Realizing Ontology Based Data Access:
A Plug-in for Protégé

Mariano Rodriguez-Muro, Lina Lubyte, Diego Calvanese

KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano
Piazza Domenicani 3, Bolzano 39100, Italy
rodriguez|lubyte|calvanese@inf.unibz.it

Abstract—In Ontology-Based Data Access (OBDA), the aim
is to use an ontology to mediate the access to data sources. We
present a plug-in for the standard ontology editor Protégé that
allows users to model ontologies with mappings to data sources
in order to perform OBDA. We argue that our plug-in, together
with an OBDA-Enabled reasoner, allows users to build, test, and
deploy OBDA Systems in academic or industrial settings.

I. INTRODUCTION

With a review of recent publications in Databases, Semantic
Web, or E-Science journals, one can notice the high frequency
of keywords like Ontology Based Data Integration, Semantic
Access to Information, Ontology Based Data Management,
Data Integration and incomplete information. This is a wit-
ness of the desire of a sector of the research and industrial
community to go in the direction of applications that provide
semantically driven access to data, or as this sometimes
is called, Ontology Based Data Access (OBDA) [1]. More
precisely, in OBDA, the aim is to use an ontology to mediate
the access to data. The added value of OBDA, w.r.t. accessing
a data source directly, is, on the one hand, that the ontology
provides a semantic account of the information stored in the
data source. On the other hand, the answer to user queries
may be enriched by exploiting the constraints expressed by
the ontology, thus overcoming incompleteness that may be
present in the data.

A lot of work has been invested in the last years to realize
the required technologies. Efforts have been put in defining
the appropriate language for the semantic layer, defining the
structure and language of the mappings used to link the data
and the semantic layer, studying the complexity of offering
a set of useful services such as query answering, database
schema extraction, inconsistency management, etc. Prototype
and industrial level systems have been and are being built
within academic and industrial research labs, including those
of major database players such as IBM [2].

However, as pointed out in [3] in the context of data
integration, the gap between theory and practice is still wide.
The systems which have been made available to the eager
community of early adopters do not offer a cohesive struc-
ture. They are either based on different assumptions, rely
on different user interaction mechanism or provide limited
functionality. As a result, when brought together, sometimes
in very rough ways, their interaction turns out to be poor.

The application presented here, the OBDA Plug-in for
Protégé is designed to ease the problems noted by Haas, in
the OBDA context. We argue that the combination of the

standard ontology editing tool Protégé [4], the OBDA Plug-in
and an OBDA-Enabled Reasoner, will result in a tool capable
of managing the development process of OBDA Systems from
end to end.

The rest of the paper is structured as follows: In Section II,
we present a quick description of the structure of OBDA
Systems and the functionality offered by our plug-in. In
Section III, we present two scenarios demonstrating how the
OBDA plug-in and an OBDA-Enabled Reasoner can be used
to build an OBDA System. In Section IV, we conclude with a
brief discussion of the features that will be presented during
the demonstration session of the workshop.

II. OBDA: SYSTEMS, REASONERS AND PLUG-IN

As argued before, the problems pointed out by Haas for data
integration are already present in the case of OBDA. OBDA-
Enabled reasoners have already appeared [5], [6] and are being
integrated in OBDA Systems. Due to a lack of standardization
in the interaction with such reasoners, complicated techniques
have to be used to bring all the system components together.
Therefore, our objective is to provide a platform based on
widely accepted standards that eases access to OBDA-Enabled
reasoners, and hence facilitates the construction of OBDA
Systems that integrate such reasoners.

To explain how we have targeted the above objective, we
first overview the structure of an OBDA System. OBDA
Systems have a common structure (see Figure 1): (i) They
have a semantic layer which is in the form of an Ontology
expressed in some ontology language. (ii) They allow one to
interact with one or more data sources, possibly of different
kinds. (iii) They manage a set of mappings expressing cor-
respondences between data in the data layer and objects in
the semantic layer. (iv) They allow the user to pose queries
over the elements of the ontology. The role of an OBDA-
Enabled reasoner in an OBDA System is then to answer the
users queries taking into account the ontology, the mappings,
and the data in the source(s). Note that, all the components that
the reasoner uses are already configured, i.e., the user built an

. Semantic Layer .
. .

User ! Ontol Semantic '
ey e
" .

OBDA-Enabled Reasoner

Data Layer

—_———
RDBMs

Prototypical OBDA System architecture

Fig. 1.

ontology for his application domain, modeled the mappings to
the data, etc.

