
OCL-Lite: Finite reasoning on UML/OCL conceptual schemas

Anna Queralt a,⁎, Alessandro Artale b, Diego Calvanese b, Ernest Teniente a

a Dept. of Service and Information System Engineering, Universitat Politècnica de Catalunya-BarcelonaTech
b KRDB Research Centre, Free University of Bozen-Bolzano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 August 2010
Received in revised form 16 September 2011
Accepted 16 September 2011
Available online 28 September 2011

To ensure the quality of an information system we must guarantee the correctness of the
conceptual schema that represents the knowledge about its domain. The high expressivity
of UML schemas annotated with textual OCL constraints enforces the need for automated
reasoning techniques. These techniques should be both terminating and complete to be effec-
tively used in practice. In this paper we identify an expressive fragment of the OCL language
that ensures these properties. In this way, we overcome the limitations of current techniques
when reasoning on such a fragment. As a consequence, we also have that Description Logics
can be appropriately used to reason on UML conceptual schemas with arbitrary OCL constraints.
We also show how current tools based on different approaches can be used to reason on concep-
tual schemas enriched with (a decidable fragment of) OCL constraints.

© 2011 Elsevier B.V. All rights reserved.

Keywords:
OCL constraints
CASE tools+UML
Reasoning
Description Logics

1. Introduction

A conceptual schema consists of a taxonomy of classes together with their attributes, a taxonomy of associations among classes,
and a set of integrity constraints over the state of the domain, which define conditions that each instance of the schemamust satisfy
[32]. These constraints may have a graphical representation or can be defined by means of a particular general-purpose language.

The Unified Modeling Language (UML) [33] has become a de facto standard in conceptual modeling of information systems.
In UML, a conceptual schema is represented by means of a class diagram, with its graphical constraints, together with a set of
user-defined constraints, which are usually specified in OCL [34].

Due to the high expressiveness of the combination of UML and OCL, manually checking the correctness of a conceptual schema
becomes a very difficult task, especially when the set of constraints is large. For this reason, it is essential to support the designer
with automated reasoning when developing a conceptual schema. Several approaches have been proposed for this purpose
[7,35,39,8,24,36,1,37].

The need for reasoning is illustrated by the following example. Consider the UML class diagram in Fig. 1. It specifies a concep-
tual schema representing events, which are organized and audited by persons. Some events are critical and, in this case, they have
at least one responsible. An event can have several sponsors, and can be held with other events. For the sake of simplicity, we have
omitted the attributes in the schema, since they do not affect the results of the reasoning we perform.

The UML class diagram is annotated with a set of textual constraints, expressed in OCL and shown in Fig. 2, which provide
additional semantics. Constraint 1 states that each person must organize at least an event that is critical and that does not
have any sponsor. Constraint 2 ensures that a critical event has at least an inspector. Constraint 3 states that critical events can-
not be held with other events. Constraint 4 guarantees that a person cannot organize an event that does not have an inspector.
Constraint 5 ensures that all the events audited by a person must have a sponsor. Constraint 6 states that the responsible of a

Data & Knowledge Engineering 73 (2012) 1–22

⁎ Corresponding author at: Dept. of Service and Information System Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, Edifici Omega, c/ Jordi
Girona 1, E-08034 Barcelona, Spain. Tel.: +34 934 137 878.

E-mail address: aqueralt@essi.upc.edu (A. Queralt).

0169-023X/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2011.09.004

Contents lists available at SciVerse ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /datak

http://dx.doi.org/10.1016/j.datak.2011.09.004
mailto:aqueralt@essi.upc.edu
Unlabelled image
http://dx.doi.org/10.1016/j.datak.2011.09.004
Unlabelled image
http://www.sciencedirect.com/science/journal/0169023X

critical event must organize some event. Constraint 7 states that the events that have some organizer must also have a sponsor.
Finally, Constraint 8 ensures that each sponsor must be related to some critical event, or it must sponsor at least an event that
either does not have any siblings, or it has a sibling without a sponsor.

The conceptual schema in Figs. 1 and 2 is syntactically correct according to the UML and OCL syntax rules. However, this does
not ensure that it is semantically correct. In particular, Constraints 1, 2, and 5 are in contradiction, since according to Constraint 1
there must be some critical event that does not have a sponsor, but this is impossible because all critical events must be audited by
somebody (Constraint 2), and all the events that are audited must have a sponsor (Constraint 5). Thus, it is impossible to have a
valid instance of Person that satisfies Constraint 1 and, since each CriticalEvent needs a responsible (cardinality constraint)
and an inspector (Constraint 2), neither this class can be populated.

This means that the schema is incorrect, and should be fixed. For instance, assume that Constraint 1 is replaced by the following
one:

context Person inv: organized-Nexists(oclIsTypeOf(CriticalEvent))

That is, each person must organize at least one critical event. This new constraint allows now all classes and associations to be
populated.

However, in conceptual modeling, as well as in databases, assuming that the schema can be instantiated is not enough,
because in these communities the possibility of showing finite example instantiations is considered very important. In fact, in
real applications the set of instances that can be stored or managed is necessarily finite and, thus, a schema has not only to be
consistent, but also finitely satisfiable [9], i.e., the constraints have to admit a finite set of instances. Thus, a schema that admits
only infinite instantiations is in practice unsatisfiable from the databases and software engineering point of view [29].

It is well-known that reasoning with OCL integrity constraints in their full generality is undecidable since it amounts to full
FOL reasoning. Thus, reasoning with UML conceptual schemas in the presence of OCL constraints has been approached in the
following ways:

1. Allowing general constraints (in OCL or other languages) without guaranteeing termination [19,8,35], or guaranteeing termi-
nation in some specific cases after analyzing each particular schema [36,37].

2. Allowing general constraints and ensuring termination without guaranteeing completeness of the result [31,39,11,24,10].
3. Ensuring both termination and completeness of finite reasoning by allowing only specific kinds of constraints [29,25,23,40].
4. Ensuring terminating and complete reasoning by disallowing OCL constraints and admitting unrestricted models [16,7,22,3,2].

To our knowledge, none of the existing approaches guarantees complete and terminating reasoning on UML schemas coupled
with OCL constraints such as the one in Figs. 1 and 2. Approaches of the first kind do not guarantee termination, that is, a
result may not be obtained in some particular cases. On the contrary, the second kind of approaches always terminate, but do
not guarantee completeness, that is, they may fail to find existing valid solutions. Approaches of the third kind guarantee both

Fig. 1. UML class diagram.

Fig. 2. OCL constraints for the class diagram in Fig. 1.

2 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

image of Fig.�1
image of Fig.�2

completeness and termination but do not allow arbitrary constraints as the ones in Fig. 2. Finally, the last approaches are based on
a Description Logic (DL) encoding of a UML schema. They use well known reasoning procedures developed in the DL community
to check the satisfiability of a conceptual model. Methods based on DL encodings do not consider OCL constraints and they usually
check unrestricted satisfiability (i.e., they allow for infinite instantiations of a schema).

The main purpose of this paper is to identify a fragment of OCL, which we call OCL-Lite, that guarantees finite satisfiability
while being significantly expressive at the same time. In other words, we propose the specification of arbitrary constraints within
the bounds of OCL-Lite in a UML conceptual schema to ensure completeness and decidability of reasoning. Such nice properties
are due to the finite model property (FMP) of the language, i.e., it is guaranteed that a satisfiable UML/OCL-Lite schema is always
finitely satisfiable. To preserve the FMP, the UML class diagram cannot include participation constraints specifying at-most
constraints, although constructs such as attributes, hierarchies, disjointness, covering, association classes, participation
constraints, n-ary associations and key constraints can be handled (see Sections 5.1 and 6 for more details).

The proposed UML/OCL-Lite is the result of identifying a fragment of UML/OCL that can be encoded into the DL ALCI [13],
which has interesting reasoning properties. In particular,ALCI enjoys the FMP, i.e., every satisfiable set of constraints formalized
in ALCI admits a finite model. Thus, the FMP is also guaranteed for any fragment of OCL that fits into ALCI . The contributions
of this paper can be summarized as follows:

• The identification of UML/OCL-Lite, a fragment of both UML and OCL that enjoys the FMP. To our knowledge, the reasoning
properties of OCL had not been studied before, except that full OCL leads to undecidability.

• Amapping from UML/OCL-Lite to the DLALCI to prove that the proposed fragment has the same reasoning properties asALCI .
To our knowledge, this is the first attempt to encode OCL constraints in DLs. As a side result, a DL reasoner can be used to verify
the correctness of a schema.

• Thanks to the mapping to ALCI we are able to show both the FMP that checking satisfiability in UML/OCL-Lite is an EXPTIME-
complete problem.

• We show how current technology can be effectively used to automatically reason on a UML/OCL-Lite schema. In particular, a DL
reasoner is used for the first time to check several desirable properties of a conceptual schema coupled with OCL constraints. We
also show a semidecision procedure able to perform the same reasoning tasks, which, as expected, always terminates within
this fragment of OCL.

The rest of the paper is structured as follows. Section 2 reviews how the problem of reasoning on conceptual schemas with
constraints has been addressed in the literature. In Section 3, we provide the syntax rules of OCL-Lite, as well as the semantics
of this fragment of the language. Section 4 explains the mapping from a UML/OCL-Lite conceptual schema to ALCI . In Section 6,
we show how identifiers, which cannot be expressed in ALCI , can be handled by our approach. In Section 7, we show how our
proposal is supported by two existing tools following different approaches. Finally, in Section 8, we explain our conclusions and
point out future research directions.

2. Related work

In this section, we review how the problem of reasoning on conceptual schemas has been addressed in the literature. Reasoning
on conceptual schemas with OCL integrity constraints in their full generality is undecidable since it amounts to reasoning in FOL.
Thus, no reasoning procedures that deal with general OCL constraints can be both correct and terminating. The existing approaches
dealing with conceptual modeling and OCL constraints can be divided into those renouncing to decidability, those renouncing to
completeness, and those looking for decidable fragments.

Several approaches renounce to decidability in favor of expressiveness, thus they are able to deal with general constraints but
may not terminate in some cases. In this group we mention RoZ [19], which considers UML schemas with arbitrary constraints
specified in Z instead of OCL, and [8,35] that deal with UML schemas with OCL constraints. A different approach in this group
is the framework presented in [36,37], which imposes mild restrictions on the expressiveness of the constraints in order to ensure
decidability in a greater number of cases. Based on structural properties of both the schema and the OCL constraints the authors
propose a method to check whether the reasoner will terminate.

