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Abstract

Description Logics (DLs) are the formal foundations of the
standard web ontology languages OWL-DL and OWL-Lite.
In the Semantic Web and other domains, ontologies are in-
creasingly seen also as a mechanism to access and query data
repositories. This novel context poses an original combina-
tion of challenges that has not been addressed before: (i) suf-
ficient expressive power of the DL to capture common data
modeling constructs; (ii) well established and flexible query
mechanisms such as Conjunctive Queries (CQs); (iii) opti-
mization of inference techniques with respect to data size,
which typically dominates the size of ontologies. This calls
for investigating data complexity of query answering in ex-
pressive DLs. While the complexity of DLs has been studied
extensively, data complexity has been characterized only for
answering atomic queries, and was still open for answering
CQs in expressive DLs. We tackle this issue and prove a tight
CONP upper bound for the problem in SHIQ, as long as no
transitive roles occur in the query. We thus establish that for
a whole range of DLs from AL to SHIQ, answering CQs
with no transitive roles has CONP-complete data complex-
ity. We obtain our result by a novel tableaux-based algorithm
for checking query entailment, inspired by the one in [19],
but which manages the technical challenges of simultaneous
inverse roles and number restrictions (which leads to a DL
lacking the finite model property).

Introduction
Description Logics (DLs) [2] are specifically designed for
representing structured knowledge by concepts (i.e., classes
of objects) and roles (i.e., binary relationships between
classes). They gained increasing attention recently as
the formal foundation for the standard Web ontology lan-
guages [11]. In fact, OWL-Lite and OWL-DL are syntactic
variants of the DLs SHIF(D) and SHOIN (D), respec-
tively [12, 21]. In the Semantic Web and domains such as
Enterprise Application Integration and Data Integration, on-
tologies provide a high-level, conceptual view of the relevant
information. However, they are increasingly seen also as a
mechanism to access and query data repositories.
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This novel context poses an original combination of chal-
lenges unmet before, both in DLs/ontologies and in related
areas such as data modeling and querying in databases:

(i) On the one hand, a DL should have sufficient expres-
sive power to capture common constructs used in data mod-
eling [4]. This calls for expressive DLs [5, 3], in which
a concept may denote the complement or union of others
(to capture class disjointness and covering), may involve
direct and inverse roles (to account for relationships that
are traversed in both directions), and may contain number
restrictions (to state existence and functionality dependen-
cies and cardinality constraints on relationships in general).
Such concepts are then used in the intentional component
(called TBox) of a knowledge base, which contains inclu-
sion assertions between concepts and roles, while the exten-
sional component (called ABox) contains assertions about
the membership of individuals to concepts and roles. A no-
table example of such an expressive DL is SHIQ, which in
addition allows for asserting the transitivity of certain roles.

(ii) On the other hand, the data underlying an ontology
should be accessed using well established and flexible mech-
anisms such as those provided by database query languages.
This goes well beyond the traditional inference tasks in-
volving objects in DL-based systems, like instance check-
ing [10]. Indeed, since explicit variables are missing, DL
concepts have limited possibility for relating specific data
items to each other. Conjunctive queries (CQs), i.e., select-
project-join queries, provide a good tradeoff between ex-
pressive power and nice computational properties, and thus
are adopted as core query language in several contexts, such
as data integration [18].

(iii) Finally, data repositories can be very large and are
usually much larger than the intentional level. Therefore,
the contribution of the extensional level (i.e., the data) to
the complexity of inference must be singled out, and one
must pay attention to optimizing inference techniques with
respect to data size, as opposed to the overall size of the
knowledge base. In databases, this is accounted for by data
complexity of query answering [23], where the relevant pa-
rameter is the size of the data, as opposed to combined com-
plexity, which additionally considers the size of the query
and of the schema.

As for data complexity of DLs, [10] showed that instance
checking is CONP-hard already in the rather weak DLALE ,
and [7] that CQ answering is CONP-hard in the yet weaker



DLAL. For suitably tailored DLs, CQ answering is polyno-
mial (actually LOGSPACE) in data complexity [6, 7]; see [7]
for an investigation of the NLOGSPACE, PTIME, and CONP
boundaries.

