
Semantic Index: Scalable Query Answering without
Forward Chaining or Exponential Rewritings

Mariano Rodrı́guez-Muro and Diego Calvanese

KRDB Research Centre, Free University of Bozen-Bolzano, Bolzano, Italy
{rodriguez,calvanese}@inf.unibz.it

Entailment regimes add support for rich inferences in SPARQL 1.1. This greatly
facilitates the use of reasoning in applications. In this context, one special interest of the
Semantic Web (SW) community is Ontology Based Data Access (OBDA), i.e., querying
large volumes of assertional data through the vocabulary and semantics of ontologies.
OBDA has recieved a lot of attention in the last years, however, while there have been
advances on the theoretical side, e.g., the definition of OWL 2 QL, realizing efficient
and scalable reasoning for large ontologies and large data sets is still problematic.

In this context, the most widespread reasoning technique for query answering is
the materialization of inferences using forward chaining. This technique has several
advantages, e.g., all inferences are done off-line, it is relatively easy to implement, and
it offers high-performance at query time. However, if the terminological part of the
ontology is large, materialization may require a long time and may considerably increase
the storage requirements of the application. These disadvantages can turn this technique
undesirable or unfeasible in several relevant use cases. An alternative to materialization
is query answering by query rewriting, in which all reasoning is done on-line. Query
rewriting has often been promoted as the most efficient way to query large volumes of
data. However, in practice we have not seen a widespread adoption of these techniques.
The main reason is that the queries generated by rewriting are often too large or too
complex; for example, in the case of large OWL 2 QL ontologies, rewritings often
generate hundreds or thousands of subqueries.

In this paper we present a technique that combines off-line and on-line reasoning to
avoid the aforementioned issues of materialization and query rewriting and guaranteeing,
in practice, minimal time and space for the construction of the triple store and fast query
answering. We formulate the technique using RDBMS systems as the data backend;
however, we note that the technique can easily be adapted to native triple stores. Likewise,
in the following we focus on the OWL 2 QL direct entailment regime, however, the
technique can also be used with the RDFS regime.
Semantic Index. The core idea of the semantic index technique is to encode the entailed
hierarchies of the terminology of the OWL 2 QL ontology, i.e., the TBox T , into
numeric indexes that we assign to classes and properties. We use these values to insert
the assertional data of the ontology, i.e., the ABox A, into the DB, and use range queries
to retrieve the triples entailed by the hierarchies and the ABox assertions. This allows us
to create triple repositories that are almost the size of the original data and already encode
most of the semantics of the ontology. Combined with a simple rewriting technique, we
are able to provide fast and scalable query answering for SPARQL 1.1 ABox queries
under the OWL 2 QL entailment regime while preserving soundness and completeness.
Our proposal is strongly related to techniques for managing large transitive relations in

1

1, {(1, 3)}
A

B
2, {(2, 2)}

C
3, {(3, 3)}

4, {(3, 4)}
D

S
6, {(6, 6)}

5, {(5, 7)}
R

M
7, {(7, 7)}

Fig. 1. DC , DR and the values for idx (left value) and range (in brackets) for Example 2. Arrows
indicate sub-class or sub-property relations.

knowledge bases [2], however, our interest is not in the hierarchies themselves, as in [2],
but in querying implicit assertional data that is associated to those hierarchies. Formally,
a semantic index is defined as follows (we use DL notation due to space constraints).

Definition 1. Given an OWL 2 QL TBox T and its vocabulary V of classes and prop-
erties, a semantic index for T is a pair of mappings 〈idx , range〉 with idx : V → N
and range : V → 2N×N, such that, for each pair E1, E2 of classes or properties
in V , we have that T |= E1 v E2 iff there is a pair 〈`, h〉 ∈ range(E2) such that
` ≤ idx (E1) ≤ h.

Given an OWL 2 QL ontology, we use the entailed class and property hierarchies to
create 〈idx , range〉. Specifically, let T be the TBox, andDC a minimal Directed Acyclic
Graph (DAG) that represents the entailed sub-class relation between all named classes
of T (i.e., the transitive reduct of the class hierarchy).1 Then we can construct idx by
initializing a counter i = 0, and visiting the nodes in DC in a depth-first fashion starting
from the root nodes. At each step and given the node N visited at that step, if idx (N)
is undefined, set idx (N) = i and i = i+ 1, else if idx (N) is defined, backtrack until
the next node for which idx is undefined. Now, to generate range, we visit the nodes
in DC starting from the leafs and going up. For each node N in the visit, if N is a leaf
in DC , then we set range(N) = {〈idx (N), idx (N)〉}, and if N is not a leaf, then we
set range(N) = merge({〈idx(N), idx(N)〉} ∪

⋃
Ni | Ni→N∈DC

range(Ni)), where
merge is a function that, given a set r of ranges, returns the minimal set r′ of ranges that
has coverage equal to r, e.g., merge({〈5, 7〉, 〈3, 5〉, 〈9, 10〉}) = {〈3, 7〉, 〈9, 10〉}. We
proceed exactly in the same way with the DAG DR representing the property hierarchy.