Other approaches rely on incomplete but terminating procedures in order to deal with general constraints. An important ap-
proach of this kind is the combination called UML2Alloy [1], which encodes a subset of UML and OCL into the Alloy language [27].
By using then the Alloy analyzer [31], the authors provide reasoning capabilities for schemas formalized in a logic notation. Given
a schema, Alloy tries to find possible models of a fixed finite size. The procedure is incomplete, since failure to find such a
fixed size model does not necessarily mean that the schema is unsatisfiable. The work in [10] translates an UML/OCL schema
into constraint programming and then uses a CSP solver. As in the previous approach, the procedure searches for possible models
of a fixed finite size and, thus, the procedure in not complete. The work in [24] presents a procedure that, given an instantiation of
the UML/OCL schema (provided as an input by the user), verifies whether such a particular instantiation is a model of the schema.
Also in this case the procedure is obviously not complete. Recently, the ability to use a SAT-solver has been incorporated in the
approach, so that the user does not need to provide an instantiation [28]. However the search space still needs to be limited by
fixing the size of the models to be found by the solver. Another approach dealing with UML schemas is presented in [39],
which requires that constraints are specified in B. A different approach is the one in [40], which defines consistency rules between
a list of OCL constraint patterns. This approach guarantees termination but is not complete since there are false positive cases, i.e.,
consistent constraints can be displayed as potentially inconsistent.

3A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

Finally, there are approaches that limit the expressiveness by allowing only specific kinds of constraints in order to guarantee
both decidability and completeness. These approaches usually disregard OCL constraints and concentrate on a subset of the full
UML/EER graphical constraints. The work presented in [29] studies the complexity of satisfiability checking taking into account
cardinality constraints, in [15] ISA constraints between classes are also added, while [25] considers the case where identifiers
are present. In [23], object-oriented database schemas are considered with cardinality restrictions and constraints expressing
the range of attributes.

Finally, we briefly mention those approaches based on encodings into different DLs. The DL encoding presented in [7] shows
that reasoning over full EER/UML schemas is an EXPTIME-complete problem. The upper bound is obtained by mapping UML
schemas into the ALCQI logic, while the lower bound derives from reducing the problem of Knowledge Base (KB) satisfiability
in ALC (known to be EXPTIME-complete) to checking the satisfiability of a UML schema. The study presented in [3] shows that
better complexity results can be gained by limiting the expressive power of EER/UML schemas disallowing sub-relationships
and covering constraints (in particular, NP and NLOGSPACE, respectively). The results are obtained by mapping to so called DL-
Lite logics. Recently, the approach of encoding a schema into a DL has also been used for inferring knowledge from conceptual
schemas of a particular domain [6] (in this case, data-access request scenarios in healthcare systems). The languages used are a
fragment of OWL (Web Ontology Language) and SWRL (Semantic Web Rule Language), both of them based on DLs, and with a
reasoning complexity that, in this case, is PSpace-complete. Note that, the approaches based on a DL encoding, in the general
case, do not guarantee the FMP.

The main contribution of our approach is to deal with expressive conceptual schemas, specified using both UML and OCL,
guaranteeing finite reasoning with a complete procedure. Similarly to the approaches based on a DL encoding, we encode an
UML schema using an analogous technique. On the other hand, we extend such encoding by devising an appropriate subset
of the full OCL language, i.e., OCL-Lite, and then mapping OCL-Lite to the DL ALCI . To our knowledge, this is the first approach
that allows to reason on UML conceptual schemas with OCL constraints using DLs. Furthermore, differently from the works
mentioned above, our encoding enjoy the FMP.

3. OCL-Lite syntax and semantics

In this section, we present the fragment of OCL that corresponds to OCL-Lite. We start by an overview of basic concepts of
UML class diagrams and OCL constraints. For further details on the syntax and semantics of OCL expressions, we refer the reader
to [34,41].

A UML class diagram represents the static view of the domain basically by means of classes and associations between
them, representing, respectively, sets of objects and relations between objects. An association is defined by a set of participating
classes. An association end is a part of an association that defines the participation of a class in the association. The name of
the role played by a participant in an association is placed in the association end near the corresponding class. Sometimes,
the role name for an association end is omitted, and then it is assumed that the role played by the participant is the name of
the corresponding class.

For instance, referring to the UML class diagram in Fig. 1, the association SponsoredBy has two association ends. One of them
corresponds to the class Company, which plays the role of sponsor, and the other one corresponds to class Event, which plays
the role of event in this association.

An OCL constraint (or invariant) has the form:

context C inv: OCLExpr

where C is the contextual class, i.e., the class to which the constraint belongs, and OCLExpr is an expression that results in a Boolean
value. The reserved word self may be optionally used within OCLExpr to refer to an arbitrary instance of the contextual class.

An OCL constraint is satisfied by an instantiation of the schema if OCLExpr evaluates to true for each instance of the contextual
class. An OCL expression is defined by means of navigation paths, combined with predefined OCL operations to specify conditions
on those paths. A navigation path is a sequence of role names defined in the associations of the class diagram. Each role name
used in a path indicates the direction of the navigation. If no role name is specified in the class diagram for a given association
end, the name of the destination class is used in the navigation. The first role name in the path (optionally preceded by self)
refers to an association end that is accessible from the contextual class, i.e., an association end belonging to an association to
which the contextual class participates. The rest of the navigation path is defined analogously.

For instance, referring again to Fig. 1, and assuming that the context is Company, the following expression results in the
events sponsored by an arbitrary instance of Company, by means of the association SponsoredBy:

self.event or equivalently event

The following expression returns thepersons that organize an arbitrary instance of Event, bymeans of the association Organizes,
assuming that the context is Event:

self.organizer or equivalently organizer

And the following one gives the events that are organized by a person, assuming that the context is Person:

self.organized or equivalently organized

4 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

3.1. OCL-Lite syntax

In this section, we specify the syntax rules that allow one to construct OCL constraints belonging to the fragment of OCL that
we call OCL-Lite. An OCL-Lite constraint has the form:

context C inv: OCL-LiteExpr

In the proposed syntax rules, an OCL-Lite expression OCL-LiteExpr is defined recursively, since OCL expressions can be combined
to obtain new ones.

Intuitively, OCL-LiteExpr allows one to construct a Boolean OCL-Lite expression, which can correspond to the whole constraint,
or can be the condition specified as a parameter in a select operation (see SelectExpr) or in exists and forall operations (see
BooleanOp). An OCL-LiteExpr can be either a Path to which a SelectExpr is applied, a check of whether an object is of a certain type,
or Boolean combinations of these OCL-Lite expressions.

The label Path indicates how a navigation path can be constructed as a non-empty sequence of PathItems. Each PathItem can
be either a role name ri specified in the class diagram, or a role name preceded by the operation oclAsType(C), when we need
to access a role name of a particular class C. When OCL-LiteExpr corresponds to the whole constraint, each path starts from
a role that is accessible from the contextual class (or a subclass C of the contextual class, in which case oclAsType(C) must
be specified first). Otherwise, when OCL-LiteExpr is inside a select, exists, or forall operation, then, the starting role name
will depend on the context where the operation is used. After a Path, one can apply a (possibly empty) sequence of selections
on the collection of objects obtained through the path, always followed by the application of a BooleanOp.

The intuitive meaning of the OCL collection operations included in this fragment of OCL is as follows. Let col denote the collec-
tion of objects reachable along a path, then:

• col-Nselect(OCL-LiteExpr): returns the subset of elements of col that satisfy OCL-LiteExpr;
• col-Nexists(OCL-LiteExpr): returns true iff there is some element of col that satisfies OCL-LiteExpr;
• col-Nforall(OCL-LiteExpr): returns true iff all the elements of col satisfy OCL-LiteExpr;
• col-Nsize(): returns the number of elements of col;
• col-NisEmpty(): returns true iff col is empty;
• col-NnotEmpty(): returns true iff col is not empty;

Operation oclIsTypeOf(C) applies only to a single object o. Its intuitive meaning is the following:

• o.oclIsTypeOf(C): returns true iff o is an instance of the class C;

Optionally, in those OCL operations that apply to collections, one can give a name to refer to an arbitrary element of the
collection to which the operation is applied. For instance, for the operation select, this is done by means of the expression

col�Nselect o OCL�LiteExpr�with�oj Þð
where o is called the iterator, and is a reference to an object from the collection col. When the select is evaluated, o iterates over
the collection and OCL-LiteExpr-with-o is evaluated for each o. For instance, examples of valid OCL-Lite expressions are:

• r1-Nexists(r2.r3-Nsize()N0)
or, equivalently:
self.r1-Nexists(o|o.r2.r3-Nsize()N0),

• r1.oclAsType(C2).r2-Nselect(r3-NisEmpty())-Nforall(oclIsTypeOf(C4))
or, equivalently:
self.r1.oclAsType(C2).r2-Nselect(o|o.r3-NisEmpty())-Nforall(o|o.oclIsTypeOf(C4))

• r1-Nselect(r2-NisEmpty())-Nselect(r3.r4-Nexists(r5-NnotEmpty()))
-Nforall(oclIsTypeOf(C) and r6-Nsize()=0)
or, equivalently:
self.r1-Nselect(o|o.r2-NisEmpty())-Nselect(o|o.r3.r4-Nexists(o2|o2.r5-NnotEmpty()))-N
forall(o|o.oclIsTypeOf(C) and o.r6-Nsize()=0)

Since both the variable self and iterator variables are optional in OCL expressions, we will omit them in the rest of the paper
for the sake of simplicity. All constraints in Fig. 2 are examples of well-formed OCL-Lite expressions.

OCL-LiteExpr ∷= Path SelectExpr |oclIsTypeOf(C) | not OCL-LiteExpr |
OCL-LiteExpr and OCL-LiteExpr | OCL-LiteExpr or OCL-LiteExpr |
OCL-LiteExpr implies OCL-LiteExpr

Path ∷= PathItem | PathItem.Path
PathItem ∷= ri | oclAsType(C).ri
SelectExpr ∷= BooleanOp | -Nselect(OCL-LiteExpr) SelectExpr
BooleanOp ∷= -Nexists(OCL-LiteExpr) | -Nforall(OCL-LiteExpr) |

-Nsize()N0 | -Nsize()=0 | -NisEmpty() | -NnotEmpty()

5A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

3.2. OCL-Lite normal form

OCL-Lite operations, except for oclIsTypeOf and oclAsType, can be expressed only in terms of select, isEmpty,
and notEmpty. Thus, we first rewrite each OCL-Lite expression as an equivalent normalized one, which is expressed in terms
of these operations only. Table 1 shows the OCL-Lite operations and gives their equivalent normalized expressions. These
normalizations, together with de Morgan's laws, are iteratively applied until the expression only contains the operations select,
isEmpty, and notEmpty, and the Boolean operator not only appears before the expression oclIsTypeOf(C). In the table, col
and cond denote, respectively, a collection and a condition, which must be defined according to the syntax rules.

