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Abstract. Earth Observation (EO) data publication and dissemination 
continues to grow driven by the increase in satellite launches. openEO is 
one of the most well known platforms to query EO data (in the form of 
datacubes) using web APIs. To be truly valuable, EO data often needs 
to be combined with other data sources, notably relational databases. 
Knowledge graphs offer a way to bridge the semantic gap between EO 
data and these additional sources. However, the execution of integrated 
queries can run into scalability issues due to the enormous volume of EO 
data. In this paper, w e propose addressing this challenge through the use
of Virtual Knowledge Graphs — a paradigm that presents data to end-
users as a knowledge graph, while keeping the data in its original sources
rather than materializing it in graph form. We show the feasibility of
our approach by implementing a prototype solution and test it over real
world openEO examples.

Keywords: Virtual knowledge graph · Earth observation · 
Ontology-based data access · Raster data · openEO

1 Introduction 

The steady growth of satellite launches for Earth Observation (EO) has increased 
the range and volume of Earth imagery coverage. Satellite i magery is often
represented as raster datacubes (often called simply raster data1)  with  multi-
ple dimensions including space and time, as well as the respective light bands 
they measure. While the variety of data collected is limited by the number of 
bands that satellites support (which are a small number) the temporal dimen-
sion applied over the whole globe can easily accrue. Moreover, not all entities 
producing the data need to abide to the same dissemination strategies, hence 
different datasets and dataset formats could be a result not only of direct satel-
lite observations, but also of interpolation exercises. For example, for weather
analysis an entity might retrieve EO data from openEO and generate data in a
new netCDF format.
1 According to openEO, raster data is a single 2D grid of spatial values, while a raster 
datacube extends this to multiple dimensions (e.g., time, bands) to represent a series
of rasters.
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Fig. 1. Visual representation of a process graph in the openEO Web Editor.

To address these challenges, a prominent solution that has emerged is ope-
nEO [26], a web API designed to provide a standardized interface for query-
ing EO data backends, regardless of their underlying datacube storage formats. 
Central to openEO is the concept of a process graph — a JSON-based, directed 
acyclic graph that represents a sequence of processing steps to be applied to EO 
data. Each node in the graph corresponds to an openEO process (e.g., loading 
data, filtering by time, applying a function), and edges define data dependencies
between these processes. This structure enables users to build flexible, modular,
and backend-independent EO analysis workflows. An example of such a process
graph is shown in Fig. 1, demonstrating how complex analyses can be constructed 
b y chaining simple operations.

The openEO specification was submitted to the Open Geospatial Consortium 
to become a standard in December 2023 [25]. While using openEO resolves 
the issue of heterogeneity across EO data storage, it does n ot provide a simple
solution to integrate EO data with other domains.

Knowledge Graphs (KGs) provide a simple mechanism to connect concepts 
between different domains using the ubiquitous graph data model. Integrat-
ing additional domains simply involves specifying rules for how to connect 
two graphs. Unlike a relational database, it is not necessary to reformat entire 
tables. The most well known interchange standard for graph data is the Resource 
Description Framework (RDF) w hich represents data as a set of triples. How-
ever, despite its conceptual simplicity, RDF requires to re-materialize existing
data as triples, which would negate any benefit from efficiently storing datacubes
in existing raster data formats.

Virtual Knowledge Graphs (VKGs) provide a lightweight approach to inte-
grate heterogeneous data across a variety of data sources and data formats, 
without the need to generate new graph datasets. A prominent platform that
generates VKGs using relational data is Ontop [10, 33], which already supports 
most well-known relational databases. Relational databases such as PostgreSQL 
support non-SQL extensions that make it feasible to query also non-relational 
data. In our work, we have developed the first method to query EO data via
the openEO specification together with relational data, by relying on the VKG
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paradigm. To do so, we provide access to arbitrary openEO processes through 
corresponding SPARQL functions that can be freely used in a SPARQL query. 
We then exploit the PL/Python PostgreSQL extension to translate each (first-
level) SPARQL function into an openEO process graph that carries out the 
evaluation of the corresponding openEO function. Conversely, our framework 
makes it possible to emulate any openEO process graph through suitably nested 
SPARQL functions. The resource we have constructed builds on the Ontop VKG
platform, and is able to operate with a minimal overhead in query response time
with respect to directly querying openEO, but provides the important benefit of
allowing for integrated cross-domain queries.