Example 2. Let A, B, C, D be classes, let R, S, M be properties, and consider the
TBox T = {B v A,C v A,C v D,∃R v D,S v R,MvR}. Let the DAGs DC and
DR for T be the ones depicted in Fig. 1, then the, technique will create idx and range
as indicated in the same figure.

We use a semantic index 〈idx , range〉 to insert the ABox in a DB as follows. We
define the DB schema R with a table TC [c1, idx] for storing rdf:type assertions,
and a table TR[c1, c2, idx] for storing property assertions, s.t. the columns c1 and
c2 have type uri and idx has type numeric. Given an ABox A, we insert the data
in the DB such that for each A(c) ∈ A (i.e., triples of the form c rdf:type A.)
we have the tuple 〈c, idx (A)〉 in TC , and for each P (c, c′) ∈ A (i.e., triples of the
form c P c’.) we have 〈c, c′, idx (P)〉 in TR. The schema and the index allow us to

1 We assume w.l.o.g. that T does not contain a cyclic chain of sub-class or sub-property axioms.

2

σ1≤idx≤3(TC) ; A(c1)
σ2≤idx≤2(TC) ; B(c1)
σ3≤idx≤3(TC) ; C(c1)
σ3≤idx≤4(TC) ; D(c1)

σ5≤idx≤7(TR) ; R(c1, c2)
σ6≤idx≤6(TR) ; S(c1, c2)
σ7≤idx≤7(TR) ; M(c1, c2)
σ5≤idx≤7(TR) ; D(c1)

Fig. 2. The mappings for Example 2 created by our technique.

define, for each class A and each property P , a set of range queries over the DB that
retrieve most URI’s c, c′ such that O |= A(c) or O |= P (c, c′). E.g., if range(A) =
{〈2, 35〉}, we use ’SELECT c1 FROM TC WHERE idx >= 2 AND idx <= 35’. We
use these queries and all the entailments of T to define the DB mappings2 of the system
as follows:3 (i) for each class A and each 〈`, h〉 ∈ range(A), we add the mapping
σ`≤idx≤h(TC) ; A(c1); (ii) for each property P and each 〈`, h〉 ∈ range(P), we add
the mapping σ`≤idx≤h(TR) ; P (c1, c2); (iii) for each pair of properties P , P ′ such that
T |= P ′− v P and each 〈`, h〉 ∈ range(P ′) we add the mapping σ`≤idx≤h(TR) ;
P (c2, c1); (iv) for each classA and each property P s.t. T |= ∃P v A (resp., ∃P− v A)
and each 〈`, h〉 ∈ range(P), we add the mapping σ`≤idx≤h(TR) ; A(c1) (resp.,
σ`≤idx≤h(TR) ; A(c2)); (v) to eliminate redundancy, we replace any pair of mappings
σ`≤idx≤h(TC) ; A(c1) and σ`′≤idx≤h′(TC) ; A(c1) such that `′ ≤ h and ` ≤ h′ by
the mapping σmin(`,`′)≤idx≤max(h,h′)(TC) ; A(c1) (similarly for property mappings).

Example 3. For T and 〈idx , range〉 as in Example 2, we get the mappings in Fig. 2.