In our running example, the constraints in Fig. 2 that have to be normalized are 1, 2, 5, 6, and 8. The resulting expressions
we get after applying the rules in Table 1 are:

• Constraint 1. We apply rule a) to the original constraint and we get the normalized expression:

context Person inv:

organized-Nselect(oclIsTypeOf(CriticalEvent) and sponsor-NisEmpty())-NnotEmpty()

• Constraint 2. We apply rule d) and we get the normalized expression:

context CriticalEvent inv: inspector-NnotEmpty()

• Constraint 5. We first apply rule b) and we get:

context Person inv: audited-Nselect(not sponsor-NnotEmpty())-NisEmpty()

We then apply rule g) to obtain the normalized expression:

context Person inv: audited-Nselect(sponsor-NisEmpty())-NisEmpty()

• Constraint 6. We apply rule f) and we get:

context CriticalEvent inv: responsible.organized-NnotEmpty()

• Constraint 8. We apply rule a) and we get:

context Company inv: event-Nselect(oclIsTypeOf(CriticalEvent))-NnotEmpty() or

event-Nselect(sibling-NisEmpty() or

sibling-Nselect(sponsor-NisEmpty())-NnotEmpty())-NnotEmpty()

It can be seen from Table 1 that the expressions resulting from the normalization conform to a limited set of patterns. In
particular, the final result is always a combination of expressions basically consisting of an optional select operation followed
either by isEmpty or notEmpty. Also, the expression may include the operation oclIsTypeOf. Importantly, if either the original
expression or an intermediate one contains a sequence of select operations, they will be collapsed in a single one when applying
the normalization rules.

3.3. OCL-Lite semantics

In the following we consider OCL-Lite expressions in their normal form. For each of them we specify its semantics by means
of an interpretation function, f, that maps each OCL-LiteExpr into a first order logic (FOL) formula OCL-LiteExpr f(x) with one free
variable. Other approaches specify the semantics of OCL expressions using first-order terms instead of formulas [5]. However,
as also argued in [5], using formulas is preferable when dealing with sets, as in our case.

We start by formalizing the semantics of an OCL-Lite constraint

context C inv : OCL�LiteExpr

Table 1
Normalization of OCL-Lite expressions.

Original expression Normalized expression

a) col-Nexists(cond) col-Nselect(cond)-NnotEmpty()
b) col-Nforall(cond) col-Nselect(not cond)-NisEmpty()

c) col-Nselect(cond1)-Nselect(cond2) col-Nselect(cond1 and cond2)

d) col-Nsize()N0 col-NnotEmpty()
e) col-Nsize()=0 col-NisEmpty()
f) not col-NisEmpty() col-NnotEmpty()
g) not col-NnotEmpty() col-NisEmpty()

6 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

Its interpretation is:

∀x C xð Þ→OCL�LiteExpr f xð Þ
� �

where C is the unary predicate corresponding to class C.
To define the semantics of OCL-Lite expressions, we first introduce some notation to deal with navigation paths. Consider

a navigation path pn…p1 in an OCL-Lite expression, where each pi is either a role name or oclAsType(Ci).ri. To formalize a (bi-
nary) association Ai, we introduce a binary predicate, Ai, whose first argument represents an instance of dom(Ai) (the domain of
Ai) and whose second argument represents an instance of range(Ai) (the range of Ai). To fix a semantics for role names we con-
form to the UML convention about role names [38], i.e., a role name attached to an association end labeled with a class C is used
to navigate from one object to a another one belonging to the class C. Thus, in the following, pi

f
(x,y)=Ai(x,y) when pi is a role

name attached to the range(Ai)-end of Ai, and, viceversa, pi
f
(x,y)=Ai(y,x) when pi is a role name attached to the dom(Ai)-end of

Ai. Similarly, pi
f
(x,y)=Ci(x)∧Ai(x,y), when pi=oclAsType(Ci).ri and ri is a role name attached to the range(Ai)-end of Ai, while

pi
f
(x,y)=Ci(x)∧Ai(y,x), when pi=oclAsType(Ci).ri and ri is a role name attached to the dom(Ai)-end of Ai. Note that, some of

the expressions (and their interpretations) are defined recursively, since OCL-Lite expressions can be combined to obtain new
expressions.

1. OCL-LiteExpr=pn…p1-Nselect(OCL-LiteExpr0)-NnotEmpty()
The semantics of this expression is

OCL�LiteExpr f xð Þ ¼ ∃xn⋯∃x1 p f
n x; xnð Þ∧p f

n−1 xn; xn−1ð Þ∧⋯∧p f
1 x2; x1ð Þ∧OCL�LiteExpr f

0 x1ð Þ
� �

Importantly, a particular case of this kind of expression is when no select operation is applied on the objects obtained from
the navigation, which corresponds to the expression

OCL�LiteExpr ¼ pn…p1−NnotEmptyðÞ

In this case, the semantics is

OCL�LiteExpr f xð Þ ¼ ∃xn⋯∃x1 p f
n x; xnð Þ∧p f

n−1 xn; xn−1ð Þ∧⋯∧p f
1 x2; x1ð Þ

� �

2. OCL-LiteExpr=pn…p1-Nselect(OCL-LiteExpr0)-NisEmpty()
The semantics of this expression is

OCL�LiteExpr f xð Þ ¼ ∀xn⋯∀x1 Ip f
n x; xnð Þ∨⋯∨ Ip f

1 x2; x1ð Þ∨ IOCL�LiteExpr f
0 x1ð Þ

� �

Again, we have a particular case of this kind of expression in the absence of select:

OCL-LiteExpr=pn … p-NisEmpty()

And then, the semantics of the expression is

OCL�LiteExpr f xð Þ ¼ ∀xn⋯ ∀x1 Ipf
n x; xnð Þ∨⋯∨ Ipf

1 x2; x1ð Þ
� �

3. OCL-LiteExpr=[not] oclIsTypeOf(C)
where the brackets denote optionality. The semantics of the expression is

OCL�LiteExpr f xð Þ ¼ I½ �C xð Þ

4. OCL-LiteExpr=OCL-LiteExpr1 and OCL-LiteExpr2
The semantics of this expression is

OCL�LiteExpr f xð Þ ¼ OCL�LiteExpr f1 xð Þ∧ OCL�LiteExpr f
2 xð Þ

5. OCL-LiteExpr=OCL-LiteExpr1 or OCL-LiteExpr2
The semantics of this expression is

OCL�LiteExpr f xð Þ ¼ OCL�LiteExpr f
1 xð Þ∨OCL�LiteExpr f

2 xð Þ

7A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

6. OCL-LiteExpr=OCL-LiteExpr1 implies OCL-LiteExpr2
The semantics of this expression is

OCL�LiteExpr f xð Þ ¼ OCL�LiteExpr f
1 xð Þ→OCL�LiteExpr f

2 xð Þ

In our running example, the semantics of Constraints 1 and 2 is the following:

• The OCL-Lite normal form of Constraint 1 is

context Person inv :
organized� Nselect oclIsTypeOf CriticalEventð Þ and sponsor� NisEmptyðÞð Þ � NnotEmptyðÞ

and its semantics is

∀xðPersonðxÞ→∃y1 Organizesðx; y1ð Þ∧CriticalEvent y1ð Þ∧∀y2 ISponsoredBy y1; y2ð ÞÞÞ

• The OCL-Lite normal form of Constraint 2 is

context CriticalEvent inv : inspector� NnotEmptyðÞ

and its semantics is

∀x CriticalEvent xð Þ→ ∃yAudits y; xð Þð Þ

Definition 1. Satisfiability of OCL-Lite constraints

Let Γ be a set of OCL-Lite constraints and Γf the resulting FOL theory. Then, Γ is said to be satisfiable if there exists a first order
interpretation I ¼ ΔI ; ⋅I

� �
that satisfies Γf. I is called a model of Γ. □

4. The Description Logic ALCI

One of the distinguishing features of DLs is that they admit terminating reasoning procedures that are sound and complete
with respect to the semantics. Additionally, ALCI [13] has the FMP [17,15], which means that every satisfiable formula of
the logic admits a finite model, i.e., a model with a finite domain. Intuitively, this means that it is impossible to define with this
language a set of constraints that necessarily needs an infinite number of instances to be satisfied. This guarantees that if a schema
is found to be satisfiable, then it is finitely satisfiable, which is the notion of satisfiability that is assumed in the software engineering
community.

Importantly, finitemodel reasoning has been studied formore expressive DLs that do not enjoy the FMP, such asALCQI [4,12,30].
This means that it is still possible to determine whether a schema specified in this language is finitely satisfiable, but no tools or
prototypes that perform this check have ever been implemented. Additionally, our aim is not to stick to any particular reasoning
approach, but to provide a specification language that is both familiar to the conceptualmodeling community and that can be handled
by currently existing tools in this area, not necessarily by techniques based on DLs.

Thus, we chooseALCI as our target language since, due to its FMP, finiteness of the domain can always be assumed. Hence, a
procedure that searches for instantiations that satisfy a certain property, as most existing approaches in conceptual modeling do,
can be used with the guarantee of termination.

In the following, we present the syntax and semantics ofALCI , which is an expressive DL in which knowledge is represented
by means of concepts (unary predicates) and roles (binary predicates). Concepts, denoted by D, and roles, denoted by R, are
formed according to the following syntax rules:

D ::¼ ⊤ Cj j ID j D ⊓ D′ j D⊔ D′ j ∃R:D j ∀R:D
R ::¼ A A−j

where C denotes an atomic concept, and A an atomic role, i.e., simply a concept or role symbol.
AnALCI knowledge base is constituted by a finite set of inclusion assertions of the form D1⊑D2, where D1 and D2 are arbitrary

concept expressions.1

1 Here we deal only with knowledge at the intentional level, and do not consider extensional knowledge, i.e., knowledge about individual objects. Hence, we
identify a DL knowledge base with its intentional component, usually called TBox [4].

8 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

The semantics ofALCI is specified through the notion of interpretation. An interpretation I ¼ ΔI ; ⋅I
� �

of anALCI knowledge
base is constituted by an interpretation domain ΔI and an interpretation function ⋅I that assigns to each concept D a subset DI of
ΔI and to each role R a subset RI of ΔI ×ΔI , such that the following conditions are satisfied:

⊤ ¼ ΔI

CI p ΔI

IDI ¼ ΔI∖DI

D1⊓ D2ð ÞI ¼ DI
1 ∩DI

2
D1⊔ D2ð ÞI ¼ DI

1 ∪DI
2

∃R:Dð ÞI ¼ o∈ΔIn ���∃o′: o; o′
� �

∈ RI∧o′ ∈DI g
∀R:Dð ÞI ¼ o∈ΔIn ���∀o′: o; o′

� �
∈ RI→o′ ∈DI g

AI p ΔI ×ΔI

A−ð ÞI ¼ o; o′
� �

∈ΔI×ΔIn ��� o′; o
� �

∈ AI g

An interpretation I satisfies an inclusion assertion D1⊑D2 if DI
1pDI

2 . An interpretation that satisfies all assertions in a knowl-
edge baseK is called amodel ofK. A knowledge baseK is satisfiable if there exists a model ofK. A concept D is satisfiablew.r.t K if
there is a model I of K such that D I is nonempty.