For expressive DLs (with the features above, notably in-
verse roles), TBox+ABox reasoning has been studied exten-
sively using a variety of techniques ranging from reductions
to Propositional Dynamic Logic (PDL) (see, e.g., [8, 5]) over
tableaux [3, 14] to automata on infinite trees [5, 22]. For
many such DLs, the combined complexity of TBox+ABox
reasoning is EXPTIME-complete, including ALCQI [5,
22], DLR [8], and SHIQ [22]. However, until recently,
little attention has been explicitly devoted to data complex-
ity in expressive DLs. An EXPTIME upper bound for data
complexity of CQ answering in DLR follows from the re-
sults on CQ containment and view-based query answering
in [8, 9]. They are based on a reduction to reasoning in PDL,
which however prevents to single out the contribution to the
complexity coming from the ABox. In [19] a tight CONP
upper bound for CQ answering inALCNR is shown. How-
ever, this DL lacks inverse roles and is thus not suited to
capture semantic data models or UML. In [16, 17] a tech-
nique based on a reduction to Disjunctive Datalog is used
for ALCHIQ. For instance checking, and (by making use
of the notion of tuple-graph [8] or via rolling-up [15]) also
for tree-shaped CQs, it provides a (tight) CONP upper bound
for data complexity, since it allows to single out the ABox
contribution. This is not the case for general CQs, result-
ing in a non-tight 2EXPTIME upper bound (matching also
combined complexity).

Summing up, a precise characterization of data complex-
ity for CQ answering in expressive DLs was still open, with
a gap between a CONP lower-bound and an EXPTIME upper
bound. We close this gap, thus simultaneously addressing
the three challenges identified above. Specifically, we make
the following contributions:

• Building on techniques of [19, 14], we devise a novel
tableaux-based algorithm for CQ answering over SHIQ
knowledge bases, that works under the assumption that the
CQ does not contain transitive roles. Technically, to show
soundness and completeness of the algorithm, we have to
deal both with a novel blocking condition (inspired by the
one in [19], but taking into account inverse and transitive
roles), and with the lack of the finite model property.
• This novel algorithm provides us with a characterization
of data complexity for CQ answering in expressive DLs.
Specifically, we show that data complexity of CQ answering
over SHIQ knowledge bases is in CONP, and thus CONP-
complete for all DLs ranging from AL to SHIQ.

For lack of space, proofs are omitted here; they can be
found in an accompanying technical report [20].

Preliminaries
We only briefly recall SHIQ and refer to the literature
(e.g., [2]) for further details and background. We denote
by C, R, R+ (where R+ ⊆ R), and I the sets of concept
names, role names, transitive role names, and individuals

respectively. The function Inv is defined on R∪ {P− | P ∈
R} by Inv(R) = R−, and Inv(R−) = R; Trans(R) holds
true if either R ∈ R+ or Inv(R) ∈ R+.

A role expression R (or simply role) is either an atomic
role name P or the inverse P− of a role P . A concept ex-
pression (or simply concept) C is either an atomic concept
nameA or one ofCuD,CtD, ¬C, ∀R.C, ∃R.C,≥ nS.C,
or ≤ nS.C, where C and D denote concepts, R a role, S a
simple role (see later), and n ≥ 0 an integer. A knowledge
base is a triple K = 〈T ,R,A〉, where
• T , the TBox, is a set of concept inclusion axioms C1 v
C2;
• R, the role hierarchy, is a set of role inclusion axioms
R1 v R2; and
• A, the ABox, is a set of assertions A(a), P (a, b), and a 6=
b, where A (resp., P ) is an atomic concept (resp., role) and
a and b are individuals.

Let v∗ denote the reflexive and transitive closure of v
(i.e., the subrole relation) over R ∪ {Inv(R1) v Inv(R2) |
R1 v R2 ∈ R}. A role S is simple, if for no role R ∈
R+ we have that R v∗ S. Without loss of expressivity,
we assume that all concepts in K are in negation normal
form (NNF), i.e., negation appears only in front of atomic
concepts.

The closure of a concept C, clos(C), is the smallest set
of concept expressions containing C that is closed under
subconcepts and their negation (expressed in NNF); the clo-
sure of K is denoted clos(K) and defined as the union of all
clos(C) for each C occurring in K.

