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Abstract

The novel context of accessing and querying large data repositories through ontologies

that are formalized in terms of expressive DLs, requires on the one hand to consider

query answering as the primary inference technique, and on the other hand to optimize

it with respect to the size of the data, which dominates the size of ontologies. While

the complexity of DLs has been studied extensively, data complexity in expressive DLs

has been characterized only for answering atomic queries, and was still open for more

expressive query languages, such as unions of conjunctive queries (UCQs). In this paper

we advocate the need for studying this problem, and provide a significant technical

contribution in this direction. Specifically, we prove a tight coNP upper bound for

answering UCQs over SHIQ knowledge bases. We thus establish that for a whole range

of DLs from AL to SHIQ, answering UCQs has coNP-complete data complexity. We

obtain our result by a novel tableaux-based algorithm for checking query entailment,

inspired by the one in [18], but which manages the technical challenges of simultaneous

transitive roles and number restrictions (which leads to a DL lacking the finite model

property).

1 Introduction

Description Logics (DLs) [2] provide the formal foundations for the standard
Web ontology languages [12]. In fact, OWL-DL and OWL-Lite are syntactic
variants of the DLs SHIF and SHOIN (D), respectively [13,19]. In the Se-
mantic Web and domains such as Enterprise Application Integration and Data
Integration [17], ontologies provide a high-level, conceptual view of the relevant
information. However, they are increasingly seen also as a mechanism to access
and query data repositories. This novel context poses an original combination
of challenges both in DLs/ontologies and in related areas such as data modeling
and querying in databases:

(i) On the one hand, data repositories can be very large and are usually much
larger than the intensional level expressing constraints on the data. Therefore,
the contribution of the extensional data to inference complexity must be singled
out, and one must pay attention to optimizing inference techniques with respect
to data size, as opposed to the overall size of the knowledge base. In databases,
this is accounted for by data complexity of query answering [23], where the



relevant parameter is the size of the data, as opposed to combined complexity,
which additionally considers the size of the query and of the schema.

(ii) On the other hand, the data underlying an ontology should be accessed
using well established and flexible mechanisms such as those provided by data-
base query languages. This goes well beyond the traditional inference tasks in-
volving objects in DL-based systems, like instance checking [11,20]. Indeed, since
explicit variables are missing, DL concepts have limited possibility for relating
specific data items to each other. Conjunctive queries (CQs), i.e., plain SQL
queries, and unions of CQs (UCQs) provide a good tradeoff between expressive
power and nice computational properties, and thus are adopted as core query
language in several contexts, such as data integration [17].

(iii) Finally, the considered DLs should have sufficient expressive power to
capture common constructs used in data modeling [4]. This calls for so called
expressive DLs [5], in which a concept may denote the complement or union of
others (to capture class disjointness and covering), may involve direct and inverse
roles (to account for relationships that are traversed in both directions), and may
contain number restrictions (to state existence and functionality dependencies
and cardinality constraints on regarding the participation to relationships in
general). A notable example of such an expressive DL is SHIQ [14], which
moreover allows for transitivity of certain roles.

As for data complexity of DLs, [11,20] showed that instance checking is
coNP-hard already in the rather weak DL ALE , and [6] that CQ answering
is coNP-hard in the yet weaker DL AL. For suitably tailored DLs, answering
UCQs is polynomial (actually LogSpace) in data complexity [7,6]; see [6] for
an investigation of the NLogSpace, PTime, and coNP boundaries.

For expressive DLs (with the features above, notably inverse roles),
TBox+ABox reasoning has been studied extensively using techniques ranging
from reductions to Propositional Dynamic Logic (PDL) (see, e.g., [8,5]) over
tableaux [3,14] to automata on infinite trees [5,22]. For many such DLs, the
combined complexity of TBox+ABox reasoning is ExpTime-complete, includ-
ing ALCQI [5,22], DLR [8], and SHIQ [22]. However, until recently, little
attention has been explicitly devoted to data complexity in expressive DLs. An
ExpTime upper bound for data complexity of UCQ answering in DLR follows
from the results on UCQ containment and view-based query answering in [8,9].
They are based on a reduction to reasoning in PDL, which however prevents to
single out the contribution to the complexity coming from the ABox. In [18] a
tight coNP upper bound for CQ answering in ALCNR is shown. However, this
DL lacks inverse roles and is thus not suited to capture semantic data models or
UML. In [15,16] a technique based on a reduction to Disjunctive Datalog is used
for ALCHIQ. For instance checking, it provides a (tight) coNP upper bound
for data complexity, since it allows to single out the ABox contribution. This is
not the case for general CQs, resulting in a non-tight 2ExpTime upper bound
(matching also combined complexity).

Summing up, a precise characterization of data complexity for UCQ answer-
ing in expressive DLs was still open, with a gap between a coNP lower-bound
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and an ExpTime upper bound. We close this gap, thus simultaneously address-
ing the three challenges identified above. Specifically, we make the following
contributions:

– Building on techniques of [18,14], we devise a novel tableaux-based algorithm
for UCQ answering over SHIQ knowledge bases. Technically, to show its
soundness and completeness, we have to deal both with a novel blocking
condition (inspired by the one in [18], but taking into account inverse and
transitive roles), and with the lack of the finite model property.

– This novel algorithm provides us with a characterization of data complex-
ity for UCQ answering in expressive DLs. Specifically, we show that data
complexity of UCQ answering over SHIQ knowledge bases is in coNP, and
thus coNP-complete for all DLs ranging from AL to SHIQ.

2 Preliminaries

2.1 SHIQ Knowledge Bases

The syntax and semantics of SHIQ are defined in the standard way.

Definition 1 (SHIQ knowledge base). Let C be a set of concept names and
R a set of role names with a subset R+ ⊆ R of transitive role names. The set
of roles is P ∪ {P− | P ∈ R}. The function Inv and Trans are defined on roles.
Inv is defined as Inv(R) = R− and Inv(R−) = R for any role name R. Trans is
a boolean function, Trans(R) = true iff R ∈ R+ or Inv(R) ∈ R+.

A role inclusion axiom is an expression of the form R ⊑ R′ where R and
R′ are roles. A role hierarchy is a set of role inclusion axioms. The relation ⊑∗

denotes the reflexive transitive closure of ⊑ over a role hierarchy R∪{Inv(R) ⊑
Inv(R′) | R ⊑ R′ ∈ R}. If R ⊑∗ R′, then we say that R is a sub-role of R′ and
R′ is a super-role of R. We will assume that it is never the case that R is both
a sub-role and a super-role of R′1. A role is simple if its neither transitive nor
has transitive sub-roles.

The set of SHIQ concepts is the smallest set such that:

– Every concept name B ∈ C is a concept,
– If C and D are concepts, R is a role, S is a simple role and n is a non-

negative integer, then C ⊓D, C ⊔D, ¬C, ∀R.C, ∃R.C, ≥ nS.C, ≤ nS.C
are concepts.

A concept inclusion axiom is an expression of the form C ⊑ D for two
concepts C and D. A terminology or T-Box is a set of concept inclusion axioms.

Let I be a set of individual names. An assertion is an expression that can have
the form B(a), P (a, b) or a 6≈ b where B is a concept name, P is a role name

1 This consideration is done for practical purposes, however it does not restrict the
expressiveness of the language. It is clear that if R is at the same time a sub-role
and a super-role of R′ both roles will have the same extension and one of them can
be eliminated and replaced by the other.
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and a, b ∈ I. An A-Box is a set of assertions. Note that no complex concepts and
roles are allowed to occur in the A-Box. Since this work is on data complexity,
the A-Box must contain only extensional information.

A SHIQ knowledge base is a triple K = 〈T ,R,A〉, where T is a terminology,
R is role hierarchy and A is an A-Box.

The semantics of SHIQ knowledge bases is given by interpretations.

Definition 2 (Interpretation). An interpretation I = (∆I , ·I) is defined for
a set of individual names I, a set of concepts C and a set of roles R. The set
∆I is called domain of I. The valuation ·I maps each individual name in I to
an element in ∆I , each concept in C to a subset of ∆I , and each role in R to a
subset of ∆I ×∆I . Additionally, for any concepts C, D, any roles S, R and any
non-negative integer n, the valuation ·I must satisfy the following equations:

RI = (RI)+ for each role R ∈ R+

(R−)I = {〈o′, o〉 | 〈o, o′〉 ∈ RI}
(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(¬C)I = ∆I \ CI

(∀R.C)I = {o | for all o′, 〈o, o′〉 ∈ RI implies o′ ∈ CI}
(∃R.C)I = {o | for some o′, 〈o, o′〉 ∈ RI and o′ ∈ CI}

(≥ nS.C)I = {o | |{o′ | 〈o, o′〉 ∈ SI and o′ ∈ CI}| ≥ n}
(≤ nS.C)I = {o | |{o′ | 〈o, o′〉 ∈ SI and o′ ∈ CI}| ≤ n}

Definition 3 (Model of a knowledge base). An interpretation I satisfies
an assertion A iff:

a ∈ BI if A is of the form B(a)
〈a, b〉 ∈ P I if A is of the form P (a, b)

aI 6= bI if A is of the form a 6≈ b

An interpretation I satisfies an A-Box A if it satisfies every assertion in A.
I satisfies a role hierarchy R if RI ⊆ SI for every R ⊑ S in R. I satisfies a
terminology T if CI ⊆ DI for every C ⊑ D in T . I is a model of K = 〈T ,R,A〉
if it satisfies T , R and A.