Intuitively, the knowledge that can be expressed in ALCI is encoded in terms of assertions involving concepts (D) and roles
(R). Roles can be seen as binary associations in UML, and the inverse role, denoted A-, corresponds to the inverse of an association.
Each (inverse) role has a domain and a range. For instance, the association Organizes in our example can be formalized inALCI by
means of a roleOrganizes that denotes the pairs constituted by a person and an event such that the person (domain) organizes the
event (range). Then, Organizes— relates the event (domain) to the persons (range) organizing it.

Regarding concepts, they may be atomic (C), which allows them to represent the entities in a conceptual schema, or arbitrary
(D), which are used in the specification of constraints. In particular, one can specify the negation of an arbitrary concept,
the union or intersection of two arbitrary concepts, or build more complex concepts involving roles by means of quantified
role restrictions as follows. A concept ∃R.D denotes the instances of the domain of R that are related to some instance
of the concept D, and ∀R.D denotes the objects that are related by R only to instances of the concept D. Notice that this
includes those objects that are not related by R to any object of the domain. For instance, ∃Organizes.CriticalEvent denotes
the individuals that organize some critical event, and ∀Organizes—.Person denotes the events that are organized only by persons.
As will be seen, more complex expressions can be build by using arbitrary concepts instead of atomic ones when specifying
ALCI concepts.

5. Encoding UML/OCL-Lite in ALCI

In this section we show that the proposed fragment UML/OCL-Lite can be encoded in ALCI and, thus, finite reasoning is
guaranteed for every schema expressed in this modeling language. We first present the fragment of UML we are interested
in together with its encoding, and then we provide an encoding for the OCL-Lite fragment, too.

5.1. Encoding UML in ALCI

In the following, we give an overview of how to encode a fragment of UML class diagrams in ALCI , based on the encoding in
ALCQI proposed in [7]. Since ALCQI is an extension of ALCI that does not have the FMP (i.e., a schema specified in ALCQI
might be satisfiable only by an infinite number of instances), we focus on a fragment of UML that can be encoded into ALCI . As
a consequence, there are some constructs of UML class diagrams that cannot be encoded in this language. In particular, we consider
UML class diagrams where the domain of interest is represented through classes (representing sets of objects), possibly equipped
with attributes and associations (representing relations among objects), and types (representing the domains of attributes, i.e.,
integer, string, etc.). The kind of UML constraints that we consider in this paper are the ones typically used in conceptual
modeling, namely:

• hierarchical relations between classes;
• disjointness and covering between classes;
• cardinality constraints for participation of entities in relationships; and
• multiplicity and typing constraints for attributes.

To preserve the FMP we restrict both cardinality and multiplicity constraints to be of the form * or 1..* (meaning that either
no constraint applies or the class participates at-least once, respectively). Moreover, due to readability issues, in this section we
do not consider UML constructors such as identification constraints, association classes, or n-ary associations. However, as will be
clarified in Section 6, they can also be captured in the ALCI encoding.

Given an UML class diagram, we encode each class C into an atomic concept C, each (binary) association A into an atomic role
A, each attribute a into an atomic role a, and each type T into an atomic concept T. To express that types are disjoint both between
themselves and from classes, the following disjointness assertions are enforced:

T1 ⊑ IT2; for every pair of distinct types T1 and T2; and
T ⊑ IC; for every type T and class C:

9A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

An UML schema is encoded as a set ofALCI inclusion assertions (i.e., anALCI knowledge base) as described in the following.

• A hierarchy constraint expressing a generalization of a class C1 into a super-class C2 is encoded as

C1 ⊑ C2

• A disjointness constraint among classes C1,…,Cn that are sub-classes of a class C, is encoded as

Ci ⊑ ⊓n
j¼iþ1 ICj; with 1≤ i ≤ n−1

• A covering constraint involving classes C, C1,…,Cn is encoded as

C ⊑ ⊔n
j¼1 Cj

• A typing constraint for an attribute a of a class C is encoded as

C ⊑∀a:T

where T is a class representing the type of the attribute.

Each association A between classes C1 (domain) and C2 (range) is encoded by an atomic role A, together with the following
inclusion assertion to specify the domain and range of A:

⊤⊑ ∀A−
:C1⊓∀A:C2

Both for attributes and for associations, the cardinalities (multiplicities, for attribute) that can be encoded in ALCI are * and
1..*. No inclusion assertion is needed to encode the former, since it corresponds to the absence of a constraint. The inclusion
assertion that encodes the multiplicity 1..* of an attribute a of C is:

C ⊑ ∃a:⊤

A cardinality 1..* attached to the association end corresponding to C1 in the association A is encoded as2:

C2 ⊑∃A−
:⊤

and, viceversa, the following inclusion assertion captures the cardinality 1..* attached to the association end corresponding
to C2:

C1 ⊑∃A:⊤

According to the above rules, the class diagram in Fig. 1 is encoded in ALCI as follows:

1. ⊤⊑∀Organizes.Event⊓∀Organizes−.Person
2. ⊤⊑∀Audits.Event⊓∀Audits−.Person
3. ⊤⊑∀ResponsibleFor.CriticalEvent⊓∀ResponsibleFor−.Person
4. ⊤⊑∀HeldWith.Event⊓∀HeldWith−.Event
5. ⊤⊑∀SponsoredBy.Company⊓∀SponsoredBy−.Event
6. Person⊑∃Organizes.⊤
7. CriticalEvent⊑∃ResponsibleFor−.⊤
8. CriticalEvent⊑Event

Inclusion assertions 1 to 5 specify the typing (i.e., domain and range) of the associations in the schema. For instance, the first
one states that the range of Organizes is Event and its domain is Person. Inclusion assertions 6 and 7 correspond to the cardinality
constraints 1..* specified in the associations Organizes and ResponsibleFor. For example, the first one says that each Person must
Organize(s) at least one Event. Inclusion assertion 8 captures that CriticalEvent is a subclass of Event. Note that role names are not
translated as far as the UML schema contains only binary associations. They will play a role when n-ary associations are captured
via reification (see Section 6 for more details).

The encoding, starting from an UML class diagram Σ, generates an ALCI knowledge KΣ. The encoding is correct, i.e., it
preserves satisfiability (Σ is satisfiable if and only if KΣ is satisfiable) since it applies similar rules as the proven correct
encoding presented in [7]. Note that, the domain of the interpretation of such an ALCI knowledge base corresponds to the
set of objects that instantiate the UML class diagram. Since there are neither association classes nor n-ary associations, we do
not use reification, and thus objects instantiating classes correspond to instances of the corresponding DL concepts, and pairs

2 We conform to the conventional reading of cardinality constraints in UML [38].

10 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

of objects instantiating (binary) associations correspond to instances of the corresponding DL roles. Hence, a model of the
knowledge base KΣ can be viewed as an instantiation of the UML class diagram Σ.

5.2. Encoding OCL-Lite constraints in ALCI

Taking into account the ALCI encoding of an UML class diagram explained above, in the following we provide a mapping to
translate OCL-Lite constraints into ALCI .

An OCL-Lite constraint, which has the general form

context C inv : OCL � LiteExpr

is encoded as the following ALCI inclusion assertion:

C ⊑ OCL � LiteExpr†

where ·† is a mapping function that assigns to each OCL-Lite expression its correspondingALCI encoding. This inclusion assertion
states that the set of instances of the concept C (encoding the context class C) is a subset of the instances of the concept that en-
codes the OCL-LiteExpr. In other words, according to the semantics of OCL constraints, each instance of Cmust satisfy OCL-LiteExpr.

In the following, we illustrate the encoding of OCL-Lite expressions inALCI . We consider OCL-Lite expressions in their normal
form, as provided in Section 3.2, and define OCL-LiteExpr† by induction on the structure of OCL-LiteExpr.

1. OCL-LiteExpr=pn…p1-Nselect(OCL-LiteExpr0)-NnotEmpty()
We define theALCI concept OCL-LiteExpr† by induction on the length n of the navigation path. For convenience, we consider as
base case n=0, and in this case we set OCL-LiteExpr†=OCL-LiteExpr0

†
.

For the inductive case, let OCL-LiteExprn=pn…p1-Nselect(OCL-LiteExpr0)-NnotEmpty(), let pn+1 be an additional path
item, and let OCL-LiteExprn+1=pn+1.OCL-LiteExprn. Then OCL-LiteExprn+1

† =pn+1
† .(OCL-LiteExprn†), where pn+1

† (for the var-
ious cases of pn+1, cf. OCL syntax in Section 3.1) is an abbreviation3 defined as follows (r denotes a role name of an association
A, and dom(A) and range(A) denote respectively the domain and range of A):

r† ¼
(
∃A if r is attached to range Að Þ
∃A− if r is attached to dom Að Þ

oclAsType Cð Þ:rð Þ† ¼ C ⊓∃A if r is attached to range Að Þ
C ⊓∃A− if r is attached to dom Að Þ

�

Note that the ALCI concept corresponding to OCL-LiteExpr has the form

p†n: p†n−1 ⋯ p†n: OCL�LiteExpr†0
� �� �

⋯
� �� �

Intuitively, this concept represents the fact that OCL-LiteExpr evaluates to true, for a given instance o in the domain of pn, if o is
related through the path pn…p1 to some object o1 that satisfies the condition specified by OCL-LiteExpr0. In the particular case
when there is no select operation, i.e., the OCL expression has the form pn…p1-NnotEmpty(), then OCL-LiteExpr0†=⊤, and
the constraint is encoded as

p†n: p†n−1: ⋯ p†1:⊤
� �

⋯
� �� �

that is, no condition is imposed on those instances reachable through the path.
For example, an expression in our running example that follows this pattern is the one in the body of Constraint 6. Once
normalized, the constraint has the form

context CriticalEvent inv : responsible:organized�NnotEmptyðÞ

Thus, the ALCI assertion that encodes this constraint is:

CriticalEvent ⊑ ∃ResponsibleFor−: ∃Organizes:⊤ð Þ

Note that, the ALCI encoding of the OCL-Lite expression responsible.organized-NnotEmpty() is ∃ResponsibleFor−.
(∃Organizes.⊤). The first DL role, ResponsibleFor−, is inverted since the association ResponsibleFor has domain Person and range
CriticalEvent, and the role name responsible is attached to Person. Thus, responsible†=(∃ResponsibleFor−). The next
role name in the OCL-Lite expression is organized, which is attached to Event, the range of the association Organizes.

3 Note that p† is not a valid DL expression.

11A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

Thus, organized†=∃Organizes. Finally, since the OCL operation select does not appear in the constraint, no condition must be
imposed on the instances reached at the end of the path.