This is where the OBDA Plug-in comes in. Within the plug-
in, we offer tools required to model and verify the components
of an OBDA System. We do so by extending Protégé with
OBDA related operations that allow us to take advantage
of the ontology editing functionalities. To do so we had to
identify and take into account the differences among OBDA-
Enabled reasoners. Such reasoners can differ in many aspects,
for example, the specific kind of mappings they allow, the
language used to express these mappings, the number and
kind of data sources they are able to handle, the specific
ontology language used to express the ontology, the language
provided to express the queries, etc. The modeling facilities
that we provide should be able to adapt to as many of the
mentioned differences as possible. Fortunately, we can rely
on previous work describing general frameworks that capture
most of the differences. With respect to the ontology language,
since we are committing to Protégé, the supported modeling
language is OWL-DL [7], which is a language that seems to
adapt to the requirements of the majority of users. As for the
mappings component, we can rely on the vast literature on data
integration (see, e.g., [8]), where a mapping assertion relates
a query over the ontology to a query over the data sources
(GLAV mappings). With respect to the user query language,
we support the class of Union of Conjunctive Queries (UCQs)
over the ontology. With respect to the type of data sources,
we limit the scope of the current release of the plug-in to
only support RDBMS data sources. Finally, communication
with the OBDA-Enabled Reasoner must be assured in order
to provide the reasoner with the modeled components. To
address this point, we implement in the OBDA Plug-in the
OBDA related extensions to the DIG protocol [9], assuring that
any OBDA-Enabled Reasoner will be able to communicate
with Protégé and the OBDA Plug-in by also implementing
the OBDA extensions to the DIG protocol.

Many aspects of these components cannot be detailed here
for lack of space. But they will be dealt with during the
demo session, where we will give a detailed description of
the plug-in and the interaction between it and OBDA-Enabled
reasoners. It is worth mentioning that, apart from the facilities
to model the main components of OBDA Systems, we have
incorporated in the plug-in tools and features that allow users
to do modeling work for their everyday needs, and not just
toy modeling. For example, data source inspection facilities,
query management features (history and archiving), query
result import (e.g., as csv tables, or as OWL assertions),
mapping enabling/disabling features (global and per query),
among others.

To exemplify the use of the OBDA Plug-in, we now present
two scenarios in the context of an industrial application. For
these scenarios and for the demo session we use the DIG
Server for QUONTO, an OBDA-Enabled reasoner developed
at La Sapienza University of Rome in collaboration with the
KRDB Research Centre within the QUONTO! Project. Both,
the OBDA Plug-in and the DIG Server for QUONTO will be
released for public use in early 2008 through the project’s web-

'http://www.dis.uniromal.it/~quonto/

O O StockMarket Protégé 3.3.1 (file:/Users/mariano/Documents/StockMarket.ppr...

File Edit Project QWL Code

0O =E 4B ®

window OBDM Plugin Help

ES = EC R

Tools

eI R

<€pro tégée

r OWLClasses || B Froperties | [J Darasources Manager (08D [O Individual's queries (GBDR) |

DATASOURCE BROWSER DATASOURCE MANAGER

@ StockMarket StockMarketDB RDBMS

ClientDB1

==

jdbc:mysql:/ /localhost,

applicationlogs

V-4 StockMarket
L[StockMarketDB

userl

com.mysqlijdbc.Driver

| Mappings Manager | Direct source query | Source squema inspector |

= Mappings -
v = M1 QUERY: SELECT ID, Compal::
1

te{] getCompanyObj(ID) rdfitype Campany
[getCompanyObjilD)y name

Company
I D

4]

Fig. 2. Source Tab

O O StockMarket Protégé 3.3.1 (file:/Users fmariano/Documents/StockMarket.ppr...

File Edit

0O =E ¢ B @

Project ©WL Code Tools Window OBDM Plugin Help

HMEEED Q>

LR R

(-gpro tége

i

OWLClasses | B Froperties | [Datasources Manager (0BDM) | O Individual's queries (GBDM) |

QUERY MANAGER QUERY EDITOR

@ StockMarket @ Unamed 4 No description

Manager || Satistics |

Operation

(C3 Common queries
(3 Yesterday

‘I:v Stock market queries

Advanced properties | [Execute |

-
Results

$x |

SELECT Zoperation WHERE
SELECT 7operation WHERE ..
SELECT Zoperation WHERE

]
(]
[}
[(] SELECT Zoperation WHERE ..
[}
(]

getOperation0bj(77)
getOperationObj(88)
getOperationOhj(99)
getOperationObj(36)
SELECT Zoperation WHERE

SELECT ?operation WHERE ..