Unless stated otherwise, K will denote a knowledge base
〈T ,R,A〉, RK the roles occurring in K and their inverses,
and IK the individuals occurring in A.
Example 1 As a running example, we use the knowledge
base K = 〈{A v ∃P1.A, A v ∃P2.¬A}, {}, {A(a)}〉.

The semantics of K is defined in terms of first-order in-
terpretations I = (∆I , ·I), where ∆I is the domain and ·I
the valuation function, as usual (without unique names as-
sumption;1 see [2]). I is a model of K, denoted I |= K, if
it satisfies T , R and A.

Conjunctive Queries. We assume that K has an associ-
ated set of distinguished concept names, denoted Cq, which
are the concepts that can occur in queries.
Definition 1 (conjunctive query) A conjunctive query
(CQ) Q over a knowledge base K is a set of atoms of the
form {p1(Y1), . . . , pn(Yn)} where each pi is either a role
in RK or a concept in Cq , and Yi is a tuple of variables or
individuals in IK matching its arity.

VC(Q) denotes the set of variables and individuals in Q.
CQs are interpreted in the standard way. An interpretation

I is a model of Q, denoted I |= Q, if there is a substitution
σ : VC(Q) → ∆I such that σ(a) = aI for each individual
a ∈ VC(Q) and I |= p(σ(Y )), for each p(Y ) in Q. A
knowledge base K entails Q, denoted K |= Q, if I |= Q
for each model I of K.

1The unique names assumption can be easily emulated using 6≈.



Example 2 Let Cq = {A}. We consider the CQs Q1 =
{P1(x, y), P2(x, z), A(y)} and Q2 = {P2(x, y), P2(y, z)}.
Note that K |= Q1. Indeed, for an arbitrary model I of K,
we can map x to aI , y to an object connected to aI via role
P1 (which by the inclusion axiom A v ∃P1.A exists and is
an instance of A), and z to an object connected to aI via
role P2 (which exists by the inclusion axiom A v ∃P2.¬A).
Also, K 6|= Q2. A model I of K that is not a model of
Q2 is the one with ∆I = {o1, o2}, aI = o1, AI = {o1},
P I1 = {(o1, o1)}, and P I2 = {(o1, o2)}.

Query answering for a certain DL L is in a complexity
class C, if given any knowledge base K in L and query Q,
deciding K |= Q is in C; this is also called combined com-
plexity. The data complexity of query answering is the com-
plexity of deciding K |= Q where Q and all of K except A
are fixed.

An important note is that CQ answering is not reducible
to knowledge base satisfiability, since the negated query is
not expressible within the knowledge base. For this reason,
the known algorithms for reasoning over SHIQ knowledge
bases are insufficient.

Note that CQs have no free (i.e., distinguished) variables,
so they are Boolean queries. However, this is not a limita-
tion, since as usual we can reduce answering a CQ Q(X)
with distinguished variables X to answering all its ground
instances Q(c), where c is a tuple of individuals.

The Query Answering Algorithm
We present now a method for decidingK |= Q that builds on
the results of [14]. Our method works under the assumption
that the CQQ does not contain transitive roles or their super-
roles, and in the following we make this assumption.

Like in [14], we use completion forests, which are finite
relational structures capturing sets of models ofK. Roughly
speaking, the models ofK are represented by an initial com-
pletion forest FK . By applying tableaux-style expansion
rules repeatedly, new completion forests are generated non-
deterministically where also new individuals might be intro-
duced. Each model of K is preserved in some of the result-
ing forests. Therefore, checking K |= Q equals checking
F |= Q for each completion forest F . We will show that,
for largely enough expanded F , we can check F |= Q ef-
fectively via a syntactic mapping of the variables in Q to the
nodes in F . Thus, to witness that K 6|= Q, it is sufficient
to (nondeterministically) construct a large enough forest F
to which Q cannot be mapped. This is in effect what our
algorithm does.

As customary with tableaux-style algorithms, we define
suitable blocking conditions on the rules to ensure termina-
tion of forest expansion. They are inspired by those in [19],
yet must handle logics that have no finite model property.
They are also more involved than those in [14], which serve
for satisfiability checking but not for query answering, and
involve a depth parameter n which depends on Q.