2. OCL-LiteExpr = pn…p1-Nselect(OCL-LiteExpr0)-NisEmpty()
Similarly to the previous case, we define OCL-LiteExpr= by induction on n. For the base case of n=0, we set OCL-LiteExpr† =
¬OCL-LiteExpr0

†. For the inductive case, let OCL-LiteExprn = pn…p1-Nselect(OCL-LiteExpr0)-NisEmpty(), let pn+1 be an ad-
ditional path item, and let OCL-LiteExprn+1 = pn+1.OCL-LiteExpr2. Then OCL-LiteExprn+1

† = ¬pn
†.(¬OCL-LiteExprn†), Considering

that ¬¬C is equivalent to C, the ALCI concept corresponding to OCL-LiteExpr has the form

I p†n: p†n−1: ⋯ p†1: OCL�LiteExpr†0
� �� �

⋯
� �� �� �

Intuitively, this concept represents the fact that OCL-LiteExpr evaluates to true, for a given instance o, if o is not related through
the path pn…p1 to any object that satisfies the condition specified by OCL-LiteExpr0. As in the previous case, if there is no select
operation in the OCL expression, i.e., the OCL expression has the form pn…p1-NisEmpty(), then OCL-LiteExpr0†=⊤, and the
constraint is encoded as

I p†n: p†n−1: ⋯ p†1:⊤
� �

⋯
� �� �� �

As an example, let us consider Constraint 5 in its normal form:

context Person inv: audited-Nselect (sponsor-NisEmpty())-NisEmpty()

The overall OCL-Lite expression is encoded inALCI as ¬(∃Audits.(¬∃SponsoredBy.⊤)), and theALCI assertion corresponding to the
constraint is:

Person ⊑ I∃Audits: I∃SponsoredBy:⊤

3. OCL-LiteExpr = oclIsTypeOf(C), and OCL-LiteExpr = not oclIsTypeOf(C)
The ALCI concept OCL-LiteExpr† corresponding to these OCL-Lite expressions is respectively

C and IC;

These OCL-Lite expressions evaluate to true, for a given instance o, if o respectively is and is not of type C.
4. OCL-LiteExpr = OCL-LiteExpr1 and OCL-LiteExpr2

The corresponding ALCI concept OCL-LiteExpr† is

OCL�LiteExpr†1⊓OCL�LiteExpr†2

As expected, the ALCI encoding is the conjunction of the two concepts encoding each sub-expression.
5. OCL-LiteExpr = OCL-LiteExpr1 or OCL-LiteExpr2

The corresponding ALCI concept OCL-LiteExpr† is

OCL�LiteExpr†1⊔OCL�LiteExpr†2

The ALCI encoding is the union of the two concepts encoding each subexpression.
6. OCL-LiteExpr=OCL-LiteExpr1 implies OCL-LiteExpr2

The corresponding ALCI concept OCL-LiteExpr† is

IOCL�LiteExpr†1⊔OCL�LiteExpr†2

Note that in ALCI implication is formulated in terms of negation and disjunction.

To further illustrate the mapping, we apply it to some other constraints of our running example. For instance, consider the
normalized expression of Constraint 2. This constraint is of kind 1, so its equivalent ALCI expression is:

CriticalEvent⊑ ∃Audits−:⊤

Adifferent example of the first kind of OCL-Lite expressions is Constraint 1,which has also been normalized in Section 3.3. This one
is of kind 1, and its subexpressions are respectively of kinds 4, 3, and 2. Applying the corresponding mapping rules we obtain:

Person ⊑ ∃Organizes: CriticalEvent⊓ I∃SponsoredBy:⊤ð Þ

12 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

As an example of an OCL-Lite expression of kind 6 we have Constraint 3. According to the mapping rule, its corresponding
ALCI expression is:

Event ⊑ I∃HeldWith:⊤⊔ ICriticalEvent

Finally, a more complicated example is Constraint 8, which is of kind 5 once it has been normalized. We have to recursively
apply the mapping rules to each part of the disjunction: rules 1 and 3 to the first subexpression, and rules 5, 2, 1 to the second
subexpression. The resulting ALCI expression is:

Company ⊑ ∃SponsoredBy−:CriticalEvent ⊔ ∃SponsoredBy−: I∃HeldWith:⊤⊔∃HeldWith: I∃SponsoredBy:⊤ð Þ

5.3. Correctness of the encoding and complexity results

In this section we first prove that the mapping from OCL-Lite to ALCI is correct, by showing that there is a direct correspon-
dence between first order interpretations of OCL-Lite constraints and models of the corresponding ALCI knowledge base. We
then show that reasoning on UML/OCL-Lite is an EXPTIME-complete problem.

Theorem 1. Correctness of the OCL-Lite encoding

Let Γ be a set of OCL-Lite constraints and KΓ its ALCI encoding. Then, Γ is satisfiable if and only if KΓ is satisfiable. □

Proof. We have to show that every object that satisfies an OCL-Lite expression is an instance of its correspondingALCI concept,
and viceversa, i.e., for every OCL-LiteExpr, for every interpretation I , and for every object o∈ΔI , we have that

OCL�LiteExpr f xð Þ
� �I

x=o½ �
is true iff o∈ OCL�LiteExpr†

� �I
;

where [x/o] denotes the variable assignment that assigns object o to variable x.
We proceed by induction on the structure of OCL-LiteExpr.

1. [not] oclIsTypeOf(C)
The FOL formula representing its meaning is [¬]C(x).
The corresponding ALCI concept is: [¬]C.
Then, C xð Þð ÞIx=o½ � is true iff o∈CI . The case of negation easily follows by induction.

2. OCL-LiteExpr1 and OCL-LiteExpr2
The FOL formula representing its meaning is OCL-LiteExpr1

f(x)∧OCL-LiteExpr2
f(x).

The corresponding ALCI concept is OCL-LiteExpr1†⊓OCL-LiteExpr2
†.

By induction, the claim easily follows.
The cases of disjunction and implication are analogous.

3. pn…p1-Nselect(OCL-LiteExpr0)-NnotEmpty()
The FOL formula representing its meaning is

∃xn⋯ x1 pfn x; xnð Þ∧⋯∧pf1 x2; x1ð Þ∧OCL�LiteExprf0 x1ð Þ
� �

:

The corresponding ALCI concept is pn†.(pn+1
† .(⋯(p1†1.(OCL-LiteExpr0†))⋯)).

We prove the claim by induction on the length n of the navigation path.
Base case (n=0): Then it follows by induction on the structure of OCL-Lite expressions that OCL�LiteExpr f0 xð Þ

� �I
x=o½ �

is true iff

o ∈ OCL�LiteExpr†0
� �I

.

Inductive case (n→n+1): Let OCL-LiteExprn = pn…pn+1-Nselect(OCL-LiteExpr0)-NnotEmpty(), let pn+1 be an additional
path item, and let OCL-LiteExpr=pn+1.OCL-LiteExprn. We have that OCL-LiteExprf(x)=∃xn+1(pn+1

f (x, xn+1)∧OCL-LiteExprnf

(xn+1)), and OCL-LiteExpr†=pn+1
† .(OCL-LiteExprn†). We consider all the different syntactic forms of the path item pn+1.

• Let pn+1 be a role name attached to the range(A)-end of some association A. Then, pn+1
f (x, xn+1)=A(x,xn+1) and

pn+1
† =∃A. Assume there exists an o′∈ΔI such that A(o′,o) holds in I (or, equivalently, o; o′

� �
∈AI).

• Let pn+1 be a role name attached to the dom(A)-end of some A. Then, p
n+ 1

f (x, xn+1)=A(x, xn+1) and p
n+ 1

f =∃A−. Assume
there exists an o′∈ΔI such that A(o, o′) holds in I (or, equivalently, o′; o

� �
∈AI).

• Let pn+1 = oclAsType(C).r, where r is a role name attached to the range(A)-end of some A. Then, p
n + 1

f (x, xn+1)=C(x)∧
A(x, xn+1) and pn+1

† =C⊓∃A. Assume there exists an o′∈ΔI such that C(o) and A(o′, o) hold in I (or, equivalently, o∈CI

and o′; o
� �

∈AI).
• Let pn+1=oclAsType(C).r, where r is a role name attached to the dom(A)-end of some A. Then, p

n + 1

f (x, xn+1)=C(x)∧
A(xn+1, x) and pn+1

† =C⊓∃A. Assume there exists an o′∈ΔI such that C(o) and A(o′, o) hold in I (or, equivalently, o∈CI

and o′; o
� �

∈AI).

13A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

In all four cases, by inductive hypothesis, OCL�LiteExpr fn xnþ1ð Þ
� �

I
½xnþ1=o′ � is true iff o′∈ OCL�LiteExpr†n

� �I
. From this the claim fol-

lows.
The case where there is no select operation, i.e., the OCL-Lite expression has the form pn…p1-NnotEmpty(), can be proved
analogously.

4. pn…p1[-Nselect(OCL-LiteExpr0)]-NisEmpty()
The FOL formula representing its meaning is

∀xn⋯∀x1 Ipf
n x; xnð Þ∨⋯∨ Ip f

1 x2; x1ð Þ∨ IOCL�LiteExpr f
0 x1ð Þ

� �

The corresponding ALCI concept is ¬(pn†.(⋯(pn†.(OCL-LiteExpr0†))⋯)).
The proof is again by induction on the length of the navigation path, and is similar to the previous case. □

Concerning the complexity of reasoning over UML/OCL-Lite schemas we first notice that reasoning just over the UML diagram
proposed in this paper is an NP-complete problem. Indeed, the UML language we consider here is a sub-language of the modeling
language ERbool which was proved to be NP-complete in [3], and the very same complexity proof applies to the UML language we
use. On the other hand, we show that reasoning over UML/OCL-Lite is EXPTIME-complete due to the complexity of the OCL-Lite
constraint language.

Theorem 2. Complexity of UML/OCL-Lite

Checking the satisfiability of UML/OCL-Lite conceptual schemas is an EXPTIME-complete problem. □

Proof. The upper bound follows from the fact that theALCI encoding is correct, and that reasoning inALCI is an EXPTIME-complete
problem. The lower bound is established by reducing satisfiability of ALC knowledge bases, which is known to be EXPTIME-complete
[4], to satisfiability of OCL-Lite constraints. In particular, we consider so called primitiveALC KBs, i.e., KBs that contain only inclusion
assertions of the form

C1 ⊑ C2; C1 ⊑ IC2; C1 ⊑ C2⊔C3; C1 ⊑ ∀A:C2; C1 ⊑ ∃A:C2;

where C1, C2, C3 are atomic concepts and A is an atomic role. Satisfiability of primitiveALC KBs is also EXPTIME-complete, as proved
in [7].

