• If R : X→Y , then R : XZ→Y Z (augmentation).
• If R : X→Y and R : Y →Z, then R : X→Z (transitivity).

In other words, all fds derived from a set F of fds over R, i.e., the
F -closure, can be computed by starting from F and exhaustively
applying the above inference rules.

3.1 Functional dependencies over ontologies
We would like now to carry over to the conceptual level the stan-

dard notion of fd defined at the logical level. To this aim, we intro-
duce the notion of fd over an ontology. We observe that previous
work has already considered fds in the context of ontologies, see
e.g., [10, 30, 31]. In these works, mimicking the notion in the re-
lational model, a fd ensures that, if two objects that are instances
of some concept share the same values for a set of attributes (or
of attribute chains), then they share also the value of an additional
attribute (or attribute chain), namely the attribute (chain) that func-
tionally depends on the former attributes (chains). Instead, for the
purposes described in Section 1, a fd should capture the intuition
that the instances of one concept functionally depend on the in-
stances of another concept. In other words, given two concepts4

C1 and C2, we are interested in establishing whether each instance
of C1 allows one to determine a unique instance of C2. We will
denote this by C1→C2. Several observations are in order:

(i) The dependency between the two concepts C1 and C2 needs
to be established explicitly, and this can be done by means of some
role that relates C1 to C2. 5.

(ii) Since each instance of C1 should determine a unique in-
stance of C2, and such a dependency is established through a role,
we need to require such a role to be functional.

(iii) If we want to ensure a property analogous to transitivity
(i.e., if C1→C2 and C2→C3, then also C1→C3), we need to
allow the dependency to be established not only by atomic roles,
but also by composite roles (i.e., role chains).

(iv) In an ontology, roles are not necessarily typed, i.e., they do
not necessarily have a specified concept as domain and a specified
concept as range. Therefore, one cannot establish in general that
a role relates one concept to another concept. As a consequence,
every untyped role would potentially allow one to establish that
two arbitrary concepts are functionally dependent on each other,
provided that the role relates one object to a single other object, i.e.,
that it is functional. This is clearly unsatisfactory, and therefore we
need to enforce some stricter condition for a functional dependency
C1→C2 to hold. Specifically, we will require not only that the

4All our considerations can be easily extended to the case where C2

is a value-domain instead of concept. We stick to pairs of concepts
for space reasons.
5Note that in the relational model, attributes that functionally de-
pend on other attributes are implicitly related through the relation
schema to which the attributes belong.

role is functional, but also that the instances of C1 mandatorily
participate to the role, and that the role necessarily relates them to
an instance of C2.

The above observations lead us to the following definition of
when a fd between two DL-LiteA concepts holds in a given inter-
pretation. We make use of the notion of role chain Q1 ◦ · · · ◦Qn of
basic roles, interpreted as the composition of the binary relations
corresponding to the roles. Formally, for an interpretation I, we
have that

(Q1 ◦ · · · ◦Qn)I = QI1 ◦ · · · ◦QIn.

We can then apply concept and role constructs to role chains (in-
stead of basic roles), and the semantics naturally extends the one
for the case of basic roles. When we talk about a role chain
Q1 ◦ · · · ◦ Qn over a TBox T , we intend that for each i ∈
{1, . . . , n}, at least one of Qi or Inv(Qi) appears in T . Similarly,
a basic concept over T is any basic concept that can be constructed
from atomic concepts and roles in T .

Definition 2. Given a DL-LiteA TBox T and two concepts C1

and C2 over T , the expression C1→C2 is called a functional de-
pendency (over T ). Given an interpretation I of T , we say that
C1→C2 is satisfied in I, denoted I |= C1→C2, if there is a role
chain S = Q1 ◦ · · · ◦ Qn over T , with n > 0 and such that for
each object o1 ∈ CI1 there is exactly one object o2 ∈ CI2 such that
(o1, o2) ∈ SI .

Intuitively, the definition requires that each instance of C1 deter-
mines a unique instance of C2 by means of some chain of roles in
T . Note that the inverse of such a role chain corresponds to a path
in the path-based identification constraints in [8].