A SHIQ concept is said to be in negation normal form (NNF) if negation
occurs only in front of concept names. Since concepts can be translated into
NNF in linear time [14], we will assume that all concepts are in NNF. We denote
by NNF (¬C) the NNF of the concept ¬C. The closure of a concept clos(C) is
the smallest set containing C that is closed under subconcepts and negation (in
NNF). For a knowledge base K, clos(K) is defined as the union of clos(C) for
all C occurring in K.

Global Concepts. A knowledge base K has an associated set of concepts that
we will call the global concepts of K. This set contains two kinds of concepts:
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– For each concept inclusion axiom C ⊑ D in the TBox, there is a global
concept of the form ¬C ⊔D. This way, if we assure that all individuals in a
model belong to the extension of global concepts, the model will satisfy the
T-Box of K2.

– We will consider that K, additionally to the A-Box, T-Box, R-Box, might
have a set of distinguished concepts names that we will denote Cq. In order
not to make the notation too cumbersome, we will not denote it explicitly as
a part ofK. For all concept names B in Cq, the concept B⊔¬B belongs to the
global concepts of K. In the algorithm we present in the following sections,
we will use partial representations of models of a knowledge base to verify
whether some formula Q is entailed in them. In these partial representations
it may remain undecided whether some individuals belong to the extension
of a concept or of its negation. However, for the concepts that appear in Q,
we want to assure that the decision is taken. We will later see that the set
Cq will be used as the alphabet of concept names that may appear in the
queries to be answered 3.

Definition 4 (Global Concepts). Given a knowledge base K = 〈T ,R,A〉 and
a set of distinguished concept names Cq, the set of global concepts for K and Cq

is defined as gcon(K, Cq) = {¬C ⊔D | C ⊑ D ∈ T } ∪ {A ⊔ ¬A | A ∈ Cq}.

If not stated otherwise, in the following K will denote a SHIQ knowledge
base K = 〈T ,R,A〉, RK the roles occurring in K together with their inverses,
and simple(RK) the roles in RK that are simple. Cq a distinguished set of concept
names, and IK the individual names occurring in A.

Example 1. As a running example, we use the knowledge base K = 〈{A ⊑
∃P1.A, A ⊑ ∃P2.¬A}, {}, {A(a)}〉. We consider Cq = {A}, so gcon(K, Cq) =
{¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.¬A, A ⊔ ¬A, }

2.2 Answering Conjunctive Queries over Knowledge Bases

Definition 5 (conjunctive query). A conjunctive query (CQ) Q over a knowl-
edge base K is a set of atoms of the form

{p1(Y1), . . . , pn(Yn)}

where each pi in p1, . . . , pn is either a role name in simple(RK) or a concept
name in Cq; and each Yi in Y1, . . . , Yn is is a tuple of variables or individuals in
IK matching its arity.

Note that we do not allow for transitive or super-roles of transitive roles in
a CQ.

2 In [14] the authors consider an internalized T-Box. We do not make this assumption.
3 If Cq = C, the algorithm can be used to check entailment w.r.t. any concept in the

knowledge base, however this may be inconvenient from an implementation perspec-
tive.
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Definition 6 (union of conjunctive queries). A union of conjunctive queries
(UCQ) U over a knowledge base K is an expression of the form Q1 ∨ · · · ∨Qm

where Qi is a CQ for each 0 ≤ i ≤ m.

To say that Q is either a CQ or an UCQ, we simply say that Q is a query.
We denote by varsIndivs(Q) the set of variables and individuals in a query Q.

Queries are interpreted in the standard way. For a CQ Qi, an interpretation
I is a model of Qi, denoted I |= Qi, if there is a substitution σ : varsIndivs(Qi) →
∆I such that σ(a) = aI for each individual a ∈ varsIndivs(Qi) and I |= p(σ(Y )),
for each p(Y ) in Qi. For an UCQ U , I |= U is defined as I |= Qi for some
0 ≤ i ≤ m. For a knowledge base K and a query Q, we say that K entails Q,
denoted K |= Q, if I |= Q for each model I of K.

Example 2 (cont’d). We consider the CQs Q1 = {P1(x, y), P2(x, z), A(y)} and
Q2 = {P2(x, y), P2(y, z)} and the UCQ U = Q1∨Q2. Note that K |= Q1. Indeed,
for an arbitrary model I of K, we can map x to aI , y to an object connected
to aI via role P1 (which by the inclusion axiom A ⊑ ∃P1.A exists and is an
instance of A), and z to an object connected to aI via role P2 (which exists by
the inclusion A ⊑ ∃P2.¬A). Also, K 6|= Q2. A model I of K that is not a model
of Q2 is the one with ∆I = {o1, o2}, a

I = o1, A
I = {o1}, P

I
1 = {(o1, o1)}, and

P I
2 = {(o1, o2)}. Finally, since K |= Q1, then also K |= U .

Definition 7 (Query Entailment). Let K be a knowledge base and let Q be
a query. The query entailment problem is to decide whether K |= Q.

In the traditional database setting, free variables in a query are called dis-
tinguished variables. For a query Q that has X as distinguished variables, the
query answering problem over K consists on finding all the possible tuples of
individuals T of the same arity as X such that when X is substituted by T in
Q, it holds that K |= Q. The set of such tuples T is the answer of the query.
Query answering has an associated recognition problem: given a tuple T , the
problem is to verify whether T belongs to the answer of Q4. We say that query
answering for a certain description logic is in a class C w.r.t. data complexity
when the corresponding recognition problem is in C. Since we will only focus
on the recognition problem, we allow conjunctive queries to contain individuals
and we are assuming that all variables in the query are existentially quantified.

It is important to notice that the query entailment problem is not reducible
to satisfiability of knowledge bases, since the negation of the query can not be
expressed as a part of a knowledge base. For this reason, the known algorithms
for reasoning over knowledge bases do not suffice. A knowledge base K has
an infinite number possibly infinite models, and we have to verify whether the
query Q is entailed in all of them. In general, we want to provide an entailment
algorithm, i.e. an algorithm for checking whether a sentence Q with a particular
syntax (namely, a conjunctive query) is entailed by a SHIQ knowledge base K.
Our technique builds on the SHIQ algorithm in [14]. Informally, the difference is

4 This problem is usually known as the query output problem.
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that they only focus on problems that can be reduced to checking satisfiability,
and therefore they only need to ensure that if the knowledge base has some
model then their algorithm will obtain a model. In our case, however, this is not
enough. We need to make sure that the algorithm obtains a set of models that
suffices to check query entailment. This adaption to query answering is inspired
by [18], yet we deal with DLs that have no finite model property.

3 Completion Forests

In this section, Q will denote a CQ and U an UCQ. We will first describe our
method for deciding K |= Q, and then how it is extended to K |= U .

Like the algorithm in [14], we will use completion forests. A completion for-
est is a relational structure that captures sets of models of a knowledge base.
Roughly, K is represented as a completion forest FK . Then, by applying expan-
sion rules repeatedly, new completion forests are generated. The application of
the rules is non-deterministic, and sometimes new individuals are introduced.
Modulo these new individuals, every model of the knowledge base is preserved
in some forest that results from the expansion. Therefore checking K |= Q is
equivalent to checking whether the query is entailed in each completion forest F
that cannot be further expanded. Then, for each such forest F we will construct
a single canonical model. Semantically, these canonical models suffice for answer-
ing all queries Q of bounded size. Furthermore, it is proved that entailment in
the canonical model can be checked effectively via a syntactic mapping of the
variables in Q to the nodes in F .

As customary with tableau-style algorithms, we give blocking conditions on
the rules will ensure termination of forest expansion. They are more involved
than those in [14], which serve for satisfiability checking but not for query an-
swering, and they involve a parameter n which depends on Q. This parameter
will be crucial in ensuring that the canonical models of the set of forests we
obtain suffice to check query entailment.