The rest of the paper is structured as follows: Sect. 2 discusses related w ork,
Sect. 3 introduces the resource architecture, Sect. 4 elaborates on the implemen-
tation inside Ontop, Sect. 5 presents an experimental evaluation, a nd finally
Sect. 6 discusses some limitations and future work.

2 Related Work 

EO data is typically represented as raster datacubes derived from satellite obser-
vations, such as those from the SLSTR instrument [12] aboard Sentinel-3 [18]. 
Once the datacubes are retrieved, they can be manipulated according to user 
requirements, which often involve filtering along one or more dimensions—such 
as spatial, temporal, or spectral—by specifying the desired extents (i.e., ranges
of values within those dimensions).

A variety of software solutions for analyzing EO data have been developed, 
including relational database extensions (e.g., PostGIS, an extension of Post-
greSQL), Python packages (e.g., rasterio and xarray), and array databases like
Rasdaman [7]. However, none of these approaches leverages the capabilities of the 
graph data model. Conversely, while KGs have shown potential f or EO analysis,
their use in this context has not yet been standardized.

Efforts towards such standardization are currently underway through the 
Spatial Data on the Web Working Group [31, 32]. One of the key challenges lies 
in determining the appropriate level of granularity for representing raster data. 
At the two extremes of the so-called spectrum of linkiness, one can either pub-
lish every EO data point as RDF triples — which is highly resource-intensive — or 
restrict the publication to the metadata about the sources, which offers limited 
informational value. An intermediate approach, called dynamically-generated 
RDF, focuses instead on generating only the portion of the data cube that is
necessary to answer users’ requests. However, even this approach may result
in materializing a large volume of RDF when queries are complex, impacting
performance.

Other proposals leverage on GeoSPARQL [11], the current standard for rep-
resenting a nd querying vector data2 in KGs. GeoSPARQL+ [22] implements via 
Apache Jena [2] an extension of GeoSPARQL that can handle raster operations
2 Vector data represents geographic features using points, lines, and polygons, while 

raster data represents features as a grid of cells or pixels, each with a specific value.
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and map individual EO observations to IRIs. GeoLD [1] introduces its own syn-
tax extensions and employs a SPARQL optimization engine built on the Apache 
Jena ARQ engine, in conjunction with a Web Coverage Processing Service 
(WCPS) node backed by a Rasdaman array database. Unlike GeoSPAR QL+,
GeoLD supports a dynamically generated RDF strategy, which allows it to
achieve better performance in terms of query response times.

Another approach that has been investigated in the literature proposes lever-
aging the VKG paradigm to eliminate the need to transform and physically store 
raster data as RDF. This allows users to retrieve the EO data at the desired 
level of granularity, without the overhead of materializing or duplicating the
underlying raster as RDF triples. One such proposal [21] relies on PL/pgSQL, 
the PostgreSQL Procedural Language, to first transform the data into a tabu-
lar format and then expose it as a VKG. The approach involves an expensive 
computational step of calculating all needed indicators for each datacube cell, 
significantly increasing both the storage requirements and processing time. More-
over, in case a user requires a new indicator, the database must be re-created.
So, while technically this is an approach based on the VKG paradigm, it still
requires substantial (tabular) materialization and introduces data duplication.

OntoRaster [ 19] leverages the VKG paradigm to access EO data by using 
stored procedures written in PL/Python, the Python procedural language for 
PostgreSQL, to access EO data stored in a Rasdaman array database. In 
OntoRaster, PL/Python is u sed to transform EO data from Rasdaman into
a tabular format, which is then mapped to a VKG. Compared to [21], this 
approach offers two main advantages: it eliminates the need to pre-compute all 
required indicators, and it allows for faster data ingestion due to Rasdaman’s 
specialization in handling raster data. However, a key limitation is that data 
must first be downloaded from an external backend (e.g., openEO) and then 
imported into Rasdaman, resulting in data duplication when the source is not a 
Rasdaman database. Additionally, supported aggregation operations are limited 
to those available in RasQL (i.e., min, max, count, sum, avg) and Rasdaman’s
native clipping functionality, which limits the system’s ability to leverage the
full capabilities of more expressive APIs like openEO, which supports over 100
functions.

The Plato Semantic Data Cube System [8] demonstrates yet another app-
roach of VKG over raster data, which leverages the Python xArray package 
to directly retrieve data from raster files in NetCDF of ZARR format. Hence, 
contrarily to the other two solutions, Plato does not require the data to be pre-
loaded into a database. Plato adopts a caching mechanism over spatial indexes
to improve query answering performance over vector and raster data. A custom
Raptor Join [30], which efficiently filters raster data that overlap with vector 
data, avoids any conversion costs between the data. The approach provides an 
original solution to joining vector-raster data in the context of VKGs. However, a 
new prototype solution for geospatial joins is unlikely to be as efficient as mature
geospatial solutions, such as the raster extension in PostGIS or Rasdaman, and
Plato has not been benchmarked with traditional geospatial systems.
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Fig. 2. Architecture of ontopEO .

