
Abstracting Ontology-Driven Conceptual
Models: Objects, Aspects, Events,

and Their Parts

Elena Romanenko1(B) , Diego Calvanese1,2 , and Giancarlo Guizzardi1,3

1 Free University of Bozen-Bolzano, 39100 Bolzano, Italy
{eromanenko,giancarlo.guizzardi}@unibz.it, calvanese@inf.unibz.it

2 Ume̊a University, 90187 Ume̊a, Sweden
3 University of Twente, 7500 Enschede, The Netherlands

Abstract. Ontology-driven conceptual models are widely used to cap-
ture information about complex and critical domains. Therefore, it is
essential for these models to be comprehensible and cognitively tractable.
Over the years, different techniques for complexity management in con-
ceptual models have been suggested. Among these, a prominent strategy
is model abstraction. This work extends an existing strategy for model
abstraction of OntoUML models that proposes a set of graph-rewriting
rules leveraging on the ontological semantics of that language. That orig-
inal work, however, only addresses a set of the ontological notions cov-
ered in that language. We review and extend that rule set to cover more
generally types of objects, aspects, events, and their parts.

Keywords: Conceptual model abstraction · Complexity management
of conceptual models · OntoUML

1 Introduction

The term conceptual model (CM) is heavily overloaded and covers a wide
range of models, e.g., Entity-Relationship diagrams and Business Process Mod-
els. These models are used to capture information about complex and critical
domains, and “play a fundamental role in different types of critical semantic
interoperability tasks” [14].

Conceptual modeling is the activity of “representing aspects of the phys-
ical and social world for the purpose of understanding and communication
[. . . ] among human users” [19]. However, when ontological theories, coming
from areas such as formal ontology, cognitive science, or philosophical logics,
are utilized for improving the development of CMs, it is common to speak of
ontology-driven conceptual modeling (see [7,22]).

In critical and complex scenarios, the number of concepts and axioms of a
CM can grow significantly, leading to situations where “it is important that con-
ceptual models are cognitively tractable” [6]. It is known that human working
memory capacity in processing visual information is limited [15], and “displaying
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Guizzardi et al. (Eds.): RCIS 2022, LNBIP 446, pp. 372–388, 2022.
https://doi.org/10.1007/978-3-031-05760-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05760-1_22&domain=pdf
http://orcid.org/0000-0002-8139-5977
http://orcid.org/0000-0001-5174-9693
http://orcid.org/0000-0002-3452-553X
https://doi.org/10.1007/978-3-031-05760-1_22


Abstracting Ontology-Driven Conceptual Models 373

a large amount of data in a single node-link diagram can be visually overwhelm-
ing and confusing” [15]. Thus, one of the most challenging aims is “to understand,
comprehend, and work with very large conceptual schemas” [23].

Due to the above-mentioned reasons, complexity management of large con-
ceptual models has been an area of intensive research. Recently published meth-
ods can be grouped into the following categories: clustering methods, relevance
methods, and summarization methods [23, p.54]. The first group covers meth-
ods in which elements of the CM are divided into groups (clusters). Relevance
methods rank CM elements into ordered lists according to their value, while
summarization methods produce a reduced version of the original CM.

The work presented in this paper belongs to the group of summarization tech-
niques, more specifically, to the abstraction techniques. According to Egyed [5],
model abstraction is “a process that transforms lower-level elements into higher-
level elements containing fewer details on a larger granularity”. The main idea
is to provide the user with a bird’s-eye view of the model by filtering out some
details. Thus, such methods by definition provide lossy transformations.

Egyed also suggested an interesting approach for model abstraction [5]. The
proposed abstraction algorithm performs syntactic matching of abstraction rules
on the model, and the matched pattern is replaced by the result pattern of that
rule. The author claims that every application of a rule simplifies a given model.
However, the suggested set of rules is complicated, and it consists of 121 patterns,
92 of which are abstraction-generating rules.

Since most of the methods for CM summarization are based on classic mod-
eling notations (UML, ER) [23, p.44], they rely on syntactic properties of the
model, such as closeness or different types of distances between model elements
(see [1]). What is interesting here is that abstraction techniques even for lan-
guages with ontological semantics sometimes are based mainly on topological
properties of the graphs, see [16,20].

More recently, a number of approaches for complexity management have been
proposed for Ontology-Driven CM languages—most notably OntoUML [9]—by
leveraging on the richer ontological semantics offered by these languages. These
include [6,12,18]. The latter deals exactly with the topic of model abstraction
and proposes a set of graph-rewriting rules for abstracting OntoUML patterns.
However, it targets only a subset of the ontological notions present in OntoUML.
For example, it did not cover any other relation but specialization, while recently
OntoUML stereotypes for relations have been revised and extended (see [7]).
Moreover, the technique is focused on the category of objects, leaving out cat-
egories of aspects and events and, hence, also the relations between events and
endurants (objects and aspects). In this paper, we revisit and extend that work
by proposing new abstraction graph-rewriting rules that more generally address
types of objects, aspects, events, and their parts.

