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Abstract The logical foundations of the standard web ontology languages are
provided by expressive Description Logics (DLs), such as SHIQ and SHOIQ.
In the Semantic Web and other domains, ontologies are increasingly seen also as
a mechanism to access and query data repositories. This novel context poses an
original combination of challenges that has not been addressed before: (i) sufficient
expressive power of the DL to capture common data modelling constructs; (ii) well
established and flexible query mechanisms such as those inspired by database
technology; (iii) optimisation of inference techniques with respect to data size, which
typically dominates the size of ontologies. This calls for investigating data complexity
of query answering in expressive DLs. While the complexity of DLs has been studied
extensively, few tight characterisations of data complexity were available, and the
problem was still open for most DLs of the SH family and for standard query
languages like conjunctive queries and their extensions. We tackle this issue and
prove a tight coNP upper bound for positive existential queries without transitive
roles in SHOQ, SHIQ, and SHOI . We thus establish that, for a whole range of
sublogics of SHOIQ that contain AL, answering such queries has coNP-complete
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data complexity. We obtain our result by a novel tableaux-based algorithm for
checking query entailment, which uses a modified blocking condition in the style
of Carin. The algorithm is sound for SHOIQ, and shown to be complete for all
considered proper sublogics in the SH family.

Keywords Data complexity · Query answering · Expressive description logics

1 Introduction

Description Logics (DLs) [3] are specifically designed for representing structured
knowledge in terms of concepts (i.e., classes of objects) and roles (i.e., binary
relationships between classes). They have been initially developed to provide a
formalisation of frame-based systems and semantic networks, and expressive variants
of DLs were shown to be in tight correspondence with representation formalisms
used in databases and software engineering [4, 8]. More recently, DLs gained
increasing attention as the logical foundation for the standard Web ontology lan-
guages [22]. In fact, the most significant representatives of these languages, OWL-
Lite and OWL-DL, are syntactic variants of DLs [27, 38]. In the Semantic Web and
in other application domains such as Enterprise Application Integration and Data
Integration [32], ontologies provide a high-level, conceptual view of the information
relevant in a specific domain or managed by an organisation. They are increasingly
seen also as a mechanism to access and query data repositories, while taking into
account the constraints that are inherent in the common conceptualisation.

This novel context poses an original combination of challenges unmet before, both
in DLs/ontologies and in related areas such as data modelling and query answering
in databases:

1) On the one hand, a DL should have sufficient expressive power to capture
common constructs typically used in data modelling [5]. This calls for expressive
DLs [2, 6], in which a concept may denote the complement or union of others
(to capture class disjointness and covering), may involve direct and inverse roles
(to account for relationships that are traversed in both directions), may contain
number restrictions (to state existence and functional dependencies and cardi-
nality constraints on the participation to relationships in general), or may refer to
specific objects that are of relevance at the intensional level. Such concepts are
then used in the intensional component of a knowledge base (the TBox), which
contains inclusion assertions between concepts and roles, while the extensional
component (the ABox) contains assertions about the membership of individuals
to concepts and roles.

2) On the other hand, the data underlying an ontology should be accessed using well
established and flexible mechanisms such as those provided by database query
languages. This goes well beyond the traditional inference tasks involving objects
that have been considered and implemented in DL-based systems, like instance
checking [16, 39]. Indeed, since explicit variables are missing, DL concepts have
limited means for relating specific data items to each other. Conjunctive queries
(CQs), i.e., plain select-project-join SQL queries, and unions of CQs (UCQs),
i.e., a union of plain select-project-join SQL queries, provide a good trade-off
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between expressive power and nice computational properties, and are therefore
adopted as core query languages in several contexts, such as data integration [32].

3) Finally, one has to take into account that data repositories can be very large and
are usually much larger than the representation of the intensional level expressing
constraints on the data. Therefore, the contribution of the extensional level
(i.e., the data) to the complexity of inference should be singled out, and one
must pay attention to optimising inference techniques with respect to data size, as
opposed to the overall size of the knowledge base. In databases, this is accounted
for by data complexity of query answering [43], where the relevant parameter
is the size of the data, as opposed to combined complexity, which additionally
considers the size of the query and of the schema.

Notable examples of expressive DLs are the ones in the so called SH family, which
support all Boolean constructs over concepts and allow for asserting the transitivity
of certain roles and containment between roles. The most expressive DL in this
family is called SHOIQ. In addition to the mentioned concept constructs and role
assertions, it supports nominals (O), which are concepts denoting a single individ-
ual [41], inverse roles (I), and qualified number restrictions (Q). By disallowing
one of these three constructs, we obtain the sublogics known as SHIQ, SHOQ,
and SHOI , respectively, which are three DLs with high and mutually incomparable
expressive power. Note that SHOIQ essentially corresponds to OWL-DL, while
SHIQ essentially corresponds to OWL-Lite [27, 38].1 These languages have been
promoted as standard Web ontology languages by the World Wide Web Consortium
within the Semantic Web effort.2

For the SH family and other expressive DLs, TBox+ABox reasoning has
been studied extensively in the last decade, using a variety of techniques ranging
from reductions to reasoning in Propositional Dynamic Logic (PDL) [6, 7], over
tableaux [2, 26] to automata on infinite trees [6, 42] and resolution [28, 30, 31]. For
many of them, the combined complexity of instance checking (with both TBox and
ABox) is ExpTime-complete, including SHIQ, SHOQ, and SHOI . Unfortunately,
the interaction of nominals, inverse roles, and counting increases the computational
complexity of inference in SHOIQ causing instance checking to be NExpTime-
complete [41].

As for data complexity, it was shown in [16, 39] that instance checking is coNP-
hard already in the rather weak DL ALE , and in [11] that CQ answering is coNP-
hard in the yet weaker DL AL. Tight upper bounds were not known, since little
attention had been paid to this problem. The data complexity was studied in the last
years, but mostly for suitably tailored DLs [10–12]. In [11, 12], the DL-Lite family
of DLs was considered, and two DLs were identified for which the problem is in
LogSpace and can be effectively reduced to evaluating a UCQ over a database using
standard relational database technology. Furthermore, [11] analysed which additions
to the DL make the problem hard for NLogSpace, PTime, or coNP. The analysis

1The OWL languages also support certain datatypes, which are important for applications and can be
seen as a restricted form of concrete domains [1, 34]. On the other hand, the OWL-DL and OWL-Lite
variants support only restricted forms of number restrictions, namely unqualified number restrictions
(N ) and functionality (F), respectively. Notice that the upcoming standard language OWL 2, instead,
supports qualified number restrictions.
2http://www.w3.org/2001/sw/.

http://www.w3.org/2001/sw/
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essentially showed that the two identified DLs are the maximal ones with respect to
allowed constructs enjoying so called FOL-rewritability of query answering, which
implies LogSpace data complexity of this problem. Another interesting consequence
of the results in [11] is that any further addition to the DL, such as universal
quantification (a construct considered basic in DLs) makes the problem already
coNP-complete, and therefore, as shown by our work, as hard as for the very
expressive DLs that we consider here.

The data complexity of expressive DLs has not been studied in depth, and it
only became a topic of interest in recent years. An ExpTime upper bound for data
complexity of CQ answering in DLR follows from the results on CQ containment
and view-based query answering in [7, 9].3 They are based on a reduction to
reasoning in PDL, which however prevents to single out the contribution to the
complexity coming from the ABox. Similar considerations hold for the techniques
in [25], which refined and extended the ideas introduced in [7], making the resulting
algorithms better suited for implementation on top of tableaux-based algorithms.
In [28, 30] a technique based on a reduction to Disjunctive Datalog was used for
SHIQ. It provides a (tight) coNP upper bound for data complexity of instance
checking, since it allows to single out the ABox contribution. The result can be
immediately extended to tree shaped CQs (without transitive roles), since they admit
a representation as a DL concept, e.g., by making use of the notion of tuple-graph
of [7], or via rolling up [25]. However, this is not the case for general CQs, resulting in
a non-tight 2ExpTime upper bound. The first tight upper bounds for CQ answering
in SHIQ were given in [37], but only for queries without transitive roles (though
transitive roles may occur in the knowledge base), and generalised in [19] to all CQs
(see Section 5 for further discussion).

Most of the results we have mentioned are quite recent, since the work on data
complexity before this decade was rather scarce. The most notable exception is the
seminal work on the Carin language for hybrid knowledge bases [33]. The authors
showed a tight coNP upper bound for CQ answering in a DL called ALCNR, which
has no role hierarchies, does not support inverse roles, and has only a limited form
of number restrictions. It is based on the tableaux algorithm for satisfiability of
ALCNR knowledge bases, modifying the blocking condition in such a way that it can
be used for deciding query entailment. The modified tableaux algorithm provided
not only the first tight upper bounds for data complexity of query answering in DLs,
but also the first algorithm for answering UCQs and for deciding the containment of
UCQs over DL knowledge bases.

Tableaux algorithms play a very important role in DLs nowadays, and are one of
the most popular reasoning techniques. Despite their high worst-case computational
complexity, they are amenable to optimisations and the basis of many reasoning
engines, which provide efficient implementations [21, 23].4 For all DLs in the SH
family, tableaux algorithms for checking satisfiability have been found. In particular,
in [24] a tableaux algorithm for deciding satisfiability of SHOIQ knowledge bases
was given, which generalises the previous algorithms for SHIQ, SHOQ, and
SHOI . However, all these algorithms were devised for standard reasoning tasks

3These results apply only to queries without transitive closure.
4See also http://www.cs.man.ac.uk/~sattler/reasoners.html.

http://www.cs.man.ac.uk/~sattler/reasoners.html
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like satisfiability and instance checking, and several interesting questions remained
unaddressed. First, whether it is possible to apply the ideas and techniques for Carin
to the DLs in the SH family in order to obtain (tableaux-based) algorithms for
answering expressive queries over knowledge bases in these logics. Second, given
that this is possible, what kind of queries may be handled. Third, whether any of the
algorithms obtained would allow to derive, similarly as in the case of Carin, exact
characterisations of the data complexity of query answering.

In this paper, we shed light on these questions, by simultaneously addressing the
three challenges identified above. We show that the blocking conditions of [33] can
be suitably generalised to very expressive DLs from the SH family. Technically
speaking, the generalisation is not trivial. Indeed, we consider logics that have inverse
roles, which as recently shown make answering CQs 2ExpTime-hard [35]. Some of
the DLs have no finite model property, and only weak forms of the ubiquitous
forest model property. Furthermore, we consider Positive Existential Queries (PQs),
a generalisation of UCQs that is not more expressive, but is exponentially more
succinct.

Our main contributions are briefly summarised as follows:

– Building on the techniques of [26, 33], we present a novel tableaux-based
algorithm for query answering in expressive DLs of the SH family. We prove
that the algorithm is sound for answering PQs (and hence, also for UCQs and
CQs) without transitive roles over SHOIQ knowledge bases, and thus in all
DLs of the SH family. However, it does not work in general when the query
contains transitive roles. This is because the blocking condition we use relies on
the fact that the query can only distinguish patterns of bounded size in the model,
where the bound depends on the query shape.

– We prove that the algorithm is complete for knowledge bases in the three DLs
SHIQ, SHOQ, and SHOI . As a consequence, entailment of PQs without
transitive roles over knowledge bases in these logics is decidable, which was open
for SHOI . This result extends also to deciding the containment and equivalence
of PQs. In fact, the algorithm terminates if there is no simultaneous interaction of
number restrictions, inverse roles, and nominals, and hence also works for larger
classes of knowledge bases. However, for arbitrary SHOIQ knowledge bases
termination is not established, as it seems that the interaction could indefinitely
postpone the satisfaction of the blocking conditions.

– The novel algorithm provides us with a characterisation of the data complexity
of query answering in expressive DLs. Specifically, we show that the data
complexity of answering PQs without transitive roles over SHIQ, SHOQ, and
SHOI knowledge bases is in coNP, and thus is coNP-complete for all their
sublogics that contain AL.

This shows that the techniques introduced for Carin are indeed a suitable tool to
provide tableaux-based algorithms and exact characterisations of the data complexity
of answering large families of queries over a wide range of expressive DLs.

The rest of the paper is organised as follows. After technical preliminaries in
Section 2, we present in Section 3 our algorithm for answering PQs over SHOIQ
knowledge bases. In Section 4, we discuss the resulting complexity bounds for
SHIQ, SHOQ, and SHOI , and in Section 5 we draw final conclusions. In order
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to increase readability, technical details of some proofs have been moved to an
appendix.

2 Preliminaries

In this section, we introduce the technical preliminaries for the rest of the paper. We
first introduce syntax and semantics of the DL SHOIQ and its sublogics SHIQ,
SHOQ, and SHOI , and then we define the query answering problem addressed in
this work.

2.1 Description Logics

DLs [3] are logics that are particularly well-suited for the representation of structured
knowledge. The basic elements of DLs are concepts, denoting sets of objects of the
domain of interest, and roles, denoting binary relations between the instances of
concepts. They are described by concept and role expressions built from concept
names and role names, by applying concept and role constructors, respectively. The
domain of interest is then modelled through a knowledge base, which comprises
logical assertions both at the intensional level (specifying the properties of concepts
and roles), and at the extensional level (specifying the properties of individuals and
the relationships among individuals).

We assume that R, C, I are countable and pairwise disjoint sets of role names,
concept names, and individuals, respectively, and that R+ ⊆ R is a set of transitive
role names.

2.1.1 The DL SHOIQ

Definition 2.1 (Roles) A role expression R (or simply role) is either a role name
P ∈ R or its inverse, denoted P−. A role inclusion axiom is an expression of the form
R � R′ where R and R′ are roles. A role hierarchy R is a set of role inclusion axioms.

