
Dependencies to Optimize Ontology Based Data Access?

Mariano Rodrı́guez-Muro and Diego Calvanese

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano

Piazza Domenicani 3, Bolzano, Italy
{rodriguez,calvanese}@inf.unibz.it

Abstract. Query answering in Ontology Based Data Access (OBDA) exploits
the knowledge of an ontology’s TBox to deal with incompleteness of the ABox
(or data source). Current query-answering techniques with DL-Lite require expo-
nential size query reformulations, or expensive data pre-processing. Also, these
techniques present severe redundancy issues when dealing with ABoxes that are
already (partially) complete. It has been shown that addressing redundancy is not
only required for tractable implementations of decision procedures, but may also
allow for sizable improvements in execution times. Considering the previous obser-
vations, in this paper we extend the results aiming at improving query answering
performance in OBDA systems that were developed in [9] for DL-LiteF , to the
case where also role inclusions are present in the TBox. Specifically, we first show
that we can characterize completeness of an ABox by means of dependencies,
and that we can use these to optimize DL-LiteA TBoxes. Second, we show that
in OBDA systems we can create ABox repositories that appear to be complete
w.r.t. a significant portion of any DL-LiteA TBox. The combination of these results
allows us to design OBDA systems based on DL-LiteA in which redundancy is
minimal, the exponential aspect of query answering is notably reduced and that
can be implemented efficiently using existing RDBMSs.

1 Introduction

The current approaches to Ontology Based Data Access (OBDA) with lightweight
Description Logics (DLs) of the DL-Lite family [2] rely on query reformulation. These
techniques are based on the idea of using the ontology to rewrite a given query into a
new query that, when evaluated over the data sources, returns the certain answers to the
original query. Experiments with unions of conjunctive queries (UCQs) have shown that
reformulations may be very large, and that the execution of these reformulations suffers
from poor performance. This triggered the development of alternative reformulation
techniques [6,10], in which the focus has been on the reduction of the number of
generated queries/rules. These techniques have shown some success, however query
reformulation in all of them is still worst-case exponential in the size of the original query.
Alternative approaches [5] use the expansion of the extensional layer of the ontology (i.e.,
the ABox) w.r.t. the intensional knowledge (i.e., the TBox) to avoid query reformulation
almost entirely. However, the cost of data expansion imposes severe limitations on the

? This work has been supported by the EU FP7-ICT Project ACSI (257593).

2 Mariano Rodrı́guez-Muro and Diego Calvanese

system. We believe that approaching the problem of the high cost of query answering
in OBDA systems requires a change of focus: namely, from the ’number of queries’
perspective, to the perspective that takes into account the ’duplication in the answers’
appearing in query results under SQL multiset semantics. Duplication in results is a
sign of redundancy in the reasoning process; it not only generated not only by the
reformulation procedures as traditionally thought, since also techniques based on ABox
expansion show this problem. Instead, redundancy is the consequence of ignoring the
semantics of the data sources. In particular, when the data in a source (used to populate
the ABox of the ontology) already satisfies an inclusion assertion of the TBox (i.e., is
complete w.r.t. such an inclusion assertion), then using that inclusion assertion during
query answering might generate redundant answers [8]. As noted in [4], the runtime
of decision procedures might change from exponential to polynomial if redundancy is
addressed, and this is also the case in OBDA query answering. In [9], we addressed both
problems, redundancy and the exponential blow-up of query reformulations, for the DL
DL-LiteF . We followed two complementary directions and in this paper we extend both
to deal also with the case where role inclusions are present in the TBox.

Specifically, in [9], we first presented an approach to take into account completeness
of the data with respect to DL-LiteF TBoxes. We characterized completeness using ABox
dependencies and showed that it is possible to use dependencies to optimize the TBox
in order to avoid redundant computations independently of the reasoning technique.
Second, we focused on how we can optimally complete ABoxes in OBDA systems by
relying on the fact that in OBDA systems it is possible to manipulate not only the data,
but also the mappings and database schema. This allows us to conceive procedures to
store an ABox in a source in such a way that it appears to be complete with respect to a
significant portion of the TBox, but without actually expanding the data. We presented
two such procedures, one for general and one for ’virtual’ OBDA systems, both designed
to take advantage of the features of modern RDBMSs effectively. These results allow for
the design of systems that can delegate reasoning tasks (e.g., dealing with hierarchies,
existentially quantified individuals, etc.) to stages of the reasoning process where these
tasks can be handled most effectively. The result is a (sometimes dramatic) reduction of
the exponential runtime and an increase in the quality of the answers due to the reduction
of duplication. Here, we extend the TBox optimization procedure and one of the ABox
completion mechanisms to DL-LiteA ontologies, in which role inclusions are allowed.