3 Resource Architecture 

In this section, we describe the architecture of the resource we have deve loped,
called ontopEO, as illustrated in Fig. 2. The architecture is organized in two 
layers: the Sources Layer, which interfaces with the underlying data sources, 
and the VKG Layer, which provides integrated S PARQL access to these sources
using the VKG paradigm via the Ontop system.

3.1 Sources Layer 

Data Sources. The openEO ecosystem consists of several data and infrastruc-
ture providers (commonly referred to as cloud providers), each hosting its own 
instance of the openEO Web API. These providers offer computing resources, 
storage capacity, and the services necessary to support large-scale EO data pro-
cessing. Two prominent providers are Copernicus [16], hosted by Copernicus 
Data and Information Access Services (DIAS), and openEO EURAC [15], man-
aged by the Institute for Earth Observation at EURAC Research.  The  EURAC  
instance provides access to Sentinel satellite data, with a particular focus on the 
South Tyrol region in Italy, as well as other regional datasets. For the devel-
opment, testing, and evaluation of our ontopEO system, we use the Copernicus 
backend, which is part of the Copernicus Data Space Ecosystem. Copernicus 
offers free and open access to a wide range of EO datasets, including global
coverage from the Sentinel satellite constellation. We selected Copernicus for its
scalability, reliability, and strong institutional backing as a long-term initiative
supported by the European Union.

As illustrated in Fig. 2, our approach supports not only raster datacubes 
from openEO, but also geospatial and generic tabular data, such as datasets 
regularly published by government agencies. For our experiments, we use munic-
ipal boundary Shapefiles obtained from the regional geocatalogue [6] of South 
Tyrol.
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PostgreSQL and PL/Python. At the core of our architecture is Post-
greSQL 17, a robust relational database, extended with PostGIS 3.5.0 to support 
geospatial capabilities. PostGIS is the widely adopted geospatial extension for 
PostgreSQL, e nabling the storage, querying, and processing of both vector and
raster geospatial data. It is one of the most popular3 open-source geospatial 
extensions for relational databases.

Vector geometries can be imported from standard formats such as Shapefiles 
(.shp)—using the shp2pgsql loader. Moreover, the Geospatial Data Abstraction 
Library (GDAL) and its ogr2ogr utility facilitate reliable import of a wide range 
of geospatial data formats, including Ge oJSON and GPKG. These capabilities
make PostgreSQL combined with PostGIS a natural choice for federating non-
raster geospatial and tabular data within our system.

In our architecture, we use PL/Python to interact with the openEO API 
via the official openEO Python client [27], a well-maintained library for access-
ing openEO services. This integration offers enhanced flexibility by enabling the 
use of any Python package (or combination of packages) within the database 
backend. Our implementation is based on Python 3.11 and openEO ver-
sion 0.33.0 to connect to selected openEO cloud bac kends. Additionally, we
employ Shapely 2.0.2 to convert geometries from the well-known text (wkt)
format into representations compatible with openEO.

3.2 VKG Layer 

The platform used to construct the VKG is Ontop v5.2.1, which provides query 
answering capabilities over VKGs by relying on relational databases such as 
PostgreSQL as a data source. Ontop fully supports all W3C standards rele-
vant to VKGs, including the RDF data model, the SPARQL query language,
the OWL 2QL [24] profile of the OWL ontology language, and the R2RML [13] 
mapping language. Ontop operates by taking as input an ontology that defines 
the domain knowledge, along with a mapping file that links the relational tables
in PostgreSQL/PostGIS to the ontology. Table 1 shows a database table excerpt 
containing data about municipalities in South Tyrol, while the listing below 
shows a corresponding Ontop mapping that relates such data to suitable classes
and properties at the ontology level.

mappingId south_tyrol_vector_data  
target :  region  /{  gid  }  a  :  Municipality  ;  

geo  :  asWKT  {  geom1  }^^  geo  :  wktLiteral  ;  
rdfs  :  label  {  name_it  }  @it  .  

source SELECT  gid  ,  name_it  ,  ST_AsText  (  geom  )  AS  geom1  
FROM  region_south_tyrol  