As usual, we define Inv(R) = P− if R = P is a role name, and Inv(R) = P if R =
P− for some role name P.

The relation �∗
R denotes the reflexive, transitive closure of � over a role hierarchy

R ∪ {Inv(R) � Inv(R′)|R � R′ ∈ R}. If R �∗
R R′, then we call R a sub-role of R′ and

R′ a super-role of R w.r.t. R.
A role R is transitive w.r.t. a role hierarchy R, denoted by Trans(R,R), if either

R or Inv(R) belongs to R+, or the role hierarchy R implies that R is both a sub-role
and a super-role of a transitive role; formally, Trans(R,R) holds iff R �∗

R R′ and
R′ �∗

R R for some R′ ∈ R+ ∪ {R− | R ∈ R+}.
Finally, a role S is simple w.r.t. a role hierarchy R if S is neither transitive nor has

transitive sub-roles, i.e., for no role R with Trans(R,R) we have that R �∗
R S.

In the following, we omit R when it is clear from the context, and use �∗ and
Trans(R) instead of �∗

R and Trans(R,R), respectively.
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Definition 2.2 (Concepts) SHOIQ concepts (or simply concepts) are defined induc-
tively according to the following syntax:

C, C′ −→ A atomic concept (S1)
| {o} nominal (S2)
| C 	 C′ conjunction (S3)
| C 
 C′ disjunction (S4)
| ¬C negation (S5)
| ∀R.C universal quantification (S6)
| ∃R.C existential quantification (S7)
| ≥ n S.C | ≤ n S.C (qualified) number restrictions (S8)

where A is a concept name, C and C′ are concepts, R is a role, S is a simple role, and
n ≥ 0 is an integer. An atomic concept is either a nominal {o} with o ∈ I or a concept
name A ∈ C.

In DLs, the knowledge base about the domain of interest consists of an intensional
component, called TBox, representing general knowledge about the domain, and an
extensional component, called ABox, representing knowledge about specific objects.
Additionally, in the DLs of the SH family, a role hierarchy might be present.

Definition 2.3 (Knowledge base) A concept inclusion axiom is an expression C � D
where C and D are concepts. An assertion α is an expression A(a), P(a, b) or a �≈ b ,
where A is a concept name, P is a role name, and a, b are individuals in I. A TBox,
or terminology, is a finite set of concept inclusion axioms, and an ABox is a finite set
of assertions. A (SHOIQ) knowledge base (KB) is a triple K = 〈T ,R,A〉, where T
is a TBox, R is a role hierarchy, and A is an ABox.

Without loss of expressivity, we assume that all concepts in K are in negation
normal form (NNF), i.e., negation appears only in front of atomic concepts. For a
concept C, NNF(C) denotes the NNF of C. For K = 〈T ,R,A〉, we denote by RK

the set of roles occurring in T and R, and of their inverses. Furthermore, CK denotes
the set of concept names occurring in K, and IK, IA, and IT denote the sets of all
individuals occurring in K, in A, and in T , respectively. Note that IA ∪ IT = IK for
every K, and if K is a SHIQ KB, then IT = ∅ and IA = IK.

2.1.2 The DLs SHOQ, SHIQ, and SHOI

The three sublogics SHOQ, SHIQ, and SHOI of SHOIQ are obtained as follows.

Definition 2.4 (Sublogic Roles and Concepts) Roles and concepts in SHOQ,
SHIQ, and SHOI are defined as in SHOIQ, except that

– in SHOQ, the inverse role constructor is not available;
– in SHIQ, nominals {o} are not available, i.e., (S2) is not in the syntax of SHIQ

concepts;
– in SHOI , (qualified) number restrictions are not available, i.e., (S8) is not in the

syntax of SHOI concepts;

Thus, in SHIQ, only concepts names A ∈ C are atomic concepts.
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Definition 2.5 (Sublogic KBs) For L being one of the logics SHOQ, SHIQ, or
SHOI , an L KB is a SHOIQ KB K = 〈T ,R,A〉 such that all roles and concepts
occurring in it are in L.

Example 2.6 As a running example, we use the following two SHOIQ knowledge
bases:

K1 = 〈{A � ∃P1.A, A � ∃P2.¬A}, {}, {A(a)}〉
K2 = 〈{A � ∃P1.A, A � ∃P2.{o}}, {}, {A(a)}〉.

Note that K1 is a SHOQ, a SHIQ, and a SHOI KB, while K2 is a SHOQ and a
SHOI KB, but not a SHIQ one.

We now define the semantics of KBs, which is given in terms of first-order
interpretations.

Definition 2.7 (Model of a KB) An interpretation I = (�I, ·I) consists of a non-
empty set �I , the domain, and an interpretation function ·I that

– maps each role R ∈ R to a set RI ⊆ �I × �I , such that RI = (RI)+ for each
R ∈ R+ and (R−)I = {〈o′, o〉|〈o, o′〉 ∈ RI},

– assigns to each individual o ∈ I an element oI ∈ �I ,5 and
– assigns to each concept C′ a set C′I ⊆ �I such that

(C1 	 C2)
I = CI

1 ∩ CI
2

(C1 
 C2)
I = CI

1 ∪ CI
2

(¬C)I = �I \ CI

(∀R.C)I = {o| for all o′, 〈o, o′〉 ∈ RI implies o′ ∈ CI}
(∃R.C)I = {o| for some o′, 〈o, o′〉 ∈ RI and o′ ∈ CI}

(≥ n S.C)I = {o||{o′|〈o, o′〉 ∈ SI and o′ ∈ CI}| ≥ n}
(≤ n S.C)I = {o||{o′|〈o, o′〉 ∈ SI and o′ ∈ CI}| ≤ n}

{o}I = {oI}.
Note that the interpretation of each nominal {o} is a singleton.

An interpretation I satisfies a role inclusion axiom R � R′, if RI ⊆ R′I ; a concept
inclusion axiom C � C′, if CI ⊆ C′I ; and an assertion α, denoted I |= α, if:

aI ∈ AI, if α = A(a)

〈aI , bI〉 ∈ PI , if α = P(a, b)

aI �= bI, if α = a �≈ b .

An interpretation I satisfies a role hierarchy R and a terminology T , if it satisfies
every axiom of R and T respectively. Furthermore, I satisfies an ABox A, if it
satisfies every assertion in A. Finally, I is a model of K = 〈T ,R,A〉, denoted I |= K,
if it satisfies T , R, and A.

Note that complex concepts and roles are not allowed in ABoxes. However, this
is no limitation, since an assertion C(a) with a complex concept C can always be

5Notice that we do not enforce the unique name assumption, i.e., two individuals o1 �= o2 may denote
the same domain object oI

1 = oI
2 .
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replaced by an assertion AC(a) in the ABox, together with an inclusion assertion
AC � C, where AC is a new concept name. This transformation is model preserving.

Finally, we observe that, using nominals, an ABox A in K = 〈T ,R,A〉 can be
internalised in the TBox, yielding a KB KA = 〈TA,R, ∅〉 with an empty ABox.
Indeed, TA is obtained from T by adding, for each ABox assertion α in A, the
inclusion axiom

{a} � A, if α = A(a)

{a} � ∃P.{b}, if α = P(a, b), and
{a} � ¬{b}, if α = a �≈ b .

If K is a SHIQ KB, the resulting KA is a SHOIQ KB, where the only nominals
are those resulting from ABox internalisation. It is easy to see that K and KA have
exactly the same models, so all reasoning services are preserved [40].

2.2 Positive Queries

We now introduce positive (existential) queries, which generalise both CQs and
UCQs. We assume that Var is a countably infinite set of variable names.

Definition 2.8 (Positive Queries) Let �x be a vector of variables from Var. A positive
(existential) query (PQ) over a KB K is a formula ∃�x.ϕ(�x), where ϕ(�x) is built using ∧
and ∨ from atoms C(z) and S(z, z′), where C is a concept name in CK, S is a simple
role name in RK, and z, z′ are variables from �x or individuals in IK.

Note that transitive roles and their super-roles are disallowed in queries. We
denote by VI(Q) the set of variables and individuals in a query Q.

A PQ Q = ∃�x.ϕ(�x) is a CQ, if ϕ(�x) is a conjunction of atoms, and a union of CQs
(UCQ), if ϕ(�x) is in disjunctive normal form; every PQ can be easily rewritten to a
UCQ, but the resulting query may be exponentially larger.

Queries are interpreted as usual. For an interpretation I , let π : VI(Q) → �I be
a total function such that π(a) = aI for each individual a. We write I, π |= C(x) if
π(x) ∈ CI , and I, π |= S(x, y) if 〈π(x), π(y)〉 ∈ SI . Let γ be the Boolean expression
obtained from ϕ by replacing each atom α in ϕ with � if I, π |= α, and with ⊥
otherwise. We call π a match for I and Q, denoted I, π |= Q, if γ evaluates to �.
Then I is a model of Q (I |= Q), if there is a match π for I and Q.

Definition 2.9 (Query Entailment) Let Q be a query over a KB K. We say that K
entails Q, denoted K |= Q, if I |= Q for each model I of K. The query entailment
problem is to decide, given K and Q, whether K |= Q.

Example 2.10 Consider the following PQs:

Q1 = ∃x, y, z.P1(x, y) ∧ P2(x, z) ∧ A(y);
Q2 = ∃x, y, z.P2(x, y) ∧ P2(y, z);
Q3 = ∃x, y.(P1(x, y) ∨ P2(x, y)) ∧ P2(y, o).

Note that Q1 and Q2 are CQs. First, we observe that K1 |= Q1. Indeed, due to
the inclusion axiom A � ∃P1.A, in every model I of K1 there is some instance o1
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of A that is connected to aI via role P1. By the axiom A � ∃P2.¬A, there is also
some element o2 that is connected to aI via role P2. Setting π(x) = aI , π(y) = o1,
and π(z) = o2, we have a match for I and Q1. Similarly, K2 |= Q1: if I is a model of
K2, let o1 be an instance of A that is connected to aI via role P1; such an o1 exists
by the axiom A � ∃P1.A. Then π(x) = aI , π(y) = o1, and π(z) = oI is a match for
I and Q1.

Next, we have K1 �|= Q2. Indeed, I = (�I, ·I) where �I = {o1, o2} and aI = o1,
AI = {o1}, PI

1 = {〈o1, o1〉}, and PI
2 = {〈o1, o2〉}, is a model of K1 but not of Q2. To

see that K2 �|= Q2, simply extend I to the nominal {o} by setting {o}I = {o2}; then
we have a model of K2 but not of Q2. Finally, K2 |= Q3. (Note that Q3 is not a
query over K1, since o �∈ IK1 .) Indeed, in every model I of K2, aI must be connected
to some instance o1 of A via P1 by the axiom A � ∃P1.A. The axiom A � ∃P2.{o}
ensures that o1 is connected to oI via role P2. Therefore, π(x) = aI , π(y) = o1, and
π(o) = oI is a match for I and Q3.

The query entailment problem for a DL L is in a complexity class C, if given a KB
K in L and a query Q, deciding K |= Q is in C; this is also called combined complexity,
while the data complexity is the complexity of deciding K |= Q where Q and all of K
except A are fixed.

Note that in Definition 2.8, queries have no distinguished (i.e., free) variables, so
they are Boolean queries. For a query Q = ∃�x.ϕ(�y, �x) with distinguished variables
�y, the query answering problem over K consists in finding all the possible tuples �t of
individuals (of the same length as �y) such that K |= ∃�x.ϕ(�t, �x) holds. Query answering
can be reduced to answering all possible such Boolean queries with individuals
appearing in K; that is, to polynomially many (in the size of the ABox) query
entailment problems.

3 A Tableaux Algorithm for Query Entailment

In this section, we describe an algorithm to solve the query entailment problem for
PQs in the DLs of the SH family we have introduced. As shown in this and the next
section, it is sound and complete for SHOQ, SHIQ, and SHOI . For SHOIQ it is
sound, while completeness is not guaranteed.

An important note is that the query entailment problem in all these DLs is
not reducible to KB satisfiability, since in general the negation of a query is not
expressible as a part of a KB. For this reason, the known algorithms for reasoning
over KBs are insufficient. In general, a KB has infinitely many (possibly infinite)
models, and in principle we have to verify whether the query is satisfied in all of
them. Our technique builds on the tableaux algorithm for satisfiability of SHOIQ
KBs in [24]. Informally, the difference is that the latter algorithm only focuses on
problems that are reducible to satisfiability checking; hence, it only needs to ensure
that the algorithm obtains a model if the KB is satisfiable. In our case this is not
enough. We need to make sure that the algorithm obtains a set of models that suffices
to check query entailment. This adaption to query answering is inspired by [33], yet
we deal with DLs that lack the finite model property. Like the algorithm in [24]
we use completion graphs, finite relational structures that represent sets of models
of a KB. Roughly, an initial completion graph GK for K is built. Then, by applying
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expansion rules repeatedly, new completion graphs are generated. The application
of the rules is non-deterministic, and sometimes new individuals are introduced.
Since every model of K is represented in some completion graph that results from
the expansion, K |= Q can be decided by considering a set of sufficiently expanded
graphs G. From each such G a single canonical model is constructed. Semantically,
the finite set of these canonical models is sufficient for answering all queries Q
of bounded size. Furthermore, we prove that entailment in the canonical model
obtained from G can be checked effectively via a syntactic mapping of the variables
in Q to the nodes in G.