Import as ABox assertions | [Save results

Fig. 3. Query Tab

site. Currently, QUONTO is the only DL Reasoner specifically
built for OBDA operations, which incorporates facilities to
specify data sources and mappings and takes these into account
when reasoning. It implements traditional reasoning services
(subsumption, satisfiability checking, etc.) as well as answer-
ing UCQs for the description logic DL-Lite 4 [1]. DL-Lite 4 is
a fragment of OWL-DL designed to maximize expressivity
while keeping reasoning algorithms tractable. Specifically,
reasoning in DL-Lite 4 is LOGSPACE in data complexity, as
efficient as query answering in relational databases. Therefore,
instance level reasoning in DL-Lite 4 is more efficient than in
more complex DLs such as OWL-DL.

III. DEMONSTRATION SCENARIO

Consider the situation of European Union’s (EU) financial
institutions faced with the introduction of an EU harmoniza-
tion directive, such as the Markets in Financial Instruments

http://www.inf.unibz.it/~rodriguez/OBDA/

. .
Application Layer N Semantic Layer , Data Layer
'

OBDA '
Web Services, . Ontology .
Custom Applicati Enabled + RDBMS
ustom ications
PPl Reasoner Mappings .

'
' '
+ Reasoning and Query «+ Client's data
. Answering support .

Fig. 4. Consulting company’s IT framework

$x - (a)
getOperationObj(77)
getOperationObj(88)

$x - (b)
getOperationObj(77)
getOperationObj(88)
getOperationObj(99)

Fig. 5. Results for query ql, a) using mapping m2 b) using mapping m2b

Directive (MiFID) [10]. With its appearance in 2004, the
directive obliges financial market institutions to modify their
business processes to comply with the regulations stipulated in
it. The regulations include legal and procedural changes which
potentially involve modifications to the IT infrastructure of the
affected financial institutions. The deadline for the adoption
of these regulations was November, 2007. To date, still many
institutions are working to modify their operational processes
and IT support. In this context, consulting companies assist
financial market institutions in the task of modifying their
operational processes to comply with MiFID. We place our
demonstration scenarios within the services that one of these
consulting companies provides. In the scenarios we focus
on the MiFID transparency requirement, which obliges EU
financial institutions that trade stocks to publish the operations
they perform. The methods they should use include software
publishing, e.g., web-services, aggregation sites, etc. Having to
comply with this requirement in a limited time frame, financial
institutions rely on the expertise of these consultants to extend
their IT infrastructure.

The following scenarios present a consulting company
which uses OBDA technology to save time and costs in the
development of such IT requirements. It do so by modeling its
software solution as an OBDA System; that is, incorporating
a semantic layer between the data layer of the client and
the application layer it provides, as shown in Figure 4. The
semantic layer is composed of an OBDA-Enabled Reasoner,
an ontology describing the domain of a MiFID compliant
financial institution, and mappings linking the data of the client
to the MiFID Ontology. The consultant uses the OBDA Plug-
in to model the mappings between the MiFID Ontology and
the data layer, aspect of the system which changes between
different clients. Once this has been established and verified,
the consultant deploys the structure presented in Figure 4 into
the client’s IT infrastructure. In this way, the consultant can
adapt the same framework to different clients.

We now describe the mentioned scenarios. In each scenario,

the clients of the consultant are Stock Exchanges, i.e., a
financial markets’ institutions that provides services for stock
trading. It is important to note that the clients in Scenario 1
and Scenario 2 are different.
Scenario 1. This scenario illustrates the core functionality
of the plug-in, i.e., mapping specification and validation. We
will show how mappings can be used to handle hidden data
semantics or filter data.

Consider the fragment of the client’s database presented in
Figure 6, which we call Customer’s Database-a (CuDBa). The
consultant starts with analyzing the CuDBa to understand the
relationship between the schema/data of the database and the
MiFID Ontology. The result is a set of mappings between the
database schema and the MiFID Ontology (see mappings m1-
m6 in Scenario 1 of Figures 6 and 7).

Using the mapping management facilities of the plug-in

D Company D Date T_type |_Type I_ID Amount S
g 44 GM 77 27.08.07 0 1 44 220 .
[=) 32 Audi 88 12.07.07 1 1 32 70 =4
3 41 BMW 9 | 140707 | nul 1 41 80 ;
=
]
wv
i
— — c— - — —
o
a
L
=
—_—
|
nvestment_Trai
> sactions
o |
% |
]
S | ~
Ol = ' '
]
: H P
—————— |
] | | 1
m3 | 1 ml ! m2 mal m5 | z
' \ ' L
mmeedecm—c—————————— \]
H H I e =
' '
e} investment lraﬁsactions supply !
o S
[=} ‘ id ‘ descr ‘ date | ‘ date ‘ average I ‘ id descr ‘ date |
3 | |
o
Fig. 6. Scenarios, MiFID Ontology and mappings