Completion forests and n-blocking
A variable tree T is a tree whose nodes are variables except
the root, which might be also an individual, and where each
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Figure 1: Trees and completion forests for the example
knowledge base.

node v is labeled with a set of concepts L(v) and each arc
v→w is labeled with a set of roles L(v→w). For any in-
teger n ≥ 0, the n-tree of a node v in T , denoted Tn

v , is
the subtree of T rooted at v that contains all descendants
of v within distance n. Variables v and v′ in T are n-tree
equivalent in T , if Tn

v and Tn
v′ are isomorphic (i.e., there is

a bijection ψ from the nodes of Tn
v to those of Tn

v′ which
preserves all labels). If, for such v and v′, v′ is an ancestor
of v in T and v is not in Tn

v′ , then we say that Tn
v′ tree-blocks

Tn
v , that v′ is a n-witness of v in T , and that each variable
w in Tn

v′ tree-blocks the corresponding variable ψ−1(w) in
Tn

v .
Example 3 Consider the variable tree T1 in Figure 1, with
a as root, where L1 = {A, ¬At∃P1.A, ¬At∃P2.¬A, At
¬A, ∃P1.A, ∃P2.¬A}, and L2 = {¬A, ¬At ∃P1.A, ¬At
∃P2.¬A, A t ¬A}. Then, v1 and v5 are 1-tree equivalent
in T1; v1 is a witness of v5 (but not vice versa); T1

1
v1

tree-
blocks T1

1
v5

; and v1 (resp., v3, v4) tree-blocks v5 (resp., v7,
v8).
Definition 2 A completion forest (cf. [14]) for K is consti-
tuted by (i) a set of variable trees whose roots are the in-
dividuals in IK and can be arbitrarily connected by arcs;
and (ii) a symmetric binary relation 6≈ over the nodes of the
variable trees.

For every arc v→w and role R, if the label L(v→w)
contains some role R′ with R′ v∗ R, then w is an R-
successor and an Inv(R)-predecessor of v. We call w an
R-neighbor of v, if w is an R-successor or an Inv(R)-
predecessor of v. The ancestor relation is the transitive clo-
sure of the union of the R-predecessor relations for all roles
R.

We next introduce the initial completion forest of a knowl-
edge base K. For that, we use a set of global concepts
gcon(K, Cq) = {¬C tD | C v D ∈ T } ∪ {C t¬C | C ∈
Cq}. Informally, by requiring that each individual belongs
to all global concepts, satisfaction of the TBox is enforced
and, by case splitting, each individual can be classified with
respect to the distinguished concepts (i.e., those appearing
in queries).
Definition 3 With any knowledge base K, we associate an
initial completion forest FK as follows:
• The nodes are the individuals a ∈ IK , and L(a) = {C |
C(a) ∈ A} ∪ gcon(K, Cq).



∃-rule: if ∃R.C ∈ L(v), v is not n-blocked and has no R-neighbor w with C∈L(w)

then create a new node w with L(w) := {C} ∪ gcon(K, Cq) and
an arc v→w with label L(v→w) := {R}

≥-rule: if≥ n S.C ∈ L(v), v is not n-blocked and has no S-neighbors w1, . . . ,wn

such that C /∈ L(wi) and wi 6≈ wj , for 1 ≤ i < j ≤ n

then create new nodes w1, . . . , wn with L(wi):={C}∪ gcon(K, Cq), arcs
v→wi with labels L(v→wi):={S}, and wi 6≈wj for 1≤i < j≤n

Table 1: Two expansion rules from the algorithm.

• The arc a→ a′ is present iff A contains some assertion
R(a, a′), and L(a→ a′) = {R | R(a, a′) ∈ A}.

• a 6≈ a′ iff a 6= a′ ∈ A.
If A = ∅, then FK contains a single node a with L(a) =
gcon(K, Cq).
Example 4 In our running example, FK contains only the
node a, which has the label L(a) := {A, ¬At∃P1.A, ¬At
∃P2.¬A, A t ¬A}.

We now define a notion of blocking which depends on a
depth parameter n ≥ 0.

Definition 4 For an integer n ≥ 0, a node v in a comple-
tion forest F is n-blocked, if v is not a root and is either di-
rectly or indirectly n-blocked. Node v is directly n-blocked,
if none of its ancestors is n-blocked and v is a leaf of a tree-
blocked n-tree in F . Node v is indirectly n-blocked, if one
of its ancestors is n-blocked or some arc v′→ v in F has
empty label.