As customary with tableau-style algorithms, we give blocking conditions on the
rules that ensure that the expansion of the graphs terminates. They are more involved
than those in [24], which serve for satisfiability checking but not for query entailment,
and they involve a parameter n which depends on Q.

3.1 Completion Graphs

Let VN be a countably infinite set of variable nodes, disjoint from the vocabulary
used in defining queries and KBs. A completion graph G consists of a finite labelled
directed graph (nodes(G), arcs(G), L) such that nodes(G) ⊆ VN ∪ I and a binary
relation �≈ on nodes(G).6 Each node v of G is labelled with a finite set L(v) of
concepts and each arc v → w of G with a finite set L(v → w) of roles. The node w is a
successor of v and v a predecessor of w. The union of the successor and predecessor
relations is the neighbour relation, and their respective transitive closures are called
descendant and ancestor. The distance between two nodes v, v′ in G is defined as the
shortest path between them. We refer to in(G) = {v ∈ nodes(G)|{o} ∈ L(v), o ∈ I} as
the individual nodes in G and to vn(G) = nodes(G)\in(G) as the variable nodes in G.7

Now we introduce completion graphs for a SHOIQ KB K = 〈T ,R,A〉. Our
algorithm uses a set of TBox concepts tcon(K) = {¬C 
 D|C � D ∈ T }. By requiring
that each individual belongs to all these concepts, satisfaction of the TBox is
enforced. The subconcept closure of a concept C is the smallest set of concept expres-
sions containing C that is closed under subconcepts and their negation (expressed
in NNF). Given a concept C and a role hierarchy R, clos(C,R) is the smallest set
containing the subconcept closure of C and all concepts of the form ∀R′.D for each
R′ occurring in R or in C and for each concept expression D such that ∀R.D or
NNF(∀R.D) is in the subconcept closure of C. The closure of K, denoted clos(K), is
the union of all clos(C,R) for each concept C occurring in tcon(K). In the following,
let KA = 〈TA,R, ∅〉 where TA is as in Section 2.1.

Definition 3.1 (Completion graph [24]) A completion graph G for a KB K is a
completion graph in which each node v is labelled with L(v) ⊆ clos(KA) ∪ {{o}|o ∈
I} ∪ {≤ m R.C|≤ n R.C ∈ clos(KA) and m ≤ n}, and in which each arc v → w has a

6The �≈ relation is used to state explicit inequalities between nodes, i.e., that two nodes of a graph
must be interpreted as different individuals (there is no unique name assumption). It is tacitly
assumed that �≈ is symmetric.
7Our individual nodes correspond to nominal nodes in [24], and our variable nodes to blockable
nodes.
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label L(v → w) ⊆ RKA . If for two nodes v, w there is no arc v → w in G, we consider
L(v → w) = ∅. For each arc v → w and role R, if R′ ∈ L(v → w) for some role R′
with R′ �∗ R, then w is an R-successor of v. We call w an R-neighbour of v, if w is
an R-successor of v, or if v is an Inv(R)-successor of w.

In order to provide a method for verifying entailment of a CQ Q in a KB K,
we first associate with K an initial completion graph and then we generate new
completion graphs by applying expansion rules.

The initial completion graph GK associated with K has a node a labelled with
L(a) = {{a}} ∪ tcon(KA), for each individual a ∈ IK, and the relation �≈ is empty.

Example 3.2 In our running example, GK1 contains only the node a which has the
label L(a) := {{a}, ¬A 
 ∃P1.A, ¬A 
 ∃P2.¬A, ¬{a} 
 A}. GK2 contains two nodes,
a and o, with the labels L(a) := {{a}, ¬A 
 ∃P1.A, ¬A 
 ∃P2.{o}, ¬{a} 
 A} and
L(o) := {{o}, ¬A 
 ∃P1.A, ¬A 
 ∃P2.{o}, ¬{a} 
 A}. In both graphs the �≈ relation
is empty.

From this initial GK, we obtain new completion graphs by applying expansion
rules, which may introduce new nodes. Variable nodes are always introduced as
successors of exactly one existing node. Hence, the variable nodes in a completion
graph form a set of trees that have individual nodes as roots. It may also happen
that one of these variable nodes has an individual node as its successor, thus we
have a tree of variable nodes that has a branch ending with an arc leading to an
individual node. If a completion graph F for K has no such arcs, then F is a set of
trees of variable nodes, whose roots are possibly interconnected individual nodes.
This special kind of completion graphs are called completion forests.

For any KB K, the initial completion graph GK is a completion forest. If K is a
SHIQ KB the expansion rules only introduce variable nodes and any completion
graph obtained by applying the expansion rules is a completion forest. This is not the
case if K is a KB in some DL with nominals, since arcs from variable to individual
nodes may be introduced.

Example 3.3 In Fig. 1, we show the completion graphs F1 and F2 for K1, which have
an empty �≈ relation (for simplicity, omitted in the figure), and where

L1 = {A, ¬A 
 ∃P1.A, ¬A 
 ∃P2.¬A, ∃P1.A, ∃P2.¬A}
L2 = {¬A, ¬A 
 ∃P1.A, ¬A 
 ∃P2.¬A}.

Note that both F1 and F2 are completion forests. Figure 2 shows the completion
graph G1, which has again an empty �≈ relation, and where

L′
1 = {A, ¬A 
 ∃P1.A, ¬A 
 ∃P2.{o}, ∃P1.A, ∃P2.{o}}

L′
2 = {{o}, ¬A 
 ∃P1.A, ¬A 
 ∃P2.{o}, ¬{a} 
 A, ¬A, ¬{a}}.

Next, before giving the expansion rules, we define a notion of blocking which
depends on a depth parameter n ≥ 0. This notion generalises blocking in [24], where
the parameter n is not present.
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Fig. 1 Completion graphs for
the example KB K1

Definition 3.4 (Blockable n-graph, n-graph equivalence) Given an integer n ≥ 0 and
a completion graph G, the blockable n-graph of node v ∈ vn(G) is the subgraph Gn,v

of G that contains v and (i) every descendant w ∈ vn(G) of v within distance n, and
(ii) every successor w′ ∈ in(G) of each such w. If w has in Gn,v no successors from
vn(G), we call w a leaf of Gn,v . Nodes v, v′ of G are n-graph equivalent via a bijection
ψ from nodes(Gn,v) to nodes(Gn,v′

) if:

– ψ(v) = v′,
– for every w ∈ nodes(Gn,v), L(w) = L(ψ(w)),
– arcs(Gn,v′

) = {ψ(w)→ ψ(w′)|w → w′ ∈ arcs(Gn,v)},
– for every w → w′ ∈ arcs(Gn,v), L(w → w′) = L(ψ(w) → ψ(w′)).

As discussed above, in the algorithm variable nodes occur only in tree-shaped
structures. The n-graph of each variable node v is a tree of variable nodes of depth
at most n rooted at v, plus arcs to the individual nodes that are direct successors of a
node in this tree. The leaves of the graph are the leaves of the tree in the usual sense.
For the completion graph obtained from a SHIQ KB, since there are no arcs from
a variable node to a nominal node, all n-graphs are actually trees of depth at most n.

Definition 3.5 (n-witness, graph-blocking) Let v, v′ ∈ vn(G) be n-graph equivalent
via ψ , where both v and v′ have predecessors in vn(G), v′ is an ancestor of v in G,
and v is not in Gn,v′

. If v′ reaches v on a path containing only nodes in vn(G), then
v′ is a n-witness of v in G via ψ . Moreover, Gn,v′

graph-blocks Gn,v via ψ , and each
w ∈ nodes(Gn,v′

) graph-blocks via ψ the node ψ−1(w) in Gn,v .

Note that if some G′ graph-blocks some G via a bijection ψ , then the partic-
ular ψ does not matter and any other bijection satisfying the three conditions of
Definition 3.4 could be equivalently used. Therefore, we will always assume a fixed
arbitrary bijection from a graph-blocked G to a graph-blocking G′, and denote

Fig. 2 A completion graph for
the example KB K2
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it ψ . Moreover, we often omit ψ and simply say G′ graph-blocks G, v1 graph-
blocks v2, etc.

Example 3.6 In F1, v1 and v5 are 1-graph equivalent, v1 is a 1-witness of v5 (but
not vice versa); F1

1,v1 graph-blocks F1
1,v5 ; and v1 (resp., v3, v4) graph-blocks v5

(resp., v7, v8).

Definition 3.7 (n-blocking) For an integer n ≥ 0 and a completion graph G, a node
v ∈ nodes(G) is n-blocked, if v ∈ vn(G) and v is either directly or indirectly n-
blocked; v is indirectly n-blocked, if one of its ancestors is n-blocked; v is directly
n-blocked iff none of its ancestors is n-blocked and v is a leaf of some blockable
n-graph in G that is graph-blocked; in this case we say that v is (directly) n-blocked
by ψ(v) (i.e., by the node in G that graph-blocks v).8 An R-neighbour w of a node v

in G is n-safe if v ∈ vn(G) or if w is not n-blocked.

Note that v is m-blocked for each m ≤ n if it is n-blocked. When n ≥ 1, then n-
blocking implies pairwise blocking, which is the blocking used in [24, 26]. When
n = 0, then n-blocking corresponds to blocking by equal node labels (equality
blocking [2]), which is a sufficient blocking condition in some DLs weaker than
SHIQ.

Example 3.8 Consider the completion forests F1 and F2 in Fig. 1. The nodes v7 and
v8 in F1 are (directly) 1-blocked. Similarly, v11 and v12 in F2 are (directly) 2-blocked.
Consider the completion graph G1 in Fig. 2. In it, G1

1,v1 graph-blocks G1
1,v3 ; v4 is

(directly) 1-blocked.

Now we can give our expansion rules, which are essentially the same as in [24].
The main differences are that “blocked” is uniformly replaced by “n-blocked” and
that in the generating rules, the labels of the newly generated nodes must contain
tcon(K) (because we don’t assume an empty TBox). The rules use two operations
on completion graphs called merge and prune (prune does not appear in the rules,
but it is used bymerge). To illustrate the use of these operations, consider the ≤-rule.
Suppose a node v is labelled by the concept ≤ 2 S.C and has three successors v1, v2, v3

labelled with C, and v2 �≈ v3 does not hold. Then we can make v satisfy ≤ 2 S.C, by
merging the nodes v2 and v3 into one. For this purpose, we use merge(v2, v3), which
then applies prune(v2). Intuitively,merge(v2, v3) merges the node v2 into v3: the label
of v2 is added to the label of v3, all incoming arcs of v2 are copied to v3, and the
outgoing arcs of v2 to an individual node are also copied to v3. After the merging,
prune(v2) removes v2 from G and, recursively, all its variable successors.

Formally, for a completion graph G and v,w ∈ nodes(G), the operation prune(w)

yields a graph that is obtained from G as follows:

1. For each successor w′ of w, remove w → w′ from arcs(G), and if w′ ∈ vn(G), then
prune(w′).

2. Remove w from nodes(G).

8Note that the graph-blocking n-graph is unique, and thus by our assumption also the bijection ψ is
unique.
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The operation merge(w, v) yields a forest obtained from G as follows:

1. For each w′ ∈ nodes(G) such that w′ → w ∈ arcs(G)

a. if neither v → w′ nor w′ → v is in arcs(G), then add w′ → v to arcs(G) and set
L(w′ → v) := L(w′ → w);

b. if w′ → v is in arcs(G), then set L(w′ → v) := L(w′ → v) ∪ L(w′ → w);
c. if v → w′ is in arcs(G), then set L(v → w′) := L(v → w′) ∪ {Inv(R)|R ∈

L(w′ → w)};
d. remove w′ → w from arcs(G).

2. For each w′ ∈ in(G) such that w → w′ ∈ arcs(G)

a. if neither v → w′ nor w′ → v is in arcs(G), then add v → w′ to arcs(G) and set
L(v → w′) := L(w → w′);

b. if v → w′ is in arcs(G), then set L(v → w′) := L(v → w′) ∪ L(w → w′);
c. if w′ → v is in arcs(G), then set L(w′ → v) := L(w′ → v) ∪ {Inv(R)|R ∈

L(w → w′)};
d. remove w → w′ from arcs(G).

3. Set L(v) := L(v) ∪ L(w).
4. Add v �≈ w′ for each w′ with w �≈ w′.
5. prune(w).

To obtain new completion graphs from the initial GK, we apply the rules in Table 1.
Note that their application is non-deterministic. Different choices for E in the 
-rule
and the choose-rule generate different graphs. The choice of the nodes to be merged
in the ≤- and ≤o-rules is also non-deterministic. The ∃-rule, the ≥-rule and the o?-
rule are called generating rules, since they add new nodes to the graph. The ≤-rule,
the o-rule and the ≤o-rule are shrinking rules, since they merge two nodes of the
graph into one.

Note that the o-rule merges two nodes whenever their labels share a nominal. Like
in [24], we assume that whenever this rule is applicable, it is applied immediately.
This consideration allows us to assume that, in every completion graph, each nominal
occurs in the label of at most one node.

An important note is that the o?-rule is never applicable for SHOQ, SHIQ, and
SHOI KBs, which allows us to prove termination (see below).9 For SHOIQ KBs,
however, the o?-rule is needed and the naive application of the expansion rules can
lead to non-termination. Horrocks and Sattler in [24] give a prioritised strategy for
rule application which guarantees termination of their satisfiability testing algorithm.
Unfortunately, this strategy does not work for our query answering algorithm; we
cannot ensure that it terminates on SHOIQ KBs (although we believe that it will
do so in many cases).