3.1 SHIQ Completion Forests

A forest will be defined as a set of variable trees. A variable tree T is a tree all
whose nodes are variables excepting the root, which may be an individual, and
where each node v and arc v→w is labeled with a set of concepts L(v) ⊆ clos(K)
and a set of roles L(v→w) ⊆ RK , respectively.

Definition 8 (n-tree equivalence).
For any integer n ≥ 0, the n-tree of a node v in T , denoted Tn

v , is the subtree
of T rooted at v that contains all descendants of v within distance n. We denote
by vars(Tn

v ) the set of nodes in the n-tree of v.
Variables v and v′ in T are n-tree equivalent in T , if Tn

v and Tn
v′ are iso-

morphic, i.e., there is a bijection ψ : vars(Tn
v ) → vars(Tn

v′) such that:

– ψ(v) = v′
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– for every node w in vars(Tn
v ), L(w) = L(ψ(w))

– for every arc connecting two nodes w and w′ in vars(Tn
v ),

L(w→w′) = L(ψ(w)→ψ(w′)).

Definition 9 (n-Witness). If nodes v and v′ in T are n-tree equivalent, v′ is
an ancestor of v in T and v is not in Tn

v′ , then v′ is a n-witness of v in T .
Furthermore, Tn

v′ tree-blocks Tn
v and each variable w in Tn

v′ tree-blocks variable
ψ−1(w) in Tn

v .

T1

P2P2P2P2

v1

L1 L1

v3

L1

v5

L1

v7

L1

L2 L2 L2 L2

a

v2 v4 v6 v8

P1P1P1 P1

T2

P2P2P2P2

v1

L1 L1

v3

L1

v5

L1

v7

L1

L2 L2 L2 L2

a

v2 v4 v6 v8

P1P1P1 P1

L1 L1

P1 P1

P2 P2

L2 L2
v10 v12

v9 v11

Figure1. Trees and completion forests for example knowledge base

Example 3 (cont’d). Consider the variable tree T1 in Figure 1, with a as root,
where L1 = {A, ¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.¬A, A ⊔ ¬A, ∃P1.A, ∃P2.¬A}, and
L2 = {¬A, ¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.¬A, A ⊔ ¬A}. Then, v1 and v5 are 1-tree
equivalent in T1; v1 is a witness of v5 (but not vice versa); T1

1
v1

tree-blocks T1
1
v5

;
and v1 (resp., v3, v4) tree-blocks v5 (resp., v7, v8).

Definition 10 (completion forest [14]). A completion forest for a knowledge
base K is given by a forest of trees and an inequality relation 6≈, implicitly
assumed to be symmetric. The forest is a set of variable trees whose roots are
the individuals in IK and can be arbitrarily connected by arcs.

For a completion forest F , we denote nodes(F) the set of individuals and
variables in F , and vars(F) the nodes in F which are variables. For every arc
v→w and role R, if the label L(v→w) contains some role R′ with R′ ⊑∗ R, then
w is an R-successor and an Inv(R)-predecessor of v. We call w an R-neighbor of
v, if w is an R-successor or an Inv(R)-predecessor of v. The ancestor relation is
the transitive closure of the union of the R-predecessor relations for all roles R.

In order to provide a method for verifying entailment of a conjunctive query
Q in a knowledge base K, we will first associate to K an initial completion forest
and then we will generate new completion forests by applying expansion rules
until no more expansions can be obtained. As we will see in the following, the
set forests obtained by this method will be sufficient to check entailment of Q.
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We associate an initial completion forest FK with knowledge base K as
follows:

– The nodes are the individuals a ∈ IK , and L(a) = {B | B(a) ∈ A} ∪
gcon(K, Cq).

– The arc a→ b is present iff P (a, b) ∈ A for some role name P , and L(a→ b) =
{P | P (a, b) ∈ A}.

– a 6≈ b iff a 6= b ∈ A.

Example 4. In our running example, FK contains only the node a which has the
label L(a) := {A, ¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.¬A, A ⊔ ¬A}.

Next, before giving the expansion rules, we define a notion of blocking which
depends on a depth parameter n ≥ 0. This notion generalizes blocking in [14],
where the n parameter is not present.

Definition 11 (n-blocking). For integer n≥ 0, a node v in a completion forest
F is n-blocked, if v is not a root and either directly or indirectly n-blocked. Node
v is indirectly n-blocked, if one of its ancestors is n-blocked or L(w→ v)= ∅ for
some arc w→ v in F . Node v is directly n-blocked iff none of its ancestors is
n-blocked and v is a leaf of a tree-blocked n-tree in F .

Note that x is m-blocked for each m≤n if it is n-blocked. When n ≥ 1, then
n-blocking implies pairwise blocking, which is the blocking used in [14]. When
n=0, then n-blocking corresponds to blocking by equal node labels, which is a
sufficient blocking condition in some DLs weaker than SHIQ.

Example 5. Consider F1 with the variable tree T1 from Example 3 and with an
empty 6≈ relation. F1 is 1-blocked. Analogously, consider the completion forest
F2 that has the variable tree T2 in Figure 1. In F2 the 6≈ relation is also empty.
F2 is 2-blocked.

Now we can give our expansion rules. From FK , new completion forests for
K can be obtained by applying the rules in Table 1. We denote by FK the set
of all F obtained in this way. Note that the application of the rules is non-
deterministic. Different choices for E in the ⊔-rule and the choose-rule generate
different forests. The ∃-rule and the ≥-rule are called generating rules since they
add new nodes to the forest. Note that our rules are very similar to the ones
in [14]. The main differences are that “blocked” is uniformly replaced by “n-
blocked” and the ∃-rule and ≥-rule in [14] are slightly different, since now the
labels of the nodes they generate must contain gcon(K, Cq).

Definition 12 (Clash free completion forest). A node v in a completion
forest F contains a clash iff for some concept C, {C,¬C} ⊆ L(v) or if ≤ nS.C. ∈
L(v) and v has n + 1 S-successors w0, . . . , wn such that C ∈ L(wi) for all wi

and wi 6≈ wj ∈ F for all 0 ≤ i � j ≤ n. A completion forest F is clash free if
none of its nodes contains a clash.
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⊓-rule: if C1 ⊓ C2 ∈ L(v), v is not indirectly n-blocked
and {C1, C2} * L(v)

then L(v) := L(v) ∪ {C1, C2}
⊔-rule: if C1 ⊔ C2 ∈ L(v), v is not indirectly n-blocked

and {C1, C2} ∩ L(v) = ∅
then L(v) := L(v) ∪ {E} for some E ∈ {C1, C2}

∃-rule: if ∃R.C ∈ L(v), v is not n-blocked and
v has no R-neighbor w with C ∈ L(w)

then create new node w with L(v→w) := {R}
and L(w) := {C} ∪ gcon(K, Cq)

∀-rule: if ∀R.C ∈ L(v), v is not indirectly n-blocked and
there is an R-neighbor w of v with C /∈ L(w)

then L(w) := L(w) ∪ {C}
∀+-rule: if ∀R.C ∈ L(v), v is not indirectly n-blocked,

there is some R′ with Trans(R′) and R′ ⊑∗ R and
there is an R′-neighbor w of v with ∀R′.C /∈ L(w)

then L(w) := L(w) ∪ {∀R′.C}
choose-rule: if ≤ n S.C ∈ L(v) or ≥ n S.C ∈ L(v),

v is not indirectly n-blocked and
there is an S-neighbor w of v with {C, NNF (¬C)} ∩ L(w) = ∅

then L(w) := L(w) ∪ {E} for some E ∈ {C, NNF (¬C)}
≥-rule: if ≥ n S.C ∈ L(v), v is not n-blocked and

there are not S-neighbors w1, . . . , wn of v such that C ∈ L(wi)
and wi 6≈ wj for 1 ≤ i < j ≤ n

then create new nodes w1, . . . , wn with L(v→wi) := {S},
L(wi) := {C} ∪ gcon(K, Cq) and wi 6≈ wj for 1 ≤ i < j ≤ n

≤-rule: if ≤ n S.C ∈ L(v),
v is not indirectly n-blocked,
|{w | w is an S-neighbor of v and C ∈ L(w)}| > n and
there are S-neighbors w, w′ of v with not w 6≈ w′,
w is neither a root node nor an ancestor of w′

and C ∈ L(w) ∩ L(w′)
then L(w′) := L(w′) ∪ L(w),

if z is an ancestor of v,
then L(w′ →w) := L(w′ → v) ∪ Inv(L(v→w′)),
else L(v→w′) := L(v→w′) ∪ L(v →w),

L(v→w) := ∅,
set w′′ 6≈ w′ for all w′′ with w′′ 6≈ w

≤r-rule: if ≤ n S.C ∈ L(v),
|{w | w is an S-neighbor of v and C ∈ L(w)}| > n and
there are S-neighbors w, w′ of v with not w 6≈ w′,
both w and w′ are root nodes and C ∈ L(w) ∩ L(w′)

then L(w′) := L(w′) ∪ L(w), L(w) := ∅
For all edges w→w′′

(i) if w′ →w′′ does not exist, create it with L(w′ →w′′) = ∅
(ii) set L(w′ →w′′) := L(w′ →w′′) ∪ L(w→w′′);
For all edges w′′ →w
(i) if w′′ →w′ does not exist, create it with L(w′′ →w′) = ∅
(ii) set L(w′′ →w′) := L(w′′ →w′) ∪ L(w′′ →w);
Remove all edges to and from w;
Set w ≈ w′ and w′′ 6≈ w′ for all w′′ with w′′ 6≈ w.

