q

Check for
updates

ExpO: Towards Explaining
Ontology-Driven Conceptual Models

(=)

Elena Romanenko® , Diego Calvanese!2®, and Giancarlo Guizzardi®*

! Free University of Bozen-Bolzano, Bolzano, Italy
{eromanenko,diego.calvanese}Qunibz.it
2 Umea University, Umea, Sweden
3 University of Twente, Enschede, The Netherlands
g.guizzardiQutwente.nl
4 Stockholm University, Stockholm, Sweden

Abstract. Ontology-driven conceptual models play an explanatory role
in complex and critical domains. However, since those models may consist
of a large number of elements, including concepts, relations and sub-
diagrams, their reuse or adaptation requires significant efforts. While
conceptual model engineers tend to be biased against the removal of
information from the models, general users struggle to fully understand
them. The paper describes ExpO—a prototype that addresses this trade-
off by providing three components: (1) an API that implements model
transformations, (2) a software plugin aimed at modelers working with
the language OntoUML, and (8) a web application for model exploration
mostly designed for domain experts. We describe characteristics of every
component and specify scenarios of possible usages.

Keywords: Ontology-Driven Conceptual Models + OntoUML -
Pragmatic explanation - Software Tools

1 Introduction

A conceptual model (CM) is an abstract, high-level representation of the domain
of interest, the task that needs to be carried out, or the software itself. In recent
years, ontology-driven conceptual models (ODCMs) have been proposed as a par-
ticular class of conceptual models that gain an advantage by utilizing ontological
theories to develop engineering artefacts [15].

Both ODCMs and traditional CMs alike play a fundamental role in organiz-
ing communication between people with different backgrounds, such as program-
mers, ontology engineers, and domain experts. Models are also supposed to be
easily reused and extended. Unfortunately, in reality, there is an unspoken dis-
agreement between domain experts and conceptual model engineers—authors of
the existing ODCMs. While modelers tend to consider all information specified
in the model as necessary, thus, resisting attempts to simplify these artefacts
(see experiments in [12]), domain experts, as general users, are struggling to
fully understand how to adapt an already existing model to their needs.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Aratjo et al. (Eds.): RCIS 2024, LNBIP 514, pp. 20-28, 2024.
https://doi.org/10.1007/978-3-031-59468-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-59468-7_3&domain=pdf
http://orcid.org/0000-0002-8139-5977
http://orcid.org/0000-0001-5174-9693
http://orcid.org/0000-0002-3452-553X
https://doi.org/10.1007/978-3-031-59468-7_3

ExpO: Towards Explaining Ontology-Driven Conceptual Models 21

In this paper, we present EzpO — a prototype system for explaining existing
ODCMs. We rely here on the notion of pragmatic explanation for ODCMs as
discussed in [11] for domain ontologies, and focus on explaining models without
changing the form of explanation. ExpO consists of (1) an API that implements
model transformations that are supposed to help in ODCM understanding, (2)
an extension of the existing OntoUML Plugin with the API functionality, and (3)
a web application for model exploration mostly designed for domain experts with
a non-technical background. This work is based on several previous papers [5,
7,10,11]. However, our main purpose here is not to formulate a final set of
explanation operations needed to reach a better understanding of a given model,
but to present the system itself.

The remainder of the paper is organized as follows: Sect.2 presents back-
ground; Sect.3 proposes ExpO, introduces its architecture, and elaborates on
various components of the system; Sect. 4 provides final considerations and out-
lines future work.

2 Background

Foundational ontologies are a special class of ontologies specifying a general
schema for describing objects, their constitution and composition, roles that
objects can play, events and their goals, and qualities of objects and events. In
a recent special issue of the Applied Ontology journal [1], seven of the most
commonly used foundational ontologies were listed, including the Unified Foun-
dational Ontology (UFO).