The remainder of the paper is organized as follows: Sect. 2 presents our base-
line and background; Sect. 3 introduces our new abstraction rule set, which is
combined with the original rule set in an unified algorithm in Sect. 4; Sect. 5
elaborates on final considerations and future work.



374 E. Romanenko et al.

2 Background

2.1 A Brief Introduction to UFO and OntoUML

Unified Foundational Ontology (UFO) [9,11] is a well-grounded foundational
ontology based on contributions from Formal Ontology in Philosophy, Philo-
sophical Logic, Cognitive Psychology, and Linguistics. A quite recent study [21]
has shown that UFO is the second-most utilised foundational ontology applied
in conceptual modeling, and also the one with the fastest adoption rate.

OntoUML is an ontology-driven conceptual modeling language that extends
UML class diagrams by defining a set of stereotypes that reflect UFO ontological
distinctions into language constructs. These stereotypes extend UML’s meta-
model via a profile mechanism, and allow users to decorate diagram’s elements.
Thus, classes and associations that are decorated with OntoUML stereotypes
bring precise (real-world) semantics grounded in the underlying UFO ontology.
Additionally, a number of semantically motivated syntactic constraints govern
OntoUML models, making them compliant with UFO [9]. Verdonck and Gailly
also have shown that OntoUML is among the most used languages in ontology-
driven conceptual modeling [21]. In the remainder of this section, we briefly
describe a selected subset of the ontological distinctions in UFO, and how they
are represented by means of OntoUML. For an in-depth discussion, philosophical
justification, and formal characterization we refer to [9,13].

A first key distinction is made between Endurants, i.e., entities that exist
in time while keeping their identity (e.g., John, Mary and their Marriage), and
Perdurants, i.e., exist that occur in time, also generally called Events (e.g., John
and Mary’s Wedding ceremony). Endurants instantiate Endurant Types, which
depending on their modal properties can be classified into Ultimate Sortals,
Subkinds, Roles, Phases, Categories, Role Mixins, Phase Mixins, and Mixins.
Perdurants instantiate Perdurant Types.

Ultimate Sortals are types that capture the essential properties ascribed to
their instances. The term is a synonym to what is called a (natural) kind in the liter-
ature. OntoUML reserves the stereotype Kind for Object kinds (e.g., Car, Person,
Planet) but also allowsRelator kinds (e.g., Marriage, Employment, Enrollment),
Quality kinds (e.g., Color, Weight), and Mode kinds (e.g., That conductor’s
electrical conductivity, Mary’s ability to speak English, John’s Dengue
Fever).Objects are endurants that can exist independently, whileRelators,Modes
and Qualities (generally called Aspects) can only exist parasitic to other entities
(existential dependence): Relators are the truthmakers of relational propositions,
e.g., a Marriage is a complex relator composed ofmutual commitments and claims;
Qualities are entities that are existentially depend on their bearers and can be
directly measured; Modes, on the contrary, represents complex intrinsic aspects
that can bear their own properties.

Subkinds are subtypes specializing ultimate sortals, like Man and Woman for
the kind Person, or Temporary Employment for the relator kind Employment.
Ultimate sortals are static (or Rigid) types in the sense that they classify their
instances necessarily (in the modal sense). For this reason, they are called Rigid



Abstracting Ontology-Driven Conceptual Models 375

Sortals. Phases and Roles represent contingent (accidental, dynamic) subtypes
of rigid sortals. They are hence called Anti-Rigid Sortals. The former class rep-
resents specializations according to intrinsic properties of instances, like being
a Child or an Adult for Person, while the latter is the way for endurants to
participate in relations, e.g., play the role of Wife in a Marriage. Rigid and
anti-rigid sortals constitute the class of Sortal Types.

Non-Sortal Types capture properties that are common to instances of dif-
ferent kinds (ultimate sortals). These can be essential properties, in which case
these are called Categories; non-essential properties, in which case these are
called Mixins; contingent properties cross-cutting several types, in which case
these are called Role Mixins and Phase Mixins. An example of a role mixin is
the type Customer that describes properties that apply to both individuals of
the kind Person and individuals of the kind Organization.

