
OWLlink: DIG for OWL 2

Thorsten Liebig†, Marko Luther‡, Olaf Noppens†, Mariano Rodriguez‡‡,
Diego Calvanese‡‡, Michael Wessel?, Ralf Möller◦, Matthew Horridge∗,

Sean Bechhofer∗, Dmitry Tsarkov∗, Evren Sirin~

†University of Ulm (Germany), ‡DOCOMO Euro-Labs (Germany), ‡‡Free University
of Bozen-Bolzano (Italy), ?Racer Systems (Germany), ◦Hamburg University of

Technology (Germany), ∗University of Manchester (UK), ~Clark & Parsia (USA)

Abstract. The OWLlink interface provides an implementation-neutral
mechanism for accessing OWL reasoner functionality. In contrast to its
DL-oriented predecessor DIG, OWLlink relies on OWL 2 for the prim-
itives of the modelling language, and is thus fully compatible with the
forthcoming incarnation of OWL. The OWLlink core introduced in this
document covers (i) basic reasoner management, (ii) assertion of axioms
and (iii) elementary ask functionality. The OWLlink extension mecha-
nism allows to easily add any required functionality in a controlled way
to the core language. We introduce OWLlink by providing a structural
specification and a concrete binding of the interface that defines how
OWLlink messages can be encoded in XML and sent over HTTP.

1 Introduction

OWLlink provides a declarative interface to OWL reasoners. It is intended to
be a lightweight mechanism giving client applications access to reasoning func-
tionality provided by a server. The OWLlink core defines primitives for handling
and manipulation of OWL Knowledge Bases (KBs), such as asserting axioms,
as well as primitives for asking questions about KB entities.

Early attempts to standardize an interface for Description Logic (DL) sys-
tems go back to the late 90s. At that time, most DL systems (e. g., FaCT [1]
and RACER [2]) provided proprietary interfaces using a Lisp-like syntax more
or less compliant with the KRSS syntax [3]. In 1999, Bechhofer et al. [4] defined
a CORBA-based interface to FaCT using XML syntax, enlarging the scope to
more expressive DLs than covered by the KRSS specification. However, both
interfaces are more or less system-oriented and were quoted as being a handicap
for application developers.

The initial DIG 1.0 specification of 2002 [5] was designed by the DL Imple-
mentation Group (DIG), a self-selecting assembly of researchers and developers
associated with implementations of DL systems. Its intention was to overcome
the limitations of the CORBA-FaCT interface, by adding support for assertional
knowledge (not supported by FaCT at that time), reasoner identification and
concrete domains, among others. Furthermore, the goal was to align with actual
DL language fragments, such as those underlying DAML+OIL, and to provide an
HTTP based interface for the client-server communication. The shortly following

version DIG 1.1 of 2003 [6] was quickly adopted by numerous reasoning engines,
ontology editors and other applications. Despite its success there remained sev-
eral shortcomings, such as limitations in the supported language fragment, a
lack of elementary queries, and no mechanism to extend the protocol [7]. Most
of the identified issues were fixed in the draft specification of DIG 2.0 [8] by
adding the requested features and lifting the concept language to OWL 2 [9].
Finally, DIG 2.0 has now been renamed into OWLlink to reflect the important
shift from its DL roots to the XML-based cousin OWL and the lack of backwards
compatibility to DIG.

Since syntax and semantic of the OWLlink language primitives are based
on OWL 2, the effort to support the core protocol with respect to parsing is
reduced. Consequently, OWLlink inherits all of its underlying language concepts
such as punning1 and the OWL 2 notion of structural equivalence. However, it
does not support any parts of OWL 2 beyond the level of axioms. In particular,
it does not support imports and the notion of an ontology. Client applications
have to resolve any issues related to the handling of imports before passing a KB
to an OWLlink server. Under this view, the OWLlink interface is by far more
abstract in terms of implementation languages and internal representation mod-
els than frameworks that provide access to data structures representing OWL
ontologies such as the Java specific OWL API [10]. Furthermore, the OWLlink
specification does not address issues such as stateful connections, transactions,
authentication, encryption, compression, concurrency, multiple clients and so on.
Yet some features (such as authentication, encryption and compression) might
be transparently provided by the access protocol (e. g., HTTP/1.1).