To encode inclusion assertions of the form

C1 ⊑ C2; C1 ⊑ IC2; C1 ⊑ C2 ⊔ C3;

we use the Boolean operators of OCL-Lite. Let us show how to encode the ∀ and ∃ constructs. For each DL role, A, we introduce a
binary association, A, with both domain and range untyped (i.e., dom(A)=range(A)=⊤) and with role name rngA attached to its
range. Then:

• C1⊑∃A.C2 is encoded as:

context C1inv : rngA�NselectðoclIsTypeOfðC2ÞÞ�NnotEmptyðÞ

• C1⊑∀A.C2 is encoded as:

context C1inv : rngA�NselectðnotoclIsTypeOfðC2ÞÞ�NisEmptyðÞ

It is easy to check that the encoding is correct by considering the semantics of OCL-Lite constraints, and considering that every
class is a sub-class of ⊤ (thus, C2 is reachable from C1 by the role name rngA). □

6. Incorporating identification constraints

An identification constraint for a class C states the set of properties of C that are unique for every specific instance of, and thus
allow one to identify such an instance. Identification constraints are very frequently used in conceptual modeling, but cannot be
specified in ALCI . Moreover, the impossibility to specify this kind of constraints in ALCI implies that association classes and
n-ary associations, also very common in conceptual modeling, cannot be encoded in this DL.

Since virtually every UML conceptual schema includes identifiers for its classes, and also association classes or n-ary associa-
tions (with or without an association class), we find essential that our approach is able to deal with these constructs. In order to
incorporate them, we must make sure that they preserve the finite model property, and we will show that this is the case.

14 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

The three constructs we have mentioned (class identifiers, association classes, and n-ary associations) require the ability to
define identification constraints. In particular, to uniquely identify each instance of a class C we can add an identification con-
straint composed by attributes of the class as long as their type belongs to an infinite domain (such as integer, real, string,
etc.). Since we know that the rest of the schema fits in ALCI and this language enjoys the FMP, if there exists an instantiation
satisfying the schema but violating the identification constraints, then, it will have a finite number of elements. Thus, since all
the domains are infinite, there necessarily exists another finite instance of the schema in which every instance of C has a different
value for those attributes that define the identifier. This shows that class identifiers do not destroy the FMP, and moreover that
they can safely be ignored when checking satisfiability in UML/OCL-Lite.

Similarly, we show that we can add association classes and n-ary associations (with or without an association class) without
losing the finite model property. These constructs cannot be directly encoded in ALCI , but we can express their semantics by
transforming the schema into an equisatisfiable one containing only binary associations and specifying additional constraints.
Both binary associations with an association class and n-ary associations (with or without an association class) can be treated uni-
formly by means of reification. More precisely, an association A of arity n, with n≥2, with or without an association class, can be
represented by means of a class A representing the association and n binary functional associations R1,…,Rn that link A with each
of the classes defining the original association, as shown in Fig. 3. This class diagram, together with the constraint stating that the
combination of the n binary associations is an identifier for the class A, has the same semantics as an n-ary association between
classes C1,…,Cn.

Importantly, neither the identification constraint nor the cardinalities stating the functionality of each Ri, i.e., that every
instance of A participates at most once in each of the binary associations Ri, can be expressed inALCI . However, in this particular
case, it is possible to show that allowing for the identification constraint and the functionalities preserves the FMP. Regarding the
functionalities, one can adopt a transformation into ALCI similar to the one proposed in [18,14], which encodes functionality by
means of a finite instantiation of an axiom schema. Roughly speaking, the axiom schema enforces that, if in an object o a role R is
supposed to be functional, then, for each possible concept C, if o satisfies ∃R.C, then it satisfies also ∀R.C. As shown in [18], it is
sufficient to enforce the instances of this axiom schema in which C belongs to a finite set of “relevant” concepts. Intuitively,
the relevant concepts are all those that appear as sub-concepts in the DL TBox encoding the UML class diagram and the
OCL constraints, and they are polynomiallymany. In our case, the roles Ri corresponding to the binary associations introduced during
reification, are globally functional. Hence, such a transformation is simpler than the one proposed in [14], and requires only to add for
each role Ri and for each relevant conceptC, an inclusion assertion of the form∃Ri.C⊑∀Ri.C. Such additional inclusion assertions ensure
that all individuals connected to an instance of the reified association (class) through a role Ri enjoy the same properties, and hence
can be collapsed into a single individual, thus enforcing the satisfaction of functionality. Notice that, differently from the general case
considered in [14], due to the fact that the functionality constructor is used only for reification, the transformation that removes
it actually preserves the FMP. Regarding the identification constraint, the explanation is analogous to the one adopted in [16] to
show the correctness of reification. Intuitively, consider a model I containing two instances o1, o2 of the reified association class A
that are connected to exactly the same individuals via roles R1, …, Rn. By exploiting the disjoint union model property of DLs, one
can construct the model that is the union of I with a copy I ′ of I . The copy I ′ will contain individuals o′1 and o′2 corresponding
to o1 and o2. By “swapping” the two objects connected to o2 and o′2 via one of the roles Ri, say Rn, one gets that the four objects o1,
o′1, o2, o′2 do not constitute anymore a violation of the identification constraint. Hence, by starting from a finite model, containing
(a finite number of) violations of an identification constraint, one can apply this construction repeatedly and obtain a new model,
again finite, without any violations.

So, we can conclude that we can consider class identifiers, association classes and n-ary associations while preserving the FMP.
Thus, reasoning on UML/OCL-Lite schemas containing these constructs can be done in finite time guaranteeing completeness with
any kind of approach that admits this expressiveness.

7. Reasoning on UML/OCL-Lite schemas using current reasoners

The aim of this section is to show how current tools may be effectively used to provide reasoning support to check a set
of properties on UML/OCL-Lite schemas. We have chosen two tools that follow different approaches: Pellet, a DL reasoner that
guarantees completeness and decidability by limiting expressiveness of the constraints, and SVTE[20], a semidecision procedure
which does not limit the expressiveness but does not terminate in some cases due to the undecidability of reasoning with general
constraints.

The FMP enjoyed by UML/OCL-Lite schemas guarantees that DL tools, instead of unrestricted satisfiability as in the general
case, will check finite satisfiability, i.e., the relevant notion in conceptual modeling. Regarding the semidecision procedure
SVTE, reasoning on UML/OCL-Lite schemas guarantees termination in all cases.

Fig. 3. Reification of an n-ary association, with or without an association class.

15A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

image of Fig.�3

Our aim in the section is to show how reasoners developed in the Artificial Intelligence community can be used in CASE tools
to help the user to check quality criteria of a conceptual model in an automatic way. In particular, we show examples covering
the following quality criteria for an UML/OCL-Lite schema:

• Class and schema satisfiability;
• OCL-Lite constraint redundancy/entailment;
• explanation of inconsistencies and redundancies/entailments.

Furthermore, we show that current reasoners can be used to reason over UML/OCL-Lite, and that the performance of these
tools on our running example is very similar, despite following completely different approaches.

7.1. Using a Description Logics reasoner

Wewill use the Pellet reasoner included in Protégé version 3.4.1, which implements OWL-DL (a language strictly more expres-
sive than ALCI). The whole knowledge base obtained from the encoding of the UML/OCL-Lite schema of our running example
can be captured in Protégé. The ALCI knowledge base, K, encoding the UML schema in Fig. 1 and the OCL-Lite constraints in
Fig. 2 is shown in Fig. 4 (see Sections 5.1 and5.2).

Fig. 5 shows the interface of Protégé, in particular, it shows the OWLClasses tab, where the concepts of the ontology are
defined. This tab is divided into two main frames: the Subclass Explorer at the left shows the hierarchy of concepts, while the
Class Editor allows one to assert conditions that the concept selected in the Subclass Explorer must satisfy. The Class Editor is,
in turn, divided into three parts, called Annotations, Asserted Conditions, and Disjoints.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

Fig. 4. ALCI The knowledge base encoding the UML schema in Fig. 1 and the OCL-Lite constraints in Fig. 2.

Fig. 5. The schema introduced in Protégé.

16 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

image of Fig.�4
image of Fig.�5

To introduce the ALCI formalization of the schema into Protégé, the syntax of the assertions had to be adapted to OWL-DL.
In particular, as can be seen in the Subclass Explorer in Fig. 5, we have defined three OWL classes that are direct subclasses of
owl:Thing, namely Company, Event, and Person. We have specified that they are mutually disjoint, as it is usually assumed in
UML conceptual schemas. For instance, the fact that Person is disjoint from Company and Event can be seen in the Disjoints area
at the bottom of the figure. We have also specified the class CriticalEvent as a subclass of Event.

Each association has been represented by two properties, specifying their domain and range and the inverse relationships be-
tween them. For instance, audited is a property with domain Person and range Event, and inspector is the inverse of audited. These
two properties correspond to the roles Audits and Audits− in theALCI formalization of our example. They can be introduced in Pro-
tégé in the Properties tab, not shown in Fig. 5.

Now, both the cardinalities and the OCL constraints have to be introduced as Asserted Conditions of the corresponding concept. For
instance, as can be seen in Fig. 5, several necessary conditions have been specified for the class Person, corresponding to the ALCI
assertions in which Person is subsumed by a concept encoding some condition. The first of them corresponds to the OCL Constraint
5, the second is Constraint 4, the third encodes Constraint 1, and the last one is the cardinality 1..* of organized (assertion 6 in
the ALCI formalization of the schema given in Fig. 4).

Oncewe have introduced theUML class diagramand theOCL-Lite constraints into Protégé,we can perform the reasoning taskswe
mentioned. The reasoning task in whichwe are interested in is consistency, since checking for either redundancy or logical implication
can be reduced to a consistency check. First, we check the consistency of all the concepts we have defined. As can be seen in Fig. 6,
Person and CriticalEvent are inconsistent. As we have shown in the introduction, the reason for these inconsistencies is that Con-
straints 1, 2, and 5 are in contradiction. This additional information is what we called explanation. The current version of Protégé
does not provide such a reasoning service. This means that the schema is incorrect, and should be fixed. We do it by replacing
Constraint 1 with the following one:

contextPerson inv : organized� NexistsðoclIsTypeOfðCriticalEventÞÞ

That is, each person must organize at least one critical event. This new constraint makes all classes consistent.
Now that the schema is consistent, we can check other properties. For instance, we are interested in checking the redundancy

of the constraints in the schema. A constraint is redundant if it is entailed by the other constraints and, thus, it can be removed.We
can check redundancy in Protégé by checking the inconsistency of a concept that corresponds to the negation of the constraint.
That is, let C⊑D be theALCI encoding of one of the OCL-Lite constraints in the schema and letK be the knowledge base encoding
the whole UML/OCL-Lite model. Then, the constraint is redundant iffK∖ C⊑Df g⊨C⊑Dwhich, in turn, holds iff the concept C⊓¬D is
unsatisfiable w.r.t. K∖ C⊑Df g. The same technique can be applied to check whether the UML/OCL-Lite model verifies a new con-
straint. In this case, we check whetherK entails the new constraint, by transforming this check into a concept satisfiability check.