Note that if v is n-blocked, then it is m-blocked for each
m ≤ n. Furthermore, n-blocking implies blocking as in [14]
for n = 1, and for n = 0 amounts to blocking by equal node
labels.

Example 5 Consider F1 with the variable tree T1 from Ex-
ample 3 and with an empty 6≈ relation. F1 is 1-blocked.
Analogously, consider the completion forest F2 that has the
variable tree T2 in Figure 1. In F2 the 6≈ relation is also
empty. F2 is 2-blocked.

Starting from FK , we can generate new completion
forests F by applying expansion rules in the style of tableau
algorithms. We denote by FK the set of all forests obtained
this way. The rules make use of “n-blocking” to ensure ter-
mination. The ∃-rule and ≥-rule, which replace analogous
rules in [14], are shown in Table 1. The complete set of ex-
pansion rules is given in the extended report [20]. Note that
in our case newly introduced nodes must be initialized with
a label containing gcon(K, Cq).

A node v in F contains a clash if either {C, ¬C} ⊆ L(v)
or≤ nS.C ∈ L(v) and v has S-successorsw0, . . . , wn such
that C ∈ L(wi) for all wi and wi 6≈ wj ∈ F for all i 6= j.
F is clash free, if none of its nodes contains a clash.

We call a completion forest n-complete, if (under n-
blocking) no rule can be applied to it. We denote by
ccfn(FK) the set of n-complete and clash free completion
forests in FK .

Example 6 Both F1 and F2 can be obtained from FK by
applying the expansion rules. They are both complete and
clash-free, so F1 ∈ ccf1(FK) and F2 ∈ ccf2(FK).

Models of a completion forest. If we view variables in a
completion forest F as individuals, we can define models of
F in terms of models of K over an extended vocabulary.

An interpretation I (over the extended vocabulary) is a
model of a completion forest F for K, denoted I |= F , if
I |= K and for all nodes v, w in F it holds that (i) vI ∈ CI
if C ∈ L(v), (ii) 〈vI , wI〉 ∈ RI if F has an arc v→w and
R ∈ L(〈v, w〉), and (iii) vI 6= wI if v 6≈ w ∈ F .

Clearly, the models of the initial completion forest FK

and of K coincide, and thus FK semantically represents K.
The following result states that the n-complete and clash-
free forests for K semantically capture K (modulo new in-
dividuals). The proof shows that each expansion rule pre-
serves the models of a forest to which it is applied.

Theorem 1 Let n ≥ 0. Then for each model I of K, there
exists some F ∈ ccfn(FK) and a model of F extending I.

By virtue of this result, we can transfer query entail-
ment K |= Q to logical consequence of Q from completion
forests as follows. For any completion forest F and CQ Q,
let F |= Q denote that I |= Q for every model I of F .

Proposition 2 Let n ≥ 0 be arbitrary. Then K |= Q iff
F |= Q for each F ∈ ccfn(FK).

Checking query entailment from completion forests
We can decide F |= Q for an F ∈ ccfn(FK), by syntac-
tically “mapping” the query Q into F , if n is sufficiently
large.

We say that Q can be mapped into F , denoted Q ↪→F , if
there is a mapping µ from the variables and individuals in
VC(Q) into the nodes of F , such that

• µ(a) = a for each individual a,
• for each atom C(x) in Q, C ∈ L(µ(x)), and
• for each atom R(x, y) in Q, µ(y) is an R-neighbor of
µ(x).

Example 7 Q1 ↪→F2 holds, as witnessed by the mapping
µ(x) = a, µ(y) = v2 and µ(z) = v1. Note that there is no
mapping of Q2 into F2 satisfying the above conditions.

We establish now our key result, which directly leads to
our query answering algorithm. In the following, let nQ de-
note the number of role atoms in Q.

Theorem 3 Let n ≥ nQ. Then K |= Q iff for each F ∈
ccfn(FK), it holds that Q ↪→F .

The if direction is easy. If Q can be mapped to F via
µ, then Q is satisfied in each model I = (∆I , ·I) of F
by assigning to each variable x in Q the value of its image
µ(x)I . Proposition 2 then implies K |= Q.