Events bear different relations to endurants. On the one hand, they can
create, change, or terminate them. On the other hand, events are manifesta-
tions of aspects, like when the unfolding of John’s Dengue Fever (an event)
manifests a particular set of pathological conditions in his body (a
mode). In this case, by being the bearer of this mode, John participates in
that corresponding dengue fever unfolding event. Event Types can also special-
ize other event types, thus, forming their own taxonomies (e.g., Cardiovascular
Surgery is a subtype of Surgery event).

2.2 Ontology-Based Model Abstraction

The approach presented in [12] is made possible by the ontological semantics of
OntoUML. The approach proposed an algorithm that is based on four graph-
rewriting rules, R1–R4 (see Table 1, reproduced from [12]). Following these rules,
fragments of the original model are abstracted into reduced counterparts, while
maintaining essential information. The rationale behind these rules is that the
focus should be on the representation of Object kinds and relations between
them, so that: (1) Relators are to be omitted; (2) properties of Non-Sortals
(e.g., Categories) should be moved downwards to the level of Sortals; and (3)
properties of Sortals that are not Object kinds, such as Subkinds and Roles,
should be pushed upwards to the level of kinds. Given this rationale, the rules
are meant to be applied in a specific order.

As previously discussed, there is the need to revise and extend this approach.
First, it only covers subtyping relations. Second, it neglects both taxonomies of
Aspect Types and Event Types. Given that latter are not addressed, so are also
the relations between Events and Endurants.

3 Abstracting Objects, Aspects, Events, and Their Parts

In the next three subsections, we introduce our new rules for abstracting types of
Objects, Aspects, and Events, respectively. Each subsection describes first part-
hood relationships and then other ontological relations involving these types of



376 E. Romanenko et al.

Table 1. Original graph-rewriting rules for OntoUML model abstraction [12].

entities, the summary of which is given in Fig. 11. The section ends with a list
of graph-rewriting rules.

Fig. 1. Types and stereotyped relations between them.

1 A formal definition of these stereotyped relations is given in [7] and in [2] for those
relations that include Events.



Abstracting Ontology-Driven Conceptual Models 377

3.1 Abstracting Objects

In the previous version of the algorithm [12], parthood relations were not con-
sidered. Despite the apparent simplicity, mereological relationships, also known
as part-whole or part-of relationships, come in different forms, which behave
differently in practice. An interesting research question is whether this diversity
leads to different rules when abstracting such relationships and, if yes, how these
rules could be formalized.

There are many mereological systems described in logic, philosophy and
related fields. These systems differ depending on what axioms are included.
However, the “minimal characterization of parthood relation”, P , is provided
by three axioms [4, Ch. 2] amounting to is termed Minimal Mereology :

∀xP (x, x) (Reflexivity)
∀x∀y((P (x, y) ∧ P (y, x)) → x = y) (Antisymmetry)
∀x∀y∀z((P (x, y) ∧ P (y, z)) → P (x, z)) (Transitivity)

However, in real-world scenarios transitivity does not always hold (see [10]).
As an example, we model the case where hearts of football players can fail during
a game, thus, leading to a surgery2 (see Fig. 2)3. When a player as part of a team
scores a goal, the whole team scores a goal. In contrast, although a football player
(as a person) has a heart, it seems rather odd to speak about the heart (being
part) of a football team (at least in the biological sense).

Fig. 2. Examples of different parthood relations.

2 Unfortunately, incidents like this from time to time happen in real life,
e.g., https://www.webmd.com/heart-disease/news/20210614/danish-soccer-player-
suffered-cardiac-arrest-during-euro-match.

3 Hereinafter, the default cardinality constraints ‘∗’ and ‘0..∗’ are not shown in the
models, as well as ‘1’ on the side of diamonds in parthood relations. For visual
economy, when we have more than one part type connected to the same whole type,
we join these different parthood relations in the same diamond-head (on the end
connected to the whole). Parthood, nonetheless, is still defined as a binary relation.

https://www.webmd.com/heart-disease/news/20210614/danish-soccer-player-suffered-cardiac-arrest-during-euro-match
https://www.webmd.com/heart-disease/news/20210614/danish-soccer-player-suffered-cardiac-arrest-during-euro-match


378 E. Romanenko et al.

In computer science, UML standard distinguishes between an aggregation and
a composite aggregation, where the latter is a strong form that “requires a part
object to be included in at most one composite object at a time. If a composite
object is deleted, all of its part instances that are objects are deleted with it.” [3,
p. 112] Also, “compositions may be linked in a directed acyclic graph with transi-
tive deletion characteristics” [3]. This standard approach does not provide enough
support for the modeller to distinguish different types of parthood relationships
but addresses the problem of possible independence of parts.

As for OntoUML, different types of parthood relations between Objects and
the problem of their transitivity were considered in [9,10]. According to the
specification of UFO [9,11], there are three types of Objects that can participate
in parthood relations: Functional Complexes, Collectives, and Quantities.