(see Figure 2), the consultant incorporates these mappings into
the project. To verify them, he/she uses the plug-in’s Query
Tab (see Figure 3) to issue queries (in SPARQL syntax) over
the classes, roles, and attributes of the MiFID Ontology. He
compares the results that are returned by the OBDA-Enabled
reasoner with the expected results. For example, consider
a) a query asking for all objects of the Operation entity,
gl = SELECT $x WHERE {$x rdf:type Operation}, b)
the mappings m2 and m3, which respectively populate the
classes Offer and Purchase with entities created with values
from the relation Transaction in the CuDBa database (notice
the use of the WHERE clause to select the matching tuples
for each class with respect to the attribute T_type) and c)
the results returned by the reasoner and presented in Fig-
ure 5(a). Using the database inspector of the OBDA Plug-in,
the consultant notices that an operation object corresponding
to the tuple with ID=99 in Transaction is missing. He/she
realizes that the reason for this discrepancy is that some of
the client’s applications consider transactions with T_type =
NULL as Offer transactions instead of only T_type=1 as in
m2. Doing a quick adjustment of the mapping using the
mapping manager, he/she corrects the problem by modifying
the mapping m2 into m2b. The results of this operation
are shown in Figure 5(b). Through this iterative process the
consultant models the rest of the mappings in the system.
Once the model has been extensively tested, the application is
deployed at the client.

Scenario 2. The task of specifying mappings between the

SCENARIO1

ml: Company(getCompanyObj(ID)), name(getCompanyObj(ID), Company) ~ SELECT ID, Company FROM Stocks;

m2: Offer(getOperationObj(ID)), amount(getOperationObj(ID), Amount) ~> SELECT ID, Amount FROM Transaction WHERE T_Type=1;
m3: Purchase(getOperationObj(ID)), amount(getOperationObj(ID), Amount) ~ ~» SELECT ID, Amount FROM Transaction WHERE T_Type=0;
m4: OrderBook(getOrderBookObj(Date)), date(getOrderBookObj(Date), Date) ~ SELECT DISTINCT Date FROM Transaction;

m5: hasOperation(getOrderBookObj(Date)), getOperationObj(ID) ~ SELECT ID, Date FROM Transaction WHERE I_Type=1;
mé: InvolvesStockOfCompany(getOperationObj(Transaction.ID), getCompanyObj(Stocks.ID)) ~ SELECT Transaction.ID, Stocks.ID FROM Stocks

JOIN Transaction WHERE [_Type=1 OR I_Type=0;

SELECT ID, Amount FROM Transaction

m2b: Offer(getOperationObj(ID)), amount(getOperationObj(ID), Amount) ~ WHERE T_Type=I OR T_Type=NULL;
SCENARIO2

ml: Investment(getInvObj(id)),id(getInvObj(id),id),descr(getInvObj(id),descr) ~r SELECT id,descr FROM investment;

m2: Transactions(getTransObj(date)),date(getTransObj(date),date),average(getTransObj(average),average) ~ SELECT date,average FROM transactions;

. L. . SELECT investment.id,transactions.date FROM investment
m3: Investment Transactions(getInvObj(id),getTransObj(date)) ~ JOIN transactions ON transactions.date=investment.date;
m4: Supply(getSupplyObj(id)),id(getSupplyObj(id),id),descr(getSupplyObj(id),descr) ~ ~~ SELECT id,descr FROM supply;

. . . SELECT supply.id,transactions.date FROM supply
m5: Supply_Transactions(getSupplyObj(id),getTransObj(date)) ~

JOIN transactions ON transactions.date=supply.date;

Fig. 7. Mappings for Scenarios 1 and 2. Each mapping is given as a query over the ontology (left) paired with a query over the source (right). The mappings
specify how the ontology is to be populated from the data in the source. Notice the use of Skolem functions in the ontology query in order to build object
identifiers from source data, addressing the impedance mismatch problem. For a detailed explanation of the semantics of these mappings we refer to [1].