UFO [4] draws contributions from Formal Ontology in Philosophy, Philosoph-
ical Logic, Cognitive Psychology, and Linguistics. It is particularly interesting for
our research given that it is used as a foundation for OntoUML, one of the most
widely used languages in ontology-driven conceptual modeling [15]. OntoUML
is a language that extends UML class diagrams by defining a set of stereotypes.
These stereotypes expand UML’s meta-model so that classes and associations
decorated with them bring precise (real-world) semantics grounded in UFO.
Additionally, OntoUML models satisfy a number of semantically motivated syn-
tactic constraints, ensuring their compliance with the UFO axiomatization [6].

In general, conceptual model engineers are better supported for model
development than domain experts for model exploration. For example, Visual
Paradigm (VP)! is a widespread modeling tool that facilitates the development
of different types of diagrams, including UML models. For those who are devel-
oping ODCMs, there is, e.g., an OntoUML Plugin for VP? that automatically
checks the ontological consistency of an OntoUML diagram in light of UFO.
Nevertheless, both proficiency in technical skills and familiarity with UFO, along
with the obligation to install specialized software, are essential for utilizing the
plugin. At the same time, there is no proper tool for users who would like to

! https://www.visual-paradigm.com.
2 https://github.com/OntoUML/ontouml-vp-plugin.

https://www.visual-paradigm.com
https://github.com/OntoUML/ontouml-vp-plugin

22 E. Romanenko et al.

familiarize themselves with the existing model or simply check if it is suitable
for their specific requirements.

To facilitate understanding of existing models, software tools that manage
ODCMs should incorporate features that provide explanations for such models.
In this context, the term ‘explanation’ refers to pragmatic explanation, where
‘pragmatic’ signifies an ‘instrumentalist’ approach to constructing explanations
(see [16]), emphasizing the creation of a ‘toolbox’ designed to assist users in
reaching their goals. In [11], we show that complexity management approaches,
such as clustering [7] and abstraction [5,10], can be viewed as pragmatic expla-
nation techniques when talking about domain ontologies. Recent experiments
revealed that this is also true for ODCMs [12]. However, to the best of our knowl-
edge, there is no uniform tool that offers different transformations of ODCMs,
potentially enhancing comprehension of the given model.

Visual Paradigm is a popular modeling tool, but together with the OntoUML
Plugin, it is more used by conceptual modelers and ontology engineers for model
development rather than by domain experts for model exploration. Currently, it
already provides some desired functionality, such as model clustering [7].

Protégé? [9] aims at OWL artefacts. ODCMs—exported into Turtle format—
may be examined in it with different visualization plugins, e.g., OntoGraph®.
Although these plugins lack important functionality, they provide the possibility
to focus or hide the concept of interest. This, however, may lead to a cognitive
load of users when dealing with large models [8].

WebVOWL? also can load a model in Turtle format, but visualizes individuals
as lists, which leads to the same problem of cognitive overload.

Although Evonne® [8] was developed with a completely different goal—to
support interactive debugging of ontologies—it seems to be the most relevant
tool to our research since it is aimed at explanations. At the same time, Evonne
is aimed at OWL models and, hence, does not support explanation and com-
plexity management for ODCMs in a manner that is aligned with foundational
categories.

3 ExpO Architecture

Before presenting the design of the ExpO system, we first need to determine its
potential users and their requirements. During a user study we carried out [12],
it became obvious that at least two categories of users must be distinguished:
(1) authors of the models (model engineers, experienced modelers), and
(2) domain experts without prior knowledge about OntoUML modeling or poten-
tial model users who are unfamiliar with the domain.

Taking the defined categories of users into account, we formulated the fol-
lowing design goals for the system.

3 http://protege.stanford.edu.

* https://protegewiki.stanford.edu/wiki/OntoGraf.

5 http://vowl.visualdataweb.org/webvowl.html.