Quantities are connected to their parts with the SubQuantityOf relation,
which is always transitive [9, p. 184] but quite rare in practice. Since the rela-
tionship between the portion and the whole is very close, these quantities coalesce
their mass without additional attributing. And because of transitivity, a relation
in which a portion serves as domain can be abstracted to the whole with the
proper role. As an example, we can take Alcohol as a sub quantity of Wine
contained in a Wineglass. After abstraction we obtain that Wineglass, or even
Glass when abstracting further, contains Wine (see Fig. 3).

Fig. 3. Abstracting SubQuantityOf.

A Collective can be part of another Collective via the SubCollectionOf rela-
tion, which is transitive [9, p. 186]. Thus, Surgical Team from Fig. 2 should
receive all properties from Medical Staff, e.g., an employment contract with a
Medical Centre. Collective also includes elements with the MemberOf relation,
which on the contrary is intransitive [9, p. 185].

While formulating the abstraction rules for Collectives, we need to take into
consideration the following remarks. First, members of the collection by def-
inition of the relation have a uniform structure and are conceived as playing
the same role in the collection, like a Player in a Team. If it is not the case,
and we want, e.g., to distinguish between Forward and Goalkeeper, additional
subcollections shall be introduced, each of which with uniform members. Sec-
ond, “although member-collective is never transitive, a combination of member-
collective and subcollective-collective is again always transitive” [10], i.e., in our
example, a Surgeon as part of the collective also works for a Medical Centre.



Abstracting Ontology-Driven Conceptual Models 379

Finally, “the member-collective relation necessarily causes the part to be seen as
atomic in the context of the whole, hence, ‘blocking’ a possible transitive chain of
part-whole relations” [9]. Thus, chains of Collectives could be abstracted to the
most general collection together with the propagation of all relations in which
these subcollections are domains. However, members of the collections must be
kept because of their atomicity and relative independence. In the example from
Fig. 2, this approach gives us Medical Staff that works for Medical Centre,
operates Heart (as Surgical Team), and has Surgeons as members.

Functional Complexes include their parts with the ComponentOf relation,
which is not transitive in general [9, p. 183]. The simplest approach is to use
these parts as attributes of the whole (see heart of Person in Fig. 4).

Fig. 4. Abstracting parthood relations of Objects.

However, there is no general rule for abstracting relations in which these parts
serve as domains. In fact, the only relation that also holds for the whole object
is <<participation>> in the Event, e.g., if Heart participated in a Surgery, a
Person with that heart also participated in the same Surgery4.

Abstracting from other relations that bind parts of Objects to other Objects
is more challenging. As an example we can consider Tail as a component of Dog,
which is used for Greeting. Abstracting these relations to the Dog ‘used for’
Greeting is definitely wrong. Instead of removing such relations, we suggest
to rename them using the pattern ‘Object’s part RelationName’. In the given
example, that would result in Dog connected to Greeting via the relation ‘Dog’s
tail used for’. Similar examples can be given for the <<comparative>> and
<<historical>> stereotypes.

It should be noted, that so far we did not discuss situations where part of
the Object serves as range of the relation coming from Aspect or Event. These
rules with proper substantiation are considered in the corresponding sections.

After abstracting from parthood relations, further abstractions of Objects can
be made with the help of rules from the previous version of the algorithm [12],
namely, Rules R2–R4 can be applied.

4 This is called the Principle of Event Expansion [17].



380 E. Romanenko et al.

3.2 Abstracting Aspects

The first rule suggested in [12] for abstracting models was R1, the rule for elim-
inating Relators. We argue that this rule can be further extended towards other
Aspects of relations. As an example, we use the model in Fig. 5.

Fig. 5. Different Aspects of relations.

As previously discussed [8,9], Relators are the truthmakers of relational
propositions, and their absence may lead to single-tuple/multiple-tuple cardi-
nality ambiguity problem. Therefore, by applying R1, we have a lossy transfor-
mation.

What was omitted in [12] are the following features. First, Relators as
Endurants could be embedded into a hierarchy and have Subkinds or Phases
(an example can also be found in [8]). Second, Relators are complex objects in
terms of how they are formalized as mereological sums of externally dependent
Modes (for details see [7]). Third, Relators or their descendants may participate
in other relations other than mediation relations with the relata. In the given
example, Civil Marriage can serve as a reason for a spouse’s Visa, while Mock
Marriage cannot.

The last version of UFO distinguished Relators, Qualities, and Modes within
the Aspect Types [11]. We argue that pattern for abstracting should be the same
for all pre-described classes. Also, the above mentioned comments about the
Relators can be applied to Qualities and Modes as well (see Fig. 7).