More specifically, the table region_south_tyrol contains vector data for all 
municipalities in South Tyrol, including their administrative boundaries. The 
attributes used in the mapping include: gid, which serves as a unique identifier
3 PostGIS has consistently ranked as the t op spatial relational database in DB-Engines

https://db-engines.com/en/ranking/spatial+dbms. 
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Table 1. South Tyrol table excerpt, with geometries represented in wkbs.

gid name_de name_it geom 
1 Bozen Bolzano 010300FF... 
2 Meran Merano F0BF0000... 
3 Brixen Bressanone AA0DF0E0... 

for each municipality; name_it, which contains the municipality’s name in Ital-
ian; and geom, which stores the geometry in well-known binary (wkb) format. 
The PostGIS function ST_AsText is used to convert geometries from wkb to the 
more widely adopted wkt format, which is better suited for use in RDF repre-
sentations. The example assumes the existence of a class :Municipality in the
ontology, along with the data properties geo:asWKT and rdfs:label.

To fully implement our architecture, we extended the Ontop VKG system to 
accommodate the specific characteristics of the openEO API — particularly its 
support for complex processing pipelines expressed as so-called process gr aphs.
The next section provides a detailed explanation of this extension, which con-
stitutes the core of our contribution.

4 Ontop Implementation 

4.1 Implementation of openEO Processes as SPARQL Functions 

We extended Ontop by implementing a set of SPARQL functions mapped to their 
corresponding openEO processes, along with a rewriting mechanism that com-
poses complex function chains into a single openEO process graph. This enables 
SPARQL queries to emulate process graphs — typically authored through the 
openEO Python client or web interfaces — by composing SPARQL functions 
directly within the query. Our implementation reformulates such queries into a 
single JSON-based process graph that encapsulates all op enEO-related opera-
tions before dispatching it to the openEO backend for execution. This approach
significantly reduces execution latency by minimizing round-trip interactions
with the backend, and constitutes a key distinguishing feature of our system
compared to existing proposals in the literature.

Ontop offers the flexibility to define any number of custom SPARQL func-
tions with arbitrary arity, argument types, and return datatypes. SPARQL also 
supports function overloading, enabling multiple versions of a function to vary 
by input type or count. This is useful for mapping openEO processes, such as
overloading load_collection to optionally include cloud cover filtering.

Ontop requires that the RDF datatype of every function’s output is explicitly 
declared in advance. However, since the result of an openEO process graph may 
vary, returning either a datacube or a scalar value depending on the operations 
performed, the output type cannot always be determined at query time. To
address this, all results are published with the generic datatype xsd:string.
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Table 2. Implemented openEO SPARQL functions.

apply mask 
apply_dimension ndvi 
apply_kernel merge_cubes 
band_math oneof 
filter_bbox filter_bands 
linear_scale_range aggregate_temporal_period 
load_collection aggregate_spatial 
reduce_dimension rename_labels 
sar_backscatter to_scl_dilation_mask 

Users can then apply standard SPARQL cast functions, such as xsd:double, 
to convert the result into the a ppropriate datatype as needed. Note that, as
discussed in Sect. 2, there is still no standardized approach for encoding rasters 
within the RDF framework. Consequently, also all raster or array outputs in our 
system are represented using the generic RDF datatype xsd:string, where the
structure and dimensionality are indicated by the nesting of square brackets.

Table 2 lists all openEO functions implemented in our Ontop extension. 
For readability, the shared prefix openeo: (corresponding to the namespace
http://www.openeo-ontop.org#) is omitted from each function name.

Most of the Ontop functions closely align with their corresponding openEO 
processes in a one-to-one manner. Exceptions include band_math and oneof, 
which encapsulate band operations and logical OR conditions, respectively. These 
were introduced to simplify the syntax of queries that involve the openEO apply 
process. Mathematical operations and boolean comparisons are expressed using
standard SPARQL syntax and are translated into the corresponding openEO
functions during query rewriting.

4.2 SQL Translation 

In VKGs, query answering is typically achieved through query reformulation 
techniques. In Ontop, this means translating SPARQL queries over the VKG into 
equivalent SQL queries over the underlying relational data sources. In our case, 
however, reformulation must go beyond SQL translation: it must also include 
generating calls to the openEO API. Moreover, multiple SPARQL function calls 
related to openEO w ithin a single query need to be grouped and composed into
a unified openEO process graph, so as to take advantage of the expressivity of
the openEO API and reduce round-trip interactions.