5 https://imld.de/en /research /research-projects/evonne.

http://protege.stanford.edu
https://protegewiki.stanford.edu/wiki/OntoGraf
http://vowl.visualdataweb.org/webvowl.html
https://imld.de/en/research/research-projects/evonne

ExpO: Towards Explaining Ontology-Driven Conceptual Models 23

JSON ExpO Web ¢ 3
l Application

Expose

JSON 5 OntoUML & ExpO Plugin for ¢ JSON 5

Visual Paradigm

ExpO p
«P
!

Visual Q Paradigm
A 4

Fig. 1. Broad overview of the approach.

DG1: Support different levels of expertise. For users with less modeling experience
the system should remain intuitive.

DG2: Minimize setup difficulties. Novice users with little technical background
should receive a ready-to-use tool.

DG3: Enable interactive exploration. Interaction plays a critical role in providing
explanations and reaching understanding [8,11].

DG4: Build on familiar representations. The system should use standard visual
representations of graphs as node-link diagrams.

DGb5: Keep the original layout. The system should try to keep the original
(expert) layout of the ODCM when possible in order not to confuse users,
who probably worked with the same model in VP before.

In [14], the author suggests the following strategy for visual information-
seeking: “overview first, zoom and filter, then details on demand”. Based on this
guideline, seven tasks were suggested for systems that provide visual content:

Overview: gain an overview of the entire collection of elements;
Zoom: zoom in on items of interest;
Filter: filter out uninteresting items;
Details-on-demand: select an item or group and get details when needed;
Relate: view relations among items;
History: keep a history of actions to support undo and replay;
Extract: allow extraction of sub-collections.

This approach was further extensively reused, e.g., in [2]. During the develop-
ment of our system, we took into account these guidelines and the refined asso-
ciated tasks, and suggested an architecture of the system with three separate
components (see Fig. 1):

— FEzxpose, a server that provides an API for ODCM transformations;

— OntoUML & EzpO Plugin for VP, an updated version of the OntoUML Plu-
gin for VP with extended functionality;

— FExzpO Web Application, a web interface mostly aimed at domain experts.

The Expose component is written in Python using the FastAPI. It is a server
component”, that provides open routes that implement transformation opera-

" Use https://w3id.org/ExpO/expose/health to check if the server is accepting
requests.

https://w3id.org/ExpO/expose/health

24 E. Romanenko et al.

Table 1. Short description of some of the API routes.

Route Specification Description

Focus Type POST Focuses on the given node and keeps
Parameters Body: graph, node, hop |only those concepts that are reached
by no more than hop relations.

Cluster Type POST If the given node is a Relator,
Parameters Body: graph, node applies the relator-centric approach
for clustering [7].
Define Type GET Provides several definitions of the
Parameters Parameters: concept, given concept that can be found in a
number of definitions dictionary. This route is used by the

web application only.

Expand Type POST Finds a similar concept (by name
Parameters Body: graph, node, limit | and stereotype) in the
OntoUML / UFO Catalog [13] and, if
found, extends the hierarchy with
the data from the Catalog using no
more than limit concepts.

Abstract Type POST Applies the given type of abstraction
Parameters Body: graph, (one or more) to the graph. The
abstraction type supported abstraction types are
“parthood”, “hierarchy”, and
“aspects” [10].
Fold Type POST Collapses all hierarchical and
Parameters Body: graph, node part-whole relations of the given
node.

tions®. A short description of some of the open routes as well as additional
remarks regarding some of the requests are collected in Table 1.

The Expand route keeps an index of all concepts and their stereotypes that
were mentioned in all models of the OntoUML / UFO Catalog [13]. In order
to get the models with the concept of interest, it sends an API request to the
GitHub REST API° and tries to extend the current model with the collected
information. The Define route sends an API request to the Wiktionary'? service
to collect likely definitions of the given concept. We assume that this information
can be used by novice users not familiar with the domain. All other routes are
processed directly by Expose, and, as shown in Table 1, most of them are POST
requests. The reason for this is that Expose does not store user data. Thus, the
general idea is to take the original model, apply the requested transformation
operation to it, and return the result in the right format. All routes respond
with JSON, the content of which depends on the type of the output format. For
the plugin, the server returns only the model that can be loaded directly into

8 The full documentation can be found in the corresponding folder of the project on
https://w3id.org/ExpO/github and on https://w3id.org/ExpO /expose/docs.