The rest of the paper is organized as follows: Section 2 gives technical preliminaries.
Section 3 presents our extension to DL-LiteA of the general technique for optimizing
TBoxes w.r.t. dependencies. Section 4 introduces data dependencies in OBDA systems,
describing why it is natural to expect completeness of ABoxes. Section 5 presents our
extension of one of the techniques for completing ABoxes in OBDA systems to allow
for DL-LiteA ontologies. Section 6 concludes the paper.

2 Preliminaries

In the rest of the paper, we assume a fixed vocabulary V of atomic concepts, denoted A
(possibly with subscripts), and atomic roles, denoted P , representing unary and binary
relations, respectively, and an alphabet Γ of (object) constants.

Dependencies to Optimize Ontology Based Data Access 3

Databases. In the following, we regard a database (DB) as a pair D = 〈R, I〉, where R
is a relational schema and I is an instance of R. The active domain ΓD of D is the set of
constants appearing in I, which we call value constants. An SQL query ϕ over a DB
schema R is a mapping from a DB instance I of R to a set of tuples.
DL-Lite ontologies. We introduce the DL DL-LiteA, on which we base our results. In DL-
LiteA, a basic role, denotedR, is an expression of the form P or P−, and a basic concept,
denoted B, is an expression of the form A or ∃R. An ontology is a pair O = 〈T ,A〉
where T is a TBox and A an ABox. A TBox is a finite set of (positive) inclusions
B1 v B2 or R1 v R2, disjointness assertions B1 v ¬B2, and functionality assertions
(funct R). An ABox is a finite set of membership assertions A(c) or P (c, c′), where
c, c′ ∈ Γ . Moreover, DL-LiteA imposes the syntactic restriction that a role P declared
functional, via (funct P), or inverse functional, via (funct P−), cannot be specialized,
i.e., cannot appear in the right-hand side of a role inclusion assertion R v P or R v P−.
Queries over ontologies. An atom is an expression of the form A(t) or P (t, t′), where
t and t′ are atom terms, i.e., variables or constants in Γ . An atom is ground if it contains
no variables. A conjunctive query (CQ) q over an ontology O is an expression of the
form q(x)← β(x,y), where x is a tuple of distinct variables, called distinguished, y is
a tuple of distinct variables not occurring in x, called non-distinguished, and β(x,y) is
a conjunction of atoms with variables in x and y, whose predicates are atomic concepts
and roles of O. We call q(x) the head of the query and β(x,y) its body. A union of
CQs (UCQ) is a set of CQs (called disjuncts) with the same head. Given a CQ Q with
body β(z) and a tuple v of constants of the same arity as z, we call a ground instance
of Q the set β[z/v] of ground atoms obtained by replacing in β(z) each variable with
the corresponding constant from v.
Semantics. An interpretation I = (∆I , ·I) consists of a non-empty interpretation
domain ∆I and an interpretation function ·I that assigns to each constant c an element
cI of ∆I , to each atomic concept A a subset AI of ∆I , and to each atomic role P a
binary relation over ∆I . Moreover, basic roles and basic concepts are interpreted as
follows: (P−)I = {(o2, o1) | (o1, o2) ∈ P I} and (∃R)I = {o | ∃o′. (o, o′) ∈ RI}.
An interpretation I is a model of B1 v B2 if BI1 ⊆ BI2 , of R1 v R2 if RI1 ⊆ RI2 , of
B1 v ¬B2 if BI1 ∩ BI2 = ∅, and of (funct R) if for each o, o1, o2 ∈ ∆I we have that
(o, o1) ∈ RI and (o, o2) ∈ RI implies o1 = o2. Also, I is a model of A(c) if cI ∈ AI ,
and of P (c, c′) if (cI , c′I) ∈ P I . In DL-LiteA, we adopt the Unique Name Assumption
(UNA), which enforces that for each pair of constants o1, o2, if o1 6= o2, then oI1 6= oI2 .
For a DL-LiteA assertion α (resp., a set Θ of DL-LiteA assertions), I |= α (resp., I |= Θ)
denotes that I is a model of α (resp., Θ). A model of an ontology O = 〈T ,A〉 is an
interpretation I such that I |= T and I |= A. An ontology is satisfiable if it admits a
model. An ontology O entails an assertion α, denoted O |= α, if every model of O is
also a model of α. Similarly, for a TBox T and an ABox A instead of O. The saturation
of a TBox T , denoted sat(T), is the set of DL-LiteA assertions α s.t. T |= α. Notice
that sat(T) is finite, hence a TBox.