The only if direction is more involved. We show that if n
is large enough, a mapping of Q into F ∈ ccfn(FK) can be
constructed from a distinguished canonical model of F .

The canonical model IF of F has as domain the set of all
paths from some root in F to some node of F (thus, it can
be infinite). It is constructed by unraveling the forest F in
the standard way, where the blocked nodes act like ‘loops’
(cf. [14]). Note that in order to obtain a model of F by
unraveling, F must be in ccfn(FK) for some n ≥ 1. The



formal definition of IF is then straightforward yet complex,
and we must refer to the extended report [20] for the details.
Instead, we provide an example.
Example 8 By unraveling F1, we obtain a model IF that
has as a domain the infinite set of paths from a to each vi.
Note that a path actually comprises a sequence of pairs of
nodes, in order to witness the loops introduced by blocked
variables. When a node is not blocked, like v1, the pair v1

v1

is added to the path. Since T 1
v1

tree-blocks T 1
v5

, every time a
path reaches v7, which is a leaf of a blocked tree, we add v3

v7

to the path and ‘loop’ back to the successors of v3. In this
way, we obtain the following infinite set of paths:

p0 = [a
a
], p6 = [a

a
, v1

v1
, v3

v3
, v6

v6
],

p1 = [a
a
, v1

v1
], p7 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v3

v7
],

p2 = [a
a
, v2

v2
], p8 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v4

v8
],

p3 = [a
a
, v1

v1
, v3

v3
], p9 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v3

v7
, v5

v5
],

p4 = [a
a
, v1

v1
, v4

v4
], p10 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v3

v7
, v6

v6
],

p5 = [a
a
, v1

v1
, v3

v3
, v5

v5
], p11 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v3

v7
, v5

v5
, v3

v7
],

...
This set of paths is the domain of IF . The extension of each
concept C is determined by the set all pi such that C occurs
in the label of the last node in pi. For the extension of each
role R, we consider the pairs 〈pi, pj〉 such that the last node
in pj is an R-successor of pi. If R ∈ R+, its extension is
transitively expanded. Therefore p0, p1, p3, . . . are in AIF ,
and 〈p0, p1〉, 〈p1, p3〉, 〈p3, p5〉, 〈p5, p7〉, . . . are all in P IF1 .

We show that from any mapping σ of the variables and
constants in Q into IF satisfying Q, a mapping µ of Q into
F can be obtained. Consider the graph that has as nodes the
domain (paths) of IF , and as arcs the R-successor edges of
IF for each role R occurring in Q. For any two nodes v1,
v2 in IF , let d(v1, v2) denote the distance between v1 and
v2 in this graph, and let G denote the image of Q under σ.
Let dσ

Q be the maximum distance d(σ(x), σ(y)) for any two
variables x and y appearing in Q. G does not contain any
paths longer than dσ

Q. If F is dσ
Q-complete, then for each

path in G there is an isomorphic one in F . Therefore, a dσ
Q-

complete completion forest will be large enough to find a
mapping whose image is isomorphic to G. As all roles in Q
are simple, it is immediate to see that dσ

Q is bounded by the
number of atoms in Q.
Proposition 4 Let F ∈ ccfn(FK), with n ≥ nQ, and let
IF |= Q. Then Q ↪→F .
Example 9 K |= Q1, so F1 |= Q1 must hold. This is wit-
nessed by the mapping Q1 ↪→F1 in Example 7. Note that
there are longer queries, like Q′ = {P1(a, x0), P1(x0, x1),
P1(x1, x2), P1(x2, x3), P1(x3, x4)} such that K |= Q′
holds, but the entailment F1 |= Q′ cannot be verified by
mapping Q′ into F1 since F1 is 1-blocked and nQ′ > 1.

Proposition 4 establishes the only if direction of Theo-
rem 3. Thus, query answering K |= Q reduces to finding a
mapping of Q into every F ∈ ccfnQ

(FK).

Complexity of Query Answering
We are now ready to prove the result on data complexity of
conjunctive query answering that we are aiming at.