OWLlink is specified in two parts: the first part defines the abstract protocol,
and the second part defines a binding of the protocol into a concrete transport
mechanism. The abstract protocol is introduced in Sect. 2 and Sect. 3, its binding
to HTTP/1.1 and XML Schema is given in Sect. 4. The full specification can be
found online.2

2 Basic Protocol

OWLlink is a client-server protocol that makes a number of assumptions.

– The connection to the server is stateless and clients are not identified.
– OWLlink does not provide any support for modularity of Knowledge Bases.3

– There is no explicit classification request. The server will decide when it is
appropriate to, for example, compute the classification hierarchy of concepts.

The following definitions use a very limited subset of UML class diagram nota-
tion, reusing many UML classes provided by the OWL 2 specification [9]. The

1 Punning eliminates the need for introducing names. Each name can independently
be used as the name of a property, a class, a datatype, or an individual.

2 http://www.owllink.org
3 A KB is a collection of facts and axioms.

names of abstract classes (that is, the classes that are not intended to be instan-
tiated) are written in italic. The names of all OWL 2 UML classes are prefixed
with ox. to emphasize that they are not defined in the OWLlink specification.

2.1 Sessions and Messages

An OWLlink session abstracts the actual bidirectional communication channel
between the client and the server. It provides primitives to transport requests
and responses. The actual implementation of a session is defined by the transport
mechanism used to access a OWLlink server.

OWLlink servers are allowed to service several clients concurrently; however,
interaction within one session is not concurrent. A session is assumed to transport
requests and responses sequentially ordered. Each request should be processed
by the server such that the results are the same as if the requests were processed
sequentially in the order they were dispatched.

The basic interaction pattern is that of request-response. Each request is
paired with exactly one response. Depending on the transport mechanism, it
might be inefficient to send individual requests to a server separately. There-
fore, OWLlink requests are bundled into messages. A RequestMessage object
encapsulates a list of Request objects, whereas a ResponseMessage object en-
capsulates a list of Response objects (cf. Fig. 1).

2.2 Confirmation and Error Handling

Each request in OWLlink must be answered by a corresponding response. If
a request has been processed successfully, the type of the response returned
depends on the request and may contain additional data. If a request does not
produce any specific data, the server should still return a Confirmation response
(or subtype thereof) to the client. Any confirmation may carry a warning in terms
of a string intended to be meaningful to a human user.

If a request fails for some reason, the server should return an Error response
to the client containing a message specifying the cause for failure. Specific er-
ror classes are defined to report syntactic violations (SyntaxError), semantic
problems (SemanticError) and issues regarding the management of a Knowl-
edge Base (KBError). If a server cannot process a request, it should attempt to
recover gracefully, and process other pending requests as if the error did not hap-
pen. If, however, this recovery is not possible, after sending the Error response,
the server should close the session.

2.3 Identification and Status

All OWLlink servers must support the GetDescription request, to allow clients
to discover its identity and introspect its capabilities. The response to this re-
quest is a Description, providing information about the servers current state,

RequestMessage

Request

requests
<<list>> 1..* 1..*<<list>>

Response

ox.Axiom

axioms

1..*

<<set>>

ox.Description

class
1

ResponseMessage

responses

warning: String [0..1]

Confirmation

error: String
Error

kb: URI
KB

KBResponse

OK

result: boolean

BooleanResponse

IsClassSatisfiable

 kb: URI

KBRequest

Tell

Ask

 kb: URI
name: String

CreateKB

Fig. 1. Basic protocol objects

including: the name of the server, its version, an optional identification mes-
sage, the protocol version, the currently managed public and named KBs (see
Sect. 2.4), the supported extensions (see Sect. 2.5), and a set of configurations.