Let ΓA denote the set of constants appearing in an ABox A. The answer to a CQ
Q = q(x) ← β(x,y) over O = 〈T ,A〉 in an interpretation I, denoted ans(Q,O, I),
is the set of tuples c ∈ ΓA × · · · ×ΓA such that there exists a tuple c′ ∈ ΓA × · · · ×ΓA
such that the ground atoms in β[(x,y)/(c, c′)] are true in I. The answer to an UCQ

4 Mariano Rodrı́guez-Muro and Diego Calvanese

Q in I is the union of the answers to each CQ in Q. The certain answers to Q in O,
denoted cert(Q,O), is the intersection of every ans(Q,O, I) for all models I for O.
The answer to Q over an ABox A, denoted eval(Q,A), is the answers to Q over A
viewed as a DB instance. A perfect reformulation ofQ w.r.t. a TBox T is a queryQ′ such
that for every ABox A such that 〈T ,A〉 is satisfiable, cert(Q, 〈T ,A〉) = eval(Q′,A).
Mappings. We adopt the definitions for ontologies with mappings from [7]. First we
extend interpretations to be able to create object constants from the value constants in a
DB D. Given an alphabet Λ of function symbols we define the set τ(Λ, ΓD) of object
terms as the set of all terms of the form f(d1, . . . , dn), where f ∈ Λ, the arity of f is
n, and d1, . . . , dn ∈ ΓD. We set Γ = ΓD ∪ τ(Λ, ΓD), and we extend the interpretation
function so that for each c ∈ τ(Λ, ΓD) we have that cI ∈ ∆I . We extend queries by
allowing the use of predicate arguments that are variable terms, i.e., expressions of the
form f(t), where f ∈ Λ with arity n and t is an n-tuple of variables or value constants.
Given a TBox T and a DB D, a mapping (assertion) m for T is an expression of the
form ϕ(x) ; ψ(t) where ϕ(x) is an SQL query over D with answer variables x, and
ψ(t) is a CQ over T without non-distinguished variables using variable terms over
variables in x. We call the mapping simple if the body of ψ(t) consists of a single atom,
and complex otherwise. A simple mapping is for an atomic concept A (resp., atomic role
P) if the atom in the body of ψ(t) has A (resp., P) as predicate symbol. In the following,
we might abbreviate the query ψ in a mapping by showing only its body. A virtual ABox
V is a tuple 〈D,M〉, where D is a DB andM a set of mappings, and an ontology with
mappings is a tuple OM = 〈T ,V〉, where T is a TBox and V = 〈D,M〉 is a virtual
ABox in whichM is a set of mappings for T .

An interpretation I satisfies a mapping assertion ϕ(x) ; ψ(t) w.r.t. a DB D =
〈R, I〉 if for every tuple v ∈ ϕ(I) and for every ground atom X in ψ[x/v] we have that:
ifX has the formA(f(c)), then (f(c))I ∈ AI , and ifX has the form P (f1(c1), f2(c2)),
then ((f1(c1))

I , f2(c2)
I) ∈ P I . An interpretation I is a model of V = 〈D,M〉,

denoted I |= V , if it satisfies every mapping inM w.r.t. D. A virtual ABox V entails an
ABox assertion α, denoted V |= α, if every model of V is a model of α. I is a model of
OM = 〈T ,V〉 if I |= T and I |= V . As usual, OM is satisfiable if it admits a model.
We note that, in an ontology with mappings OM = 〈T , 〈D,V〉〉, we can always replace
M by a set of simple mappings, while preserving the semantics of OM. It suffices to
split each complex mapping ϕ; ψ into a set of simple mappings that share the same
SQL query ϕ (see [7]). In the following, we assume to deal only with simple mappings.

Dependencies. ABox dependencies are assertions that restrict the syntactic form of
allowed ABoxes. In this paper, we focus on unary and binary inclusion dependencies
only. A unary (resp., binary) inclusion dependency is an assertion of the formB1 vA B2,
where B1 and B2 are basic concepts (resp., R1 vA R2, where R1 and R2 are basic
roles). In the following, for a basic role R and constants c, c′, R(c, c′) stands for P (c, c′)
if R = P and for P (c′, c) if R = P−. An ABox A satisfies an inclusion dependency
σ, denoted A |= σ, if the following holds: (i) if σ is A1 vA A2, then for all A1(c) ∈ A
we have A2(c) ∈ A; (ii) if σ is ∃R vA A, then for all R(c, c′) ∈ A we have A(c) ∈ A;
(iii) if σ is A vA ∃R, then for all A(c) ∈ A there exists c′ such that R(c, c′) ∈ A; (iv) if
σ is ∃R1 vA ∃R2, then for all R1(c, c

′) ∈ A there exists c′′ such that R2(c, c
′′) ∈ A;

(v) if σ is R1 vA R2, then for all R1(c, c
′) ∈ A we have R2(c, c

′) ∈ A. An ABox A

Dependencies to Optimize Ontology Based Data Access 5

satisfies a set of dependencies Σ, denoted A |= Σ, if A |= σ for each σ ∈ Σ. A set
of dependencies Σ entails a dependency σ, denoted Σ |= σ, if for every ABox A s.t.
A |= Σ we also have that A |= σ. The saturation of a set Σ of dependencies, denoted
sat(Σ), is the set of dependencies σ s.t. Σ |= σ.Given two queries Q1, Q2, we say that
Q1 is contained in Q2 relative to Σ if eval(Q1,A) ⊆ eval(Q2,A) for each ABox A
s.t. A |= Σ.