From the above definition, it is immediate to verify that the fol-
lowing properties hold for fds over T involving concepts C1, C2,
C3, and for every interpretation I:

Asserted: If I |= (funct Q), then I |= ∃Q→∃Inv(Q). (1)

Transitivity: If I |= C1→C2 and I |= C2→C3, then I |= C1→C3.
(2)

Left-inclusion: If I |= C1→C2 and C
I
3 ⊆ C

I
1 , then I |= C3→C2. (3)

Right-inclusion: If I |= C1→C2 and C
I
2 ⊆ C

I
3 , then I |= C1→C3. (4)

We are now interested in determining when an fd is logically
implied by the assertions in the TBox, i.e., the fd is necessarily
satisfied in all models of the TBox.

Definition 3. Given a DL-LiteA TBox T , we say that a fd
C1→C2 over T is logically implied by T , denoted T |=
C1→C2, if C1→C2 is satisfied in every model of T .

In the following, we will restrict the attention to functional de-
pendencies between basic concepts only, since in DL-LiteA nega-
tion is used only to assert disjointness. Exploiting the restrictions
in the expressive power of DL-LiteA, we can show the following
property.

Proposition 1. Given a DL-LiteA TBox T and two basic con-
cepts B1, B2 over T , we have that T |= B1→B2 if and only if
there is a role chain S = Q1 ◦ · · · ◦Qn over T , where n > 0, such
that (i) T |= (funct Qi), for i ∈ {1, . . . , n}, (ii) T |= B1 v ∃S,
and (iii) T |= ∃S− v B2.

PROOF SKETCH. The “if” direction is a direct consequence of
Definitions 2 and 3.

For the “only-if” direction, we observe that properties (ii)
and (iii) follow from the canonical model property of the DLs of



the DL-Lite family [7], and in particular of DL-LiteA [24]. Instead,
for property (i), we exploit the tree-model property of DL-LiteA.
This property is shared by most DLs [3], and states that if a TBox
admits a model, then it admits one that has the structure of a tree
(where the nodes of the tree are the elements of the interpretation
domain, and the edges are determined by the role instances). In a
tree-model, it is ruled out that from a given object o1 there are two
different paths labeled with the same roles that lead to the same ob-
ject o2. Hence, a chain of roles is forced to be functional in the
TBox T only if also all of the component roles are forced to be
functional.

We can now exploit Proposition 1 to obtain a simple technique
that derives pairs of concepts B1, B2 such that T |= B1→B2.
The technique is based on turning the properties (1)–(4) above into
the following inference rules, which derive new fds from existing
ones for a given TBox T and for basic concepts B1, B2, and B3

over T :

Asserted: If T |= (funct Q), then T |= ∃Q→∃Inv(Q). (5)

Transitivity: If T |= B1→B2 and T |= B2→B3, then T |= B1→B3.
(6)

Left-inclusion: If T |= B1→B2 and T |= B3 v B1, then T |= B3→B2.
(7)

Right-inclusion: If T |= B1→B2 and T |= B2 v B3, then T |= B1→B3.
(8)

We consider these rules to be applied exhaustively to all basic
concepts over T . Soundness of the rules follows directly from
the corresponding properties above, while completeness is a con-
sequence of Proposition 1. Moreover, since the number of basic
concepts over T is finite, rule application clearly terminates.

We observe that the “left-inclusion” and “right-inclusion” rules
propagate fds according to the TBox inclusion assertions, and as
such they provide an interaction between functional and inclusion
dependencies. In general, implication is undecidable when combin-
ing functional and inclusion dependencies [1], our setting is much
simpler, since we only consider unary inclusion6 and functional de-
pendencies [13]. Note also that there is no counterpart of the aug-
mentation rule for fd implication in the relational setting, since we
deal only with unary functional dependencies.

4. DISCOVERING FDs IN DL-LiteA
In this section, we propose an algorithm to discover all the fd’s

logically implied by a DL-LiteA TBox T , and which exploits the
reasoning capabilities of a DL-LiteA reasoner. Our algorithm starts
from the asserted fds (see inference rule (5)), and then computes
the closure of the asserted fds w.r.t. the remaining rules. We recall
that the asserted fds are simply ∃Q→∃Inv(Q), for each functional
role Q in the TBox.