The first step when abstracting Aspects is addressing aspect parthood. All
parts of an Aspect follow classical mereology axioms that were mentioned in
Sec. 3.1. Also, because of transitivity, it is possible to move relations from a part
of the Aspect to the whole. However, in most cases, like the one in Fig. 5 where
Wife Commitment and Husband Commitment are parts of Marriage, a relation
could already exist5 and there is no need to create a new one.

5 For details, why this is the case, see Table 1 in [7].



Abstracting Ontology-Driven Conceptual Models 381

The second step is to abstract from aspect taxonomies by applying a mod-
ification of the original R3 rule, since we are not interested in creating an enu-
meration like in R4 even for disjoint and complete generalization sets because
the transformation is lossy. The modification is the following. First, instead of
applying R3 to Sortal Type (meant there as Sortal Object Type), we define an
analogous rule for Sortal Aspect Type. Second, we need to keep the available
role that is lowest in the hierarchy. In the example from Fig. 5, that leads to
Marriage (as Civil Marriage) being a reason for a Visa.

The last step consists of abstracting from the Aspect Type itself. However,
it can participate in the relations, decorated with <<externalDependence>>,
<<mediation>> and <<characterization>> stereotypes, representing different
sorts of existential dependencies (for details see [7]). Also, if the Aspect Type
participates in the relations as the domain, those relations should be moved to
the corresponding Object Types (i.e., those that are ranges for <<mediation>>
and <<characterization>> relations only) with the corresponding modification
of the relation as the ‘Object’s AspectRole RelationName’. The resulting model
for our example is shown in Fig. 6.

Fig. 6. Resulting model for abstracting Aspects.

The last rule gives us a reason to move <<externalDependence>> and
<<characterization>> with <<mediation>> relations from part of an Object
to the whole, even for intransitive parthood relations, but with some prior-
ity. So, <<mediation>> and <<characterization>> relations, being relations
of inherence (i.e., a stronger for existential dependence), are more important to
keep than <<externalDependence>>. Thus, in Fig. 4, Heart Operation medi-
ates Medical Staff and Person.

Finally, Aspects can have relations with other Aspects. See, e.g., Fig. 7,
where Redirected Destination Intention characterizes another Mode Walk.
Because of that, the three above-mentioned steps, namely (1) abstracting from
parthood, (2) abstracting from taxonomic relations, and (3) abstracting from
the Aspect Type itself, should be applied iteratively. The result for our example
is given in Fig. 8.

3.3 Abstracting Events

Event mereology is quite extensively described in [2]. Here we also take that
Event may be composed of other Events. This parthood relation is the standard



382 E. Romanenko et al.

Fig. 7. Relations between Aspects (based on model from [11]).

Fig. 8. Result of abstraction from Aspects.

one and obeys the three previously mentioned axioms. Thus, we can follow the
same approach as for Aspects and abstract parts of the Event to the whole.
Taking into account these arguments, in our example we can abstract the five
Events in Fig. 4 to Surgery and Football Championship only.

The next aspect concerning the abstraction of Events is dealing with rela-
tions. Earlier we have mentioned that if part of an Object participates in an
Event, the whole Object also inherits this relation. However, [2] mentioned that
the opposite is also true, and when an Object participates in part of an Event it
also participates in the whole Event. In the given example, if a Football Team
participates in at least one Game of the Football Championship, it participates
in the whole Championship (in the sense that Pelé played the 1962 World Cup
by just playing a few games).

In some of the relations, Events can be associated with domains. First, we
claim that a <<triggers>> relation, where both the domain and the range are
Events, can be moved safely to more general Events.

Second, <<creates>> and <<changes>> relations from an Event to part of
an Object or Aspect can also be abstracted to the whole type. However, the
<<terminates>> relationship is trickier, because we can terminate the whole
only if this part is an essential part6. In OntoUML notation, this is expressed as
an essential tagged value decorating that parthood relation. Coming back to
the example with Person, one can conclude that the termination of the Brain

6 For the definition of essential and inseparable parthood, we refer to [9].



Abstracting Ontology-Driven Conceptual Models 383

would result in the termination of the Person as a whole, but at the same time
some other organs could be not strictly required.

Finally, Events are always manifestations of Aspects (or their aspect parts).
Coming back to the example in Fig. 5, we can imagine the Wedding Event, which
would explicitly manifest Fiancée Commitments and Fiancé Commitments.
Abstracting from Aspects should lead to moving this manifestation to the proper
Relator, in this case Engagement. As a consequence, we also have that the relata
at hand participate in this Wedding, thus, Fiancée and Fiancé have to partici-
pate in their Wedding.