Table1. Expansion Rules10



Definition 13 (n-complete completion forest). A completion F is n-
complete if none of the rules in Table 1 can be applied to it (under n-blocking).

Finally, for a set of completion forests F, we will denote by ccf(Fn) the set
of forests in F that are n-complete and clash free.

Example 6. Both F1 and F2 can be obtained from FK by applying the expansion
rules. They are both complete and clash-free, so F1 ∈ ccf(F1

K) and F2 ∈ ccf(F2
K).

3.2 Models of a Completion Forest.

Semantically, we can interpret a completion forest in the way we interpret a
knowledge base. Viewing variables in a completion forest F for K as individuals,
an interpretation I = (∆I , ·I) of the individual names, concepts an roles in F
is an extended interpretation of K. We thus define models of F in terms of
extended models of K. We will see completion forests as a representation of a
set of models of the knowledge base.

Definition 14 (Model of a completion forest). For a completion forest F
for K, F ∈ Fn

K , an interpretation I = (∆I , ·I) is a model of F , represented
I |= F if I |= K and for all nodes v, w ∈ F the following hold:

– if C ∈ L(v), then vI ∈ CI

– if R ∈ L(v→w) then 〈vI , wI〉 ∈ RI

– if v 6≈ w ∈ F , then vI 6= wI

We want to emphasize that in order to be a model of a completion forest
for K, an interpretation must be a model of K. The initial completion forest is
just an alternative representation of the knowledge base, and it has exactly the
same models. When we expand the forest, we will make choices and obtain new
forests that capture a subset of the models of the knowledge base.

Lemma 1. An interpretation I is a model of FK iff I is a model of K.

Proof. The if direction follows from Definition 14. To prove the other direction,
it suffices to consider an arbitrary model I of K and verify that for for all nodes
a, b ∈ FK the following hold:

(i) if C ∈ L(a), then aI ∈ CI

(ii) if R ∈ L(a→ b) then 〈aI , bI〉 ∈ RI

(iii) if a 6≈ b ∈ F , then aI 6= bI

By definition, the nodes in FK correspond exactly to the individuals in IK .
For each such individual a, the label of a in FK is given as L(a) = {B | B(a) ∈
A} ∪ gcon(K, Cq). Since I is a model of A, if B(a) ∈ A then aI ∈ BI . For any
concept C ∈ gcon(K, Cq), either C is of the form ¬D⊔E for some D ⊑ E in T or
C is of the form B⊔¬B for a concept name B. In the first case, aI ∈ (¬D⊔E)I

must hold because I is a model of T . In the other case, oI ∈ (B⊔¬B)I holds for
any individual o in ∆I and any concept B by the definition of interpretation. So

11



we have that aI ∈ CI for every C ∈ L(a) and item (i) holds. The label of a pair
of nodes a, b in FK is given by L(a→ b) = {P | P (a, b) ∈ A}. Since I is a model
of A, 〈aIbI〉 ∈ P I for every P (a, b) in A, hence item (ii) holds. Analogously, the
6≈ relation was initialized with a 6= b for every a 6≈ b in A, so item (iii) will also
hold for any I model of A.

As we prove in Proposition 1, the union of all the models of the forests in
ccf(Fn

K) captures all the models of a knowledge base K, independently of the
value of n. This result is crucial, since it allows us to ensure that checking the
forests in ccf(Fn

K) suffices to check all models of K. In order to prove this result,
we will first prove the following lemma. It states that when applying any of the
rules in Table 1, all models are preserved.

Lemma 2. Let F be a completion forests in Fn
K , let r be a rule in Table 1 and

let F be the set of completion forests that can be obtained from F by applying r.
Then for every I such that I |= F there is some F ′ ∈ F and some I ′ that is an
extension of I such that I ′ |= F ′.

Proof. We will do the proof for each rule r in Table 1.
First we will consider the deterministic, non-generating rules. There is only

one F ′ in F and the models of F are exactly the models of F ′. For the case of
the ⊓-rule, there is some node v in F s.t. C1 ⊓ C2 ∈ L(v). Since I is a model of
F , then vI ∈ (C1 ⊓ C2)

I , and since I is a model of K, then both vI ∈ CI
1 and

vI ∈ CI
2 hold. The inequality relation and all labels in F ′ are exactly as in F ,

the only change is that {C1, C2} ⊂ L(v) in F ′, so I |= F ′.
The cases of the the ∀-rule and the ∀+-rule, are similar to the ⊓-rule. All

labels of F are preserved in F ′. Only the label of the node w to which the rule
was applied is modified in F ′, having C ⊂ L(w) or ∀R′.C ⊂ L(w) respectively.
Since I is a model of K, vI ∈ (∀R.C)I and w and R-neighbor of v imply
yI ∈ CI , and vI ∈ (∀R.C)I and w and R′-neighbor of v for some transitive
sub-role of R imply wI ∈ (∀R′.C)I , then trivially I |= F ′ in both cases.

Let us analyze the non-deterministic rules. For the case of the ⊔-rule, there
is some node v in F s.t. C1 ⊔C2 ∈ L(v). After applying the ⊔-rule, we will have
two forests F ′

1, F
′
2 with {C1} ⊂ L(v) in F ′

1 and {C2} ⊂ L(v) in F ′
2 respectively.

For every I such that I is a model of F we have vI ∈ (C1 ⊔ C2)
I , and since

I is a model of K, then either vI ∈ CI
1 or vI ∈ CI

2 hold. If it is the case that
vI ∈ CI

1 , then I |= F ′
1, and otherwise I |= F ′

2, so the claim holds.
The proof for the choose rule is trivial, since after its application we will

have two forests F ′
1, F

′
2 with {C} ⊂ L(v) in F ′

1 and {NNF (¬C)} ⊂ L(v) in F ′
2

respectively, but since trivially vI ∈ (C ⊔ ¬C)I holds for any v, any C and any
I model of K, then for every I either I |= F ′

1 or I |= F ′
2 holds.

When the ≤-rule or the ≤r-rule are applied to a variable v in F , there are
some variables w, w′ neighbors of v s.t. w is identified with w′ in F ′. This can
only be done if we do not have that wI 6= w′I in I, hence it must be the case
that wI = w′I . In F ′, we will add the pair 〈w,w′〉 to the extension of ≈. Due to
wI = w′I the extensions of all labels of F will be preserved in F ′ and so I |= F ′

holds.
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Finally we consider the two generating rules. For the case of the ∃-rule, since
the propagation rule was applied, there is some v in F such that ∃R.C ∈ L(v),
which implies the existence of some o ∈ ∆I with 〈vI , o〉 ∈ RI and o ∈ CI . F ′

was obtained by adding to F a new node which we denote w. I will be extended
to I ′ by setting wI′

= o, and thus I ′ |= F ′.
The case of the ≥-rule is analogous to the ∃-rule, since in models of F ′ we

have that wI
i = oi for 1 ≤ i ≤ n, where {w1, . . . , wn} are the variables added to

F and o1, . . . , on denote the elements in ∆I s.t. 〈vI , oi〉 ∈ RI and oi ∈ CI for
the variable v in F to which the rule was applied.

Finally, we can prove that the union of models of the forests in ccf(Fn
K) is

exactly the set of all models of K modulo new individuals.

Proposition 1. Let n ≥ 0. For every I such that I |= K, there is some F ∈
ccf(Fn

K) and some I ′ that is an extension of I such that I ′ |= F .

Proof. From Lemmas 1 and 2, we have that for every I such that I |= K, there
is some F ∈ Fn

K with n ≥ 0 such that I ′ is a model of F for some I ′ extension
of I. Now we want to prove that there is some Fc ∈ ccf(Fn

K) such that I ′ |= Fc

for some I ′ extension of I. Suppose there is an I ′ extension of I ′ such that I
is a model of some completion forest F that is not complete. Then either it is
possible to obtain a new forest F ′ such that I ′′ |= F ′ for some I ′′ that extends
I ′ (and hence I), or none of the propagation rules can be applied. The latest
would imply that either F was complete, which is a contradiction, or that F had
a clash, which is also a contradiction since F has a model. Hence, while applying
the propagation rules, the model will be preserved, and maybe extended, until
some complete forest Fc is reached.