The closure of the asserted fd’s is computed as follows. First,
we identify the sets Bd and Br of all basic concepts that appear
respectively in the domain and range of a functional basic role. To
do so, we scan all functional basic roles, and for each such role Q
and each basic concept B over T , if T |= B v ∃Q then we add B
to Bd, and if T |= B v ∃Inv(Q) then we add B to Br .

Then, for each pair of basic concepts Bd ∈ Bd and Br ∈ Br ,
we need to check whether T |= Bd v ∃S.Br , for some chain
S of functional basic roles7. To perform such a check, we have
6Note that, in DL-Lite, role inclusions are restricted so as not to
inteeact with functionality.
7The concept ∃S.Br is called a qualified existential and is inter-
preted as {o | ∃o′.(o, o′) ∈ SI ∧ o′ ∈ BI

r }. It is not a DL-LiteA
concept.

to face the difficulty that in principle we have to try all possible
lengths n of the chain S, and all the possible ways of composing
it by means of functional basic roles. To tackle the latter issue,
we introduce a new atomic role U in T , and for each basic role Q
such that (funct Q) is in T , we add to T the assertion Q v U 8.
Hence, U acts as a super-role of all functional basic roles in T and
it is sufficient to consider S as a chain of U n times with itself, for
suitable values of n. We then iterate over n until we have tried a
sufficiently large value (see below).

In DL-LiteA we cannot directly check the logical implication
T |= Bd v ∃S.Br , with S = U ◦ · · · ◦U (for some fixed length n
of the chain). However, we can easily encode such a check into the
problem of computing the certain answers to the CQ

Q
n
Bd,Br

() ← Bd(a), U(a, x1), U(x1, x2), . . . , U(xn−1, xn), Br(xn)

over the ABox constituted only by the assertion Bd(a). Indeed,
since the only fact in the ABox is one involving Bd, it is not pos-
sible to satisfy the atoms U(x, x′) and Br(xn) with facts in the
ABox. Hence, the only case in which the answer to the query could
anyway be positive, is when the whole body of Qn

Bd,Br
can be

rewritten to just Bd(a) [7]. And this is precisely the case when
T |= Bd v ∃S.Br . Notice that we are taking advantage of the
query rewriting technique for DL-LiteA, which exploits the knowl-
edge contained in the TBox of the ontology to actually compute the
right-inclusion and left-inclusion inference rules with the DL-LiteA
reasoner.

The question that we still need to address is which is the max-
imum bound for the length n of the role chain S. If the ontology
does not contain functional cycles, we should stop when no new an-
swer is retrieved. However, it is not uncommon to find functional
cycles in a real world ontology. In this case, we should stop look-
ing for functional dependencies originating at a concept Bd when
(i) for a given length no results are provided, or (ii) no new con-
cepts are proposed with regard to previous iterations. Intuitively,
the reason is that in DL-Lite all the roles involved in a functional
path must be functional as well, and hence at each step we must
get, at least, one new concept of the longest path. Otherwise we are
looping in a cycle.

More precisely, let Bd be the concept from where we start look-
ing for functional dependencies and Di the set of concepts that we
have already identified up to iteration i. Let Br be a concept func-
tionally dependent on Bd and not yet identified.

• If Bd functionally identifies Br , then there must be a role
chain S′ that connects Di and Br . Let D? be the concepts
along S′. Note that Di and D? are disjoint, since the Di

contains concepts already visited, while D? not.

• At least, one concept of Di and one concept of D? must be
directly related. Let’s call them Bi and B?, respectively.

• If along the i + 1-th iteration we do not identify any new
concept, then, B? ∈ Di, which contradicts our initial as-
sumption that Di and D? are disjoint.