Events can also form taxonomies. E.g., in our first example, instead of
Surgery, we can consider Cardiovascular Surgery as a Subkind of the more
general Surgery. They can also be abstracted with the same rule suggested in
the previous section, but now with Event Type. However, contrary to Aspects,
Events are not completely abstracted at the end, so a modification of Rule R4 is
suggested in which all Subkinds of an Event form an enumeration.

Taking into account all these considerations, in our example, the model in
Fig. 2 can be abstracted to the one in Fig. 9.

Fig. 9. After abstracting Events, Aspects and Objects.

3.4 Combining Abstraction Rules

Table 2 provides a summary of all previously suggested abstraction rules.
The first set of rules, P, is responsible for abstracting from parthood relations.

The first variant of the rule is applicable to parthood relations with transitive
properties (called partOf in general) and it can be applied to Objects, Aspects,
and Events. The only exception there is w.r.t. the relations is termination. If
we suppose that Alcohol is an essential part of Wine, its exhalation would lead
to the ‘end’ of Wine. Also, if there was already a relation between a whole and
another type, there is no need to create a new one.

All other rules from this set are applied to Object Types only and may be
applied together to the same type, i.e., they are not mutually exclusive, but
could work as a supplement to each other. The difference between them is in the
Type that has a relation with the part of the Object at hand.

The second set of rules, H, is responsible for abstracting from hierarchies.
The previously defined Rules R2–R4 are still applicable to Objects, but two new



384 E. Romanenko et al.

Table 2. Graph-rewriting rules for OntoUML model abstraction



Abstracting Ontology-Driven Conceptual Models 385

rules were introduced. Rule H4 is applicable both to Aspect Types and to Event
Types. In contrast to the rules from the first set, all relations with different role
names should be kept. Rule H5 keeps an enumeration of all Subkinds of Events
and can be used together with Rule H4.

The last set of rules, A, is responsible for abstracting Aspect Types and explic-
itly representing the participation of Endurant in Events that manifest these
corresponding aspects. Again, these two rules could work in tandem.

4 Towards Ontology-Based Model Abstraction 2.0

As we previously mentioned, the work of [12] was focused on Object Types and
restricted to subtyping relations between these types. Our revised proposal not
only takes into account different Types, but also considers parthood relations
and some other stereotyped relationships.

Considering the original proposal, the only rule that was completely reworked
is Rule R1. Rules R2–R4 are still applied to Object Types, although, Aspect Types
and Event Types were also addressed by new rules for abstracting their tax-
onomies.

What is more important, in contrast to the original proposal, there isn’t a
single strict order in which rules must be applied.

Thus, we here suggest two variants of rule’s ordering that seem meaningful,
namely, a Parallel (Listing 1) and an Iterative (Listing 2) versions of our new
abstraction algorithm.

Listing 1. Parallel version of the abstraction algorithm

// abstract from all parthood relations:

repeat: apply P1 -P4;
// abstract from hierarchies of Aspects and Events:

repeat: apply H4 -H5;
// abstract from Aspects:

repeat: apply A1 -A2;
// abstract from hierarchies of Objects:

repeat: apply H1 -H3.

Listing 2. Iterative version of the abstraction algorithm

// abstract from Aspects:

repeat: apply P1 to Aspects;
apply H4 to Aspects;
apply A1 -A2;

// abstract from Events:

repeat: apply P1 to Events;
apply H4 -H5 to Events;

// abstract from Objects:

repeat: apply P1 -P4 to Objects;
apply H1 -H3.



386 E. Romanenko et al.

The first version of the algorithm, shown in Listing 1, suggests to abstract
from all Types almost simultaneously. Abstraction cannot be done in a com-
pletely simultaneous manner, since we are not allowed to abstract from tax-
onomies of Object Types before we abstract from Aspect Types. The second ver-
sion, shown in Listing 2, abstracts instead in sequence, first from Aspect Types
and then from Event Types, postponing as much as possible abstraction over
Object Types.

Determining which version of the algorithm gives better results by producing
more meaningful models requires further investigations, which could be aimed
at answering the following questions: (1) Is there any difference in preferring one
algorithm over the other between novel and experienced users? (2) Is there any
difference in preferring one algorithm over the other depending on the domain
and, consequently, on the characteristics of the CM? These empirical questions
will be addressed in future work.

5 Final Considerations

In this paper, we have present an extended version of a tested ontology-based
model abstraction for ontology-driven conceptual models. Contrary to the origi-
nal algorithm, our proposal is able to deal more generally with types of Objects,
Aspects, Events, and their Parts. We have suggested eight graph-rewriting rules
that in compliance with the previously designed Rules R2–R4 can automatically
produce an abstracted version of a complex conceptual model. These rules were
designed so as to guarantee that they preserve the essential information of the
original model by leveraging on the ontological semantics of OntoUML, while
simplifying that model.