9This also holds for SHOIQ KBs without interaction between number restrictions, inverse roles,
and nominals, in particular for SHOIQ KBs that result from internalising the ABox of a SHIQ KB,
as described in Section 2.1.
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Table 1 Expansion rules

Rule Description

	-rule: if C1 	 C2 ∈ L(v), v is not indirectly n-blocked, and {C1, C2} � L(v),
then L(v) := L(v) ∪ {C1, C2}.


-rule: if C1 
 C2 ∈ L(v), v is not indirectly n-blocked, and {C1, C2} ∩ L(v) = ∅,
then L(v) := L(v) ∪ {E} for some E ∈ {C1, C2}.

∃-rule: if ∃R.C ∈ L(v), v is not n-blocked, and
v has no n-safe R-neighbour w with C ∈ L(w),

then create a new node w with L(v → w) := {R} and L(w) := {C} ∪ tcon(K).

∀-rule: if ∀R.C ∈ L(v), v is not indirectly n-blocked, and
v has an R-neighbour w with C /∈ L(w),

then L(w) := L(w) ∪ {C}.
∀+-rule: if ∀R.C ∈ L(v), v is not indirectly n-blocked,

there is some R′ with Trans(R′) and R′ �∗ R, and
there is an R′-neighbour w of v with ∀R′.C /∈ L(w),

then L(w) := L(w) ∪ {∀R′.C}.
choose- if ≤ m S.C ∈ L(v), v is not indirectly n-blocked, and

rule: there is an S-neighbour w of v with {C, NNF(¬C)} ∩ L(w) = ∅,
then L(w) := L(w) ∪ {E} for some E ∈ {C, NNF(¬C)}.

≥-rule: if ≥ m S.C ∈ L(v), v is not n-blocked, and
there are not m n-safe S-neighbours w1, . . . , wm of v

such that C ∈ L(wi) and wi �≈ w j for 1 ≤ i < j ≤ m,
then create new nodes w1, . . . , wm with L(v → wi) := {S},

L(wi) := {C} ∪ tcon(K), and wi �≈ w j for 1 ≤ i < j ≤ m.

≤-rule: if ≤ m S.C ∈ L(v), v is not indirectly n-blocked,
{{w|w is an S-neighbour of v and C ∈ L(w)}} > m, there are
S-neighbours w, w′ of v with not w �≈ w′, and C ∈ L(w) ∩ L(w′),

then (i) if w ∈ in(G), then merge(w′, w); else
(ii) if w′ ∈ in(G) or w′ is an ancestor of w, merge(w,w′);
else (iii) merge(w′, w).

o-rule: if there are v, v′ with not v �≈ v′ and {o} ∈ L(v) ∩ L(v′) for some o ∈ in(G),
then (i) if v ∈ I, then merge(v′, v); else (ii) merge(v, v′).

o?-rule: if ≤ m S.C ∈ L(v), v ∈ in(G), v′ ∈ vn(G), C ∈ L(v′),
v′ is an S-neighbour of v, v is a successor of v′, and there is
no m′ with 1 ≤ m′ ≤ m such that: (i) ≤ m′ S.C ∈ L(v) and
(ii) v has m′ S-neighbours w1, . . . , wm′ ∈ in(G)

with C ∈ L(wi) and wi �≈ w j for all 1 ≤ j < i ≤ m′,
then guess m′ ≤ m, set L(v) := L(v) ∪ {≤ m′ S.C}, and

create m′ new nodes w1, . . . , wm′ with L(v → wi) := {S},
L(wi) := {C, {oi}} ∪ tcon(K) for some oi ∈ I \ in(G),
and wi �≈ w j for all 1 ≤ j < i ≤ m′.

≤o-rule: if ≤ m S.C ∈ L(v), v ∈ in(G), v′ ∈ vn(G) is an S-neighbour of v,
C ∈ L(v′), v has m S-neighbours w1, . . . , wm ∈ in(G) with
C ∈ L(wi) and wi �≈ w j for all 1 ≤ j < i ≤ m, and
w ∈ in(G) is an S-neighbour of v, C ∈ L(w) and not v′ �≈ w,

then merge(v′, w).
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Definition 3.9 (Clash-free completion graph) A completion graph G contains a clash
if one of the following holds:

1. For some v ∈ nodes(G) and some concept name A, {A, ¬A} ⊆ L(v).
2. For some v ∈ nodes(G) with ≤ n S.C ∈ L(v), v has n + 1 S-neighbours w0, . . . , wn

such that, for all wi, w j with 0 ≤ i < j ≤ n, C ∈ L(wi) and wi �≈ w j ∈ G.
3. For some o ∈ I and some v, v′ ∈ nodes(G), {o} ∈ L(v) ∩ L(v′) and v �≈ v′ ∈ G.

If G does not contain a clash, then G is clash-free.

Definition 3.10 (n-complete completion graph) A completion graph G is n-complete,
if no rule in Table 1 can be applied to it.

For a KB K, we denote by GK the set of all completion graphs that can be obtained
from the initial GK by applying the expansion rules, and by ccfn(GK) the set of
completion graphs in GK that are n-complete and clash free.

Example 3.11 Both F1 and F2 can be obtained from GK1 by applying the expansion
rules, and they are both clash-free. F1 is 1-complete and F2 is 2-complete, so
F1 ∈ ccf1(GK1) and F2 ∈ ccf2(GK1). Consider also the completion graphs G1 in Fig. 2
and G2 in Fig. 3 (where L′

1 and L′
2 are as in Example 3.3). Both can be obtained

from GK2 by means of the expansion rules. They are both clash-free completion
graphs, and they are 1-complete and 2-complete respectively, so G1 ∈ ccf1(GK2) and
G2 ∈ ccf2(GK2).

3.2 Models of a Completion Graph

Semantically, by viewing all the nodes of a completion graph as individuals, we can
interpret a completion graph in a very similar way as we interpret a KB. Intuitively,
every individual in K is represented by a node of the completion graph, but the
completion graph may have additional nodes. An interpretation of the individuals,
concepts, and roles in G is an interpretation of K, possibly extended to interpret these
additional nodes, and we can see it as a representation of a set of models of K.

Definition 3.12 (Model of a completion graph) An extended interpretation I =
(�I, ·I) is an interpretation as in Definition 2.7 that in addition assigns to each node
v ∈ VN an element vI ∈ �I . Let G ∈ GK. Then I is a model of G w.r.t. K, written
I |=K G, if:

1. I |= K, and
2. for all v, w ∈ nodes(G), {C ∈ L(v)} ⊆ {C|vI ∈ CI}, {R∈L(v → w)}⊆{R|〈vI , wI〉∈

RI}, and v �≈ w ∈ G implies vI �= wI .

Fig. 3 2-complete completion
graph for the example KB K2
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We emphasize that, in order to be a model of a completion graph for K, an
extended interpretation must include an ordinary interpretation that is a model of
K (item 1).

We say that two extended interpretations I and J are equal on a set N ⊆VN ∪ I,
if �I = �J and for every v,w ∈ N, vI = vJ , {C | vI ∈ CI} = {C | vJ ∈ CJ },
and {R | 〈vI , wI〉 ∈ RI} = {R | 〈vJ , wJ 〉 ∈ RJ }. Furthermore, we call an extended
interpretation J a K-extension of an ordinary interpretation I , if J equals I on IK.

The initial completion graph GK is just an alternative representation of the KB,
and it has exactly the same models. The following lemma is immediate from the
definition of the semantics of KBs and of GK.

Lemma 3.13 For every (extended or ordinary) interpretation I , I |=K GK iff I |= K.

When we expand the graph, we make choices and obtain new graphs that
represent a subset of the models of the KB K. The union of the sets of models of
all graphs in ccfn(GK), when restricted to the language of K, coincides with the set
of models of K, independently of the value of n. Therefore, if we want to check all
models of K, we must check all models of all graphs in ccfn(GK) for some n.

Proposition 3.14 Let n ≥ 0. For every interpretation I such that I |= K, there is some
G ∈ ccfn(GK) and some K-extension J of I such that J |=K G.

Proof Consider an interpretation I such that I |= K. Intuitively, every K-extension
J of I is a model of the initial GK, and I can be used to guide the non-deterministic
choices when applying the expansion rules, in such a way that clashes are avoided
until a complete graph is reached. This is the same intuition underlying the proof of
completeness given in [24].10 Formally, let Gk denote the set of completion graphs
obtained from GK by at most k applications of the expansion rules, and cf(Gk) the
set of these graphs that are clash-free. We prove the following claim by induction on
k ≥ 0:

Claim 1 If I |= K, then for every k ≥ 0 there is some K-extension J of I and some
G ∈ cf(Gk) such that J |=K G.

If k = 0, then cf(Gk) = {GK} and the claim holds by Lemma 3.13. For the inductive
step, we use the following fact:

Claim 2 Let G ∈ GK, let J |=K G, and let r be any rule in Table 1 that is applicable
to G. Then, there exist a completion graph G ′ obtainable from G by applying r and an
extended interpretation J ′ equal to J on nodes(G) such that J ′ |=K G ′.

The (straightforward) proof of Claim 2 is given in the Appendix. Consider
now G ∈ cf(Gk). If J |=K G, then by Claim 2 there exist some J ′ equal to J on
nodes(G) and some G ′ ∈ Gk+1 such that J ′ |=K G ′. As J is a K-extension of I and

10The details of the proof are quite different, however, since the authors of [24] use tableaux, while
we use completion graphs as model representations.
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IK ⊆ nodes(G), also J ′ is a K-extension of I and a model of G ′ w.r.t. K. Hence,
G ′ ∈ cf(Gk+1) and Claim 1 holds.

Finally, it is easy to see that Claim 1 implies the statement of the proposition, as
every sufficiently expanded completion graph that did not reach a clash will be n-
complete, i.e., by taking a sufficiently large k, we can ensure that cf(Gk) = ccfn(GK).

	


3.3 Answering Positive Queries

Recall that for a KB K and a query Q, K |= Q holds iff I |= Q for every model I
of K. We define an analogous notion of query entailment in a completion graph G:
G |=K Q iff I |= Q for every model I of G w.r.t. K. We are interested in checking
whether K |= Q, which means that entailment of Q has to be verified in every model
of K. To this end, we may choose an arbitrary n and check entailment of Q in each
graph G ∈ ccfn(GK). This is sound since all the models of K are represented by the
graphs in ccfn(GK).

Proposition 3.15 Let n ≥ 0. Then K |= Q iff G |=K Q for every G ∈ ccfn(GK).

Proof For the only if direction, assume K |= Q. Consider G ∈ GK and some I such
that I |=K G. Since I |= K by definition, K |= Q implies that I |= Q. Hence, G |=K

Q. The if direction is shown by contraposition. If K � Q, then there exists some
model I of K such that I � Q. By Proposition 3.14, there is some K-extension J of
I and some G ∈ ccfn(GK) such that J |=K G. Note that I � Q implies J � Q, since
J and I can only differ in the interpretation of the nodes in VN, which is irrelevant
for Q. Thus, G �K Q. 	


In order to decide query entailment, we can choose an arbitrary n ≥ 0 and check
all the models of all the completion graphs in ccfn(GK). This is still not enough to
yield a decision procedure: although the set ccfn(GK) is finite, we do not have an
algorithm for deciding entailment of query Q in all (possibly infinitely many) models
of a completion graph. In the rest of this section, we show that if a suitable n is chosen,
entailment in all the models of K can be decided effectively by deciding the existence
of a mapping of the query into each G ∈ ccfn(GK).

Definition 3.16 (Query mapping) Let Q = ∃�x.ϕ(�x) be a PQ and let G be a completion
graph. Let μ : VI(Q) → nodes(G) be a total function such that {a} ∈ L(μ(a)) for each

individual a in VI(Q). We write C(x)
μ

↪−→G if C ∈ L(μ(x)), and S(x, x′)
μ

↪−→G if μ(x′)
is an S-neighbour of μ(x). Let γ be the Boolean expression obtained from ϕ(�x) by

replacing each atom α in ϕ with �, if α
μ

↪−→G, and with ⊥ otherwise. We say that μ is

a mapping for Q into G, denoted Q
μ

↪−→G, if γ evaluates to �. Q can be mapped into
G, denoted Q ↪→G, if there is a mapping μ for Q into G.

Note that S(x, x′)
μ

↪−→G does not imply S ∈ L(μ(x) → μ(x′)), but only that a subrole
of S occurs in the label. The correctness of the mapping for role atoms is thus related
to the notion of S-neighbour (see Definition 3.1).
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Example 3.17 We have that Q1
μ1
↪−→F1 and Q1

μ′
1

↪−→F2, witnessed by μ1(x) = μ′
1(x) =

a, μ1(y) = μ′
1(y) = v1 and μ1(z) = μ′

1(z) = v2. Note that there is no mapping of
Q2 into F2 or F1 satisfying the above conditions. The mappings μ2(x) = μ′

2(x) = a,

μ2(y) = μ′
2(y) = v1 and μ2(o) = μ′

2(o) = o show that Q3
μ2
↪−→G1 and Q3

μ′
2

↪−→G2.

Indeed, for completion graphs G for K, syntactic mappability Q ↪→G implies
semantic consequence G |=K Q.

Lemma 3.18 If Q ↪→G, then G |=K Q.

Proof Since Q ↪→G, there is a mapping μ : VI(Q) → nodes(G) satisfying
Definition 3.16. Let I be a model of G w.r.t. K. Then vI ∈ CI if C ∈ L(v);
and if w is an R-neighbour of v, then 〈wI, vI〉 ∈ RI . We can define a match for I
and Q by setting π(x) = μ(x)I for every x ∈ VI(Q). It satisfies π(a) = aI for each

individual a and I, π |= α for each atom α such that α
μ

↪−→G. Hence, I |=K Q, which
implies G |=K Q. 	