To explain our solution, we rely on a running example inspired by Coper-
nicus. Consider the following SPARQL query, asking for the average normal-
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ized difference ve getation index4 (NDVI) for a specific time period and over the 
municipality of Bolzano:

PREFIX  openeo  :  <http  ://  www  .  openeo -ontop  .  org  #>  
SELECT  ?  average_NDVI  {  

?g  a :  Municipality  ;  
rdfs  :  label  "  Bolzano  "  @it  ;  
geo  :  asWKT  ?  geom  .  

BIND  ("  SENTINEL2_L2A  "  AS  ?  satellite_instrument  )  .  
BIND  ("  2025 -04 -05  T00  :00:00  Z"^^  xsd  :  dateTime  AS  ?  start_time  )  .  
BIND  ("  2025 -04 -15  T00  :00:00  Z"^^  xsd  :  dateTime  AS  ?  end_time  )  .  
BIND  ("[B04 ,  B08 ]" AS  ?  band  )  .  
BIND  (  openeo  :  load_collection  (?  satellite_instrument  ,  ?  geom ,  

?  start_time  ,  ?  end_time  ,  ?  band  )  AS  ?  cube1  )  .  
BIND  (  openeo  :  ndvi  (?  cube1  )  AS  ?  cube2  )  .  
BIND  (  openeo  :  reduce_dimension  (?  cube2 ,  "t", "  mean  ") AS  ?  cube3  ).  
BIND  (  openeo  :  aggregate_spatial  (?  cube3 ,  ?geom ,  "  mean  ") AS  

?  average_NDVI  )  .  }  

Although simple, the query above already illustrates the benefit of using an 
ontology that operates at a higher level of abstraction than raw raster datacubes 
in openEO. In a standard openEO workflow, the user must manually specify the 
area of interest as a polygon when loading a data collection. In contrast, our 
integrated approach lev erages the database to automatically retrieve the relevant
geometry, allowing users to express queries in terms of semantic entities, such as
municipalities, instead of low-level spatial coordinates.

Starting from this query, our tool produces the following translation to SQL:

SELECT  ontop_openeo  .  process_graph_function  (  TO_JSONB  (  ARRAY  ['id_4 
',  '  aggregate_spatial  ',  '  from_node_id_3  ',  ST_ASTEXT  (v1.  geom  )  
,  'mean ',  'id_3 ',  '  reduce_dimension  ',  '  from_node_id_2  ',  't',  
'mean ',  'id_2 ',  'ndvi ',  '  from_node_id_1  ',  'id_1 ',  '  

load_collection  ',  '  SENTINEL2_L2A  ',  ST_ASTEXT  (v1.  geom  ),  
'2025-04-05 T00  :00:00Z',  '2025-04-15 T00  :00:00Z',  '[B04  ,  B08  
]  '])) 

FROM  region_south_tyrol  v1  
WHERE  'Bolzano  '  =  v1.  name_it  ;  

Function process_graph_function (which is part of the ontop_openeo 
schema) is a PL/Python function responsible for generating an openEO process 
graph from a structured JSON representation. This JSON object is constructed 
using a SQL array that encodes the sequence and hierarchy of SPARQL ope-
nEO function calls issued in the query. Each segment of the array contains iden-
tifiers, function names, arguments, and dependency links (via from_node_id) 
that together define the topology and logic of the full process graph. The func-
tion interprets this linearized representation and builds a valid openEO process
graph in JSON format, which is then sent to the openEO backend for execution.

In the following, we detail the generation of the process graph in PL/Python.

4.3 Generation of the Process Graph 

The execution of the PL/Python function process_graph_function is triggered 
by Ontop, which provides as input a JSON array encoding the openEO process
graph in a linearized form.
4 Commonly used vegetation index that measures the health and density of vegetation 

using the difference b etween near-infrared and red light reflected by the surface.
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The function interprets this flat array by scanning for process identifiers 
prefixed with id_n, which are considered as delimiters of segments in the array. 
Each such segment encodes a distinct step in the process graph and is mapped to 
a predefined template associated with the corresponding openEO process (whose 
name is given by the element immediately following id_n ). F or each segment,
the function creates a portion of the process graph by instantiating the template
corresponding to that segment. For example, the load_collection process is
matched to the following template:

arg1  :  {  
"  process_id  ":  arg2  ,  
"  arguments  ":  {  

"id":  arg3  ,  
"  spatial_extent  ":  {  arg4  },  
"  temporal_extent  ":  [  arg5  ,  arg6  ],  
"  bands  ":  [  arg7  ]  