An upper bound for the maximum number of queries we will
have to pose is Θ(n · |Bd| · |Br|), where n is the length of the max-
imum chain of functional roles. However, this is an upper bound
not reachable in practice because those concepts that do not get any
new solution for paths of length i, are not queried in the next iter-
ations. In most cases (considering ontologies in real applications),
most of the concepts will end with n being rather small, as dis-
cussed in Section 6.1. Furthermore, if in a previous iteration we

8Note that this is compatible with the conditions in Definition 1.



have shown that T |= Bd→Br , then, this pair will not be checked
again in next iterations.

We note that the computational complexity of the rewriting algo-
rithm of DL-LiteA is exponential in the size of the query. However,
this turns out to be manageable for real ontologies, given that the
number of times we have to concatenate role U is relatively small,
cf. Section 6.1.

5. DL-LiteA ONTOLOGIES FROM CON-
CEPTUAL SCHEMAS

The fds as introduced in Section 3 are conceived for arbitrary
DL-LiteA ontologies. Nevertheless, there are some interesting ad-
ditional considerations to be made regarding DL-LiteA ontologies
derived from conceptual schemas. Consider the UML diagram de-
picted in Figure 1 and let Teu be the corresponding DL-LiteA TBox.
Specifically, the hasAssigned association results in the following
assertions:

∃hasAssigned v RentalAgreement
∃hasAssigned− v Assignment

Assigment v ∃hasAssigned−
(funct hasAssigned)
(funct hasAssigned−)

According to Definition 3, we have that Teu |=
Assignment→RentalAgreement, (but Teu 6|=
RentalAgreement→Assignment), since RentalAgreement
does not have a mandatory participation in hasAssertion. As
discussed in Section 3.1, the mandatory participation is needed in
arbitrary DL-LiteA ontologies to avoid discovering meaningless
functional dependencies. For instance, consider the following
TBox T :

∃P1 v A1, ∃P
−
1 v A2, (funct P1), ∃P2 v A3 ∃P

−
2 v A4 (funct P2)

Without requiring the mandatory participation we would have that
T |= A1→A4. Indeed, both P1 and P2 are functional, and there-
fore, in every model of T , every instance of A1 is connected to at
most one instance of A4 via the role chain P1 ◦ P2.

However this scenario cannot happen in ontologies derived from
conceptual schemas. In an UML-CD (or ER schema) two classes
are supposed to be disjoint unless they are related by a generaliza-
tion relationship and furthermore, strict role-typing is assumed (i.e.,
exactly the opposite assumptions to those in arbitrary DL-LiteA
ontologies). Hence, when translating UML-CDs to DL-LiteA it
makes sense to identify functional dependencies from non manda-
tory relationships. With this aim, we redefine the functional prop-
erty definition presented in Section 3.1 for DL-LiteA ontologies de-
rived from conceptual schemas:

Definition 4. Given a DL-LiteA TBox T , an atomic role P in T
is strict role-typed in T if there is a single atomic concept A1 such
that ∃P v A1 is in T , and a single atomic concept A2 such ∃P− v
A2 is in T . The concepts A1 and A2 are called respectively the
domain and range of P . A DL-LiteA TBox Tc is called DL-LiteA
conceptual schema if each atomic role P is strict role-typed in T
and for each pair of atomic concepts A1, A2, either A1 and A2 are
disjoint (i.e., Tc |= A1 v ¬A2) or A1 and A2 participate in the
same concept taxonomy (i.e., there is an atomic concept A such
that Tc |= A1 v A and Tc |= A2 v A).9

Definition 5. Given a DL-LiteA conceptual schema Tc, two ba-
sic concepts B1 and B2 over Tc, and an interpretation I of T , we
say that I |= B1→B2 if there is a chain S = Q1 ◦ · · · ◦ Qn,
with n > 0, of roles that are strict role-typed in T , where B1 is
9Note that the concept A may coincide with A1 or A2.

Figure 1: The EU-Car Rental Case Study

the domain of Q1, B2 is the range of Qn, and such that for each
object o1 ∈ ∃QI1 there is exactly one object o2 ∈ CI2 such that
(o1, o2) ∈ SI .

Roughly speaking, we may relax the mandatory participation of
B1 in S thanks to the implicit constraints we may find in a DL-Lite
conceptual schema.