4 Answering Conjunctive Queries

Recall, that for a knowledge base K and a query U , we say that K |= U iff
for every interpretation I, I |= K implies I |= U . Analogously, we define a
semantical notion of query entailment in a completion forest: for a completion
forest F and a query U , we say that F |= U iff for every interpretation I, I |= F
implies I |= U . We are interested in checking whether K |= U , but this means
that entailment of U has to be verified in every model of K. However, we know
that is suffices to check entailment in each forest F ∈ ccf(Fn

K) for any n, since
semantically, they capture all the models of the knowledge base. This is stated
in the following proposition:

Proposition 2. Let n ≥ 0 be arbitrary. Then K |= U iff F |= U for each
F ∈ ccf(Fn

K).

Proof. The only if direction is trivial. Consider any F ∈ Fn
K . Since any model I

of F is a model of K by definition, then K |= U implies F |= U . The if direction
can be done by contraposition. If K 2 U , then there is some model I of K such
that I 2 U . By Proposition 1, there is some I ′ extension of I such that I ′ |= F
for some F ∈ ccf(Fn

K). I 2 U implies I ′ 2 U , and thus F 2 U .
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This result is crucial for our query answering method, since it ensures that
to check query entailment we must only consider ccf(Fn

K), a finite set of finite
structures. Now, we will see that for a suitable n, F |= U for an F ∈ ccf(Fn

K),
we can be verified by finding a syntactical mapping of the query into F .

We will first do it for a CQ Q, and in Section 4.3 we will extend it to an UCQ
U . We say that Q can be mapped into a completion forest F , denoted Q →֒F ,
if there is a mapping µ : varsIndivs(Q) → nodes(F) that is the identity mapping
for all individuals in varsIndivs(Q) and that satisfies the following:

1. For all C(x) in Q, C ∈ L(µ(x)).
2. For all R(x, y) in Q, µ(y) is an R-neighbor of µ(x).

Example 7. Q1 →֒F2 holds, as witnessed by the mapping µ(x) = a, µ(y) = v2
and µ(z) = v1. Note that there is no mapping of Q2 into F2 satisfying the above
conditions.

We will relate the semantical notion F |= Q, with the syntactical notion of
map we will show that the query can be mapped into a forest iff every model of
the forest is a model of the query. The only if direction is easy, if a mapping µ
exists, then Q is satisfied in any model I = (∆I , ·I) of F .

Lemma 3. If Q →֒F , then F |= Q.

Proof. Since Q →֒F , there is a mapping µ : varsIndivs(Q) → nodes(F) satisfying
conditions 1 and 2. Take any arbitrary model I = (∆I , ·I) of F . By definition,
it satisfies the following:

– if C ∈ L(x), then xI ∈ CI

– if x is an R-neighbor of y, then 〈xI , yI〉 ∈ RI .
– if x 6≈ y ∈ F , then xI 6= yI

We can define a substitution σ from the variables and individuals in varsIndivs(Q)
to objects in ∆I as σ(x) = µ(x)I , and it satisfies σ(Y ) ∈ pI for all p(Y ) in Q.

The if direction is more challenging. Now the blocking conditions come into
play and the mapping will only be feasible if n is sufficiently large. We show
that provided F has been expanded far enough, a suitable mapping µ can be
constructed from some model of F . In particular, we construct for each F a
single model IF , called the canonical model of F . This canonical model suffices
to check entailment in the forest for all queries Q of bounded size. As we will
see, the canonical model can be used to prove that if Q is satisfied in this model,
then we can construct the mapping µ from it.

4.1 Tableaux and Canonical Models

The (possibly infinite) canonical model for F is model is obtained by unraveling
the forest F , where the blocked nodes act like ‘loops’. Its domain is given by the
set of all paths that start in a root node and finish in some node of F .
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In order to build the canonical model for F , we will proceed in two steps.
First, we will unravel the forest into a tableau, and then induce a model from
this tableau.

From any forest F ∈ F ∈ ccf(Fn
K) for n ≥ 1, we can construct a tableau for

K. If F contains blocked nodes, then its tableau will be an infinite structure. The
tableau T of a forest F will correspond to the unraveling of F . i.e. the structure
obtained by considering each path to a node in F as a node of T . Following [14],
we will give a rather complex definition of a tableau. Defining a model of K from
a tableau will be straightforward with this definition.

Definition 15 (Tableau). T = 〈S,L, E , I〉 is a tableau for a knowledge base
K = 〈A,R, T 〉 iff

– S is a non-empty set,
– L : S → 2clos(K) maps each element in S to a set of concepts,
– E : RK → 2S×S maps each role to a set of pairs of elements in S, and
– I : IK → S maps each individual occurring in A to an element in S.

Furthermore, for all s, t ∈ S; C,C1, C2 ∈ clos(K) and R,R′, S ∈ RK , T satisfies:

(P1) if C ∈ L(s), then ¬C /∈ L(s),
(P2) if C1 ⊓ C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),
(P3) if C1 ⊔ C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),
(P4) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t),
(P5) if ∃R.C ∈ L(s), then there is some t ∈ R such that 〈s, t〉 ∈ E(R) and

C ∈ L(t),
(P6) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R′) for some R′ ⊑∗ R with Trans(R′) = true

then ∀R.C ∈ L(t),
(P7) 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R)),
(P8) if 〈s, t〉 ∈ E(R) and R ⊑∗ S then 〈s, t〉 ∈ E(S),
(P9) if ≤ nS.C ∈ L(s), then |{t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L(t)}| ≤ n,

(P10) if ≥ nS.C ∈ L(s), then |{t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L(t)}| ≥ n,
(P11) if 〈s, t〉 ∈ E(R) and either ≤ nS.C ∈ L(s) or ≥ nS.C ∈ L(s), then

C ∈ L(t) or NNF (¬C) ∈ L(t),
(P12) if C(a) ∈ A then C ∈ L(I(a)),
(P13) if R(a, b) ∈ A then 〈I(a), I(a)〉 ∈ E(R),
(P14) if a 6= b ∈ A then I(a) 6= I(a),
(P15) if C ∈ gcon(K, C), then for all s ∈ S C ∈ L(s).

Trivially, we can obtain a canonical model of a knowledge base from a tableau
for it.

Definition 16 (Canonical Model of a Tableau). Let T be a tableau. The
canonical model of T , IT = (∆IT , ·IT ) is defined as follows:

∆IT := S

for all concept names A in clos(K),
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AIT := {s | A ∈ L(s)}

for all individual names a in IK ,

aI := a

for all role names R in R,

RIT := E(R)⊕

where E(R)⊕ the closure of the extension of R under R, which is defined as:

E(R)⊕ :=

{

(E(R))+ if Trans(R)
E(R) ∪ sub(E(R)⊕) otherwise

where (E(R))+ denotes the transitive closure of E(R) and

sub(E(R)⊕) =
⋃

S⊑∗R,P 6=R

E(S)⊕.

Lemma 4. Let T be a tableau for K. The canonical model of T is a model of
K.

Proof. That IT is a model of R and A can be proved exactly as in the proof of
Lemma 2 in [14]. Due to (P15), it can be easily verified that IT is also a model
of T .

4.2 Canonical Interpretation of a Completion Forest.

Each F ∈ ccf(Fn
K) induces a tableau TF , and this tableau gives us a canonical

model for F , which we will denote IF .

Definition 17 (Tableau induced by a completion forest). A path in a
completion forest F is a sequence of pairs of nodes of the form p = [v0

v′

0
, . . . , vn

v′
n
].

In such a path, we define tail(p) = vn and tail′(p) = v′n; and [p | vn+1

v′

n+1
] denotes

the path [v0

v′

0
, . . . , vn

v′
n
, vn+1

v′

n+1
]. For any path p and variable w ∈ vars(F), if w is not

blocked and w is an R-successor of tail(p), then [p | w
w

] is an R-step of p. If w′

is blocked by w and w′ is an R-successor of tail(p), then [p | w
w′ ] is an R-step of

p.
Given a completion forest F , the set paths(F) is defined inductively as fol-

lows:

– If a is a root in F , [a
a
] ∈ paths(F).

– If p ∈ paths(F) and q is a step of p, then q ∈ paths(F).

The tableau TF = (S,L, E , I) induced by the completion forest F is defined
as follows:

S = paths(F) \ {p | p ∈ paths(F) and p = [v
v
] for some v with L(v) = ∅}

L(p) = L(tail(p))
E(R) = {〈p, q〉 ∈ S × S | q is an R-step of p}∪

{〈p, q〉 ∈ S × S | p is an Inv(R)-step of q}∪
{〈[a

a
], [ b

b
]〉 ∈ S × S | a, b are root nodes and a is an R-neighbor of b}
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Lemma 5. Every F ∈ ccf(Fn
K) for n ≥ 1 induces a canonical model IF .