3 Optimizing TBoxes w.r.t. Dependencies

In a DL-LiteA ontology O = 〈T ,A〉, the ABox A may be incomplete w.r.t. the TBox T ,
i.e., there may be assertions B1 v B2 in T s.t. A 6|= B1 vA B2. When computing the
certain answers to queries overO, the TBox T is used to overcome such incompleteness.
However, an ABox may already be (partially) complete w.r.t. T , e.g., an ABoxA satisfy-
ing A1 vA A2 is complete w.r.t. A1 v A2. While ignoring completeness of an ABox is
’harmless’ in the theoretical analysis of reasoning over DL-LiteA ontologies, in practice,
it introduces redundancy, which manifests itself as containment w.r.t. dependencies
among the disjuncts (CQs) of the perfect reformulation, making the contained disjuncts
redundant. For example, let T andA be as before, and let Q be q(x)← A2(x), then any
perfect reformulation of Q must include q1 = q(x)← A1(x) and q2 = q(x)← A2(x)
as disjuncts. However, since q1 is contained in q2 relative to A1 vA A2, we have that q1
will not contribute new tuples w.r.t. those contributed by q2.

It is possible to use information about completeness of an ABox, expressed as
a set of dependencies, to avoid redundancy in the reasoning process. One place to
do this is during query reformulation, using techniques based on conjunctive query
containment (CQC) with respect to dependencies to avoid the generation of redundant
queries. However, this approach is expensive, since CQC is an NP-complete problem
(even ignoring dependencies), and such optimizations would need to be performed
every time a query is reformulated. We show now how we can improve efficiency by
pre-processing the TBox before performing reformulation. In particular, given a TBox T
and a set Σ of dependencies, we show how to compute a TBox T ′ that is smaller than T
and such that for every query Q the certain answers are preserved if Q is executed over
an ABox that satisfies Σ. Specifically, our objective is to determine when an inclusion
assertion of T is redundant w.r.t. Σ, and to do so we use the following auxiliary notions.

Definition 1. Let T be a TBox, B, C basic concepts, R, S basic roles, and Σ a set of
dependencies over T . A T -chain from B to C in T (resp., a Σ-chain from B to C in Σ)
is a sequence of inclusion assertions (Bi v B′i)ni=0 in T (resp., a sequence of inclusion
dependencies (Bi vA B′i)

n
i=0 in Σ), for some n ≥ 0, such that: B0 = B, B′n = C, and

for 1 ≤ i ≤ n, we have that B′i−1 and Bi are basic concepts s.t., either (i) B′i−1 = Bi,
or (ii)B′i−1 = ∃R′ andBi = ∃R′−, for some basic roleR′. A T -chain fromR to S in T
(resp., a Σ-chain from R to S in Σ) is a sequence of inclusion assertions (Ri v R′i)ni=0

in T (resp., a sequence of inclusion dependencies (Ri vA R′i)
n
i=0 inΣ), for some n ≥ 0,

such that: R0 = R, R′n = S and for 1 ≤ i ≤ n, we have that R′i−1 = Ri.

Intuitively, when there is a T -chain from B to C, the existence of an instance of B in
a model implies the existence of an instance of C. For a Σ-chain, this holds for ABox
assertions. We use T -chains and Σ-chains to characterize redundancy as follows.

6 Mariano Rodrı́guez-Muro and Diego Calvanese

Definition 2. Let T be a TBox, B, C basic concepts, R, S basic roles, and Σ a set
of dependencies. The inclusion assertion B v C (resp., R v S) is directly redundant
in T w.r.t. Σ if (i) Σ |= B vA C (resp., Σ |= R vA S) and (ii) for every T -chain
(Bi v B′i)ni=0 withB′n = B in T (resp., for every T -chain (Bi v B′i)ni=0 withB′n = ∃R
and for every T -chain (Ri v R′i)mi=0 withR′m = R), there is aΣ-chain (Bi vA B′i)

n
i=0

(resp., a Σ-chain (Bi vA B′i)
n
i=0 and a Σ-chain (Ri vA R′i)

m
i=0). Then, B v C (resp.,

R v S) is redundant in T w.r.t. Σ if (a) it is directly redundant, or (b) there exists
B′ 6= B (resp., R′ 6= R) s.t. (i) T |= B′ v C (resp., T |= R′ v S), (ii) B′ v C (resp.,
R′ v S) is not directly redundant in T w.r.t. Σ, and (iii) B v B′ (resp., R v R′) is
directly redundant. in T w.r.t. Σ.