} 
}

Placeholders arg1,  .  .  .  ,  arg7 are replaced with the seven arguments for 
load_collection (elements from id_1 onwards). During this process, geome-
try inputs are converted from wkt to the GeoJSON format required by openEO 
using the shapely Python library. Once all templates are instantiated, the indi-
vidual components are assembled into a single5, coherent process graph, which is 
then submitted to the openEO backend for execution. F or our running example,
the resulting process graph is:

{ 
"  process_graph  ":  {  

"  id_1  ":  {  
"  process_id  ": "  load_collection  ", 
"  arguments  ":  {  

"id": "  SENTINEL2_L2A  ", 
"  spatial_extent  ":  {  

"  type  ": "  Polygon  ", 
"  coordinates  ":  [  [  [  11.9  ,  46.6  ],  ...  ]  ]  

},  
"  temporal_extent  ":  [  "  2025 -04 -05  T00  :00:00Z", "  2025 -04 -15  

T00  :00:00Z"],  
"  bands  ":  ["  B04  ", "  B08  "] 

} 
},  
"  id_2  ":  {  

"  process_id  ": "  ndvi  ", 
"  arguments  ":  {  

"  data  ":  {  
"  from_node  ": "  id_1  "  

} 
} 

},  
...

}

Directly translating every function into a fixed template is not always feasible. 
Some openEO processes, such as apply, involve more complex logic — including

5 Naturally, if the function is invoked multiple times — e.g., to retrieve data for sev-
eral municipalities with different geometries — multiple process graphs will b e con-
structed and corresponding requests will be issued to the openEO backend.
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nested comparisons and mathematical operations — where the structure and 
order of operations can vary significantly. For example, openeo:apply(?c > 
300 || ?c < 280) requires the use of a combination of 3 subprocesses, the 
comparison operators gt and lt, and the logical operator or. To handle such 
cases, we use specialized templates that are dynamically selected based on the 
operations involved. Specifically for apply , we delegate its construction to a dedi-
cated PL/Python helper function, invoked by the main process graph generator,
which encapsulates the logic required to correctly assemble the corresponding
subgraph.

Custom Operations. In real-world openEO workflows (especially those imple-
mented in Python) users often incorporate additional computations via user-
defined functions (UDFs). These custom functions allow for the execution of 
specialized logic that goes beyond standard openEO processes. Although the 
use of UDFs is generally recommended as a “last resort”, our experience indi-
cates that they are widely adopted in practice.

Our approach naturally accommodates UDFs: they can be embedded directly 
within a SPARQL query using the BIND construct, treating them as plain strings. 
However, embedding UDFs inline can quickly become cumbersome, especially for 
frequently reused or more complex custom transformations. In such cases, defin-
ing the UDF as a dedicated PL/Python function proves to be a m ore scalable
and maintainable solution. This allows users to extend the system by integrat-
ing new operations or enhancing existing process templates with additional logic
encapsulated in separate PL/Python functions.

For example, in our experiments, we implemented a custom Gaussian kernel6
generator, that can be used, e.g., with the apply_kernel openEO process. This 
user-defined function constructs a fixed-size kernel with a predefined s tandard
deviation, which is then injected into the process graph at runtime.

5 Experiments and Evaluation 

We demonstrate the applicability of our solution by running a set of experimen ts
over a variety of real-world queries.

5.1 Setup and Data 

The experiments were conducted using a Lenovo V15 G4 IRU machine running 
Ubuntu 24.04.2 LTS with a 13th Gen Intel(R) Core(TM) i5-13420H CPU, 16GB 
of RAM and 512GB disk capacity. To comprehensively evaluate openEO queries 
using real world phenomena like heatwaves and wildfires, we executed openEO 
queries across diverse geographic regions, specifically selecting study areas in
South Tyrol and Campania, Italy, and the Netherlands. Italian geospatial vec-
tor data with administrative boundaries for South Tyrol and Campania are
6 A Gaussian kernel is a matrix used to reduce noise or detail in raster data.
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retrieved respectively from the local GeoBrowser MapView [5]  and  the  Geopor-
tale Regione Campania [29]. We also retrieve population data for the South Tyrol 
municipalities from the regional statistical unit ASTAT [4]. The Dutch National 
Georegister [23] provides administrative data on the Netherlands including its 
municipalities, districts, and neighborhoods. In cases where direct connections 
to other datasets are unavailable, such as queries regarding oil spills, we demon-
strate the adaptability of openEO by employing the geographic c oordinates of
the affected region as part of the query. This exemplifies that spatial information
does not need to be exclusively sourced from a database.