Proof. First, it is proved as in [14] that every F ∈ ccf(Fn
K) for n ≥ 1 induces

a tableau TF for K. For the last item of the proof of (P9), note that since
n ≥ 1, pairwise blocking is subsumed and the existence the u predecessor can
be ensured. (P15) also holds due to the following facts:

– All nodes v are initialized with gcon(K, Cq) ⊆ L(v).
– The concept names in gcon(K, Cq) are never removed from the label of a

node unless the label is set to ∅ by the ≤r-rule. In this case, the label of the
node is never modified again.

Since TF is a tableau for K, it has a canonical model IF that is a model of K.

Now we will prove that, for a sufficiently large n, if Q is entailed by the canon-
ical model of an n-complete and clash free forest, then a mapping of the variables
in Q into the forest itself can be achieved. This reveals that, semantically, this
canonical model suffices to check query entailment.

In this proof, the blocking parameter n will be crucial. As we mentioned, it
depends on Q. More specifically, it depends in what we call maximal Q-distance.
If the canonical model of a forest F entails Q, then there is a mapping σ of
the variables in Q into the nodes of the tableau induced by F . Intuitively, the
maximal Q-distance is the length of the longest path between two connected
nodes of the graph G defined by the image of the query under σ. For a maximal
Q-distance of d, a d-complete completion forest will be large enough to find a
mapping whose image is isomorphic to G, since G has no paths longer than d.

We show that from any mapping σ of the variables and constants in Q into
IF satisfying Q, a mapping µ of Q into F can be obtained. Formally, for a
given forest F in ccf(Fn

K) for some n, let TF = 〈S,L, E , I〉 denote its tableau
and IF the canonical interpretation of F . If IF |= Q, then there is a mapping
σ : varsIndivs(Q) → S such that for every R(x, y) in Q, 〈σ(x), σ(y)〉 ∈ E(R′)
for some R′ ⊑∗ R. Consider the graph that has as nodes the set S of nodes of
TF , and as edges E(R′) for each role R′ such that R′ ⊑∗ R and R occurs in Q.
Consider the image of Q under σ in this graph. We restrict it to the subgraph
G obtained by removing each node of the form [a

a
] for some individual a(with

its corresponding incoming and outgoing edges). Note that G comprises a set
of tree-shaped components. The reason to consider only the subgraph G will be
clear later. We want prove that there is, in the completion graph F , a subgraph
isomorphic to the image of Q into TF . For the arcs in the query graph involving
nodes like [a

a
] for some individual a, the existence of an isomorphic arc in F is

trivial, since the non-tree shaped part of TF is isomorphic to F . It is only in the
tree-shaped parts of TF that the structure was unraveled, and the mapping of
the query into TF may use nodes that do not explicitly exist in F . The possibility
of finding a mapping of Q into F from the mapping of Q into TF will depend
on the size and structure of the tree-shaped components of the query image.

For any x, y in varsIndivs(Q), dσ(x, y) is the length of the shortest path be-
tween σ(x) and σ(y) in G. If σ(x) and σ(y) are in two non-connected components
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of G, then dσ(x, y) = 0. Finally, the maximal Q-distance of σ, denoted dσ
Q, is

the maximal dσ(x, y) for all x, y in varsIndivs(Q).
In the following, let nQ denote the number of role atoms in Q. Since only

simple roles occur in the query, every pair of variables x, y in varsIndivs(Q)
that occur in some R(x, y) ∈ Q has dQ(x, y) = 1, and thus dσ

Q is bounded by
nQ. Due to this fact, when expanding the completion forest it is sufficient to
consider n-blocking as a termination condition for any n ≥ nQ. Now we prove
that for any such n and for any complete and clash free n-completion forest F ,
if IF |= Q, then there is a mapping µ : varsIndivs(Q) → nodes(F) that witnesses
the entailment of Q.

Proposition 3. Consider any F ∈ ccf(FK) with n ≥ nQ, and let IF be the
canonical model of F . If IF |= Q then Q →֒F .

Proof. Since IF |= Q, then there is a σ : varsIndivs(Q) → ∆IF s.t.

– For all C(x) in Q, σ(x) ∈ CIF .
– For all R(x, y) in Q, 〈σ(x), σ(y)〉 ∈ RIF .

Since ∆IF = VTF
, σ(x) and σ(y) are nodes in TF and correspond to paths

in F . By the definition of IF , the mapping σ satisfies that for all C(x) in Q,
C ∈ L(σ(x)) and for all R(x, y) in Q, 〈σ(x), σ(y)〉 ∈ E(R′) for some R′ ⊑∗ R.

We will define a new mapping µ : varsIndivs(Q) → nodes(F). In order to
define µ, we will use again the graph G, given by the image of Q under σ (on the
graph TF restricted to the roles occurring in the query), and we will restrict it to
have only the images of the variables in vars(Q) as nodes. This graph consists of
a set of tree-shaped components G1, . . . , Gk. For each connected component Gi,
let nodes(Gi) denote the set of nodes of Gi. We define the set blockedLeaves(Gi)
as the set containing each node p of Gi such that tail(p) 6= tail′(p), and for every
ancestor p′ of p in Gi, tail(p′) = tail′(p′). The set afterblocked(Gi) contains all
the nodes in nodes(Gi) that are descendants of some node in blockedLeaves(Gi).

Recalling the definition of paths(F), since F is n-blocked, it is easy to see
that if a path p contains two nodes v

v′ and w
w′ such that v 6= v′ and w 6= w′, then

the distance between these two nodes in p is strictly greater than n. Also, if p
contains first a node v

v
that is not tree blocked and further on p there is a node

w
w′ such that w 6= w′, then the distance between v

v
and w

w′ is also greater than
n. Thus the following also hold:

(*) If x is in afterblocked(Gi) for some Gi, tail(σ(x)) = tail′(σ(x)).
If x ∈ afterblocked(Gi) then, by definition, σ(x) is mapped to a successor
of some y ∈ vars(Q) such that tail(σ(y)) 6= tail′(σ(y)), i.e., σ(x) is of the
form [p | v0

v0
′ , . . . ,

vm

vm
′ ], with tail(p) 6= tail′(p). Therefore, if vm 6= vm

′ then

the sequence of nodes tail(p)
tail′(p) ,

v0

v0
′ , . . . ,

vm

vm
′ has a length strictly greater than

n, and thus dσ(x, y) > nQ, which is a contradiction.
(**) If σ(x) ∈ nodes(Gi) for some Gi with afterblocked(Gi) 6= ∅ and x 6∈

afterblocked(Gi), then tail′(σ(x)) is tree-blocked by ψ(tail′(σ(x))).
If afterblocked(Gi) 6= ∅, then there is some y ∈ varsIndivs(Q) such that
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σ(y) ∈ nodes(Gi) has as a proper subpath some p such that tail(p) = tail′(p).
Since σ(x) and σ(y) are in the same tree component Gi, then either σ(x) is
an ancestor of σ(y) or there is some z ∈ varsIndivs(Q) such that σ(z) is a com-
mon ancestor of σ(x) and σ(y) in nodes(Gi). In the first case, if tail′(σ(x))
was not tree-blocked, we would have that dσ(x, y) > n ≥ nQ, which is a
contradiction. In the second case, if tail′(σ(x)) was not tree-blocked, then
tail′(σ(z)) would not be tree-blocked either, and thus we also derive a con-
tradiction since dσ(z, y) > n ≥ nQ.

Therefore, we can define the mapping µ : varsIndivs(Q) → nodes(F) as follows:

– For each individual a in varsIndivs(Q), µ(a) = tail(σ(a)) = a.
– For each variable x in varsIndivs(Q) such that σ(x) ∈ nodes(Gi) for some Gi

with afterblocked(Gi) = ∅, µ(x) = tail(σ(x)).
– For each variable x in varsIndivs(Q) such that σ(x) ∈ nodes(Gi) for some Gi

with afterblocked(Gi) 6= ∅, the mapping µ is given by:

µ(x) =

{

tail′(σ(x)) if x ∈ afterblocked(Gi)
ψ(tail′(σ(x))) otherwise

Now we will show that the mapping µ has the following properties:

1. If C ∈ L(σ(x)), then C ∈ L((µ(x))).
2. If 〈σ(x), σ(y)〉 ∈ E(R′), then µ(y) is an R′-neighbor of µ(x).

The proof of 1 is trivial, since L(σ(x)) = L(tail′(σ(x))) = L(ψ(tail′(σ(x)))),
so L(σ(x)) = L(µ(x)).