Given a TBox T and a set of dependencies Σ, we apply our notion of redundancy
w.r.t. Σ to the assertions in the saturation of T to obtain a TBox T ′ that is equivalent to
T for certain answer computation.

Definition 3. Given a TBox T and a set of dependencies Σ over T , the optimized
version of T w.r.t. Σ, denoted optim(T , Σ), is the set of inclusion assertions {α ∈
sat(T) | α is not redundant in sat(T) w.r.t. sat(Σ)}.

Correctness of using T ′ = optim(T , Σ) instead of T when computing the certain
answers to a query follows from the following theorem.

Theorem 1. Let T be a TBox and Σ a set of dependencies over T . Then for every
ABox A such that A |= Σ and every UCQ Q over T , we have that cert(Q, 〈T ,A〉) =
cert(Q, 〈optim(T , Σ),A〉).

Proof. First we note that during query answering, only the positive inclusions are
relevant, hence we ignore disjointness and functionality assertions. Since sat(T) adds
to T only entailed assertions, cert(Q, 〈T ,A〉) = cert(Q, 〈sat(T),A〉), for every Q
and A, and we can assume w.l.o.g. that T = sat(T). Moreover, cert(Q, 〈T ,A〉) is
equal to the evaluation of Q over chase(T ,A). (We refer to [2] for the definition of
chase for a DL-LiteF ontology.) Hence it suffices to show that for every B v C (resp.,
R v R) that is redundant with respect to Σ, chase(T ,A) = chase(T \ {B v C},A).
We show this by proving that if B v C (resp., R v S) is redundant (hence, removed by
optim(T , Σ)), then there is always a chase(T ,A) in which B v C (resp., R v S) is
never applicable. Assume by contradiction that B v C (resp., R v S) is applicable to
some assertion B(c) (resp., R(c, c′)) during some step in chase(T ,A). We distinguish
two cases that correspond to the cases of Definition 2.

(a) Case where B v C (resp., R v S) is directly redundant, and hence Σ |=
B vA C (resp., Σ |= R vA S). We distinguish two subcases: (i) B(c) ∈ A (resp.,
R(c, c′) ∈ A). Since A |= B vA C (resp., A |= R vA S), we have C(c) ∈ A (resp.,
S(c, c′) ∈ A), and henceB v C is not applicable toB(c) (resp.,R v S is not applicable
to R(c, c′)). Contradiction. (ii) B(c) /∈ A (resp., R(c, c′) /∈ A). Then there is a sequence
of chase steps starting from some ABox assertion B′(c′) (resp., R(a, a′) or B(a)) that
generates B(c) (resp., R(c, c′)). Such a sequence requires a T -chain (Bi v B′i)ni=0 with
B0 = B′ and B′n = B (resp., a T -chain (Ri v R′i)

n
i=0 with R0 = R′ and R′n = R,

or a T -chain (Bi v B′i)
n
i=0 with B0 = B and B′n = ∃R), such that each Bi v B′i

Dependencies to Optimize Ontology Based Data Access 7

(resp., each Ri v R′i or each Bi v B′i) is applicable in chase(T ,A). Then, by the
second condition of direct redundancy, there is a Σ-chain (Bi vA B′i)

n
i=0 (resp., a

Σ-chain (Ri vA R′i)
n
i=0 or a Σ-chain (Bi vA B′i)

n
i=0). Since A |= B0 vA B′0 (resp.,

A |= R0 v R′0 or A |= B0 vA B′0) we have that B′0(c
′) ∈ A (resp., R′0(a, a

′) ∈ A
or B′0(a) ∈ A) and hence B0 v B′0 is not applicable to B′(c′) (resp., R0 v R′0 is not
applicable to R′(a, a′), or B0 v B′0 is not applicable to B′(a)). Contradiction.

(b) Case where B v C has been removed by Definition 2(b), and hence there exists
B′ 6= B such that T |= B v B′ (resp., R′ 6= R s.t. T |= R v R′). First we note
that any two oblivious chase sequences for T and A produce results that are equivalent
w.r.t. query answering. Then it is enough to show that there exists some chase(T ,A) in
which B′ v C (resp., R′ v S) is always applied before B v C (resp., R v S) and in
which B v C (resp., R v S) is never applicable. Again, we distinguish two subcases:
(i) B(c) ∈ A (resp., R(c, c′) ∈ A). Then, since B v B′ is directly redundant, we have
that Σ |= B vA B′. Since A |= Σ, we have that B′(c) ∈ A (resp., R′(c, c′) ∈ A), and
given that B′ v C (resp., R′ v S) is always applied before B v C (resp., R v S), C(c)
(resp., S(c, c′)) is added to chase(T ,A) before the application ofB v C (resp.,R v S),
hence B v C (resp., R v S) is in fact not applicable. Contradiction. (ii) B(c) /∈ A
(resp., R(c, c′) /∈ A). Then, arguing as in Case (a).(ii), using B v B′ instead of B v C
(resp., R v R′ instead of R v S), we can derive a contradiction. ut