A Configuration is either a Property or a Setting. While properties are
read-only, settings can be adjusted per KB at any time via a Set request. The
settings given in a Description indicate the servers defaults that hold for newly
created KBs. The actual settings can be retrieved via GetSettings.

While OWLlink defines the general format of configurations, it does not
provide specific details on available configurations – these will be defined on a
per-server basis. However, the following configurations have to be supported by
any OWLlink server.

selectedProfile A configuration that names the default profile of the server
in case of a Description response and the active profile in a Settings re-
sponse. Its type restricts the possible values to the list of language fragments
supported by the server. Any well-defined DL fragment might be referenced
by name in this list, including, but not limited to, the ones defined by the
OWL 2 Profiles [11] such as EL++, DL-Lite, OWL-R DL, etc.

ignoresAnnotations OWL 2 provides mechanisms for associating annota-
tions with KB axioms and entities. If the management of annotations might
incur unnecessary implementation and run-time overhead, this configuration
allows to instruct an OWLlink server to ignore annotations.4

ignoresDeclarations If a server is instructed to ignore declarations via this
configuration, all received declaration axioms are treated as not being send.
In case a server deals with declarations a declaration axiom is treated as all
other axioms (e.g. being sensible to structural equivalence).

uniqueNameAssumption A configuration specifying whether the server em-
ploys the Unique Name Assumption (UNA) such that different names always
refer to different entities in the world.5

2.4 Knowledge Base Management

Servers may manage several KBs simultaneously. Therefore, each KB is identified
with a unique URI on creation. These URIs provide a handle that identifies the
particular incarnation of the KB in the particular server. Most requests are
derived from the KBRequest class, which requires a kb argument identifying the
KB to which the request applies (cf. Fig. 1). If a KB with the given URI cannot
be found, the server should return a KBError object.

A new KB is allocated within the server by sending a CreateKB request.
If the optional URI argument kb is given, the new KB is allocated with this
URI, otherwise a fresh (server-generated) URI is used. However, if the given
URI is already in use by another KB allocated before or the KB could not be
allocated for some other reasons (e.g., a low memory condition), the response to
the CreateKB request is a KBError. The optional name argument of a CreateKB
request allows to associate a name with a KB on creation. Such KB names do not
have to be unique and thus cannot be used to identify a certain KB. However,
named KBs are published together with their identifying KB URI in the servers
Description object to be accessible from multiple clients.

The use of unique URIs allows to sidestep some of the issues relating to
multiple clients. If a client chooses not to share a KB URI with another client
(either directly or by making it public through passing a name on creation), then
the client can be sure that it is the only one interacting with that KB.6

Different clients of the same server, like KB browsers or explanation tools,
however, may want to share KBs by sharing URIs or making KBs public through
naming – it is then the clients’ responsibility to manage and coordinate this shar-
ing. The possibility to pass an identifying URI along with a CreateKB followed
by a mixture of arbitrary tell and ask request allows OWLlink KBs to stand
alone – a situation that is useful, say for test suites and benchmarking.

4 A server configured this way should still accept annotations.
5 OWL does not make the UNA [9]. Still, a client might choose to enable the UNA in

case the reasoning performance is of utmost importance.
6 This is not entirely the case, as there is a (very small) chance that a malicious client

could guess a URI which is in use.

2.5 Extensions

Different reasoners support different language fragments and different reasoning
facilities. To support these differences and future developments, OWLlink is
extensible. Current candidates for extensions are:

Axiom Retraction Adds the ability to retract previously told axioms from
KBs. Axiom retraction is sensitive to the rules of structural equivalence.7

Told Information Retrieval Provides access to previous told KB entities
by returning requested portions of axioms – structurally exactly as given in
previous tell messages.8

Ontology Based Data Access (OBDA) Extends OWLlink by the concepts
of data source and mapping to support OBDA architectures facilitating the
integration of data from existing data repositories.9

Other extensions are on the way such as a conjunctive query, a concrete domain
interface, a non-standard inferences, and an explanation interface extension.