Since every model of the KB K is represented by some completion graph, we
already know that Q is entailed by K if there is a mapping for Q in each G. We
prove that the converse also holds. Now the blocking conditions come into play and
the mapping will only be feasible if n is sufficiently large. We show that provided G
has been expanded far enough, a suitable mapping μ into G can be constructed from
a single model IG of K, which we call the canonical model induced by G. In fact,
entailment in this model implies entailment in the completion graph for all queries
Q of bounded size. Indeed, we will see that the mapping μ can be constructed from
any match for IG and Q.

3.3.1 Tableaux and Canonical Models

To build the canonical model induced by G ∈ ccfn(GK) (with n ≥ 1), we unravel G
into a tableau TG . This tableau induces a model for K.11 Each path to a node in G is a
node of TG . Every blocked node points back to the node that blocks it, creating a loop
that generates infinite paths. Thus, if G has blocked nodes, its tableau is an infinite
structure. Defining a model from T is straightforward. The definition of tableau is
based on the one in [24].

Definition 3.19 (Tableau) A triple T = 〈S,L, E〉 is a tableau for a KB K =
〈A,R,T 〉, if S is a non-empty set; L : S → 2clos(KA) maps each element in S to a
set of concepts; and E : RKA → 2S×S maps each role to a set of pairs of elements in S.
Furthermore, for all s, t ∈ S; C, C1, C2 ∈ clos(KA); and R, R′, S ∈ RKA , T satisfies:

(P0) if C ∈ tcon(K) then C ∈ L(s).
(P1) if C ∈ L(s), then ¬C /∈ L(s);
(P2) if C1 	 C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s);
(P3) if C1 
 C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s);

11Note that we only use tableaux to define the canonical model.
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(P4) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t);
(P5) if ∃R.C ∈ L(s), then 〈s, t〉 ∈ E(R) and C ∈ L(t) for some t ∈ S;
(P6) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R′) for some R′ �∗ R with Trans(R′) = true, then

∀R′.C ∈ L(t);
(P7) if ≤ n S.C ∈ L(s), then |{t ∈ S|〈s, t〉 ∈ E(S) and C ∈ L(t)}| ≤ n;
(P8) if ≥ n S.C ∈ L(s), then |{t ∈ S|〈s, t〉 ∈ E(S) and C ∈ L(t)}| ≥ n;
(P9) if 〈s, t〉 ∈ E(R) and ≤ n S.C ∈ L(s), then {C, NNF(¬C)} ∩ L(t) �= ∅;

(P10) if 〈s, t〉 ∈ E(R) and R �∗ R′ then 〈s, t〉 ∈ E(R′);
(P11) 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R));
(P12) if {o} ∈ L(s) ∩ L(s′) for some o ∈ I, then s = s′;
(P13) if o ∈ IK, then {o} ∈ L(s) for some s ∈ S.

We can easily obtain a canonical model of a KB K from every tableau for it.

Definition 3.20 (Canonical model) Let T = 〈S,L, E〉 be a tableau for K. The canon-
ical model of T, IT = (�IT , ·IT ), is defined as follows:

– �IT = S,
– AIT = {s|A ∈ L(s)} for all concept names A in clos(KA),
– aIT = s ∈ S, {a} ∈ L(s), for all individual names a in IK, and
– PIT = E(P)⊕ for all role names P in RKA , where E(·)⊕ is the minimal extension

of E(·) such that E(R)⊕ is transitively closed whenever Trans(R), and E(R′)⊕ ⊆
E(R)⊕ whenever R′ �∗ R.

Please note that for each simple role S, SIT = E(S)⊕ = ⋃
S′�∗ S E(S′). The next

lemma follows from Lemma 4 in [24].

Lemma 3.21 Let T be a tableau for K. Then IT |= K.

Each completion graph G ∈ ccfn(GK) with n ≥ 1 induces a tableau TG that is the
unravelling of G, and which has as domain the set of paths in G. The paths and the
tableau are constructed as in [24]; each path comprises a sequence of pairs of nodes
v
v′ , in order to store which blocked nodes caused the loops in the path construction.

Definition 3.22 (Induced tableau) Let G ∈ ccfn(GK), n ≥ 1. In a sequence of pairs
of nodes of the form p = [

v0
v′

0
, . . . , vm

v′
m

]
, we define tail(p)= vm and tail′(p)= v′

m. By
[

p| vm+1

v′
m+1

]
we denote

[
v0
v′

0
, . . . , vm

v′
m
,

vm+1

v′
m+1

]
. For a sequence of pairs of nodes p and a

variable v ∈ vn(G), if v is not n-blocked and v is an R-successor of tail(p), then
[

p| v
v

]

is an R-step of p; if v is directly n-blocked by w and v is an[–] R-successor of tail(p),
then

[
p|w

v

]
is an R-step of p. The set of paths in G, denoted paths(G), is inductively

defined as follows:

• if a ∈ in(G), then
[ a

a

] ∈ paths(G).
• if p ∈ paths(G), q is an R-step of p, R ∈ RK, then q ∈ paths(G).
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The tableau TG = (S,L, E) induced by G is defined as follows:

S = paths(G),

L(p) = L(tail(p)),

E(R) = {〈p, q〉 ∈ S2|q is an R-step of p, or p is an Inv(R)-step of q,
or q = [ a

a

]
and a is an R-successor of tail(p),

or p = [ a
a

]
and a is an Inv(R)-successor of tail(q)}.

Note that the definition of R-step requires w to be a variable node. Every path
in paths(G) starts with a node a

a for some individual a, and a node of this form only
occurs at the first position in a path. The last two cases in the definition of E(R) are
necessary in order to consider the arcs leading to individual nodes, which are not
unravelled.

We use IG (instead of ITG ) to denote the canonical model of the tableau TG
induced by G.

Example 3.23 By unravelling F1, we obtain a model IF1 whose domain is the infinite
set of paths from a to each vi. When a node is not blocked, like v1, the pair v1

v1
is added

to the path. Every time a path reaches v7, which is 1-blocked, we add v3
v7

to the path
and ‘loop’ back to the successors of v3. We thus obtain the following infinite set of
paths:

p0 = [ a
a

]
, p6 = [ a

a , v1
v1

, v3
v3

, v6
v6

]
,

p1 = [ a
a , v1

v1

]
, p7 = [ a

a , v1
v1

, v3
v3

, v5
v5

, v3
v7

]
,

p2 = [ a
a , v2

v2

]
, p8 = [ a

a , v1
v1

, v3
v3

, v5
v5

, v4
v8

]
,

p3 = [ a
a , v1

v1
, v3

v3

]
, p9 = [ a

a , v1
v1

, v3
v3

, v5
v5

, v3
v7

, v5
v5

]
, . . .

p4 = [ a
a , v1

v1
, v4

v4

]
, p10 = [ a

a , v1
v1

, v3
v3

, v5
v5

, v3
v7

, v6
v6

]
,

p5 = [ a
a , v1

v1
, v3

v3
, v5

v5

]
, p11 = [ a

a , v1
v1

, v3
v3

, v5
v5

, v3
v7

, v5
v5

, v3
v7

]
,

The extension of each concept C is determined by the set of all pi such that C occurs
in the label of the last node in pi. The extension of each role R is given by the pairs
〈pi, pj〉 such that pj is an R-step of pi. Therefore p0, p1, p3, . . . are in AIF1 ; 〈p0, p1〉,
〈p1, p3〉, 〈p3, p5〉, 〈p5, p7〉, . . . are in P

IF1
1 and 〈p0, p2〉, 〈p1, p4〉, 〈p3, p6〉, 〈p5, p8〉, . . .

are in P
IF1
2 .

Analogously, by unravelling G2, we obtain the model IG2 whose domain is the
infinite set of paths from a to each vi, since there are no paths from o to any other
node, i.e., the domain is:

p0 = [ o
o

]
, p5 = [ a

a , v1
v1

, v2
v2

, v3
v3

, v4
v4

]
,

p1 = [ a
a

]
, p6 = [ a

a , v1
v1

, v2
v2

, v3
v3

, v4
v4

, v5
v5

]

p2 = [ a
a , v1

v1

]
, p7 = [ a

a , v1
v1

, v2
v2

, v3
v3

, v4
v4

, v5
v5

, v3
v6

]
, . . .

p3 = [ a
a , v1

v1
, v2

v2

]
, p8 = [ a

a , v1
v1

, v2
v2

, v3
v3

, v4
v4

, v5
v5

, v3
v6

, v4
v4

]

p4 = [ a
a , v1

v1
, v2

v2
, v3

v3

]
, p9 = [ a

a , v1
v1

, v2
v2

, v3
v3

, v4
v4

, v5
v5

, v3
v6

, v4
v4

, v5
v5

]

The extension of the concepts are {o}IG2 ={p0}, {a}IG2 ={p1} and AIG2 ={pi|i
≥ 1}, and the extensions of the roles are P

IG2
1 ={〈pi, pi+1〉 |i ≥ 1} and P

IG2
2 =

{〈pi, p0〉|i ≥ 1}.
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Lemma 3.24 Let G ∈ ccfn(GK) with n ≥ 1. Then IG |= K.

Proof First, it is proved as in [24] that every G ∈ ccfn(GK) for n ≥ 1 induces a tableau
TG for K. Note that since n ≥ 1, pairwise blocking is subsumed. Since TG is a tableau
for K, it has a canonical model IG , which by Lemma 3.21 is a model of K. 	


Now we prove that, for a sufficiently large n, if Q is satisfied in the canonical model
IG induced by an n-complete and clash-free graph G, then we can map Q into G. If
IG |= Q, then there is a match π for IG and Q. We show how to obtain a mapping μ

witnessing Q ↪→G from π .
In this proof, the blocking parameter n is crucial. As we mentioned, it depends

on Q. More specifically, it depends on the match π and what we call the maximal
π -distance. Roughly, we consider the image of the query Q under π , restricted to
the atoms that evaluate to true. If d is the length of the longest path between two
(variable) nodes in this graph and the completion graph is (at least) d-complete, then

it is large enough to construct a mapping Q
μ

↪−→G from π , which contains an isomorpic
copy of the query image.

Definition 3.25 (Match graph, maximal π -distance) Let G ∈ ccfn(GK), where n ≥ 0,
such that IG |= Q, and let π be a match for Q and IG . Let Satπ denote the set
of atoms α in Q such that IG, π |= α. Then, the match graph Gπ is the following
(undirected) graph:

(i) its nodes are all π(x) such that x ∈ VI(Q) occurs in some α ∈ Satπ ; further-
more, if π(x) = [ a

a

]
for some a ∈ in(G), then π(x) belongs to the set ip(Gπ ),

otherwise to the set vp(Gπ ).
(ii) There is an edge between π(x) and π(y) iff R(x, y) in Satπ for some role R.

For every x, y ∈ VI(Q), dπ (x, y) is the length of the shortest path between π(x) and
π(y) in Gπ with nodes from vp(Gπ ) only, and −1 if no such path exists. Finally, the
maximal π -distance, denoted dmax

π , is the maximal dπ (x, y) for all x, y in VI(Q).

Note that the subgraph of Gπ induced by vp(Gπ ) is acyclic (in fact, it is forest
shaped), and thus shortest paths in it are unique.

Example 3.26 Consider a match π1 for Q1 and IF1 given as follows: π1(x) = p7,
π1(y) = p9, and π1(z) = p10. Satπ1 contains all atoms in Q1 and the match graph Gπ1

has the nodes p7, p9 and p10, where ip(Gπ1) = ∅ and vp(Gπ1) = {p7, p9, p10}, and the
arcs 〈p7, p9〉 and 〈p7, p10〉. Moreover, dπ1(x, y) = 1, dπ1(x, z) = 1 and dπ1(y, z) = 2,
so dmax

π1
= 2. Consider also the match π2 for Q3 and IG2 , where π2(x) = p7, π2(y) = p8

and π2(o) = p0. Satπ2 = {P1(x, y), P2(y, o)} and the match graph Gπ2 has nodes
p0, p7 and p8, where ip(Gπ2) = {p0} and vp(Gπ2) = {p7, p8}, and arcs 〈p7, p8〉 and
〈p8, p0〉. Here, dπ2(x, y) = dmax

π2
= 1.

In the following, let nr(Q) denote the number of role atoms in Q. Then, dmax
π is

bounded by nr(Q).12 Since only simple roles occur in Q, arcs in Gπ correspond to

12For simplicity, we are using the number of role atoms in the query as a bound. A tighter bound
would be the number of role atoms in the largest disjunct when the query is transformed into
disjunctive normal form.
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arcs in G; thus in expanding the initial completion graph GK, it is sufficient to use
n-blocking as a termination condition, for some arbitrarily chosen n ≥ nr(Q).
Formally, we show:

Proposition 3.27 Let G ∈ ccfn(GK) with n ≥ nr(Q), and let IG be the canonical model
of G. If IG |= Q then Q ↪→G.

Proof As IG |= Q, there is a match π for IG and Q. To define a mapping μ :
VI(Q) → nodes(G), we consider the match graph Gπ . Recall that, by construction,
each node in Gπ is from paths(G). Let G′

π be the subgraph of Gπ induced by vp(Gπ ),
and let G1, . . . , Gn be the connected components of G′

π . Note that, since only simple
role occur in Q, dmax

π ≤ nr(Q) ≤ n and each Gi has at most nr(Q) ≤ n edges.
Informally, the proof works as follows: G is n-complete, and by unravelling it we

obtain the tableau TG that induces IG . Suppose there is a node v′ in G directly n-
blocked by some node v, and such that v′ is not indirectly n-blocked; let S be the
subgraph of G that includes every variable descendant of v that is not n-blocked.
Then we can see TG as having a branch composed of infinitely many adjacent non-
overlapping copies of the path between v and v′, where there are infinitely many
copies v1, v2, . . . of v, and each vi is the root of a copy Si of the subtree S. The match
π maps each x ∈ VI(Q) to some element π(x) of TG , which we now map to a node
μ(x) in G. There are two cases.