9 https://docs.github.com/en/rest?apiVersion=2022-11-28.

19 https://en.wiktionary.org.

https://w3id.org/ExpO/github
https://w3id.org/ExpO/expose/docs
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://en.wiktionary.org

ExpO: Towards Explaining Ontology-Driven Conceptual Models 25

@ Check Model ©, Abstract Parthood | Import from JSON & Update Plugin
(© Check Diagram @, Abstract Hierarchy |O Export to JSON £ Settings

(@ Generate Diagrams || & Abstract Aspects J @ Export to gUFO © Report Error

3| | Cluster of Membership () OntoUML Stereotypes >
K <default package>] . 0 suggested Stereotypes >
& a 0 Meta-Properties >
3 —
g 4 [@ <<role>> <<mediation>> [F<refator>>] - [=<kind>> O Focus on class

i Membership i Team
e | Membership [rediaion> T2 |) clugeer

0 Expand class

<<mediation>> 0 Fold class

© N-ary Association

& Association Class Add >
> g <<role>> {2 Open Specification... <

4 = T
O = <> __Employee Stereotypes L
o erson Favallability=int Model Element Properties >

4 Collaboration ~General experience level : Experience Levels
R Cih Rianrame -

Fig. 2. Changes in the main menu and the context menu of the plugin. In the picture,
you can see the result of applying a Cluster request to the ‘Membership’ concept for
the model ‘jacobs2022sdpontology’ from the OntUML / UFO Catalog [13].

VP. For the web application, the result consists of the original graph (for future
processing) and its simplification and adaptation for the web interface.

The original OntoUML Plugin for VP was updated in order to support
the functionality provided by Expose. Figure 2 shows the updates in the main
and context menus that were introduced. The plugin is developed in Java and
published on GitHub!!. However, the user interface is constrained by VP. For
instance, while it supports zoom functionality for models, there are limitations
when searching for a concept or relation. Users can only see those elements
that were found on the active diagram, without the ability to search across the
entire project. Additionally, the system has some difficulties in maintaining a
comprehensive history of actions; although actions are mostly reversible within
a session, each model received from Expose is treated as an entirely new one.
These limitations are intrinsic to the existing implementations of VP and the
original plugin and cannot be readily overcome. For these reasons, achieving the
first three design goals (DG1-DG3) is challenging using only the plugin. For
users who do not want to install additional software, miss the required techni-
cal skills, or just want to quickly explore the model without the necessity to
download it, we suggest using the ExpO Web Application.

The ExpO Web Application'? is written in JavaScript with the help of the
React library'® and the react-d3-graph component'®. In order not to confuse
the user (who could have used the OntoUML & ExpO Plugin before) and in
accordance with the last design goal, the smart colouring scheme (see, e.g., in [7])
and the layout are kept as close to the original model as possible. Note, that full
compliance cannot always be achieved, since VP provides an opportunity to
divide the project into several models, while the web application combines all
of them in one view. Both zoom opportunities and the possibility to perform

1 https://w3id.org/ExpO/plugin.

2 https://w3id.org/ExpO.

13 https://react.dev.

14 https://danielcaldas.github.io/react-d3-graph.

https://w3id.org/ExpO/plugin
https://w3id.org/ExpO
https://react.dev
https://danielcaldas.github.io/react-d3-graph

26 E. Romanenko et al.

undo /replay are supported. Search for all elements (concepts, relations, and
constraints) is provided across the whole model.

4 Conclusions and Future Work

Ontology-driven conceptual models are supposed to build a bridge for communi-
cation between ontology engineers or programmers and domain experts without
special technical knowledge. However, before these models can be reused, they
need to be understood by their users.