In the sequel, we use ‖K,Q‖ to denote the total size of the
string encoding a given knowledge base K and query Q. As
follows from [20], branching in each variable tree in a com-
pletion forest F ∈ FK is polynomially bounded in ‖K,Q‖,
and the maximal depth of a variable is double exponential in
‖K,Q‖ if n is polynomial in ‖K,Q‖. Therefore, F has at
most triple exponentially many nodes. Since each rule can
be applied only polynomially often to a node, the expansion
of the initial completion forestFK into someF ∈ FK termi-
nates in nondeterministic triple exponential time in ‖K,Q‖
in this case, in particular for n = nQ, which suffices for our
purposes.

Theorem 5 Given a SHIQ knowledge base K and a con-
junctive query Q all of whose roles are simple, deciding
whether K |= Q is in CO-3NEXPTIME.

Proof (Sketch). It is sufficient to check for every F ∈
ccfn(FK), n = nQ, whether Q ↪→F . As argued above, F
has size at most triple exponential in ‖K,Q‖. Furthermore,
we can check whether Q ↪→F holds by naive methods in
triple exponential time in ‖K,Q‖ time as well. (We stress
that this test is NP-hard even for fixed F .) 2

Notice that the result holds for binary encoding of num-
ber restrictions in K. An exponential drop results for unary
encoding if Q is fixed.

Under data complexity, Q and all components of K =
〈T ,R,A〉 except for the ABoxA are fixed. Therefore, nQ is
constant. Thus every completion forest F ∈ ccfn(FK) has
linearly many nodes in |A|, and any expansion of FK ter-
minates in polynomial time. Furthermore, deciding whether
Q ↪→F is polynomial in the size of F by simple methods.
As a consequence,

Theorem 6 For a knowledge base K in SHIQ and a con-
junctive query Q all of whose roles are simple, deciding
whether K |= Q is in CONP w.r.t. data complexity.

Matching CONP-hardness follows from the respective re-
sult for ALE [10], which has been extended later to DLs
even less expressive than AL [7]. Thus we obtain the fol-
lowing main result.

Theorem 7 On knowledge bases in any DL from AL to
SHIQ, answering conjunctive queries all of whose roles
are simple, is CONP-complete w.r.t. data complexity.

This result not only exactly characterizes the data com-
plexity of CQs for a range of DLs, but also extends two
previous CONP-completeness results w.r.t. data complexity
which are not obvious: the result on CQs over ALCNR
given in [19] is now extended to SHIQ, and the result in
[17] for atomic queries in SHIQ is extended to CQs.

Conclusion
We studied conjunctive query (CQ) answering in the ex-
pressive DL SHIQ, and generalizing a technique presented
in [19] for a less expressive DL, we have developed a novel
tableaux-based algorithm for CQ answering. It manages the
technical challenges caused by the simultaneous presence
of inverse roles, number restrictions, and general knowledge
bases, leading to a DL lacking the finite model property. The



algorithm is worst case optimal in data complexity, and al-
lows us to characterize the data complexity of the problem
as CONP-complete for a wide range of DLs, including ex-
pressive ones. This closes the gap between the known CONP
lower bound and the best known EXPTIME upper bound for
even weaker DLs.

We point out that, by virtue of the correspondence be-
tween query containment and query answering [1], our al-
gorithm can also be applied to decide containment of two
conjunctive queries over a SHIQ knowledge base. Our re-
sults can be immediately extended to unions of CQs [20].
Also, the technique is applicable to the DL SHOIQ, which
extends SHIQwith nominals, i.e., concepts denoting single
individuals, by tuning of the SHOIQ tableaux rules [13].
With little extra effort (by avoiding internalization of the
ABox), we can obtain also a CONP upper-bound for the data
complexity of SHOIQ in our setting. Finally, we are cur-
rently working on the case where the query may contain ar-
bitrary roles, including transitive ones. However, it is still
open whether CQ answering is decidable in this case

Combined complexity remains to be further investigated.
It follows from [16] that the problem is in 2EXPTIME.
Hence, the bound established above in Theorem 5 is not
tight, since we build on tableaux algorithms that are not opti-
mal in the worst case. Indeed, a more relaxed blocking con-
dition can be used, where the witness of the root of a blocked
tree need not necessarily be its ancestor. This optimization
yields an exponential drop in the worst-case size of the for-
est, thus obtaining a CO-2NEXPTIME upper bound. Note
that this can also be done in the standard tableau algorithms
for satisfiability checking, but might not be convenient from
an implementation perspective.
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