(1) If π(x) ∈ ip(Gπ ), we just set μ(x) = a where π(x) = [ a
a

]
.

(2) If π(x) ∈ vp(Gπ ), consider the (unique) Gi containing π(x).

The bounded size of Gi ensures that it contains nodes from at most two copies of the
subtree S in TG , and that if it contains nodes from two copies Sk and Sk′ , k ≤ k′, then
k′ = k + 1. Consider two subcases. (2.1) Gi contains nodes from at most one copy
of S, i.e., Gi is before the leaves of the first copy S1 or fully within some Sk. Then
we can map x in G to a node in S or above. (2.2) Gi includes nodes of two subtrees
Sk and Sk+1, i.e., π maps some variables to nodes in Sk, which correspond to paths
in G ending before or at v′, and others to nodes in Sk+1, which correspond to paths
ending at descendants of v (after passing through v′). We then ensure that μ maps
the former to v or to nodes above v, and the latter to nodes in S.

Technically, let blockedLeaves(Gi) be the set of all nodes p of Gi such that
tail(p) �= tail′(p), and let afterblocked(Gi) be the set of all nodes of Gi of the
form

[
v0
v′

0
, . . . , vm

v′
m
, . . . ,

vm+ j

v′
m+ j

]
for some

[
v0
v′

0
, . . . , vm

v′
m

] ∈ blockedLeaves(Gi) and j > 0.

Intuitively, blockedLeaves(Gi) contains the paths π(x) that end at some directly n-
blocked node, i.e., at the end of a subtree Sk, and afterblocked(Gi) the paths π(x)

that go beyond these nodes, i.e., into the next subtree Sk+1.
If afterblocked(Gi) = ∅, then the nodes of Gi are in at most one copy of S, and we

are in case 2.1. For each variable x with π(x) in Gi, we define μ(x) = tail′(π(x)), which
is a node in or above S. Otherwise, we are in case 2.2 and consider two subcases:
(2.2.1) if π(x) ∈ afterblocked(Gi), then we also define μ(x) = tail′(π(x)), which is a
node in S; (2.2.2) if π(x) �∈ afterblocked(Gi), then we define μ(x) = ψ(tail′(π(x))),
where ψ denotes the bijection via which tail′(π(x)) is graph-blocked (thus μ(x) is a
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node above S). This is possible because the bounded size of Gi ensures that tail′(π(x))

is a node in a blocked n-graph. Summing up, we define

μ(x) =

⎧
⎪⎨

⎪⎩

ψ(tail′(π(x))), if π(x) is in some Gi with afterblocked(Gi) �= ∅
and π(x) �∈ afterblocked(Gi),

tail′(π(x)), otherwise.

Now we prove the following:

a) For each individual a in VI(Q), π(a) = aIG implies {a} ∈ L(μ(a)).
b) For each C(x) in Satπ , C ∈ L(μ(x)).
c) For each R(x, y) in Satπ , μ(y) is an R-neighbour of μ(x).

Items a) – c) ensure that IG, π |= α implies α
μ

↪−→G for each atom α in Q. Since π

is a match for Q and IG , this is sufficient to prove Q ↪→G.
The proof of items a) and b) is straightforward by the construction of IG and μ.

Observe that for each individual a in VI(Q), π(a) = aIG , which implies {a} ∈ L(π(a)).
Since L(π(a)) = L(μ(a)), we get {a} ∈ L(μ(a)). For every x in VI(Q), IG |= C(π(x))

implies that C ∈ L(π(x)). Again, as L(π(x)) = L(μ(x)), we have C ∈ L((μ(x))).
For c), by construction of IG , we have that IG |= R(π(x), π(y)) implies 〈π(x), π(y)〉

∈ E(R′)⊕. Since R is a simple role and E(R)⊕ = ⋃
R′�∗ R E(R′), 〈π(x), π(y)〉 ∈ E(R′)

for some R′ �∗ R follows. We then prove:

Claim 3 If 〈π(x), π(y)〉 ∈ E(R′), then μ(y) is an R′-neighbour of μ(x).

As discussed above, μ is defined such that each variable preserves all its neigh-
bours under the match π . A formal proof of Claim 3 is given in the Appendix. 	


In the proof of Proposition 3.27, it was crucial that a match for the query on a
canonical model only needs fragments of bounded size from the tableau. If this does
not hold, as in the case of queries where non-simple roles occur, it is not clear whether
this kind of technique can be used for deciding query entailment.

Example 3.28 For the match π1 in Example 3.26, the single graph Gi for the match
graph Gπ1 as in the proof of Proposition 3.27 is Gπ1 ; recall that ip(Gπ1) = ∅, and Gπ1 is
connected. We have blockedLeaves(Gπ1) = {p7} and afterblocked(Gπ1) = {p9, p10}.
We obtain the mapping μ1 from π1 by: μ1(x) = ψ(tail′(p7)) = v3; μ1(y) = tail′(p9) =
v5; μ1(z) = tail′(p10) = v6. It satisfies the conditions of Definition 3.16, so Q1

μ1
↪−→F1.

Now reconsider π2 and Gπ2 in Example 3.26. Removing the nodes ip(Gπ2) = {p0}
from Gπ2 , the resulting graph G′

π2
is connected and hence the single graph Gi

for Gπ2 as in the proof of Proposition 3.27. We have afterblocked(G1) = {p8}. We
obtain from π2 the mapping μ by: μ2(x) = ψ(tail′(p7)) = v3, μ2(y) = tail′(p8) = v4

and μ2(o) = tail(p0) = o. It also satisfies Definition 3.16, so Q3
μ2
↪−→G2.

Summing up, to decide whether K |= Q, it is sufficient to choose an arbitrary n ≥
nr(Q) and then to check the existence of a mapping Q ↪→G for each G ∈ ccfn(GK).
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Theorem 3.29 Let Q be a positive query, let K be a SHOIQ KB, and let n ≥ nr(Q).
Then K |= Q iff Q ↪→G for every G ∈ ccfn(GK).

Proof Let G ∈ ccfn(GK). By Lemma 3.24, IG |= K, and since K |= Q, it follows
IG |= Q. Since n ≥ nr(Q), by Proposition 3.27, Q ↪→G. Conversely, from Q ↪→G and
Lemma 3.18, we have that G |= Q for every G ∈ ccfn(GK). By Proposition 3.15, this
means K |= Q. 	


Example 3.30 K |= Q1, so F1 |= Q1 must hold. This is witnessed by the mapping μ1

in Example 3.28. Note that there are longer queries, like Q′ = {P1(a, x0), P1(x0, x1),
P1(x1, x2), P1(x2, x3), P1(x3, x4)} such that K |= Q′ holds, but the entailment F1 |=
Q′ cannot be verified by mapping Q′ into F1 since F1 is 1-complete and nr(Q′) > 1.

4 Termination and Complexity

The method from above yields a sound algorithm for answering PQs on SHOIQ
KBs. As we show in this section, it always terminates for SHIQ, SHOQ and SHOI
KBs. Based on this, we prove our main results on the data complexity of query
answering in these logics.

We point out that query answering is intractable with respect to combined
complexity already for rather simple queries and on very small completion graphs.
In fact, this holds even for a CQ and a fixed completion graph which consists of few
nodes. This is shown in the proof of the next proposition.

Proposition 4.1 Let G be a (fixed) completion graph in GK and let Q be a given CQ.
Deciding whether Q ↪→G is NP-hard.

Proof Deciding the existence of a mapping Q ↪→G is at least as hard as evaluating a
CQ over a database (given by the ABox), which is NP-hard (w.r.t. query complexity)
[14]. To verify this, consider the completion graph Gcol associated to the ABox
{E(c, c)|c, c′ ∈ {red, green, blue}, c �= c′}. Every directed graph G can be represented
as a CQ Q, where each node in G is associated with a distinct variable and for each
arc 〈x, y〉 in G there is the literal E(x, y) in Q. Then Q can be mapped into Gcol iff G
is 3-colourable. 	


Note that when Q is fixed, the test Q ↪→G can be done in time polynomial in
the size of G by simple methods, as only a polynomial number of candidate mappings
needs to be checked. This is relevant to prove a tight upper bound in data complexity.

4.1 Bounding the Size of Completion Forests and Graphs

In what follows, we assume that K is a SHIQ, SHOQ or SHOI KB, such that
c := |clos(K)| ≥ 1 and r := |RK| ≥ 1. Let m denote the maximum between 1 and any
number n occurring in concepts of the form ≤ n R.C or ≥ n R.C in K.

We first derive a bound on the possible size of a blockable n-graph, and then a
bound on the size of the completion graphs in ccfn(GK).
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Claim 4 Let G ∈ GK and let n ≥ 0. Then G has at most Hn = 2p(c,r,m)n+1
many non-

isomorphic blockable n-graphs, for some polynomial p(c, r, m) in c, r, and m.

Proof First, we give a bound on the number of non-isomorphic node and arc labels
that may occur in a blockable n-graph in G. Recall that KA is the KB obtained from
K by internalising the ABox as in Section 2.1.2, which is used for constructing the
initial GK.

The only expansion rule that can add some C �∈ clos(KA) to the label of a node is
the o?-rule, which is never applied for a SHIQ, SHOQ, or SHOI KB. Therefore,
the label of every node v in a completion forest in GK fulfills L(v) ⊆ clos(KA). By
definition, every node v in a blockable n-graph is a successor of a variable node,
and either (1) v is a variable node; or (2) v is an individual node that has a variable
predecessor w. In case (1), v was created by a generating rule and its label was
initialised with L(v) ⊆ clos(K). Moreover, any concept added to its label will be
from clos(K), unless it is merged into an existing individual whose label already
contains some C ∈ clos(KA) \ clos(K); the latter would imply that v is not a variable
node. So we can conclude that every v of vn(G) fulfils L(v) ⊆ clos(K). In case (2),
if an individual node v is a successor of a variable node w, then {a} ∈ L(v) for some
{a} ∈ clos(K). This is because arcs from variable to individual nodes can only be
created by merging two nodes that share a nominal. The expansion rules can only
cause this for nominals in clos(K), as they only add concepts from clos(K) to the
node labels (except the o?-rule, which is never applied).

Consider two blockable n-graphs G1 and G2. Remove from them all arcs connect-
ing two individual nodes, and restrict the labels of the individual nodes to clos(K).
Suppose that the resulting graphs G′

1 and G′
2 are isomorphic. The label of each

individual node in G′
1 contains some nominal {a} from clos(K), which must also be

in the label of the isomorphic node in G′
2. As this {a} can be in the label of only one

node in G (by the assumption on the application of the o-rule), both nodes are the
same node from G. This ensures that G′

1 and G′
2 are isomorphic iff G1 and G2 are

isomorphic. In general, G1 and G2 can only be isomorphic if they contain exactly the
same set of individual nodes. Hence, when calculating the number of non-isomorphic
blockable n-graphs, we can omit all arcs between individual nodes, and restrict their
labels to the concepts in clos(K) (note that they will still be individual nodes after this
restriction). Thus, we consider only node labels that are subsets of clos(K), and there
are 2c possible such labels. Similarly, each arc is labelled with a subset of RKA , but
roles in RKA \ RK occur only in arcs connecting two individual nodes, so we restrict
our attention to 2r different arc labels that are subsets of RK.

Now we derive a bound on the out-degree of the variable nodes in G. Every
successor of such a node is generated by the application of a generating rule. Only
two are feasible for K: the ∃-rule and the ≥-rule. Only concepts of the form ∃R.S
or ≥ n R.C trigger the application of these rules, and there are at most c such
concepts. Each time one such rule is applied, it generates at most m R-successors for
each role R. Note that if a node v is identified with another one by a shrinking rule,
then the rule application which led to the generation of v will never be repeated [24],
so a generating rule can be applied to each node at most c times. This gives a
bound of c·m R-successors for each role R, and a total of b = r·c·m ≥ 1 for each
variable node of G.
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Let hn denote the number of non-isomorphic blockable n-graphs that may occur
in G. There are 2c different roots, each of which can have up to b successors. Each
successor can be reached by any of the 2r possible arcs and can be the root of any of
the hn−1 many different blockable (n − 1)-graphs. Hence, there are at most (2r·hn−1)

b

(ordered) combinations for each root. Thus we have

hn = 2c·(2r·hn−1)
b = 2c+r·b ·(hn−1)

b

To simplify the notation, let x = c + r·b . Then

hn = 2x·(hn−1)
b = 2x+x·b+...+x·b n−1 ·(h0)

b n = 2x·∑n−1
i=0 bi ·(h0)

b n
.

Since t0 = 2c, we obtain for b ≥ 2 that

hn ≤ (2x·h0)
b n = (2c+r·b ·2c)b n ≤ 2(2·c·b+r·b 2)n+1 = 2p(c,r,m)n+1

(4.1)

where p(c, r, m) = 2·c·b + r·b 2 = 2·c2·r·m + c2·r3·m2. As (4.1) also holds for b = 1,
we obtain the claimed bound Hn = 2p(c,r,m)n+1

. 	


In the rest of this section, we use p(c, r, m) to denote the polynomial given above.