An extension consists of a set of documents specifying the additional mes-
sages, a structural specification providing sufficient information about their mean-
ing, and a document per supported binding defining their syntax.

All documents must be available on the Web. A server reports the set of
extensions supported for the binding used by a GetDescription request as part
of the resulting Description object by listing their URIs without extension.

3 Tells & Asks

3.1 Tell Language

As mentioned before, OWLlink relies on the language primitives of OWL 2. With
respect to the tell requests – those message parts which add axioms to a KB –
this basically means that OWLlink refers to the various axioms about classes,
properties or facts defined in Sect. 6 of the OWL 2 specification [9]. As depicted
in Fig. 1 a tell request contains a set of one or more OWL 2 axioms and will
be answered with a OK response when successfully processed by the server.

3.2 Basic Asks

The OWLlink core includes a set of general requests for retrieving information
about KB entities as well as entailed facts. These so called basic asks only cover
very common queries with respect to the given and inferred axioms of the KB.
They substantially extend the query interface of DIG 1.1 with requests needed
to be more aligned with OWL 2 or which have been missed by DIG user. In
order to provide an informal overview the following table lists all of them. Their
7 http://www.owllink.org/ext/retraction-20081001/
8 http://www.owllink.org/ext/told-access-20081001/
9 http://obda.inf.unibz.it/dig-11-obda/

semantic and a detailed description of their corresponding responses is given in
the OWLlink structural specification.

Ask KBResponse

GetAllClasses SetOfClasses

GetAllObjectProperties SetOfObjectProperties

GetAllDataProperties SetOfDataProperties

GetAllAnnotationProperties SetOfAnnotationProperties

K
B

E
n
ti

ti
es

GetAllIndividuals SetOfIndividuals

GetAllDatatypes SetOfDatatypes

IsKBSatisfiable BooleanResponse

IsKBStructurallyConsistent BooleanResponse

S
ta

tu
s

GetKBLanguage StringResponse

IsClassSatisfiable BooleanResponse

IsClassSubsumedBy BooleanResponse

AreClassesDisjoint BooleanResponse

AreClassesEquivalent BooleanResponse

GetSubClasses SetOfClassSynsets

GetSuperClasses SetOfClassSynsets

GetEquivalentClasses SetOfClasses

GetClassHierarchy ClassHierarchy

S
ch

em
a

Are[O|D]PropertiesEquivalent BooleanResponse

Is[O|D]PropertySatisfiable BooleanResponse

Are[O|D]PropertiesDisjoint BooleanResponse

Is[O|D]PropertySubsumedBy BooleanResponse

Is[O|D]PropertyXXX BooleanResponse

GetSub[O|D]Properties SetOf[O|D]PropertySynsets

GetSuper[O|D]Properties SetOf[O|D]PropertySynsets

GetEquivalent[O|D]Properties SetOf[O|D]Properties

Get[O|D]PropertyHierarchy [O|D]PropertyHierarchy

AreIndividualsEqual BooleanResponse

AreIndividualsDifferent BooleanResponse

IsInstanceOf BooleanResponse

GetTypes SetOfClassSynsets

GetEquivalentIndividuals SetOfIndividuals

Get[O|D]PropertyOfSource SetOf[O|D]PropertySynsets

GetObjectPropertyOfFiller SetOfObjectPropertySynsets

GetDataPropertyOfConstant SetOfDataPropertySynsets

F
a
ct

s

Get[O|D]PropertiesBetween SetOf[O|D]PropertySynsets

GetInstances SetOfIndividualSynsets

GetObjectPropertyFillers SetOfIndividualSynsets

GetDataPropertyFillers SetOfConstants

Get[O|D]PropertySources SetOfIndividualSynsets

GetFlattenInstances SetOfIndividuals

GetFlattenObjectPropertyFillers SetOfIndividuals

GetFlattenObjectPropertySources SetOfIndividuals

Within this table “[O|D]” abbreviates that this query exists in two flavors,
either for Object- as well as for DataProperties. Furthermore the “XXX” in

Is[O|D]PropertyXXX is a wild-card for the various characteristics a property
can have.