Complexity and implementation. Due to space limitations, we cannot provide a full
description of how to compute optim(T , Σ). We just note that the checks that are
required by optim(T , Σ) can be reduced to computing reachability between two nodes
in a DAG that represents the reachability relation of the chains in T andΣ. This operation
can be done in linear time.
Consistency checking. Consistency checking may also suffer from redundancy when
the ABox is already (partially) complete w.r.t. T . In this case, we need to consider,
in addition to inclusion dependencies, also functional and disjointness dependencies.
Due to spaces limitations we cannot provide more details, and just note that using
these dependencies it is possible to extend the definitions to generate TBoxes that avoid
redundant consistency checking operations.

4 Dependencies in OBDA Systems

The purpose of the current section is to complement our argument w.r.t. completeness of
ABoxes by discussing when and why we can expect completeness in OBDA systems.
We start by observing that in OBDA systems, ABoxes are constructed, in general, from
existing data that resides in some form of data repository. In order to create an ABox,
the system requires some form of mappings from the source to the ontology. These may
be explicit logical assertions as the ones used in this paper, or they may be implicitly
defined through application code. Therefore, the source queries used in these mappings
become crucial in determining the structure of the ABox. In particular, any dependencies
that hold over the results of these queries will be reflected in the OBDA system as ABox
dependencies.

8 Mariano Rodrı́guez-Muro and Diego Calvanese

Example 1. Let R be a DB schema with the relation schema employee with attributes
id, dept, and salary, that stores information about employees, their salaries, and the
department they work for. LetM be the following mappings:

SELECT id,dept FROM employee ; Employee(emp(id)) ∧
WORKS-FOR(emp(id), dept(dept))

SELECT id,dept FROM employee
WHERE salary > 1000

; Manager(emp(id))∧
MANAGES(emp(id), dept(dept))

where Employee and Manager are atomic concepts and WORKS-FOR and MANAGES
are atomic roles. Then for every instance I of R, the virtual ABox V = 〈〈R, I〉,M〉
satisfies the following dependencies:

Manager vA Employee Manager vA ∃MANAGES ∃WORKS-FOR vA Employee
∃MANAGES vA Manager Employee vA ∃WORKS-FOR

In particular, the dependency in Column 1 follows from the containment relation between
the two SQL queries used in the mappings, and the remaining dependencies follow from
the fact that we populate WORKS-FOR (resp., MANAGES) using the same SQL query
used to populate Employee (resp., Manager).

Turning our attention to the semantics of the data sources, we note that any given
DB is based on some conceptual model. At the same time, if we associate the data of any
given DB to the concepts and roles of a TBox T , it follows that this data is semantically
related to these concepts and roles, and that the conceptual model of the DB has some
common aspects with the semantics of T . It is precisely these common aspects that
get manifested as dependencies between queries in the mappings and that give rise to
completeness in ABoxes. Therefore, the degree of completeness of an ABox in an OBDA
system is in direct relation with the closeness of the semantics of the conceptual model
of the DB and the semantics of the TBox, and with the degree in which the DB itself
complies to the conceptual model that was used to design it.

Example 2. To illustrate the previous observations we extend Example 1. First we note
that the intended meaning of the data stored in R is as follows: (i) employees with a
salary higher than 1,000 are managers, (ii) managers manage the department in which
they are employed, and (iii) every employee works for a department. Then, any TBox
that shares some of this semantics will present redundancy. For example, if T is

Manager v Employee Manager v ∃MANAGES Employee v ∃WORKS-FOR
∃MANAGES− v Department ∃WORKS-FOR− v Department

then the first row of assertions is redundant w.r.t. Σ. Instead, the semantics of the
assertions of the second row is not captured by the mappings. In an OBDA system with
such components, we should reason only w.r.t. Department. This can be accomplished
by optimizing T w.r.t. Σ using the technique presented in Section 3.

5 Dependency Induction

We focus now on procedures to complete ABoxes with respect to TBoxes. The final
objective is to simplify reasoning by diverting certain aspects of the process (e.g.,

Dependencies to Optimize Ontology Based Data Access 9

dealing with concept/role hierarchies and domain and range assertions) from the query
reformulation stage to other stages of the query answering process where they can be
handled more efficiently. We call these procedures dependency induction procedures
since their result can be characterized by a set of dependencies that hold in the ABox(es)
of the system. Formally, given an OBDA system O = 〈T ,V〉, where V = 〈〈R, I〉,M〉,
we call a dependency induction procedure a procedure that uses O to compute a virtual
ABox V ′ such that the number of assertions in T for which V ′ is complete is higher
than those for V . An example of a dependency induction procedure is ABox expansion,
a procedure in which the data in I is chased w.r.t. T . The critical point in dependency
induction procedures is the trade-off between the degree of completeness induced, the
system’s performance, and the cost of the procedure. In [9] we presented two dependency
induction mechanism that provide good trade-offs. Both of them are designed for the
case in which the data sources are RDBMSs. In the current paper we extend one of these
procedures, the semantic index technique, to the DL-LiteA setting. In particular, given a
DL-LiteA TBox T and a virtual ABox V , the extended semantic index is able to generate
a virtual ABox V ′ where, if T |= B v A (resp., T |= R1 v R2), then V ′ |= B vA A
(resp., Σ |= R1 vA R2). Hence, V ′ is complete for all DL-LiteA inferences except those
involving mandatory participation assertions, e.g., B v ∃R.