5.2 Queries 

Copernicus provides a set of Python notebooks [17] that showcase the capabilities 
of openEO to execute queries for real-world use cases. We use these examples to 
design 8 queries to test the expressivity and performance of our resource. In order 
to demonstrate the value of integrated queries over a VKG using openEO, our
VKG integrates the raster datacubes from openEO with the relational datasets
mentioned in Sect. 5.1. Our queries, written in SPARQL, are described below 
and are part of the online resource.

Q1. Find the NDVI for the municipalities in the Val Venosta district of South 
Tyrol between 15 April 2025 and 25 April 2025.

Q2. Find heatwave data in neighborhoods of the municipality of Krimpen aan 
den IJssel in the Netherlands b etween 1 June 2023 and 30 October 2023.

Q3. Find wildfire data for the municipalities of Val Venosta in South Tyrol and 
impacted population between 15 April 2025 and 25 April 2025.

Q4. Find landslide data by municipality for the island of Ischia, Campania, Italy 
by comparing data from 25 August 2022 to 25 Novem ber 2022 with data
from 26 November 2022 to 25 December 2022.

Q5. Find the radar vegetation index (RVI) by municipality of South Tyrol 
bet ween 15 April 2025 and 25 April 2025.

Q6. Find oil spill data in southern coast of Kuwait near the resort comm unity
of Al Khiran (reported in 2017).

Q7. Retrieve NO2 emissions over Bolzano, Italy, for periods June 2020–June 
2021 vs. June 2022–June 2023 (to assess COVID impact).

Q8. Find surface soil moisture values in Bolzano from 1 to 3 September 2023.

Figure 3 provides a visual representation of the results of query Q1 in
ontopEO.

5.3 Results and Discussion 

Table 3 reports the response times for ontopEO over the eight queries from our 
use-case. We remark that ours is the first solution that enables interrogation of 
openEO Web APIs integrated with relational data via a VKG. Therefore, it was
not possible to compare other approaches with our solution while exploiting its
full expressiveness.
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Table 3. Query response time (seconds) / nu mber of records.

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

ontopEO 8760/13 2130/6 2036/13 995/5 1271/6 152/1 859/1 174/1 

Fig. 3. Result of Q1. Municipalities with NDI .> 0.2 are displayed i n green.

Execution times show that ontopEO successfully answers all queries, although 
durations vary significantly — from approximately 2 min for Q6 to about 2.5 h 
for Q1. The relatively short execution time of Q6 is due to the simplicity of the 
query, which returns only a single r ecord defined by a bounding box. In contrast,
Q1 involves 13 municipalities, each described by complex polygon geometries,
which increases processing time considerably.

The number of records is, of course, not the sole determinant of query com-
plexity. For example, query Q2, which involves the Dutch National Georegis-
ter, exhibits execution times comparable to query Q3, despite involving fewer 
municipalities. This is primarily due to the fact that Dutch municipality poly-
gons in our dataset are significantly more detailed (because the municipalities 
are bigger), typically containing about three times as many points as t heir Ital-
ian counterparts, thereby resulting in similar computational overhead. Another
example is Q7, which involves a single but very complex polygon (2867 points)
and gathers data over a long time period (2 years).

A further remark concerns Q1 and the visualization shown in Fig. 3.  When  
the query is the explicit cast and the binary color assignment, response time 
drops significantly — from 8760 s to 1172 s. This performance difference is not
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inherent to our approach, but rather stems from the way Ontop translates the 
cast and the IF-statement into SQL, relying on a costly nested CASE expression.

Fig. 4. Comparison on Q1, restricted to the area of Bolzano.

We conducted an additional experiment to assess the overhead of our app-
roach compared to direct execution via the openEO API. Since openEO lacks 
multi-source integration, w e simplified our queries to operate on a single hard-
coded geometry. Figure 4 reports response times for this streamlined version of 
Q1. As expected, the Copernicus Web Editor delivers the fastest execution, 
followed by the Python API. Our PL/Python-based approach adds further over-
head. However, when geometries are accessed directly from database tables (as 
intended in the typical usage of our tool) PL/Python can outperform standalone 
Python. This appears due to reduced data transfer and in-memory access to
binary-stored geometries. Notably, clearing the cache yields similar performance
to using constant geometries, suggesting in-memory access is the key factor.