Responses of type SetOfXXXSynset consist of zero or more synsets of an
OWL 2 entity such as Individual, Object- or DataProperty, or OWLClass. Such
a synset is a set of one or more elements whose members are all equivalent to
each other, i. e. for which mutual equivalence is entailed from the axioms of the
KB. In case this information about equivalence sets is not needed (e. g. due to
UNA) there are so called flattened variants for those asks which deal with return
sets consisting of individuals.

4 HTTP/XML Binding

The HTTP/XML binding of OWLlink uses HTTP as its underlying communica-
tion protocol for exchanging XML content between a reasoner and a client. Other
bindings may utilize SOAP or a particular Remote Message Invocation proto-
col. Technically, within the HTTP/XML environment, the reasoner has to accept
HTTP POST request and responds as appropriate according to the OWLlink
specification. In order to alleviate the verbose nature of any XML-based protocol
OWLlink servers should support the use of the standard compression technology
for Content-Encoding of the HTTP/1.1 transport mechanism.

4.1 Sessions and Messages

An OWLlink session is mapped to an HTTP connection and is typically estab-
lished upon sending the first request. HTTP servers are in general allowed to
close the HTTP connection at their own discretion, which in effect terminates
the OWLlink session.10 In order to prevent this from happening, the client can
include the keepAlive in the header of each HTTP request it sends.

4.2 XML Schema

The XML schema is obtained by a straightforward translation of the objects from
the structural specification: in general, the names of XML elements correspond
to the names of the corresponding UML classes. It relies on the OWL 2 XML
serialization for the primitives of the ontology language, and is therefore fully
compatibly with OWL. As a result, implementors of the XML binding can re-use
their implementation of OWL 2 parsers to read the OWL 2 specific contents of
the tell and ask primitives.

Each OWLlink request (i. e., management, tell and ask primitives) must be
acknowledged by a corresponding OWLlink response that are pooled within
a RequestMessage respectively a ResponseMessage. Following a straightfor-
ward translation of the OWLlink specification into an XML schema the con-
tent body of a HTTP message is either the root element RequestMessage or a
ResponseMessage containing requests resp. responses as can be seen in Fig. 2.
Some more detailed examples are given in Appendix A.
10 Note that closing an OWLlink session does not imply the release of any KB.

<owllink:RequestMessage>

[request #1]

[request #2]

[...]

[request #n]

</owllink:RequestMessage>

<owllink:ResponseMessage>

[response #1]

[response #2]

[...]

[response #n]

</owllink:ResponseMessage>

Fig. 2. RequestMessage and ResponseMessage

5 Discussion

Strong evidence suggests that OWL 2 will become an important standard for
representing ontologies. According to the W3C its featured usage is to enable ap-
plications to meaningfully process information by means of reasoning. However,
from the application’s point of view this requires not only a language standard
for ontologies but also a standard way to interact with components which sup-
ply reasoning or other services. OWLlink adds this latter piece of the ontology
infrastructure by providing an extensible protocol for communication with OWL
reasoning systems. The OWLlink protocol facilitates client applications to con-
figure a reasoner, to transmit OWL 2 ontologies or fractions thereof, and to access
reasoning services via a set of basic queries. Furthermore, OWLlink is flexible
in that it allows to add any desired functionality by defining a corresponding
extension.

The current OWLlink specification is still a draft and obviously cannot be
finalized before the OWL 2 language specification has reached W3C recommen-
dation status. In the meantime the OWLlink specification itself has to undergo a
process where interface details (e. g. server descriptions or the basic asks) need to
be reviewed by potential server and client developers as well as users. Therefore,
anyone who feels addressed by this initiative is requested to join the discus-
sion and to provide feedback to the OWLlink working group11 as well as to the
developers of those OWL components they would like access via OWLlink.