Semantic Index. This technique applies in the context of general OBDA systems in
which we are free to manipulate any aspect of the system to improve query answering.
The basic idea is to encode the implied is-a relationships of T in the values of numeric
indexes that we assign to concept and role names. ABox membership assertions are then
inserted in the DB using these numeric values s.t. one can retrieve most of the implied
instances of any concept or role by posing simple range queries to the DB (which are
very efficient in modern RDBMSs). Our proposal is related to techniques for managing
large transitive relations in knowledge bases (e.g., the is-a hierarchy) [1], however, our
interest is not in managing hierarchies but in querying the associated instance data. Our
proposal is also related to a technique for XPath query evaluation known as Dynamic
Intervals [3], however, while the latter deals with XML trees, we have to deal with
hierarchies that are DAGs. Formally, a semantic index is defined as follows.

Definition 4. Given a DL-LiteA TBox T and its vocabulary V , a semantic index for
T is a pair of mappings 〈idx , range〉 with idx : V → N and range : V → 2N×N,
such that, for each pair E1, E2 of atomic concepts or atomic roles in V , we have that
T |= E1 v E2 iff there is a pair 〈`, h〉 ∈ range(E2) such that ` ≤ idx (E1) ≤ h.

Using a semantic index 〈idx , range〉 for a TBox T , we construct V = 〈R, I〉 with
the completeness properties described above by proceeding as follows. We define a
DB schema R with a universal-like relation TC [c1, idx] for storing ABox concept
assertions, and a relation TR[c1, c2, idx] for storing ABox role assertions, s.t. c1 and
c2 have type constant and idx has type numeric. Given an ABox A, we construct I
such that for each A(c) ∈ A we have 〈c, idx (A)〉 ∈ TC and for each P (c, c′) ∈ A we
have 〈c, c′, idx (P)〉 ∈ TR. The schema and the index allow us to define, for each atomic
concept A and each atomic role P , a set of range queries over D that retrieves most
constants c, c′ such that O |= A(c) or O |= P (c, c′). E.g., if range(A) = {〈2, 35〉}, we
define ’SELECT c1 FROM TC WHERE idx >= 2 AND idx <= 35’. We use these

10 Mariano Rodrı́guez-Muro and Diego Calvanese

queries to define the mappings of the system as follows1: (i) for each atomic concept
A and each 〈`, h〉 ∈ range(A), we add the mapping σ`≤idx≤h(TC) ; A(c1); (ii) for
each atomic role P and each 〈`, h〉 ∈ range(P), we add the mapping σ`≤idx≤h(TR) ;
P (c1, c2); (iii) for each pair of atomic roles P , P ′ such that T |= P ′− v P and
each 〈`, h〉 ∈ range(P ′) we add the mapping σ`≤idx≤h(TR) ; P (c2, c1); (iv) for
each atomic concept A, each atomic role P s.t. T |= ∃P v A (resp., ∃P− v A)
and each 〈`, h〉 ∈ range(P), we add the mapping σ`≤idx≤h(TR) ; A(c1) (resp.,
σ`≤idx≤h(TR) ; A(c2)); (v) last, we replace any pair of mappings σ`≤idx≤h(TC) ;
A(c1) and σ`′≤idx≤h′(TC) ; A(c1) such that `′ ≤ h and ` ≤ h′ by the mapping
σmin(`,`′)≤idx≤max(h,h′)(TC) ; A(c1) (similarly for role mappings).

A semantic index can be trivially constructed by assigning to each concept and
role a unique (arbitrary) value and a set of ranges that covers all the values of their
subsumees. However, this is not effective for optimizing query answering since the size
ofM determines exponentially the size of the final SQL query. To avoid an exponential
blow-up, we create 〈idx , range〉 using the implied concept and role hierarchy as follows.