The on-line step of the technique is the SPARQL to SQL rewriting. This step is
performed using a traditional SPARQL-algebra to relational-algebra translation, with
the restriction that all the triples in the query graph must be translated to SQL views
defined with the previous mappings. That is, given a query triple ?x rdf:type :A,
we translate it to the SQL union of all the queries in the mappings for A. Likewise for
properties, given a query triple ?x :P ?y, we translate it to the SQL union of the
mappings for P. Since the specification of SPARQL 1.1 under OWL 2 QL entailments
does not allow for true existentially quantified variables, this simple rewriting technique
is sufficient for sound and complete query answering with SPARQL ABox queries.
Performance. We now provide a brief comparison of the performance of the semantic
index vs. other reasoning techniques. This is only part of a larger evaluation that can be
found online.4 The evaluation is based on data from a real SW application, the Resource
Index (RI) [3], winner of the Semantic Web Challenge Open Track 2010. The RI offers
semantic search over 22 collections of biomedical documents. The semantics of the
search is defined by the hierarchies of ≈ 200 ontologies that include well known and
very large bio-medical ontologies like the Gene Ontology, SNOMEDCT, NCI Thesaurus,
etc. The workflow of the RI can be summarized as follows: (i) using natural language
processing, the RI annotates each document using the vocabulary of the ontologies, e.g.,
ABox triples of the form Cervical Cancer(′:doc-224′); (ii) the system expands the
annotations using the ontologies and forward-chaining; (iii) users retrieve documents
through queries, e.g,. SELECT ?x WHERE {?x a :Cancer}.

2 DB mappings state how to retrieve the assertions for each class and property from the DB and
are used during SPARQL to SQL rewriting. We refer to [5] for a formal description of these.

3 Here we use relational algebra expressions instead of SQL to simplify the exposition.
4 https://babbage.inf.unibz.it/trac/obdapublic/wiki/resourceindex

3

For our tests we used one document collection, the Clinical Trials.gov (CT) doc-
uments, for which the annotation stage generates 181 million annotations, amounting
to 14GB of data. In this case, a materialization of entailments using forward-chaining
requires 7 days and 140GB of additional space. If the process is optimized (using data par-
titioning, parallelization, etc.) the time can be reduced to 40 minutes. In contrast, the off-
line stage of the semantic index only requires 27s and 4GB of additional space. To mea-
sure query answering performance, we issued several queries. Here we describe ‘SELECT
?x WHERE {?x a DNA Repair Gene; a Antigen Gene; a Cancer Gene}’. The
query involves reasoning among 3 wide and deep hierarchies. It also has high selectivity,
i.e., it only returns 2 distinct documents. In this case, if no rewriting is done and only
forward-chaining is applied, the query executes in 3s (0.052s if the DB is warm). If we
use rewritings of the form produced by QuOnto [1], Requiem [4], or Owlgres [7], these
generate 467874 SQL queries, which the DB is not able to execute. If more succinct
rewritings are used, e.g., those used by Presto [6], the rewriting is one SQL query with
274 comparisons (7,052B long), which requires 4.26s to execute (0.71s if warm). Using
the semantic index technique, the SQL rewriting is one SQL query with 6 comparisons
(357B long), which requires 3.58s to execute (0.08s if warm). For these tests we used
DB2 v9.7 on a Linux system with a 2.67Ghz Intel Xeon CPU and 4GB of RAM.

These results show that the semantic index is an important improvement for semantic
query answering. It outperforms all existing query rewriting techniques, offering the
same level of performance as forward chaining at only a fraction of the storage cost.
Future directions include extending our system5 to allow for full SPARQL 1.1 and to
apply the semantic index to reduce the cost of forward-chaining based reasoning in more
expressive ontology languages.
Acknowledgements. We thank Dr. Paea LePendu for providing us with the RI data and
supporting us in understanding this application. We thank Sergejs Pugacs for his work
on the implementation and evaluation of the semantic index.

References

1. A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, M. Palmieri, and R. Rosati.
QUONTO: QUerying ONTOlogies. In Proc. of AAAI 2005, pages 1670–1671, 2005.

2. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive relationships
in large data and knowledge bases. In Proc. of ACM SIGMOD, pages 253–262, 1989.

3. P. LePendu, N. Noy, C. Jonquet, P. Alexander, N. Shah, and M. Musen. Optimize first, buy
later: Analyzing metrics to ramp-up very large knowledge bases. In Proc. of ISWC 2010,
volume 6496 of LNCS, pages 486–501. Springer, 2010.

4. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable query answering and rewriting under
description logic constraints. J. of Applied Logic, 8(2):186–209, 2010.

5. M. Rodrı́guez-Muro and D. Calvanese. Dependencies to optimize ontology based data access.
In Proc. of DL 2011, volume 745 of CEUR, ceur-ws.org, 2011.

6. R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontologies. In Proc. of
KR 2010, pages 290–300, 2010.

7. M. Stocker and M. Smith. Owlgres: A scalable OWL reasoner. In Proc. of OWLED 2008,
volume 432 of CEUR, ceur-ws.org, 2008.

5 http://obda.inf.unibz.it/protege-plugin/

4

ceur-ws.org
ceur-ws.org

	Semantic Index: Scalable Query Answering without Forward Chaining or Exponential Rewritings