In this paper, we have presented ExpO, a prototype system aimed at produc-
ing explanations for ODCMs. The ExpO system consists of three components,
each with its own functionality. The EzpO Server applies transformation oper-
ations to ODCMs. Those operations cover most of the tasks described by the
“Visual Information-Seeking Mantra”. The rest of the tasks, namely Zoom and
History, are covered by the OntoUML & ExpO Plugin for VP and by the ExpO
Web Application. The former is mostly aimed at professionals, who have worked
with modeling tools before, while the web application does not require installa-
tion or model download, and allows for model investigation on-the-fly.

We expect to continue to extend the functionality of the system. A prospec-
tive method can be based on showing the hierarchy below /above the selected
concept. For now, most of the explanation transformations are applied in an
automatic mode, but the user may be interested in selecting certain model ele-
ments that need to be maintained in the final explanation. Also, ideally, each
ODCM should be accompanied by a list of competency questions [3]. By filtering
this list according to concepts that are still left in view, we can help our users
determine how far they would like to reduce the model. Finally, a qualitative
user study is needed, investigating whether this set of transformation operations
is enough to support a full understanding of the model, and the role the web
application plays in it.

Resource Availability Statement: The ExpO Server is available at https://w3id.
org/ExpO/expose/health. The ExpO Plugin can be downloaded and installed
from the GitHub repository https://w3id.org/ExpO/plugin. The ExpO Web
Application is available at https://w3id.org/ExpO. The corresponding GitHub
repository for the project is https://w3id.org/ExpO/github. The software is dis-
tributed under the Apache 2.0 license.

Acknowledgements. This research has been partially supported by the Province
of Bolzano and DFG through the project D2G2 (DFG grant n. 500249124), by the
HEU project CyclOps (grant agreement n. 101135513), and by the Wallenberg AI,
Autonomous Systems and Software Program (WASP), funded by the Knut and Alice
Wallenberg Foundation.

References

1. Borgo, S., Galton, A., Kutz, O.: Foundational ontologies in action. Appl. Ontol.
17, 1-16 (2022). https://doi.org/10.3233/A0-220265

https://w3id.org/ExpO/expose/health
https://w3id.org/ExpO/expose/health
https://w3id.org/ExpO/plugin
https://w3id.org/ExpO
https://w3id.org/ExpO/github
https://doi.org/10.3233/AO-220265

10.

11.

12.

13.

14.

ExpO: Towards Explaining Ontology-Driven Conceptual Models 27

Golfarelli, M., Pirini, T., Rizzi, S.: Goal-based selection of visual representations for
big data analytics. In: de Cesare, S., Frank, U. (eds.) ER 2017. LNCS, vol. 10651,
pp. 47-57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70625-2_5
Griininger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies.
In: Proceedings of the IJCAI 1995 Workshop on Basic Ontological Issues in Knowl-
edge Sharing (1995). http://www.eil.utoronto.ca/wp-content/uploads/enterprise-
modelling/papers/gruninger-ijcai95.pdf

Guizzardi, G., Botti Benevides, A., Fonseca, C.M., Porello, D., Almeida, J.P.A.,
Sales, T.P.: UFO: unified foundational ontology. Appl. Ontol. 17(1), 167-210
(2022). https://doi.org/10.3233/A0-210256

Guizzardi, G., Figueiredo, G., Hedblom, M.M., Poels, G.: Ontology-based model
abstraction. In: Proceedings of the 13th International Conference on Research
Challenges in Information Science (RCIS), pp. 1-13. IEEE (2019). https://doi.
org/10.1109/RCIS.2019.8876971

Guizzardi, G., Fonseca, C.M., Almeida, J.P.A., Sales, T.P., et al.: Types and tax-
onomic structures in conceptual modeling: a novel ontological theory and engi-
neering support. Data Knowl. Eng. 134, 101891 (2021). https://doi.org/10.1016/
j-datak.2021.101891