Claim 5 Let T be a tree of variable nodes rooted at some individual node in G ∈
ccfn(GK), n ≥ 0. Then the number of nodes in T is bounded by (c·m·r)1+n·2p(c,r,m)n+1

.

Proof The claim is a consequence of the following properties:

i) The out-degree of T is bounded by c·m·r. As shown above, each role R has at
most c·m variable R-successors, and there are r roles.

ii) The depth of T is bounded by d = (Hn + 1)·n. This is because there are at most
Hn non-isomorphic blockable n-graphs. If there was a path of length greater
than (Hn + 1)·n to a node v in T, then v would occur after a sequence of Hn + 1
non overlapping blockable n-graphs, and one of them would have been blocked
so v would not have been generated.

iii) The number of variables in T is bounded by (c·m·r)d+1. 	


There can be one such tree rooted at each individual node, and since there is at
most one individual node for each individual in IK, we easily get a bound on the size
of a completion graph.

Lemma 4.2 Let K be a SHIQ, SHOQ, or SHOI KB and let G ∈ ccfn(GK), n ≥ 0.
Then the number of nodes in G is bounded by

|IK|·(c·m·r)1+n·2p(c,r,m)n+1

Unfortunately, Lemma 4.2 does not apply to SHOIQ KBs. Indeed, our bound
on the depth of completion graphs, relies on a fixed number of individual nodes. For
SHOIQ KBs, the application of the o?-rule may introduce new individual nodes
that lead to new n-blockable graphs non-isomorphic to previously present graphs.
This potentially leads to non-termination. Note that in [24], the maximal depth of a
variable node in the completion graphs does not depend on the number of individual
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nodes that can be generated. In turn, it is used to bound the number of nominals
introduced by applying the o?-rule. The technique in [24] seems not to be applicable
in our case, and it is not clear how termination could be achieved in general.

4.2 Complexity of the Query Entailment Algorithm

We now determine the complexity of deciding K |= Q for a PQ Q. As for data
complexity, the TBox, the RBox, and the query are considered fixed, while the ABox
A is given as an input. The complexity bounds are given w.r.t. the size of this A. In
the following, we denote by ||K, Q|| the total size of the string representing K and Q.
Note that m is linear in ||K, Q|| for unary number coding in number restrictions, and
single exponential for binary number coding. In any case, if Q and all of K except A
are fixed, m is a constant. Furthermore, c and r are linear in ||K, Q||, but also constant
in |A|. Finally, |IK| is linear in both. From this, and by Lemma 4.2, we know that the
maximum number of nodes in a completion graph G ∈ GK is triple exponential in
||K, Q|| if n is polynomial in ||K, Q||. If n is a constant, then the size of G is linear in
|A|. We easily obtain:

Corollary 4.3 Let G ∈ ccfn(GK), n ≥ 0. Then the number of nodes in G is (i) at most
triple exponential in ||K, Q||, if n is polynomial in ||K, Q||, and (ii) polynomial in |A|,
if n is a constant and Q and all of K except A is fixed.

Moreover, we also obtain a bound on the number of rule applications to derive
any clash-free n-complete completion graph.

Proposition 4.4 The expansion of GK into some G ∈ ccfn(GK), n ≥ 0, terminates in
time triple exponential in ||K, Q|| if n is polynomial in ||K, Q||. If n is a constant and
Q and all of K except A is fixed, then it terminates in time polynomial in |A|.

Proof The claim follows from the bound on the size of G given in Corollary 4.3,
together with the following observations:

• Since the worst-case analysis of the size of G assumes that all possible successors
are generated for every node, the shrinking of the completion graph by merging
nodes can only lead to a smaller completion graph, and there is no additional
effort in the regeneration of successors w.r.t. the worst-case estimate.

• Shrinking rules do not cause repeated rule applications, by merging some node
into another node that would later have to be regenerated. Indeed, a concept
C ∈ L(v) can fire a generating rule r for node v at most once. Even if a shrinking
rule is applied and a successor w of v is merged into a node w′, then w′ inherits
the labels and inequalities of w, as well as all its neighbours that are not variable
successors (which are removed by prune). This ensures that the conditions that
triggered the application of r for v are not met again, and thus the rule application
that led to the generation of w will not be repeated [24]. 	


Checking whether Q ↪→G can be easily done in time single exponential in the
size of Q. For G ∈ ccf(GK) and a query Q with n variables, the naive search space
has |nodes(G)|n many candidate assignments, and each one can be polynomially
checked. This is triple exponential in ||K, Q|| if |nodes(G)| is. On the other hand,
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Q ↪→G can be tested in time polynomial in the size of G when Q is fixed. Therefore,
we obtain the following result.

Theorem 4.5 Given a SHIQ, SHOQ, or SHOI KB K and a PQ Q in which all
roles are simple, deciding whether K |= Q is:

1. in coN3ExpTime w.r.t. combined complexity, for both unary and binary encoding
of number restrictions in K.

2. in coN2ExpTime w.r.t. combined complexity for a fixed Q if number restrictions
are encoded in unary.

3. in coNP w.r.t. data complexity.

Proof If K �|= Q, then there is a completion graph G ∈ ccfnr(Q)(GK) such that
Q �↪→G. By Proposition 4.4, this G can be obtained non-deterministically in time
triple exponential in ‖K, Q‖. Furthermore, Q ↪→G can be checked by naive methods
in time triple exponential in ‖K, Q‖ as well. Therefore, non-entailment of Q is in
N3ExpTime, entailment in coN3ExpTime and item 1 holds.

Similarly, since m does not occur in the uppermost exponent of the bound in
Lemma 4.2, each G in ccfnr(Q)(GK) can be obtained in double exponential time when
the conditions of item 2 hold.

As for item 3, under data complexity nr(Q) is constant, since Q and all
components of K = 〈T ,R,A〉 except A are fixed. By Proposition 4.4, every G ∈
ccfnr(Q)(GK) can be nondeterministically generated in polynomial time. Since decid-
ing whether Q ↪→G is polynomial in the size of G, K |= Q is in coNP. 	


We note that Q ↪→G can also be tested in time polynomial in the size of G
when Q is fixed, or when the expansion rules generate a completion graph whose
size exponentially dominates the query size. Other particular cases can be solved in
polynomial time as well. For example, when G is tree-shaped (i.e., the ABox is tree-
shaped and there are no arcs from variable to individual nodes), then the complexity
of the mapping corresponds to evaluating a CQ over a tree-shaped database, which
is polynomial in certain cases [20].

4.3 Data Complexity

The upper bound for data complexity given in Theorem 4.5 is worst-case optimal.
In [16], coNP-hardness was proved for instance checking over ALE KBs, and in [11]
this result has been extended to even less expressive DLs, like AL. This allows us to
state the following main result.

Theorem 4.6 For KBs in any DL extending AL and contained in SHIQ, SHOQ,
or SHOI , answering PQs in which all roles are simple is coNP-complete w.r.t. data
complexity.

This result provides an exact characterisation of the data complexity of PQs for
a wide range of DLs. An interesting observation is that once we allow for universal
quantification, which is a basic constructor of DLs, then many other constructors
can be added without affecting worst-case data complexity. Also, this result provides
the first tight upper bound for data complexity of SHOQ and SHOI and extends
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two previous coNP-completeness results w.r.t. data complexity: (i) for answering
UCQs over ALCNR KBs [33]. We extend this result to a query language allowing
for arbitrary use of conjunction and disjunction, as well as to DLs including role
hierarchies and some combinations of inverse roles and nominals. (ii) For answering
atomic queries in SHIQ [30]. This can be immediately extended to tree-shaped
CQs, as they admit a representation as a DL concept (e.g., by tuple-graphs of [7],
or via rolling up [25]). However, an extension to all PQs without transitive roles
remained open. We point out that [19] presented an algorithm for answering CQs
with transitive roles in SHIQ KBs that also yields a coNP upper bound.

4.4 Combined Complexity

Theorem 4.5 does not provide optimal upper bounds with respect to the combined
complexity of query answering. The main reason is that the tableaux algorithms
in [26] and [24], which we extended, are also not worst-case optimal. They are both
nondeterministically double exponential, while satisfiability of a KB is ExpTime-
complete for SHIQ [42] and NExpTime-complete for SHOIQ [41]. It is well known
that tableaux algorithms for expressive DLs often do not yield optimal complexity
bounds. However, they are easy to implement and amenable for optimisations [2].
Moreover, efficient reasoners implementing these algorithms are available [21, 23].

We want to point out that, in our algorithm, the witness of a blocked variable
must be its ancestor. We use these rather strict conditions for blocking in order
to make them similar to the conventional ones in DL tableaux, where it is usually
required that the blocking and the blocked variable are on the same path, see
e.g., [26] and [24]. This condition was relaxed in [36], resulting in an algorithm
whose wort-case complexity is exponentially lower than in [26]. We conjecture that
a similar blocking with any previous occurrence of an isomorphic n-tree could be
used in our algorithm, without affecting its soundness and completeness. With this
relaxed condition, we would obtain the same complexity upper bounds as those given
in [33]. In fact, the absence of the ‘blocking on the same path’ requirement is the
actual reason why the combined complexity bounds in [33] are exponentially lower
than the ones we obtained. Our algorithms may be further optimised following the
ideas in [15].

It was recently shown in [35] that answering CQs is 2ExpTime-hard for all DLs
containing ALCI , and thus also for SHIQ and SHOI . As a consequence, the
2ExpTime upper bound given in [13] for answering PQs in SHIQ is tight, and
similarly the ones given in [19, 30] for answering CQs in SHIQ, and the ones given
in [7] for containment of CQs in DLR. In the light of these results, and considering
the coN2ExpTime upper bound discussed above and the intrinsic non-determinism of
tableaux algorithms, it seems reasonable to conjecture that a 2ExpTime upper bound
can be achieved for SHOQ and SHOI . To our knowledge, the question remains
open and this work provides the first upper bounds. We point out that decidability of
CQs (with transitive roles) in SHOQ has been shown [18], but we are not aware of
any emerging complexity results. As for SHOI , no other decision procedures seem
to be available, even for more restricted classes of queries. In any case, since CQ
answering in SHOI is already 2ExpTime-hard, the gap to our coN2ExpTime upper
bound is rather small. For SHOQ (in fact, for any logic containing ALC) ExpSpace-
hardness of PQ answering was shown in [13], thus the gap is still not large. A quite
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significant gap remains open for CQs, since only the ExpTime-hardness that follows
from instance checking is known.

5 Conclusion

We have studied answering PQs over KBs in the expressive DLs of the SH family,
where we have focused on data complexity, i.e., measuring the complexity of query
answering with respect to the size of the ABox while the query and the other parts of
the KB are fixed. This setting is gaining importance since DL KBs are more and more
used also for representing data repositories, especially in the context of the Semantic
Web and in Enterprise Application Integration.

Generalising a technique presented in [33] for a DL which is far less expressive
than SHIQ, SHOQ, and SHOI , and combining it with the techniques from [24],
we have developed a novel tableaux-based algorithm for answering PQs without
transitive roles. The algorithm manages the technical challenges caused by the simul-
taneous presence of inverse roles, number restrictions, and general KBs, leading to
DLs without the finite model property. We have presented blocking conditions that
make it suitable for deciding query entailment. They are more involved than previous
blocking conditions in [24] and use the query size as a parameter. Query answering
itself is then accomplished by a technique that maps the query into completion graphs
of bounded depth, which are constructed using tableaux-style rules. The technique
provides a sound and complete algorithm for SHIQ, SHOQ, and SHOI , while for
SHOIQ only soundness is established.

For the three mentioned sublogics of SHOIQ, our algorithm is worst-case
optimal in data complexity, and allows us to characterise the data complexity of
answering PQs for a wide range of DLs, including very expressive ones. Namely, for
each DL of the SH family except SHOIQ, answering PQs without transitive roles
is coNP-complete with respect to data complexity. This narrows the gap between
the known coNP lower bound and the ExpTime upper bound for even weaker
DLs, towards a negative answer to the open issue whether the data complexity of
expressive DLs will similarly increase as their combined complexity.

We point out that our method can also be exploited for deciding containment
between PQs, i.e., given a KB K and PQs Q1 and Q2, deciding whether K |= Q1

implies that K |= Q2. As a simple consequence, we also obtain decidability of the
equivalence of positive queries Q1 and Q2 having only simple roles in SHIQ,
SHOQ, and SHOI . This result can be exploited for query optimisation, and is to
the best of our knowledge the first result in this direction for PQs in expressive DLs.

In this paper, roles in queries must be simple (this was also assumed e.g., in
[29]), and a natural question is whether our results extend to queries with transitive
roles. Unfortunately, as discussed in [17], these roles impose major difficulties in
establishing a bound on the depth of completion graphs which need to be considered
for answering a given query. The extension of these modified-tableaux techniques to
general CQs is not apparent, and other techniques may be more adequate.

For example, the ‘rolling-up’ technique, which is related to the notion of tuple-
graph of [7] and reduces the query answering problem to verifying the unsatifiability
of a KB, allowed the authors of [19] to obtain an algorithm for answering arbitrary
CQs in SHIQ. This technique was also exploited in [18] to provide an algorithm
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for arbitrary CQs in SHOQ. Exploiting automata on infinite trees, an algorithm for
answering positive 2-way regular path queries in the DL ALCQIb reg was presented
in [13]. This is, to our knowledge, the most general algorithm for query answering in
DLs without nominals, and allows, e.g., to answer PQs in SRIQ, a generalization of
SHIQ closely related to the DL underlying OWL 2.