For instance, Constraint 7 states that those events that have an organizer also have a sponsor. To check the redundancy
of this constraint, we can introduce a new concept, notIC7, as a subclass of the concept Event, and add an inclusion assertion cor-
responding to the negation of the original assertion encoding Constraint 7, which, in turn, must be removed from K, i.e.:

notIC7⊑Event
notIC7⊑∃Organizes− :⊤⊓ I∃SponsoredBy:⊤

Fig. 6. Results of checking consistency using the Pellet reasoner in Protégé.

17A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

image of Fig.�6

As can be checked, the concept notIC7 is inconsistent w.r.t. K∖ Event⊑ I∃Organizes−:⊤⊔∃SponsoredBy:⊤f g, which means that
Constraint 7 is redundant. Thus, the OCL-Lite Constraint 7 can be removed preserving the semantics of the schema. We can run
the same redundancy check for Constraint 6, and the result will be that Constraint 6 is also redundant, so it can be eliminated
from the schema. If we check redundancy of the remaining constraints, we see that they are not redundant (i.e., their negation
is consistent).

Finally, we will check some additional properties on the schema to see whether it represents correctly the intended domain.
To do this, we define a new concept satisfying a certain property and check whether it is consistent. If this is the case, then the
property may hold in the schema. For instance, we may be interested in checking whether a critical event may be organized by
some person that is not responsible for any critical event. Thus, we define a concept Property1 as can be seen in Fig. 7(a). As
shown, this property is consistent, which means that the situation that it formalizes is accepted by the schema. Another interesting
question could be whether it is possible that a person organizes an event that does not have an inspector (see Fig. 7(b)). This time,
this property is not consistent, which in fact means that all the events have an inspector, despite the cardinality * of the association
end inspector specified in the UML class diagram. This answer indicates that either the cardinality should be changed to 1..* or
that the rest of the constraints should be weakened so that they correspond to the specified cardinality.

7.2. Using SVTE

We have shown in [35] that we may use the CQC-Method [21] to reason on a UML/OCL conceptual schema. This method per-
forms query containment tests on deductive database schemas, and we can use it to reason on conceptual schemas by translating
the class diagram and the constraints into the logic representation it handles. The most recent implementation of this method is
the SVTE tool [20], which is the one we will use to reason on our running example. SVTE allows for checking whether a given schema
satisfies a set of desirable properties (i.e., it checks the satisfiability of a schema), or whether a class in the schema is consistent (i.e.,
class satisfiability check). Each property is specified in terms of a certain goal to attain defined as a conjunction of literals. When a
property is satisfied, SVTE provides a sample instantiation of the schema satisfying the property. Otherwise, it gives an explanation,
i.e., the set of constraints that do not allow the property to be satisfied.

First of all, we must translate the UML/OCL-Lite schema into a logic representation as defined in [35]. The translation we get
for our running example can be seen in the left hand side of Fig. 8, which shows a screenshot of the SVTE tool.

Wemay be interested to knowwhether the class Company admits at least one instance, i.e., if it is consistent. The goal to attain in
this case is company(C) and this is the question we pose to SVTE, as shown in Fig. 8. The answer we get from the tool is that Company
is consistent since the schema admits an instantiation, I={company(0), event(1), sponsoredBy(1, 0)}, where Company has a non-
empty extension. Note that the two latter instances are required to make the sample instantiation satisfy Constraint 8 and that
they are automatically obtained by SVTE. This instantiation is partially shown in Fig. 8 which shows how SVTE represents the
instances of SponsoredBy. Clicking on event or on company, we get the other two instances of I.

In a similar way we check in SVTE the consistency of class Person by asking the question person(P). In this case, we get that the
goal is not satisfiable (as expected) and also the explanation for this failure shown in Fig. 8. The intuitive meaning of this
explanation is the following. According to Constraint 1, each Personmust organize a non-sponsored CriticalEvent. However,
Constraint 7 forces all events (critical or not) with an organizer to have a Sponsor. Therefore, we get into a contradiction, which
entails that Person is not consistent since it can never be populated. The third constraint in the explanation is required to formally
ensure that the second argument of the association Organizes is an Event.

In general, there may be alternative explanations that justify the failure of a goal. Note, for instance, that the one obtained by
SVTE is not the same that we gave in the introduction. Alternative explanations, including this latter one, are obtained with SVTE
by clicking on the button ‘Compute all minimal explanations’.

The previous result implies that the schema is incorrect, and it should be necessarily modified. Again, we fix this error by
removing from Constraint 1 the requirement that the critical event each person must organize cannot be sponsored.

Fig. 7. Results of checking user-defined properties in Protégé.

18 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

image of Fig.�7

SVTE also allows one to identify redundant constraints. Redundancy of a constraint may be checked in SVTE by removing it from
the schema and trying to attain the negation of its goal. For instance, the goal that checks whether Constraint 3 is redundant is:
event(E), heldWith(E, E2), criticalEvent(E). As before, we get that Constraints 6 and 7 are redundant, while the above Constraint 3
is not. Moreover, SVTE provides us with an explanation each time a redundancy is found. In particular, Constraint 6 is redundant
because of the cardinality constraints 1..* of the roles responsible and organized. They state that each critical event
must have at least a responsible that, in turn, must organize some event. So, these cardinality constraints alone ensure the
same condition as the one stated by Constraint 6. Constraint 7 is also redundant since it is impossible that an event that has an
organizer is not sponsored. The reason is that Constraint 4 ensures that all organized events are audited, and 5 guarantees that
audited events have a sponsor. As a consequence, organized events necessarily have a sponsor, which is what Constraint 7 states.
Summarizing, we can remove the redundant Constraints 6 and 7 from the schema so that it becomes simpler without changing
its semantics.

SVTE allows also for asking ad-hoc questions to check whether the schema specifies what the designer intended, i.e., if it
is compliant with the requirements. For instance, to check whether a critical event may be organized by some person that is
not responsible for any critical event, we should consider the goal: criticalEvent(CE), organizes(P, CE), not(resp(P)), where
resp(P) should be defined by means of the rule responsibleFor(P, CE), criticalEvent(CE). SVTE returns a positive answer in
this case, proving that the schema satisfies the requirement, and a set consisting of 10 instances that fulfill this situation.
Finally, the question whether a person may organize an event that does not have an inspector can also be answered by SVTE.
Now, the answer we get is negative since the property we are checking is in contradiction with Constraint 4 (the explana-
tion provided by SVTE). Therefore, either this requirement is wrong or we must modify again the schema to make it fulfilled
(Fig. 9).

7.3. On the performance of current reasoners

We have also analyzed how the two chosen reasoners perform on our example. Although the conceptual schema considered is
quite simple, the results obtained are promising, since each reasoning task takes much less than one second although the schema
contains 8 constraints to encode the semantics of the UML class diagram, and 8 additional arbitrary OCL constraints.

We have checked the consistency of each class, the (non) redundancy/entailment of each constraint and the user-defined
properties explained in the previous subsections. Some of these properties are satisfied by the schema while others are not. All
of them have been successfully checked by both reasoners. The time spent4 in each reasoning task goes from a minimum of
0,01/0,02 s (consistency of classes Event and Company, entailment of Constraint 8) to a maximum of 0,04/0,05 s (consistency

4 We have executed the experiments on an Intel Pentium 4, 3.2 GHz machine with 1 GB RAM and Windows XP (SP3).

Fig. 8. Checking a property with SVTE.

19A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

image of Fig.�8

of class CriticalEvent, entailment of Constraints 4 and 5, user-defined properties). These are just preliminary tests showing
that the current technology can be used in practice to check properties of UML/OCL-Lite schemas.

8. Conclusions and further work

We have identified fragments of both UML and OCL that guarantee finite reasoning while being at the same time signif-
icantly expressive. The UML fragment maintains almost all the modeling constructs, but the at-most cardinality restriction on
both relationships and attributes is disallowed. This restriction is crucial to preserve the FMP property when reasoning over
UML schemas. Concerning OCL, since full OCL is undecidable we devised here a new fragment to gain both decidability
and FMP. We called such a new fragment OCL-Lite. We proved that the proposed UML/OCL-Lite fragment enjoys the
FMP by showing a satisfiability preserving mapping from UML/OCL-Lite to the DL ALCI . The mapping guarantees that every
satisfiable set of OCL-Lite constraints admits a finite model. To our knowledge, this is the first attempt to encode OCL con-
straints in DLs.

One of the most relevant side effects of the work presented in this paper is the possibility to use a DL reasoner to reason
on UML/OCL-Lite schemas. We have shown how current tools may be effectively used to provide reasoning support in order to
automatically check a set of properties of UML/OCL-Lite schemas, in particular, class and schema satisfiability, OCL-Lite constraint
redundancy/entailment, and explanation of inconsistencies and redundancies/entailments. We have chosen two tools that follow
different paradigms: Pellet, a DL reasoner, and SVTE, a semidecision procedure. Due to the FMP enjoyed by UML/OCL-Lite schemas,
it is guaranteed that Pellet is able to check finite satisfiability, while SVTE will always terminate. Such reasoning capabilities can be
incorporated into existing CASE tools to extend their functionalities.

As further work we plan to devise maximal decidable fragments of OCL that can be encoded using expressive (but decidable)
DLs. In particular, we are considering more powerful DLs starting from ALCQI to the more complex SHROIQ [26]. These
new fragments will lose the FMP property but they will retain decidability, and they will also allow to reintroduce full cardinality
restrictions in UML schemas. An interesting open issue concerned with the FMP is to investigate the problem of finite model
reasoning when encoding into the powerful SHROIQ language. Furthermore, although it is known that finite model reasoning is
EXPTIME-complete for ALCQI[30], there are currently no DL reasoners able to handle such a form of reasoning. Another direction is
more applicative and concerned with an experimental evaluation to compare the efficiency and correctness of different techniques
currently developed to check schema properties of both UML and OCL constraints.

Acknowledgments

This work has been partly supported by the Ministerio de Ciencia e Innovación under the projects TIN2008-03863 and
TIN2008-00444, Grupo Consolidado, and the FEDER funds; and by the project OntoRule, FP7 Integrating Project (IP), no. 231875,
co-funded by the European Union.

References

[1] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, On challenges of model transformation from UML to alloy, Software and Systems Modeling 9 (1) (2010)
69–86.

[2] A. Artale, D. Calvanese, A. Ibáñez-García, Full satisfiability of UML class diagrams, Proc. of the 29th Int. Conf. on Conceptual Modeling (ER 2010), Volume
6412 of LNCS, Springer, 2010, pp. 317–331.