Guizzardi, G., Sales, T.P., Almeida, J.P.A., Poels, G.: Automated conceptual model
clustering: a relator-centric approach. Softw. Syst. Model. 21, 1363-1387 (2022).
https://doi.org/10.1007/s10270-021-00919-5

Méndez, J., Alrabbaa, C., Koopmann, P., Langner, R., et al.: Evonne: a visual tool
for explaining reasoning with OWL ontologies and supporting interactive debug-
ging. Comput. Graph. Forum (2023). https://doi.org/10.1111/cgf.14730

Musen, M.A.: The Protégé project: a look back and a look forward. AI Matters
1(4), 4-12 (2015). https://doi.org/10.1145/2757001.2757003

Romanenko, E., Calvanese, D., Guizzardi, G.: Abstracting ontology-driven concep-
tual models: Objects, aspects, events, and their parts. In: Guizzardi, R., Ralyté,
J., Franch, X. (eds.) RCIS 2022. LNBIP, vol. 446, pp. 372-388. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-05760-1_22

Romanenko, E., Calvanese, D., Guizzardi, G.: Towards pragmatic explanations for
domain ontologies. In: Corcho, O., Hollink, L., Kutz, O., Troquard, N., Ekaputra,
F.J. (eds) EKAW 2022. LNAI, vol. 13514, pp. 201-208. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17105-5_15

Romanenko, E., Calvanese, D., Guizzardi, G.: What do users think about abstrac-
tions of ontology-driven conceptual models? In: Nurcan, S., Opdahl, A.L., Moura-
tidis, H., Tsohou, A. (eds) RCIS 2023. LNBIP, vol. 476, pp. 53-68. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-33080-3_4

Sales, T.P., Barcelos, P.P.F., Fonseca, C.M., Valle Souza, 1., et al.: A FAIR cata-
log of ontology-driven conceptual models. Data Knowl. Eng. 147, 102210 (2023).
https://doi.org/10.1016/j.datak.2023.102210

Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages,
pp. 336-343. IEEE Computer Society (1996)

https://doi.org/10.1007/978-3-319-70625-2_5
http://www.eil.utoronto.ca/wp-content/uploads/enterprise-modelling/papers/gruninger-ijcai95.pdf
http://www.eil.utoronto.ca/wp-content/uploads/enterprise-modelling/papers/gruninger-ijcai95.pdf
https://doi.org/10.3233/AO-210256
https://doi.org/10.1109/RCIS.2019.8876971
https://doi.org/10.1109/RCIS.2019.8876971
https://doi.org/10.1016/j.datak.2021.101891
https://doi.org/10.1016/j.datak.2021.101891
https://doi.org/10.1007/s10270-021-00919-5
https://doi.org/10.1111/cgf.14730
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1007/978-3-031-05760-1_22
https://doi.org/10.1007/978-3-031-17105-5_15
https://doi.org/10.1007/978-3-031-33080-3_4
https://doi.org/10.1016/j.datak.2023.102210

28 E. Romanenko et al.

15. Verdonck, M., Gailly, F.: Insights on the use and application of ontology and con-
ceptual modeling languages in ontology-driven conceptual modeling. In: Comyn-
Wattiau, I., Tanaka, K., Song, I-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016.
LNCS, vol. 9974, pp. 83-97. Springer, Cham (2016). https://doi.org/10.1007 /978~
3-319-46397-1_7

16. Weber, E., Van Bouwel, J., De Vreese, L.: Scientific Explanation. Springer Briefs in
Philosophy. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-6446-
0

https://doi.org/10.1007/978-3-319-46397-1_7
https://doi.org/10.1007/978-3-319-46397-1_7
https://doi.org/10.1007/978-94-007-6446-0
https://doi.org/10.1007/978-94-007-6446-0

	ExpO: Towards Explaining Ontology-Driven Conceptual Models
	1 Introduction
	2 Background
	3 ExpO Architecture
	4 Conclusions and Future Work
	References