We can take advantage of the algorithm presented in Section 4
to discover functional dependencies over DL-LiteA conceptual
schemas by adding the following two assertions for each functional
role P with domain A1 and range A2:

A1 v ∃P A2 v ∃P−

Indeed, we are adding a mandatory participation for the role to
its domain and range. In terms of UML-CDs, we are modifying
the cardinality of the relationship and making it mandatory. With
this trick we fulfill Definition 2 of fd and despite this change, the
semantics with regard to fd’s will not change and the results we
get are sound. Notice that these assertions are only needed while
discovering functional dependencies and they have to be retracted
once the algorithm has finished.

This trick cannot be applied for arbitrary DL-Lite ontologies. In
an arbitrary DL-LiteA ontology disjointness of concepts cannot be
assumed and therefore, adding the domain and range assertion we
would modify the semantics of the model also with respect to fds.
As a consequence, we could identify false fds.

6. CASE STUDY
In this section we show results got after applying our algorithm

over a real case study. Consider the conceptual diagram depicted
in Figure 1. This diagram corresponds to a piece of the EU-Car
Rental case study. It presents a car rental company with branches
in several countries which provides typical rental services. This
conceptual schema collects information about cars, branches, rental
agreements, assignments, etc. A detailed specification of this case
study may be found in [15].

Since we want to automate the fd’s computation, we first need to
transform the UML diagram into a DL-LiteA ontology as explained
in Section 2. Once it is done, we can use AMDO’s patterns to
discover the multidimensional concepts as presented in [26].

It is remarkable the relevance of automating this process as in
this small example we are able to discover 426 functional depen-
dencies. The reader will notice, though, that not all of them will be
shown to the user but internally handled by AMDO. For instance,
many functional dependencies identified are datatypes. Moreover,
given a concept C, its set of functional dependencies may be de-
picted as a tree with C as root node, and most of these trees will



Figure 2: A compacted view of the functional dependencies in
the EU-Car Rental case study

overlap. As an example, the fd tree of branch will be a sub-
tree within the rentalagreement fd tree. Figure 2 takes advan-
tage of these properties to show the functional dependencies of
closedrental (the concept with most fds in our example) and the
functional dependencies of all those concepts in its tree; giving rise
to a directed graph. This figure must be read as follows. Starting
from a concept, following all the directed arrows we may get to
all its functional dependencies (for instance, branch and its sub-
tree are functional dependencies of customer, and the whole three
of rentalagreement is a subtree of assignment. Closedrental and
openedrental have two special arrows that stand for inheritance;
thus, they get all the functional dependencies their parents have).
Numbers in brackets represent the number of functional datatypes
that concept has (since by definition, datatypes do not have depen-
dencies we can overlook them at first sight and only show them if
the user asks for). The squared number stands for the functional
dependencies that concept has. Notice that we cannot compute the
number of fds of a concept by adding the squared numbers of its
sons, as some fds are shared between them. Finally, the reader
must notice that if rentalduration has 4 functional dependencies
(not shared with any other concept), rentalagreement will get 5
fds from this edge (4 fds plus rentalduration itself).

By applying AMDO, each domain concept will be evaluated as
a potential fact. In short, the fd’s of each concept are divided
in two main groups: those being potential dimensional concepts,
and those being potential measures. The more measures and di-
mensions a concept has, the better will be ranked as a promising
fact. For instance, ClosedRental (42 fd’s), OpenedRental (41),
RentalAgreement (40) and Assignment (40) would be considered
promising subjects of study, which makes sense according to their
semantics. AMDO applies additional design patterns for eventu-
ally shape the multidimensional conceptual schema but in essence,
it uses fd’s for identifying dimensional concepts (and also to give
rise to the dimension hierarchies) and measures.

6.1 Statistics over the Case Study
For the sake of comprehension, we have discussed till now only

a piece of the EU Car-Rental case study. We consider now the
full EU Car-Rental case study of which we computed the closure
of functional dependencies by applying the algorithm presented in
Section 4. This case study has 65 concepts and 170 roles (30 of
which are subsumption assertions between classes).