Let T be a TBox, and DC the minimal DAG that represents the implied is-a relation
between all atomic concepts of T (i.e., the transitive reducts of the concept hierarchy)2.
Then we can construct idx by initializing a counter i = 0, and visiting the nodes in DC

in a depth-first fashion starting from the root nodes. At each step and given the node N
visited at that step, if idx (N) is undefined, set idx (N) = i and i = i+1, else if idx (N) is
defined, backtrack until the next node for which idx is undefined. Now, to generate range
we visit the nodes inDC starting from the leafs and going up. For each nodeN in the visit,
ifN is a leaf inDC , then we set range(N) = {〈idx (N), idx (N)〉}, and ifN is not a leaf,
then we set range(N) = merge({〈idx(N), idx(N)〉} ∪

⋃
Ni | Ni→N∈DC

range(Ni)),
where merge is a function that, given a set r of ranges, returns the minimal set r′ of ranges
that has equal coverage as r, e.g., merge({〈5, 7〉, 〈3, 5〉, 〈9, 10〉}) = {〈3, 7〉, 〈9, 10〉}.
We proceed exactly in the same way with the DAG DR representing the role hierarchy.

Example 3. Let A, B, C, D be atomic concepts, let R, S, M be atomic roles, and
consider the TBox T = {B v A,C v A,C v D,D v ∃R,∃R v D,S v R,MvR}.
Let the DAGs DC and DR for T be the ones depicted in Fig. 1. The technique generates
idx and range as indicated in Fig. 1, generates the mappings in Fig. 3, and for any ABox,
the technique generates a virtual ABox V that satisfies all the dependencies Σ in Fig. 2.
Then, we will have that in query answering, rewriting is only necessary w.r.t. D v ∃R,
which would be the output of optim(T , Σ).

Our evaluation of the semantic index technique, described in [9], shows its effective-
ness in improving the cost and efficiency of query answering.

6 Conclusions and Future Work

In this paper we focused on issues of redundancy and performance in OBDA systems.
Several directions can be taken starting from the ideas presented here. First, although

1 Here we use relational algebra expressions instead of SQL to simplify the exposition.
2 We assume w.l.o.g. that T does not contain a cyclic chain of basic concept or role inclusions.

Under such an assumption DC is unique.

Dependencies to Optimize Ontology Based Data Access 11

1, {(1, 3)}
A

B
2, {(2, 2)}

C
3, {(3, 3)}

4, {(3, 4)}
D

S
6, {(6, 6)}

5, {(5, 7)}
R

M
7, {(7, 7)}

Fig. 1. DC , DR and the values for idx and range.

B vA A C vA A
C vA D ∃R vA D
S vA R M vA R

Fig. 2. The induced dependencies.

σ1≤idx≤3(TC) ; A(c1)
σ2≤idx≤2(TC) ; B(c1)
σ3≤idx≤3(TC) ; C(c1)
σ3≤idx≤4(TC) ; D(c1)

σ5≤idx≤7(TR) ; R(c1, c2)
σ6≤idx≤6(TR) ; S(c1, c2)
σ7≤idx≤7(TR) ; M(c1, c2)
σ5≤idx≤7(TR) ; D(c1)

Fig. 3. The mappings created by the technique.

TBox pre-processing is the best place to first address redundancy, it is also necessary to
apply redundancy elimination during reasoning, e.g., during query rewriting. Second,
redundancy may also appear during consistency checking, i.e., when an ABox is sound
w.r.t. to the TBox; this can also be characterized with dependencies. With respect to
evaluation, in [9] we presented a preliminary experiments that show that the semantic
index technique can provide excellent performance with a fraction of the cost of ABox
expansion, however, further experimentation is still required. In particular, it is necessary
to provide a comprehensive benchmarks of the techniques discussed in this paper in
comparison to other proposals. We are also exploring the context of SPARQL queries
over RDFS ontologies; here we believe that our techniques can be used to provide high-
performance SPARQL end points with sound and complete RDFS entailment regime
support, without relying on inference materialization, as is usually done.

References
1. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive relationships

in large data and knowledge bases. In Proc. of ACM SIGMOD, pages 253–262, 1989.
2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

3. D. DeHaan, D. Toman, M. P. Consens, and M. T. Özsu. A comprehensive XQuery to SQL
translation using dynamic interval encoding. In Proc. of ACM SIGMOD, 2003.

4. G. Gottlob and C. G. Fermüller. Removing redundancy from a clause. Artif. Intell., 61, 1993.
5. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined approach

to query answering in DL-Lite. In Proc. of KR 2010, 2010.
6. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable query answering and rewriting under

description logic constraints. J. of Applied Logic, 8(2):186–209, 2010.
7. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking

data to ontologies. J. on Data Semantics, X:133–173, 2008.
8. M. Rodrı́guez-Muro. Tools and Techniques for Ontology Based Data Access in Lightweight

Description Logics. PhD thesis, KRDB Research Centre, Free Univ. of Bozen-Bolzano, 2010.
9. M. Rodriguez-Muro and D. Calvanese. Dependencies: Making ontology based data access

work in practice. In Proc. of AMW 2011, 2011.
10. R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontologies. In Proc. of

KR 2010, 2010.

	Dependencies to Optimize Ontology Based Data Access