Fig. 9. Results of checking consistency in SVTE.

20 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

image of Fig.�9

[3] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, Reasoning over extended ER models, Proc. of the 26th Int. Conf. on Conceptual
Modeling (ER 2007), Volume 4801 of LNCS, Springer, 2007, pp. 277–292.

[4] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation, and Applications,
Cambridge University Press, 2003.

[5] B. Beckert, U. Keller, P.H. Schmitt, Translating the Object Constraint Language into first-order predicate logic, Proc. of the VERIFY Workshop at Federated
Logic Conferences (FLoC), 2002, pp. 113–123.

[6] D. Beimel, M. Peleg, Using OWL and SWRL to represent and reason with situation-based access control policies, Data and Knowledge Engineering (DKE)
70 (6) (2011) 596–615.

[7] D. Berardi, D. Calvanese, G. De Giacomo, Reasoning on UML class diagrams, Artificial Intelligence 168 (1–2) (2005) 70–118.
[8] A.D. Brucker, B. Wolff (Eds.), The HOL-OCL Book, Swiss Federal Institute of Technology, 2006.
[9] F. Bry, R. Manthey, Checking consistency of database constraints: a logical basis, Proc. of the Twelth Int. Conf. on Very Large Data Bases (VLDB'86), 1986,

pp. 13–20.
[10] J. Cabot, R. Clariso, D. Riera, Verification of UML/OCL class diagrams using constraint programming, Proc. of the Workshop on Model Driven Engineering,

Verification and Validation (MoDeVVa 2008), 2008.
[11] M. Cadoli, D. Calvanese, G. De Giacomo, T. Mancini, Finite model reasoning on UML class diagrams via constraint programming, Proc. of the 10th Congress of

the Italian Assoc. for Artificial Intelligence (AI*IA 2007), Volume 4733 of LNAI, Springer, 2007, pp. 36–47.
[12] D. Calvanese, Finite model reasoning in description logics, Proc. of the 5th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR'96),

1996, pp. 292–303.
[13] D. Calvanese, G. De Giacomo, Expressive description logics, in: F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description

Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press, 2003, pp. 178–218.
[14] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, Reasoning in expressive description logics, in: A. Robinson, A. Voronkov (Eds.), Handbook of Automated

Reasoning, Volume II, Chapter 23, Elsevier Science Publishers, 2001, pp. 1581–1634.
[15] D. Calvanese, M. Lenzerini, On the interaction between ISA and cardinality constraints, Proc. of the 10th IEEE Int. Conf. on Data Engineering (ICDE'94), 1994,

pp. 204–213.
[16] D. Calvanese, M. Lenzerini, D. Nardi, Unifying class-based representation formalisms, Journal of Artificial Intelligence Research (JAIR) 11 (1999) 199–240.
[17] S.S. Cosmadakis, P.C. Kanellakis, M.Y. Vardi, Polynomial-time implication problems for unary inclusion dependencies, Journal of the ACM 37 (1) (1990)

15–46.
[18] G. De Giacomo. Decidability of Class-Based Knowledge Representation Formalisms. PhD Thesis, Dipartimento di Informatica e Sistemistica, Università di

Roma “La Sapienza”, 1995.
[19] S. Dupuy, Y. Ledru, M. Chabre-Peccoud, An overview of RoZ: a tool for integrating UML and Z specifications, Proc. of the 12th Int. Conf. on Advanced Infor-

mation Systems Engineering (CAiSE 2000), Volume 1789 of LNCS, Springer, 2000, pp. 417–430.
[20] C. Farré, G. Rull, E. Teniente, T. Urpí, SVTe: a tool to validate database schemas giving explanations, Proc. of the 1st Int. Workshop on Testing Database

Systems (DBTest 2008), ACM Press, 2008.
[21] C. Farre, E. Teniente, T. Urpí, Checking query containment with the CQC method, Data and Knowledge Engineering (DKE) 53 (2) (2005) 163–223.
[22] P.R. Fillottrani, E. Franconi, S. Tessaris, The new ICOM ontology editor, Proc. of the 19th Int. Workshop on Description Logic (DL 2006), Volume 189 of CEUR

Electronic Workshop Proceedings, 2006 http://ceur-ws.org/.
[23] A. Formica, Finite satisfiability of integrity constraints in object-oriented database schemas, IEEE Transactions on Knowledge and Data Engineering 14 (1)

(2002) 123–139.
[24] M. Gogolla, F. Büttner, M. Richters, USE: a UML-based specification environment for validating UML and OCL, Science of Computer Programming 69 (1–3)

(2007) 27–34.
[25] S. Hartmann, Coping with inconsistent constraint specifications, Proc. of the 20th Int. Conf. on Conceptual Modeling (ER 2001), Volume 2224 of LNCS,

Springer, 2001, pp. 241–255.
[26] I. Horrocks, O. Kutz, U. Sattler, The even more irresistible SℛOℐQ, Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning

(KR 2006), 2006, pp. 57–67.
[27] D. Jackson, Alloy: a lightweight object modelling notation, ACM Transactions on Software Engineering and Methodology 11 (2) (2002) 256–290.
[28] M. Kuhlmann, L. Hamann, M. Gogolla, Extensive validation of OCL models by integrating SAT solvers into USE, Proc. of the 49th Int. Conf. on Technology of

Object-Oriented Languages and Systems (TOOLS 2011), Volume 6705 of LNCS, Springer, 2011, pp. 290–306.
[29] M. Lenzerini, P. Nobili, On the satisfiability of dependency constraints in entity-relationship schemata, Information Systems 15 (4) (1990) 453–461.
[30] C. Lutz, U. Sattler, L. Tendera, The complexity of finite model reasoning in description logics, Information and Computation 199 (2005) 132–171.
[31] MIT Software Design Group, The Alloy Analyzer, http://alloy.mit.edu.
[32] A. Olivé, Conceptual Modeling of Information Systems, Springer, 2007.
[33] OMG, UML 2.2 Superstructure Specification Available at, http://www.uml.org/2009.
[34] OMG, Object Constraint Language. Version 2.2 Available at, http://www.omg.org/spec/OCL/Feb. 2010.
[35] A. Queralt, E. Teniente, Reasoning on UML class diagrams with OCL constraints, Proc. of the 25th Int. Conf. on Conceptual Modeling (ER 2006), Volume 4215

of LNCS, Springer, 2006, pp. 497–512.
[36] A. Queralt, E. Teniente, Decidable reasoning in UML schemas with constraints, Proc. of the 20th Int. Conf. on Advanced Information Systems Engineering

(CAiSE 2008), Volume 5074 of LNCS, Springer, 2008, pp. 281–295.
[37] A. Queralt, E. Teniente, Verification and validation of UML conceptual schemas with OCL constraints, ACM Transactions on Software Engineering and

Methodology 21 (2) (2011) To appear.
[38] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual, Addison Wesley Publ. Co., 1998
[39] C.F. Snook, M.J. Butler, UML-B: formal modeling and design aided by UML, ACM Transactions on Software Engineering and Methodology 15 (1) (2006)

92–122.
[40] M. Wahler, D. Basin, A.D. Brucker, J. Koehler, Efficient analysis of pattern-based constraint specifications, Software and Systems Modeling 9 (2) (2010)

225–255.
[41] J. Warmer, A. Kleppe, The Object Constraint Language. Second Edition. Getting Your Models Ready For MDA, Addison-Wesley, 2003.

Anna Queralt is an assistant professor at the Department of Service and Information System Engineering at the Universitat Politèclnica
de Catalunya – BarcelonaTech, where she teaches software engineering. She got her PhD in Computer Science from the same university
in 2009. She has been a visiting researcher at the Free University of Bozen-Bolzano. Her research is mainly focused on conceptual model-
ing and automated reasoning on conceptual schemas.

21A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

http://ceur-ws.org/
http://alloy.mit.edu
http://www.uml.org/
http://www.omg.org/spec/OCL/
Unlabelled image

Dr. Alessandro Artale is an Assistant Professor in the Faculty of Computer Science at the Free University of Bolzano where he teaches
graduate and undergraduate courses. He got a PhD in Computer Science from the University of Florence in 1994. He published
more than 70 papers in international journals and conferences and as book chapters. He acted as both Chair and PC member
both in International Conferences, and as editor of both proceedings and journal's special issues. His research has been funded by
the European Community and by National funds. His main research subject concerns description logics, temporal logic, automated
reasoning, ontologies and conceptual modeling. A particular emphasis is devoted to the formalization of conceptual modeling tasks
in domains with high semantic complexity and characterized by a dynamic aspect.

Diego Calvanese is an associate professor at the KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano,
where he teaches graduate and undergraduate courses on theory of computing, formal languages, knowledge bases and databases,
and ontologies. His research interests include formalisms for knowledge representation and reasoning, ontology languages, descrip-
tion logics, Semantic Web, conceptual data modeling, data integration, semistructured data management, and service modeling and
synthesis. He is actively involved in several national and international research projects in the above areas, and he is the author of
more than 200 refereed publications, including ones in the most prestigious international journals and conferences in Databases
and Artificial Intelligence. He is one of the editors of the Description Logic Handbook. He is regularly invited to serve on the Program
Committees of international conferences in the above mentioned areas and is a member of the editorial board of JAIR.

Ernest Teniente is a full professor at the Department of Service and Information System Engineering at the Universitat Politècnica de
Catalunya – BarcelonaTech, where he teaches graduate and undergraduate courses on software engineering and databases. He got his
PhD in Computer Science from the same university. He was a visiting researcher at the Politecnico di Milano and at the Universita' di
Roma Tre, in Italy. His current research interests are focused on conceptual modeling, automated reasoning on conceptual schemas
and data integration. He is author of more than 50 publications in international conferences and journals in the areas of databases
and software engineering, and he is regularly invited to serve on the Program Committees of international conferences in these areas.

22 A. Queralt et al. / Data & Knowledge Engineering 73 (2012) 1–22

Unlabelled image
Unlabelled image
Unlabelled image

	OCL-Lite: Finite reasoning on UML/OCL conceptual schemas
	1. Introduction
	2. Related work
	3. OCL-Lite syntax and semantics
	3.1. OCL-Lite syntax
	3.2. OCL-Lite normal form
	3.3. OCL-Lite semantics

	4. The Description Logic ALCI
	5. Encoding UML/OCL-Lite in ALCI
	5.1. Encoding UML in ALCI
	5.2. Encoding OCL-Lite constraints in ALCI
	5.3. Correctness of the encoding and complexity results

	6. Incorporating identification constraints
	7. Reasoning on UML/OCL-Lite schemas using current reasoners
	7.1. Using a Description Logics reasoner
	7.2. Using SVTE
	7.3. On the performance of current reasoners

	8. Conclusions and further work
	Acknowledgments
	References