A total of 1908 functional dependencies were found. The total
computation time was 2.332 seconds from which, 0.080 seconds
were used by the reasoner to classify the ontology, 0.006 seconds
were required to query for candidate domains and ranges for the
functional paths (i.e., the Bd and Br sets presented in Section 4,
and the remaining time (2.246 seconds) was used to compute the
functional dependencies.

To run these tests we used the FaCT++ reasoner. We note
that FaCT++ doesn’t support answering conjunctive queries, As
a workaround, we had to devise a subsumption verification query

which was true iff the CQ of Section 4 is non-empty, and false
otherwise. The query which complies with this specification is
(B1 v ∃U .∃U . · · · .B2)? were B1 corresponds to the current do-
main to be tested, the number of nested U ’s corresponds to the
number of U atoms in the original CQ and B2 corresponds to the
range of the functional path to be tested.

Furthermore, we also computed the functional paths (i.e., the
composition of roles) that verified the query shown above. No-
tice this is relevant because in the multidimensional model each
functional path between two concepts must give rise to different
perspectives of analysis (i.e., aggregation paths). In order to do
this, we sent additional queries to the reasoner, whenever we had
verified the existence of a path of length n. In these queries we
replaced the n’th occurrence of role U in the qualified existential
chain with each of the sub-roles of U . In this case, 41.039 sec-
onds were spent pinning-down the specific roles which triggered
the existence of these paths.

The computer used in these test was equipped with an Intel
Core 2 Duo 2.16 GHz processor, 3 GB of RAM. With respect to
software, we used the 64 bit version of the Java Runtime Environ-
ment 1.6 and the 64 bit version of the FaCT++ runtime binaries.

7. RELATED WORK
On the one hand, previous approaches for discovering functional

dependencies were devised for relational databases and they ad-
dress this task either at the logical or physical level. Addressing
this task at the logical level entails that results got are tied to the
design decisions made when devising the system. A logical schema
may lack semantics regarding a conceptual schema. Logical design
decisions such as overlooking foreign keys in the relational schema
or denormalizing data (i.e., collapsing relations) directly impact on
the quality of results got. Some approaches try to overcome the
logical schema lack of semantics with additional semantics or as-
sumptions (for instance, [19, 29]) but most of them address this
task directly at the physical level [14, 21, 23].

On the other hand, there have been other works proposing to
model the data warehouse from a conceptual formalization of the
domain. However, most of them must be carried out manually
since they present a step-by-step guide to be followed by a data
warehousing expert (see [27] for further details). Only a few of
them automate this process somehow but the degree of automation
achieved is rather low. Specifically, these approaches consist of a
detailed requirement elicitation stage (to be performed manually)
and an automated analysis of the data sources. Later, both stages
are put in common, conciliating in this way the data sources and
requirements (for instance, see [5, 16, 17]). In these methods the
requirement elicitation stage leads the process and main design de-
cisions are captured in this step whereas the analysis of the data
sources is rather superficial (i.e., design patterns described do not
exploit the whole semantics of the multidimensional concepts). In-
deed, the analysis of the data sources can be thought as a comple-
mentary task to the requirement elicitation processes described in
these approaches. For instance, facts are mostly identified man-
ually from requirements and the automation of the process is re-
duced to discover to-one relationships from each fact identified. To
our knowledge, there is only one approach working at the concep-
tual level and following a similar framework to AMDO [28]. This
work presents a method to design the data warehouse from ER di-
agrams. and it achieves a fair degree of automation,. Dimension
hierarchies and measures, however, are overlooked. For a detailed
related work on multidimensional design methods (and the benefits
and main contributions of AMDO regarding other approaches) we
address the reader to [27, 26].



8. CONCLUSIONS
In this paper we propose to redesign the core of the AMDO

method [26] and take advantage of the well-known reasoning ser-
vices provided by DL languages. Thus, our algorithms do exploit
now the inference capabilities of DL-Lite for multidimensional de-
sign purposes. We have also shown the feasibility of our method in
practice by means of the EU-Car Rental case study.
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