The proof of 2 is slightly more involved. By the definition of E(R′) and of
R′-step, if 〈σ(x), σ(y)〉 ∈ E(R′) then either:
(i) tail′(σ(y)) is an R′-successor of tail(σ(x)) or
(ii) tail′(σ(x)) is an Inv(R′)-successor of tail(σ(y)).

Now we will prove that (i) implies that µ(y) is an R′-successor of µ(x). The
same proof shows that (ii) implies that µ(x) is an Inv(R′)-successor of µ(y).
Together, this two facts complete the proof of 2.

We will consider each connected component Gi. The case when
afterblocked(Gi) = ∅ is trivial. In this case, for each x in varsIndivs(Q) such that
σ(x) ∈ Gi, tail(σ(x)) = tail′(σ(x)) (in fact, σ(x) does not contain any v

v′ with
v 6= v′), so if tail′(σ(y)) is an R′-successor of tail(σ(x)), then µ(y) = tail′(σ(y))
is an R′-successor of µ(x) = tail′(σ(x)) = tail(σ(x)). To do the proof for any Gi

with afterblocked(Gi) 6= ∅, we will proceed by cases. Note that since σ(y) is an
R′-step of σ(x), it can not be the case that x is in afterblocked(Gi) and y is not,
thus we have the following cases:

(a) Both x and y are in afterblocked(Gi).
In this case we have that µ(x) = tail′(σ(x)) and µ(y) = tail′(σ(y)), and by
(*), tail(σ(x)) = tail′(σ(x)). If tail′(σ(y)) is an R′-successor of tail(σ(x)),
then µ(y) = tail′(σ(y)) is an R′-successor of µ(x) = tail′(σ(x)) = tail(σ(x))
as desired.
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(b) Neither x nor y is in afterblocked(Gi).
Note that in this case tail(σ(x)) = tail′(σ(x)), otherwise y would be
in afterblocked(Gi). By (**), we know that tail′(σ(x)) is tree-blocked
by ψ(tail′(σ(x))) and tail′(σ(y)) is tree-blocked by ψ(tail′(σ(y))). Thus,
if tail′(σ(y)) is an R′-successor of tail(σ(x)) = tail′(σ(x)), then µ(y) =
ψ(tail′(σ(y))) is an R′-successor of µ(x) = ψ(tail′(σ(x))) as desired.

(c) x is not in afterblocked(Q), but y is.
In this case we have that tail(σ(x)) 6= tail′(σ(x)) and tail(σ(x)) =
ψ(tail′(σ(x)))(i.e., σ(x) ends in a blocked leaf), so if tail′(σ(y)) is an R′-
successor of tail(σ(x)) then µ(y) = tail′(σ(y)) is an R′-successor of µ(x) =
ψ(tail′(σ(x))).

Since the mapping µ has properties 1 and 2, Q →֒F .

Summing up, to solve the conjunctive query entailment problem, it suffices to
check for entailment the set of complete and clash free completion forests for K,
no matter the n that is used as a termination condition. However, if we choose
a suitable n-blocking, checking for entailment in all the models of a completion
forest can be done through one single canonical model, and this is achieved by
mapping the query into the completion forest itself.

Theorem 1. Let Q be a CQ. K |= Q iff Q →֒F for every F ∈ ccf(Fn
K), n ≥ nQ.

Proof. First we prove that if K |= Q then Q →֒F . Take any arbitrary F ∈
ccf(FnQ

K ). Since K |= Q, then F |= Q (Proposition 2). In particular, we have
that IF |= Q, where IF is the canonical model of the tableau induced by F .
Thus, by Proposition 3, Q →֒F .

To prove the other direction, observe that from Q →֒F and Lemma 3, we
have that F |= Q for every F ∈ ccf(FnQ

K ). Finally, by Proposition 2, K |= Q.

Example 8. K |= Q1, so F1 |= Q1 must hold. This is witnessed by the mapping
Q1 →֒F1 in Example 7. Note that there are longer queries, like Q′ = {P1(a, x0),
P1(x0, x1), P1(x1, x2), P1(x2, x3), P1(x3, x4)} such that K |= Q′ holds, but the
entailment F1 |= Q′ cannot be verified by mapping Q′ into F1 since F1 is 1-
blocked and nQ′ > 1.

4.3 Answering Unions of Conjunctive Queries

The results given above can be extended straightforwardly to an UCQ U . As
usual, we will use F |= U to denote that F semantically entails U (i.e., every
model of F is a model of U), and U →֒F to denote syntactical mappability,
which is defined as Qi →֒F for some Qi in U . We already know that to decide
K |= U it suffices to verify whether F |= U for every F in ccf(Fn

K) for any
arbitrary n ≥ 0 (in fact, Proposition 2 holds for any kind of query). It is only
left to prove that for a suitable n, F |= U can be effectively reduced to U →֒F .
For an UCQ U , we will denote by nU the maximal nQi

for all Qi in U . We can
then prove the following result:
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Proposition 4. Consider any F ∈ ccf(FK) with n ≥ nU . Then F |= U iff
U →֒F .

Proof. Again, one direction is trivial. If U →֒F , then by definition, there is some
Qi in U such that Qi →֒F , and as this implies F |= Qi, then we also have that
F |= U . The other direction is also quite straightforward. For each F ∈ ccf(Fn

K),
with n ≥ nU , if IF |= U , then IF |= Qi for some Qi in U . As n ≥ nU ≥ nQi

,
by Proposition 3 we know that Qi →֒F and then U →֒F . Thus F |= U implies
U →֒F as well.

Example 9. By the mapping Q1 →֒F1 in Example 7, we have U →֒F1. F1 |= Q1

implies F1 |= U .

Finally, we establish our key result: answering K |= U for an UCQ U reduces
to finding a mapping of U into every F ∈ ccf(Fn

K) for any n ≥ nU .

Theorem 2. Let U be an UCQ. K |= U iff U →֒F for every F ∈ ccf(Fn
K),

n ≥ nU .

Proof. As in the proof of Theorem 1, it follows Proposition 2 and Proposition 4.

5 Complexity

In this section, for a knowledge base K, we will use c to denote the cardinality
of clos(K) ∪ Cq, r the cardinality of RK and mC the maximum m occurring in
a concept of the form ≤ mR.C or ≥ mR.C in K. |A| denotes the number of
assertions in A. By ||K,Q|| we will denote the total size of (the string encoding)
the knowledge base K and the query Q.

Note that mC is linear in ||K,Q|| if we assume unary coding of numbers
in number restrictions, and single exponential if binary coding is used. In any
case, if we consider fixed Q and all of K except for A, then mC is a constant.
Furthermore, c and r are linear in ||K,Q||, but also constant in |A|. Finally, |IK |
is linear in both.

Lemma 6. The maximal number Tn of non-isomorphic n-trees in a completion
forest for K is given by Tn = O((22c(cmC)r)(cmCr)n

).

Proof. Since L(x) ⊆ clos(K) ∪ Cq, there are at most 2c different node labels
in a completion forest. Each successor of a node can be the root of a tree of
depth (n − 1). considering a single role R, if a node v has x R-successors, then
there is a maximum number of (Tn−1)

x trees of depth (n − 1) rooted at v. A
generating rule can be applied to each node at most c times. Each time it is
applied, it generates at most mC R-successors for each role R. This gives a
bound of cmC R-successors for each role. The number of R-successors of a node
might range from 0 to cmC, and for each number of R-successors, we have at
most (Tn−1)

(cmC) trees of depth (n − 1). So, each node can be the root of at
most (cmC)(Tn−1)

(cmC) trees of depth (n − 1) if we consider one single role.
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Since at most the same number of trees can be generated for every role in RK ,
there is a bound of ((cmC)(Tn−1)

(cmC))r trees of depth (n − 1) rooted at each
node. The number of different roots of an n-tree is bounded by 2c. We now give
an upper bound on the number of non isomorphic n-trees as

Tn = O(2c((cmC)(Tn−1)
(cmC))r)

To simplify the notation, let’s consider x = 2c(cmC)r and a = cmCr. Then we
have

Tn = O(x(Tn−1)
a) = O(x1+a+...+an−1

(T0)
an

) = O((xT0)
an

)

The maximal number of trees of depth 0 is also bounded by 2c. Returning to
the original notation we get

Tn = O((22c(cmC)r)(cmCr)n

)

Lemma 7. The number of nodes in a completion forest F ∈ Fn
K is bounded by

O(|IK |(cmCr)n(22c(cmC)r)(cmCr)n

)

Proof. The claim follows from the following properties:

i) The outdegree of F is bounded by cmCr.
Nodes are only added to the forest by applying a generating rule. Only
concepts of the form ∃R.S or ≥ nR.C trigger the application of a generating
rule, and there are at most c such concepts. Each such rule generates at most
mC successors for each role, and there are r roles. Note that if a node v is
identified with another by the ∀-rule or the ∀r-rule, then the rule application
which led to the generation of v will never be repeated [14].

ii) The depth of F is bounded by d = (Tn + 1)n.
This is due to the fact that there is a maximum of Tn non-isomorphic n-
trees. If there was a path of length greater than (Tn +1)n to a node v in F ,
this would imply that v occurred after a sequence of Tn +1 non overlapping
n-trees, and then one of them would have been blocked and v would not
have been generated.

iii) The number of variables in a variable tree in F is bounded by O((cmCr)d+1).
iv) The number of variables in F is bounded by O(|IK |(cmCr)d+1).