Overall, these results demonstrate that ontopEO can effectively support a 
variety of real-world EO queries, as posed by domain experts, while highlight-
ing the need for further optimizations if the query results require further post-
processing.

5.4 Limitations 

This section is divided into two parts: first, we discuss the limitations of the 
proposed solution as identified through the evaluation; s econd, we outline the
limitations inherent in the evaluation process itself.

Limitations of the Proposed Solution. Our solution has currently a num ber
of limitations:

– SPARQL function return type. The  return  type  of  openEO  SPARQL  
functions is unknown at query time. For instance, the function 
openeo:reduce_dimension can return a raster or a scalar. Consequently, all
openEO SPARQL functions return xsd:string, and specific types require an
explicit cast.
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– Expressivity. Our resource only implements the most common processes of 
openEO. Support can be extended by introducing new SPARQL openEO 
functions and templates, however this might require substantial effort depend-
ing on the complexit y of the openEO processes being added (this holds true
especially for complex User Defined Processes (UDPs) [28]). 

– PL/Python Overhead. PL/Python introduces context-switching overhead 
when calling external APIs like openEO, due to interpreter switching, ses-
sion resource management, and result serialization. It also lacks support for 
parallelism. As our experiment against Python and the openEO Web interface 
has s hown, this overhead is mitigated when geometries are already serialized
in a database, rather than provided as constants in the query.

– Request rate API limits. Providers of openEO data have their own API request 
limits that constrain the number of SPARQL queries that can b e executed.
For example, concurrent API requests via Copernicus are limited to 2.

Limitations of the Evaluation. The evaluation we have carried out has the
following limitations:

– Comparison with Other Systems. To the best of our knowledge, our approach 
is the first to translate SPARQL queries into openEO API calls. As such, there 
is currently no directly comparable system. One potential point of comparison 
is Rasdaman; however, this would ultimately amount to comparing openEO
and Rasdaman themselves — two fundamentally different paradigms (API-
based orchestration versus database management). Moreover, as outlined
in Sect. 2, integrating full-scale Copernicus raster datasets into Rasdaman 
presents significant technical c hallenges, further complicating any direct com-
parison.

– Scalability Analysis. Our evaluation includes a diverse set of SPARQL queries, 
varying in the number of municipalities involved and the complexity of the 
spatial geometries — from simple bounding boxes to intricate regional shapes. 
In the absence of standardized benchmarks tailored to this use case, we devel-
oped a custom evaluation grounded in realistic scenarios and informed by
domain expert requirements. Unlike evaluations based on synthetic bench-
marks (e.g., LUBM [20]  or  BSBM [9]), our approach prioritizes practical 
applicability through the use of real-world data. However, a limitation of 
this methodology is that it does not systematically assess how performance 
scales with increasing data volume — a key strength of synthetic benchmarks,
which allow for controlled, repeatable scalability testing.

6 Conclusions and Future Work 

We introduced ontopEO, a tool that leverages the VKGs paradigm to query 
EO data via openEO. Our approach reformulates SPARQL queries, enriched
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with openEO functions, into process graphs that can be executed by ope-
nEO providers. ontopEO can answer typical Copernicus-related q uestions over a
higher-level conceptualization enabled by a domain ontology.

The tool has been developed and deployed within the context of the 
EFRE 1078 project CRIMA, which aims at the realization of an ontology-based 
decision support system for climate risk mitigation and adaptation. The initia-
tive reflects a concrete demand from the EO community to augment s atellite
observation capabilities with semantic technologies. The project is coordinated
by the Eurac Institute for Earth Observation, a primary maintainer of the ope-
nEO API.

Although the tool is in an early stage and has not yet established a user 
community, it is being developed in a dedicated branch of the widely adopted 
Ontop system. Integration into the m ain Ontop repository is planned as the tool
matures, in line with established Ontop development practices.

For future work, we plan to support additional openEO processes, includ-
ing provider-specific UDPs. Another promising direction is the use of advanced 
mapping languages lik e RML, which supports mappings over Web APIs. Notably,
the RML-FNML [3] extension of RML allows for declarative function definitions 
using the Function Ontology (FnO) [14], offering a more flexible alternative to 
hard-coded functions. Embedding openEO functions directly in mappings, rather 
than only in SPARQL, could enable higher-level abstractions over raster data. 
For instance, concepts like “Wildfire” could be defined ontologically and instan-
tiated through relevant observations.
Resource Availability Statement: The resource is publicly released under the 
CC-BY-SA-4.0 license, and it is made available together with the material and
instructions for replication at https://github.com/apano-on/ontopEO. 
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