The research presented here is under active development7. As a further goal
of the project, we intend to develop a tool that would allow users to interact
with their models at different levels of abstraction, thus, making these models
more comprehensible. The alternative versions of the algorithm proposed here
assume that there is also a possibility of making the abstraction process more
user-centred by taking into account the user’s current goals and intentions.

Another hypothesis that should be checked is whether the proposed abstrac-
tions could help finding errors within the models, i.e., when abstracting leads to
unexpected results, this could be a sign of the presence of anti-patterns hidden
in the original model.

A repository with OntoUML models is under development8. We foresee to
test different version of our model abstraction algorithm over the models in this
repository.

7 The interested reader can refer to the current version of the Visual Paradigm plu-
gin with supported abstraction functionality on https://github.com/mozzherina/
ontouml-vp-plugin.git, and the corresponding server on https://github.com/
mozzherina/ontouml-server.git.

8 https://github.com/unibz-core/ontouml-models.

https://github.com/mozzherina/ontouml-vp-plugin.git
https://github.com/mozzherina/ontouml-vp-plugin.git
https://github.com/mozzherina/ontouml-server.git
https://github.com/mozzherina/ontouml-server.git
https://github.com/unibz-core/ontouml-models


Abstracting Ontology-Driven Conceptual Models 387

References

1. Akoka, J., Comyn-Wattiau, I.: Entity-relationship and object-oriented model auto-
matic clustering. Data Knowl. Eng. 20(2), 87–117 (1996). https://doi.org/10.1016/
S0169-023X(96)00007-9

2. Benevides, A., Bourguet, J.R., Guizzardi, G., Peñaloza, R., Almeida, J.: Repre-
senting a reference foundational ontology of events in SROIQ. Appl. Ontol. 14,
1–42 (2019). https://doi.org/10.3233/AO-190214

3. Cook, S., et al.: Unified modeling language (UML) version 2.5.1. Standard, Object
Management Group (OMG) (2017). https://www.omg.org/spec/UML/2.5.1

4. Cotnoir, A.J., Varzi, A.C.: Mereology. Oxford Scholarship Online, 1 edn. Oxford
University Press, Oxford (2021). https://doi.org/10.1093/oso/9780198749004.001.
0001

5. Egyed, A.: Automated abstraction of class diagrams. ACM Trans. Softw. Eng.
Methodol. 11(4), 449–491 (2002). https://doi.org/10.1145/606612.606616

6. Figueiredo, G., Duchardt, A., Hedblom, M.M., Guizzardi, G.: Breaking into pieces:
an ontological approach to conceptual model complexity management. In: Proceed-
ings of the 12th International Conference on Research Challenges in Information
Science (RCIS), pp. 1–10 (2018). https://doi.org/10.1109/RCIS.2018.8406642

7. Fonseca, C.M., Porello, D., Guizzardi, G., Almeida, J.P.A., Guarino, N.: Relations
in ontology-driven conceptual modeling. In: Laender, A.H.F., Pernici, B., Lim, E.-
P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 28–42. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33223-5 4

8. Guarino, N., Guizzardi, G.: “We need to discuss the Relationship”: revisiting rela-
tionships as modeling constructs. In: Zdravkovic, J., Kirikova, M., Johannesson, P.
(eds.) CAiSE 2015. LNCS, vol. 9097, pp. 279–294. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19069-3 18

9. Guizzardi, G.: Ontological foundations for structural conceptual models. CITIT
PhD.-thesis series 05–74 Telematica Instituut fundamental research series 015,
Centre for Telematics and Information Technology, Enschede (2005)

10. Guizzardi, G.: The problem of transitivity of part-whole relations in conceptual
modeling revisited. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 94–109. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-02144-2 12

11. Guizzardi, G., Benevides, A.B., Fonseca, C.M., Porello, D., Almeida, J.P.A., Sales,
T.P.: UFO: unified foundational ontology. Appl. Ontol. 17(1), 1–44 (2021). https://
doi.org/10.3233/AO-210256

12. Guizzardi, G., Figueiredo, G., Hedblom, M.M., Poels, G.: Ontology-based model
abstraction. In: Proceedings of the 13th International Conference on Research
Challenges in Information Science (RCIS), pp. 1–13. IEEE (2019). https://doi.
org/10.1109/RCIS.2019.8876971

13. Guizzardi, G., Fonseca, C.M., Almeida, J.P.A., Sales, T.P., Benevides, A.B.,
Porello, D.: Types and taxonomic structures in conceptual modeling: a novel onto-
logical theory and engineering support. Data Knowl. Eng. 134, 101891 (2021).
https://doi.org/10.1016/j.datak.2021.101891