Corollary 1. If n is polynomial on ||K,Q||, then the maximum number of nodes
in a completion forest F ∈ Fn

K is triple exponential in ||K,Q||.

Corollary 2. If Q and all of K except for A are fixed and n is a constant, then
the maximum number of nodes in a completion forest F ∈ Fn

K is linear in |A|.

Proposition 5. The expansion of FK into some F ∈ Fn
K terminates in time

triple exponential in ||K,Q|| if n is polynomial on ||K,Q||. If Q and all of K
except for A are fixed, and n is a constant, then the expansion of FK into some
F ∈ Fn

K terminates in time polynomial in |A|.
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Proof. The proposition is a consequence of the fact that the number of times
that each expansion rule can be applied to a node is polynomially bounded. Let

M = O(|IK |(cmCr)n(22c(cmC)r)(cmCr)n

) denote the maximal number of nodes in
F . We will obtain an upper bound of the number of rules that are applied to
expand FK into F .

i) For a single node v, the ⊓-rule, the ⊔-rule and the choose-rule can be applied
O(c) times, since they are applied at most once for each concept in L(v).

ii) For the ∃-rule, ∀-rule, ∀+-rule, ≥-rule and ≤-rule, the bound on the number
of times it can be applied to v is given by the maximal number of successors
of v, i.e. O(cmCr).

iii) Rules 1 to 8 can be applied at most O(McmCr) times to obtain F .
iv) The ≤r-rule can be applied at most once to each root node in FK , hence it

is bounded by |IK |.
v) The total rule applications required to expand FK into F is O(|IK | +

(McmCr))

5.1 Complexity of answering UCQs

For a CQ Qi, the problem of finding a mapping Qi →֒F has the same query
complexity as evaluating a conjunctive query over a database (given by the
ABox), so it is an NP-hard problem, even for fixed F . To verify this, it suffices
to consider the forest Fcol associated to the ABox:

E(red, green) E(green, red) E(red, blue)
E(blue, red) E(green, blue) E(blue, green)

Any (directed) graph G can be encoded as a conjunctive query Qi: nodes in
G are variables in Qi and for each arc 〈x, y〉 in G there is a literal E(x, y) in Qi.
Then Qi can be mapped into Fcol iff G is 3-colorable.

However, the test Qi →֒F might be done in time polynomial in the size of F
when Qi is fixed, or when the expansion rules generate a big enough completion
forest, such that its size exponentially dominates the size of the query. Other
particular cases can be solved in polynomial time as well. For example, when F
is tree shaped (i.e., the Abox is tree shaped), then the complexity of the mapping
corresponds to evaluating a conjunctive query over a tree-shaped database, which
is known proved to be polynomial in the size of the database.

For the general case, to check whether Qi →֒F can be done by naive methods
in time single exponential in the size of Qi. For an F ∈ ccf(Fn

K) with M nodes
and a query Qi with nQi

literals, the naive search space has M2nQi candidate
assignments, and each one can be polynomially checked. So, if M is triple expo-
nentially bounded in ||K,Qi||, then also M2nQi is triple exponentially bounded
in ||K,Qi||.

Therefore, we obtain the following result:

Theorem 3. Given a SHIQ knowledge base K and a union of conjunctive
queries U in which all roles are simple, deciding whether K |= U is in co-

3NExpTime (w.r.t. combined complexity).
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Proof. It is sufficient to check for every F ∈ ccf(FnU

K ) whether U →֒F , i.e.,
Qi →֒F for some CQ Qi in U . By Proposition 5, the size of F is at most triple
exponential in ‖K,Qi∗‖, where Qi∗ is such that nQi∗

= nU , thus also in ‖K,U‖.
Furthermore, Qi →֒F can be checked by naive methods in triple exponential
time in ‖K,Qi∗‖ and thus in ‖K,U‖ as well.

Notice that since mC does not occur in the uppermost exponent of the bound
of the forest size, these results hold both for unary and binary encoding of number
restrictions in K. For a fixed U an exponential drop in the forest size can be
achieved if unary encoding of numbers is used.

The complexity upper bounds given in [18] are exponentially lower than the
ones we obtained. This is due to the fact that in [18] they do not require the
witness of a blocked variable to be its ancestor, hence blocking occurs sooner and
their constraints systems are exponentially smaller than our completion forests.
In order to make the blocking conditions of our algorithm closer to the conven-
tional ones in DL tableaux algorithms, we do require the blocking and the blocked
variable to be on the same path. This restriction, however, could be eliminated,
and blocking with any previous occurrence of an isomorphic n-tree could be
used, without affecting the soundness and completeness of the algorithm. This
would indeed bring an exponential drop in the complexity upperbound. It is
worth mentioning that the same more relaxed blocking technique could be used
in satisfiability tableaux algorithms(like in [14]) obtaining the same exponential
drop, but it may not be convenient from an implementation perspective.

By the results in [16] we know that an 2ExpTime bound can be achieved.
This bound coincides with the one given in [6] for containment of conjunctive
queries over DLR. As we mentioned above, our algorithm can be improved to get
co-2NExpTime worst-case complexity in the combined case. Note that the the
tableaux algorithm from [14], which we extended, is also not worse case optimal:
it solves in 2NExpTime reasoning problems that can be solved in deterministic
single exponential time.

We will see now give the main complexity results of this work, namely those
concerning data complexity. Moreover, we will see that the proposed algorithm
is worse case optimal. Under data complexity, U and all components of K =
〈T ,R,A〉 except for the ABox A are fixed. Therefore, nU is constant. As a
consequence we get:

Theorem 4. For a knowledge base K in SHIQ and a union of conjunctive
queries U in which all roles are simple, deciding K |= U is in coNP w.r.t. data
complexity.

Proof. By Proposition 5, every completion forest F ∈ ccf(Fn
K) has linearly many

nodes in |A|, and any expansion of FK terminates in polynomial time. Further-
more, deciding whether U →֒F is polynomial in the size of F by simple methods.

The bound given by Theorem 4 is worst-case optimal in data complexity.
In [21], coNP-hardness was proved for ALC, and later this result has been
extended to description logics which are even less expressive than ALE [6]. This
allows us to state the following main result.
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Theorem 5. On knowledge bases in any DL from AL to SHIQ, answering
unions of conjunctive queries in which all roles are simple is coNP-complete
w.r.t. data complexity.

This result not only provides an exact characterization of the data complexity
of UCQs for a wide range of description logics, some of them considered highly
expressive. It is interesting to see that once simple constructors like negation
are allowed in the DL, many more constructors can be added without having
an strong impact in the data complexity. Additionally, this result also extends
two previous coNP-completeness results w.r.t. data complexity which are not
obvious. In [18] the authors proved the same bound for answering UCQs over
ALCNR. Now we extend this result to role hierarchies, as well as transitive
and inverse roles. There was also a previous result for ground atomic queries in
SHIQ given in [16], and we extend it to UCQs.

6 Conclusions

In this paper we have studied conjunctive query answering in the expressive DL
SHIQ, and generalizing a technique presented in [18] for a less expressive DL,
we have developed a novel tableaux-based algorithm for UCQ answering. In the
algorithm, we had to manage the technical challenges caused by the simultaneous
presence of inverse roles and number restrictions, leading to a DL lacking the
finite model property. Our algorithm is worse case optimal in data complexity,
and thus allowed us to characterize data complexity of the problem as coNP-
complete for a wide range of DLs, including expressive ones. This closed the gap
between the known coNP lower bound, and the best known ExpTime upper
bound for even weaker DLs.

We point out that, by virtue of the correspondence between query contain-
ment and query answering [1], our algorithm can also be applied to decide con-
tainment of two conjunctive queries over a DL knowledge base. Currently, we
are working on extending our results to the case where the query may contain
arbitrary roles, including transitive ones. It remains open whether the proposed
technique can be applied to even more expressive logics, for example, containing
reflexive-transitive closure in the TBox (in the style of PDL), or to more expres-
sive query languages, notably allowing for atoms that are regular expressions
over roles. It also remains to investigate tighter bounds in combined complexity.
Optimization of the algorithm following the ideas in [10] may be feasible.
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