ontology and the data sources as described above is clearly
time-consuming. Instead of establishing them manually, it
is desirable to have automatic support for this task. This
scenario shows how the consultant can use the ontology
extraction functionality and inter-schema correspondences to
link the MiFID Ontology to well-structured data sources. If
the underlying database is properly normalized (i.e., is in third
normal form), the extracted ontology is optimal and no further
refinements are needed. In the general case, user intervention is
required to verify and revise the obtained ontology. The actual
extraction algorithm and its properties are described in [11].
Suppose the information of the customer’s company is
stored in a database CuDBb, as shown in Figure 6, SCE-
NARIO2. It’s in 3NF and the consultant uses the OBDA Plug-in
to automatically extract the conceptual view from the CuDBb
database, which we now call Customer’s Business Process
Ontology (CuBP Ontology). The mappings (single dashed
lines labeled m1-m5 in Figure 6) connecting the database and
the extracted ontology are also generated during the extraction
process and are defined as shown in Figure 7, SCENARIO2.
Once the CuBP Ontology is obtained, the consultant
specifies the correspondences between the elements this
and elements of the MiFID Ontology, which is shown
graphically in Figure 6 with dashed lines labeled cl — c5.
These correspondences are specified with a set of inclu-
sion assertions of the form: cl: Investment T Purchase,
c2: Investment_Transactions T hasOperation, etc. To verify
these mappings before the system’s deployment, the consultant
uses querying facilities described earlier. The answers returned
in this case take into account the inter-schema mappings and
the mappings between the extracted CuBP Ontology and the
CuDBbD database. The major advantage of this approach is that
specifying the required assertions at the ontology level is an
easier task than dealing with mappings to the data layer.

IV. CONCLUSIONS AND DEMO SESSION OVERVIEW

We have described some of the operations that users can
perform using the OBDA Plug-in. At the same time we have
shown how, in conjunction with an OBDA-Enabled Reasoner,
users can build OBDA Systems. It is worth mentioning that
although in this paper the OBDA Plug-in was used as part of
the cycle to build an OBDA System, the plug-in could also

be used independently. That is, it could also be used as the
main tool to perform ontology based access to the data. This
would be the case in research and academic projects which
do not have an application layer and are mainly interested in
exploiting their data.

We conclude by listing some of the features which are
not detailed here due to space restrictions but that have been
implemented and will be presented during the demonstra-
tion session: (i) SPARQL query console and results table,
(if) incremental query answering support, (i) result importing
facilities, e.g., into csv, owl, xml, files. We will do performance
tests soon after the release of the software to the public.

Acknowledgements: We would like to thank Sergio Tes-
saris, Alexandra Eckert, and Evgeny Kharlamov for important
directions and comments that helped to shape this article. This
research has been partially supported by EU FP6-7603 FET
project TONES (Thinking ONtologiES).

REFERENCES

[1] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and
R. Rosati, “Ontology-based database access,” in Proc. of SEBD 2007,
2007, pp. 324-331.

[2] L. Ma, J. Mei, Y. Pan, K. Kulkarni, A. Fokoue, and A. Ranganathan,
“Semantic web technologies and data management,” in Proc. of W3C
Workshop on RDF Access to Relational Databases, 2007.

[3] L. M. Haas, “Beauty and the beast: The theory and practice of infor-
mation integration,” in Proc. of ICDT 2007, 2007, pp. 28-43.

[4] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubezy,
H. Eriksson, N. F. Noy, and S. W. Tu, “The evolution of Protégé:
an environment for knowledge-based systems development,” Int. J. of
Human-Computer Studies, vol. 58, no. 1, pp. 89-123, 2003.

[5] A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
M. Palmieri, and R. Rosati, “QUONTO: QUerying ONTOlogies,” in Proc.
of AAAI 2005, 2005, pp. 1670-1671.

[6] E. Thomas, J. Z. Pan, and D. Sleeman, “ONTOSEARCH?2: searching
ontologies semantically,” in Proc. of OWLED 2007, 2007.

[7]1 I Horrocks, P. F. Patel-Schneider, and F. van Harmelen, “From SHZ Q
and RDF to OWL: The making of a web ontology language,” J. of Web
Semantics, vol. 1, no. 1, pp. 7-26, 2003.

[8] M. Lenzerini, “Data integration: A theoretical perspective.” in Proc. of
PODS 2002, 2002, pp. 233-246.

[9] D. Calvanese and M. Rodriguez, “An extension of DIG 2.0 for handling

bulk data,” in Proc. of OWLED 2007, ser. CEUR Electronic Workshop

Proceedings, http://ceur-ws.org/Vol-258/, vol. 258, 2007.

J. Giraud and C. D’Hondt, MiFID — Convergence towards a Unified

European Capital Markets Industry. London: Risk Books, 2006.

L. Lubyte and S. Tessaris, “Extracting ontologies from relational

databases,” in Proc. of DL 2007, ser. CEUR Electronic Workshop

Proceedings, http://ceur-ws.org/Vol-250/, vol. 250, 2007, pp. 387-394.

[10]
(11]