14. Guizzardi, G., Sales, T.P., Almeida, J.P.A., Poels, G.: Automated conceptual model
clustering: a relator-centric approach. In: Software and Systems Modeling, pp. 1–25
(2021)

15. Huang, W., Luo, J., Bednarz, T., Duh, H.: Making graph visualization a user-
centered process. J. Visual Lang. Comput. 48, 1–8 (2018). https://doi.org/10.
1016/j.jvlc.2018.07.001

https://doi.org/10.1016/S0169-023X(96)00007-9
https://doi.org/10.1016/S0169-023X(96)00007-9
https://doi.org/10.3233/AO-190214
https://www.omg.org/spec/UML/2.5.1
https://doi.org/10.1093/oso/9780198749004.001.0001
https://doi.org/10.1093/oso/9780198749004.001.0001
https://doi.org/10.1145/606612.606616
https://doi.org/10.1109/RCIS.2018.8406642
https://doi.org/10.1007/978-3-030-33223-5_4
https://doi.org/10.1007/978-3-319-19069-3_18
https://doi.org/10.1007/978-3-319-19069-3_18
https://doi.org/10.1007/978-3-642-02144-2_12
https://doi.org/10.1007/978-3-642-02144-2_12
https://doi.org/10.3233/AO-210256
https://doi.org/10.3233/AO-210256
https://doi.org/10.1109/RCIS.2019.8876971
https://doi.org/10.1109/RCIS.2019.8876971
https://doi.org/10.1016/j.datak.2021.101891
https://doi.org/10.1016/j.jvlc.2018.07.001
https://doi.org/10.1016/j.jvlc.2018.07.001


388 E. Romanenko et al.

16. Kondylakis, H., Kotzinos, D., Manolescu, I.: RDF graph summarization: principles,
techniques and applications. In: Proceedings of the 22nd International Conference
on Extending Database Technology (EDBT), pp. 433–436 (2019). https://doi.org/
10.5441/002/edbt.2019.38

17. Lombard, L.B.: Events: A Metaphysical Study. Routledge, Abingdon (2019)
18. Lozano, J., Carbonera, J., Abel, M., Pimenta, M.: Ontology view extraction: an

approach based on ontological meta-properties. In: IEEE 26th International Con-
ference on Tools with Artificial Intelligence, pp. 122–129 (2014). https://doi.org/
10.1109/ICTAI.2014.28

19. Mylopoulos, J.: Conceptual modeling and Telos. In: Conceptual Modelling,
Databases and CASE: An Integrated View of Information Systems Development.
Wiley (1992)

20. Pouriyeh, S., et al.: Ontology summarization: graph-based methods and beyond.
Int. J. Semant. Comput. 13(2), 259–283 (2019). https://doi.org/10.1142/
S1793351X19300012

21. Verdonck, M., Gailly, F.: Insights on the use and application of ontology and con-
ceptual modeling languages in ontology-driven conceptual modeling. In: Comyn-
Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016.
LNCS, vol. 9974, pp. 83–97. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46397-1 7

22. Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Souza, B.F.M., Pastor, O.: Com-
paring traditional conceptual modeling with ontology-driven conceptual modeling:
an empirical study. Inf. Syst. 81, 92–103 (2019). https://doi.org/10.1016/j.is.2018.
11.009

23. Villegas Niño, A.: A filtering engine for large conceptual schemas. Ph.D. thesis,
Universitat Politècnica de Catalunya (2013)

https://doi.org/10.5441/002/edbt.2019.38
https://doi.org/10.5441/002/edbt.2019.38
https://doi.org/10.1109/ICTAI.2014.28
https://doi.org/10.1109/ICTAI.2014.28
https://doi.org/10.1142/S1793351X19300012
https://doi.org/10.1142/S1793351X19300012
https://doi.org/10.1007/978-3-319-46397-1_7
https://doi.org/10.1007/978-3-319-46397-1_7
https://doi.org/10.1016/j.is.2018.11.009
https://doi.org/10.1016/j.is.2018.11.009

	Abstracting Ontology-Driven Conceptual Models: Objects, Aspects, Events, and Their Parts
	1 Introduction
	2 Background
	2.1 A Brief Introduction to UFO and OntoUML
	2.2 Ontology-Based Model Abstraction

	3 Abstracting Objects, Aspects, Events, and Their Parts
	3.1 Abstracting Objects
	3.2 Abstracting Aspects
	3.3 Abstracting Events
	3.4 Combining Abstraction Rules

	4 Towards Ontology-Based Model Abstraction 2.0
	5 Final Considerations
	References