These techniques are both quite different from ours. The algorithms in [19]
and [13] yield optimal 2ExpTime upper bounds w.r.t. combined complexity, while
only the bound in [19] is known to be tight w.r.t. data complexity. Indeeed, we
are not aware of any other tight data complexity bounds for query answering in
SHOQ and SHOI , neither of other algorithms for SHOI . A terminating algorithm
for query answering in SHOIQ remains to be found, either tableaux-based using
suitable blocking conditions, or based on a different approach. It also remains to
explore whether the proposed technique can be applied to yet more expressive DLs,
e.g., allowing reflexive-transitive closure in the TBox (in the style of PDL), or to
more expressive query languages. However, including inequality atoms in CQs is
infeasible; as follows from results in [7], such queries are undecidable for every DL
of the SH family.

Apart from the data complexity, also the combined complexity of query answering
in expressive DLs remains for further investigation, since no tight bounds are known
for SHOQ and SHOI . Finally, an interesting issue is whether other techniques
may be applied to derive results similar to ours. For instance, whether resolution-
based techniques as in [28, 30] or techniques based on tree automata can be fruitfully
applied. While the latter have already been successfully applied for answering PQs,
allowing also for atoms that are regular expressions over roles, in very expressive
DLs [13], it remains unclear how the contribution of the ABox may be singled out so
as to establish data complexity.
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Appendix

Claim 2 Let G ∈ GK, let J |=K G, and let r be any rule in Table 1 that is applicable
to G. Then, there exist a completion graph G ′ obtainable from G by applying r and an
extended interpretation J ′ equal to J on nodes(G) such that J ′ |=K G ′.

The proof of this claim is similar to the proof of completeness of the tableau
algorithm for SHOIQ, given in detail in [24]. Although the technical details are
quite different, the underlying intuition is essentially the same. The main difference
is that the authors of [24] use a tableau T to represent an arbitrary model of the KB,
and they “steer” the application of the expansion rules through this T. In contrast, we
follow an approach closer to [33] and look at completion graphs as a representation
of a set of models of the KB, thus we do the steering directly with a model. In [24],
it was proved that there is a mapping π from the nodes of G to the elements of T,
satisfying certain conditions, which can be extended after each rule application. The
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conditions imposed on π are closely related to those for a model of a completion
graph. Here we prove that the interpretation J can be extended and modelhood is
preserved after each rule application, similarly as this was proved for π .

Proof To prove Claim 2, we consider the different cases for an expansion rule r from
Table 1. First we consider the cases where r is a deterministic, non-generating rule.
There is only one completion graph G ′ which can be obtained from G by applying r,
and the models of G are exactly the models of G ′. If r is the 	-rule, there is some node
v in G s.t. C1 	 C2 ∈ L(v). Since J |=K G, we have vJ ∈ (C1 	 C2)

J . By the definition
of interpretation, both vJ ∈ CJ

1 and vJ ∈ CJ
2 hold. The inequality relation and all

labels in G ′ are exactly as in G, the only change is that {C1, C2} ⊆ L(v) in G ′, so
J |=K G ′.

The cases of the ∀-rule and the ∀+-rule, are similar to the 	-rule. The labels of all
nodes in G are preserved in G ′, except for the node w to which the rule was applied,
and we have in G ′ either C ⊆ L(w) or ∀R′.C ⊆ L(w) respectively. In the former case,
since J |= K, vJ ∈ (∀R.C)J , and w is an R-neighbour of v, it follows that wJ ∈ CJ .
In the latter case, vJ ∈ (∀R.C)J and w and R′-neighbour of v for some R′ �∗ R,
Trans(R′), imply that wJ ∈ (∀R′.C)J . Thus J |=K G ′ in both cases.

For the non-deterministic, non-generating rules, there are two different comple-
tion graphs G ′ that can be obtained after the rule application, and J |=K G ′ for at
least one of them, so we can choose to apply the rule in a way that such a G ′ is
obtained. In particular, if r is the 
-rule, there is some node v in G with C1 
 C2 ∈
L(v). For every J such that J |=K G we have vJ ∈ (C1 
 C2)

J . By definition, either
vJ ∈ CJ

1 or vJ ∈ CJ
2 holds. If the former holds, we can apply r in such a way that we

obtain a G ′ with {C1} ⊆ L(v). If the latter holds, we can obtain a G ′ with {C2} ⊆ L(v).
In both cases, J |=K G ′ and the claim holds.

The proof for the choose rule is easy. Since either vJ ∈ CJ or vJ ∈ ¬CJ holds
for every v, C, and J , we can choose to apply r in such a way that we obtain a G ′
with {C} ⊆ L(v) if the former, or a G ′ with {NNF(¬C)} ⊆ L(v) if the latter, so that
J |=K G ′.

Now we show that if a shrinking rule r is applicable to G and J |=K G, then there
are two nodes v, v′ in G such that vJ = v′J . Thus the new G ′ can be obtained by
merging these nodes and J |=K G ′. When the ≤-rule is applicable to a node v in G,
there is some concept ≤ n S.C ∈ L(v) such that v has S-neighbours w1, . . . , wn, wn+1

labelled with C. As J |=K G, it follows vJ ∈ (≤ n S.C)J , which implies that there are
at most o1, . . . , on elements in �J such that 〈vJ , oi〉 ∈ SJ and oi ∈ CJ . Thus v has
S-neighbours wi and w j, i �= j, which are instances of C such that wJ

i = wJ
j . Hence

J |=K G ′, where G ′ is obtained from G by merging wi into w j.
The o-rule is applicable if {o} ∈ L(v) ∩ L(v′) for some nominal {o} and two nodes

v and v′. Since J |=K G, we have vJ ∈ {o}J and v′J ∈ {o}J , but since {o}J = {oJ },
we have vJ = v′J = oJ . This ensures one can be merged into the other to obtain G ′,
and J |=K G ′.

If the ≤o-rule is applicable to a node v in G, then ≤ m S.C ∈ L(v) for some m. As
J |=K G by assumption, there are only m′ ≤ m elements o1, . . . , om′ in �J such that
〈vJ , oi〉 ∈ SJ and oi ∈ CJ . Furthermore, since v has m S-neighbours w1, . . . , wm ∈
in(G) with C ∈ L(wi) and wi �≈ w j for all 1 ≤ j < i ≤ m, every o j must be such that
wJ

i = o j for some wi. Since 〈vJ , v′J 〉 ∈ SJ and v′J ∈ CJ for any v′ that satisfies the
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conditions of the rule, v′J = o j for some o j, which implies that there is some wi such
that wJ

i = v′J . Thus we can merge v′ into wi to obtain a G ′ such that J |=K G ′.
Next, we consider the generating rules. If r is the ∃-rule, since the propagation

rule is applicable, there is some v in G such that ∃R.C ∈ L(v). Hence, some o ∈ �J

exists such that 〈vJ , o〉 ∈ RJ and o ∈ CJ . A completion graph G ′ can be obtained
by adding a new node w to G. J will be modified to J ′ by setting wJ ′ = o, and thus
J ′ |=K G ′.

The case of the ≥-rule is analogous to the ∃-rule: if J |=K G and ≥ n S.C ∈ L(v),
there are m elements, o1, . . . , om ∈ �J , m ≥ n, such that 〈vJ , oi〉 ∈ RJ and oi ∈ CJ

for each oi. To obtain G ′, we add new nodes w1, . . . , wn to G, set the labels of each
wi and each v → wi as required, and introduce new inequalities wi �≈ w j to G for each
pair i �= j. By setting wJ ′

i = oi for 1 ≤ i ≤ n, J ′ |=K G ′ is ensured.
Finally, the o?-rule is only applicable to v if ≤ n S.C ∈ L(v). As J |=K G by

assumption, there is some m ≤ n such that there are exactly m elements o1, . . . , om

in �J with 〈vJ , oi〉 ∈ SJ and oi ∈ CJ . We can guess this m and create m nominal S-
successors w1, . . . , wm of v with C ∈ L(wi) and wi �≈ w j for all 1 ≤ j < i ≤ m to obtain
G ′. By setting wJ ′

i = o j for each i, we ensure that J ′ |=K G ′ as desired. 	


Claim 3 If 〈π(x), π(y)〉 ∈ E(R′), then μ(y) is an R′-neighbour of μ(x).

Proof By the definition of E(R′) and of R′-step, if 〈π(x), π(y)〉 ∈ E(R′) then either:
(i) tail′(π(y)) is an R′-successor of tail(π(x)), or (ii) tail′(π(x)) is an Inv(R′)-successor
of tail(π(y)).

We prove that (i) implies that μ(y) is an R′-successor of μ(x). Analogously,
(ii) implies that μ(x) is an Inv(R′)-successor of μ(y). Together, these two facts
complete the proof of the claim. We consider three cases:

1) π(x) = [ a
a

] ∈ in(Gπ ): then μ(x) = tail′(π(x)) = tail(π(x)) = a. If tail′(π(y)) is an
R′-successor of tail(π(x)) = a, then tail′(π(y)) is an R′-successor of an individual
node. This implies that either tail′(π(y)) is also an individual node; or it is a
variable node that is not n-blocked and π(y) is in some Gi with afterblocked(Gi) =
∅. In both cases μ(y) = tail′(π(y)) = tail(π(y)) holds and thus μ(y) is an R′-
successor of μ(x).

2) π(y) = [ a
a

] ∈ in(Gπ ): then μ(y) = tail′(π(y)) = tail(π(y)) = a. By construction of
π(x), either tail(π(x)) = tail′(π(x)) or tail(π(x)) = ψ(tail′(π(x))). The claim thus
holds if μ(x) = tail(π(x)). Suppose this is not the case. Then there are two
possibilities.
2a) μ(x) = tail′(π(x)), tail′(π(x)) �= tail(π(y)) and tail(π(x)) = ψ(tail′(π(x))).

In this case, tail′(π(x)) is a leaf of a blocked n-graph, and it is blocked by
tail(π(x)) = ψ(tail′(π(x))). Since μ(y) = a is an R′-successor of tail(π(x)) =
ψ(tail′(π(x))), we have that ψ−1(a) is an R′-successor of tail′(π(x)). Since
ψ−1(a) = a (recall that nominals occur in at most one node label, thus an
individual node can only be isomorphic to itself), we have that a = μ(y) is an
R′-successor of tail′(π(x)) = μ(x) as desired.

2b) μ(x) = ψ(tail′(π(x))), ψ(tail′(π(x))) �= tail(π(y)) and tail(π(x)) = tail′(π(x)).
Then π(x) is a node of some Gi with afterblocked(Gi) �= ∅, and π(x) �∈
afterblocked(Gi). Also in this case, tail′(π(x)) is blocked by ψ(tail′(π(x))).
Thus, μ(y) = a an R′-successor of tail(π(x)) = tail′(π(x)) implies that ψ(a)
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is an R′-successor of ψ(tail′(π(x))). As ψ(a) = a, we have that a = μ(y) is an
R′-successor of ψ(tail′(π(x))) = μ(x) and the claim holds.

3) If π(x), π(y) �∈ in(Gπ ), then π(x) and π(y) are nodes of some Gi.
First, suppose that afterblocked(Gi) = ∅. Then μ(x) = tail′(π(x)). Since π(y)

is an R′-step of π(x), we have tail′(π(x)) = tail(π(x)) (otherwise π(y) ∈
afterblocked(Gi) would follow, contradicting afterblocked(Gi) = ∅). Clearly, if
tail′(π(y)) is an R′-successor of tail(π(x)), then μ(y) = tail′(π(y)) is an R′-
successor of μ(x) = tail′(π(x)) = tail(π(x)).
Now we assume afterblocked(Gi) �= ∅. We can further distinguish the following
cases:
3a) {π(x), π(y)} ⊆ afterblocked(Gi).

In this case, by definition, μ(x) = tail′(π(x)) and μ(y) = tail′(π(y)). Note
that, by the definition of n-blocking, if there is some p with tail(p) �= tail′(p)

and some p′ which is a descendant of p, then tail(p′) �= tail′(p′) can only hold
if the distance between p and p′ is greater than n. As a consequence, and
since the path length of Gi is bounded by n, tail(p) = tail′(p) holds for each
p ∈ afterblocked(Gi). Clearly, if tail′(π(y)) is an R′-successor of tail(π(x)),
we have that μ(y) = tail′(π(y)) is an R′-successor of μ(x) = tail′(π(x)) =
tail(π(x)) as desired.

3b) π(x) �∈ afterblocked(Gi) and π(y) ∈ afterblocked(Gi).
In this case μ(x) = ψ(tail′(π(x))) and μ(y) = tail′(π(y)). It is also easy to see
that π(x) ∈ blockedLeaves(Gi), thus tail(π(x)) �= tail′(π(x)) and tail(π(x)) =
ψ(tail′(π(x))). Hence if tail′(π(y)) is an R′-successor of tail(π(x)), then
μ(y) = tail′(π(y)) is an R′-successor of μ(x) = ψ(tail′(π(x))).

3c) {π(x), π(y)} ∩ afterblocked(Gi) = ∅.
By definition, μ(x) = ψ(tail′(π(x))) and μ(y) = ψ(tail′(π(y))) hold. We can
also verify that tail(π(x)) = tail′(π(x)), as otherwise π(y) ∈ afterblocked(Gi)

would hold. By the definition of n-graph equivalence, if tail′(π(y)) is an
R′-successor of tail(π(x)) = tail′(π(x)), then μ(y) = ψ(tail′(π(y))) is an R′-
successor of μ(x) = ψ(tail′(π(x))) as desired.

Note that the case π(y) �∈ afterblocked(Gi) and π(x) ∈ afterblocked(Gi) is not
possible. This proves the claim. 	
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