In fact, the developers of the established and most widely used reasoning
systems RacerPro, Pellet and FaCT++ attentively follow the development of
OWLlink and some already have announced to support the protocol. The devel-
opers of the QuOnto system are in the process of migrating their current OBDA
extension for DIG 1.1 to the new OWLlink proposal (cf. Sect. 2.5). Various other
developers of client applications, for example ontology editing and browsing tools
such as the Protégé 4 or OntoTrack, also commited to adopt OWLlink. The same
holds for the Java based OWL-API.

OWLlink provides a framework for accessing management and reasoning ser-
vices around the forthcoming OWL 2. It is flexible to cope with future demands
with respect to the underlying language as well as services. Beyond that it is

11 There is a mailing list with public archive you can subscribe and post to. Please see
https://imap.uni-ulm.de/lists/info/public-owllink-comments

designed on a structural level which enables many different bindings to concrete
transport mechanisms. Besides the introduced XML/HTTP binding there are
many other options. For instance there is a draft with respect to a binding am-
ing at transporting OWL 2 functional prefix style syntax over HTTP (or a simple
TCP socket connection).12 The latter would provide a modern substitute for the
outdated KRSS standard. Even an in-memory binding within one application,
by mapping the OWLlink primitives to interfaces for instance, is a desired and
sensible usage of OWLlink. In any case using OWLlink comes with the benefit
of having a well-defined interface that allows to easily plug different OWL-aware
components together.

References

1. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98). (1998) 636–647

2. Haarslev, V., Möller, R.: Description of the RACER system and its applications.
In: Proc. of the Int. Workshop on Description Logics. (2001)

3. Patel-Schneider, P.F., Swartout, B.: Description-logic knowledge representation
system specification from the KRSS group. Working version (draft) (1993)

4. Bechhofer, S., Horrocks, I., Patel-Schneider, P., Tessaris, S.: A proposal for a
Description Logic interface. In: Intern. Workshop on Description Logics. (1999)

5. Bechhofer, S.: The DIG Description Logic interface: DIG/1.0. Technical report,
University of Manchester (2002)

6. Bechhofer, S., Möller, R., Crowther, P.: The DIG description logic interface. In:
Proc. of the Int. Workshop on Description Logics (DL’03). (2003)

7. Dickinson, I.: Implementation experience with the DIG 1.1 specification. Technical
Report HPL-2004-85, Hewlett-Packard (2004)

8. Turhan, A.Y., Bechhofer, S., Kaplunova, A., Liebig, T., Luther, M., Möller, R.,
Noppens, O., Patel-Schneider, P., Suntisrivaraporn, B., Weithöner, T.: DIG2.0 –
towards a flexible interface for Description Logic reasoners. In: Proc. of the OWL
Experiences and Directions Workshop at the ISWC’06. (2006)

9. Motik, B., Patel-Schneider, P.F., Horrocks, I.: OWL 2 Web Ontology Language:
Structural specification and functional-style syntax. W3C Working Draft, World
Wide Web Consortium (2008)

10. Horridge, M., Bechhofer, S., Noppens, O.: The OWL API. In: Proc. of the 3rd
OWL Experiences and Directions Workshop at the ESWC’07. (2007)

11. Grau, B.C., Motik, B., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology
Language: Profiles. W3C Working Draft, World Wide Web Consortium (2008)

12 http://www.owllink.org/owllink-httpsexpr-20081001/

A OWLlink XML Binding Examples

A sample configuration request which is typically send at the initialization phase
to introspect the OWLlink server capabilities:

<RequestMessage xmlns="http://www.owllink.org/owllink-xml">

<GetDescription/>

</RequestMessage>

A corresponding reasoner response with information about the offered OWLlink
protocol version, reasoner version as well as offered options and settings followed
by a list of supported extensions and public KBs:

<!DOCTYPE ResponseMessage [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

<!ENTITY ole "http://www.owllink.org/owllink-ext-xml/">]>

<ResponseMessage xmlns="http://www.owllink.org/owllink-xml"

xmlns:ox="http://www.w3.org/ns/owl2-xml"

xmlns:ol="http://www.owllink.org/owllink-xml">

<Description ol:name="MyReasoner">

<OWLlinkVersion ol:major="1" ol:minor="0"/>

<ReasonerVersion ol:major="1" ol:minor="0"/>

<Setting ol:key="selectedProfile">

<List><OneOf>

<Literal ol:URI="&xsd;string">OWL-DL</Literal>

<Literal ol:URI="&xsd;string">OWL-R DL</Literal>

</OneOf></List>

<Literal>OWL-DL</Literal>

</Setting>

<Setting ol:key="uniqueNameAssumption">

<Datatype ol:URI="&xsd;boolean"/>

<Literal>true</Literal>

</Setting>

<Property ol:key="ignoresAnnotations">

<Datatype ol:URI="&xsd;boolean"/>

<Literal>true</Literal>

</Property>

<Property ol:key="ignoresDeclarations">

<Datatype ol:URI="&xsd;boolean"/>

<Literal>true</Literal>

</Property>

<SupportedExtension ol:URI="&ole;retraction-xml"/>

<SupportedExtension ol:URI="&ole;told-xml"/>

<PublicKB ol:kb="KB_2" ol:name="My KB 2"/>

</Description>

</ResponseMessage>

The following is an example of a request (and its response) containing a “test-
suite” or “benchmark-style” OWLlink message starting with the creation of a
KB which is followed by a mixture of tells and asks:

<!DOCTYPE ResponseMessage [

<!ENTITY owl "http://www.w3.org/2002/07/owl#">]>

<RequestMessage xmlns="http://www.owllink.org/owllink-xml"

xmlns:ol="http://www.owllink.org/owllink-xml"

xmlns:ox="http://www.w3.org/ns/owl2-xml#">

<!-- KB management --> <!-- Some asks -->

<CreateKB ol:kb="KB_1"/> <GetAllClasses ol:kb="KB_1"/>

<CreateKB ol:kb="KB_2" <GetEquivalentClasses ol:kb="KB_1">

ol:name="My KB 2"/> <ox:OWLClass ox:URI="D"/>

<!-- Some tells in KB_1--> </GetEquivalentClasses>

<Tell ol:kb="KB_1"> <IsClassSubsumedBy ol:kb="KB_1">

<ox:SubClassOf> <ox:OWLClass ox:URI="&owl;Thing"/>

<ox:OWLClass ox:URI="B"/> <ox:OWLClass ox:URI="&owl;Nothing"/>

<ox:OWLClass ox:URI="A"/> </IsClassSubsumedBy>

</ox:SubClassOf> <GetSubClasses ol:kb="KB_1">

<ox:SubClassOf> <ox:OWLClass ox:URI="C"/>

<ox:OWLClass ox:URI="C"/> </GetSubClasses>

<ox:OWLClass ox:URI="A"/> <!--Some tells in another KB -->

</ox:SubClassOf> <Tell ol:kb="KB_2">

<ox:EquivalentClasses> <ox:SubClassOf>

<ox:OWLClass ox:URI="D"/> <ox:OWLClass ox:URI="A"/>

<ox:OWLClass ox:URI="E"/> <ox:OWLClass ox:URI="B"/>

</ox:EquivalentClasses> </ox:SubClassOf>

<ox:ClassAssertion> </Tell>

<ox:OWLClass ox:URI="A"/> <!-- KB management -->

<ox:Individual ox:URI="iA"/> <ReleaseKB ol:kb="KB_1"/>

</ox:ClassAssertion> <!-- One more ask -->

</Tell> <GetAllClasses ol:kb="KB_1"/>

</RequestMessage>

<!DOCTYPE ResponseMessage [

<!ENTITY owl "http://www.w3.org/2002/07/owl#">]>

<ResponseMessage xmlns="http://www.owllink.org/owllink-xml"

xmlns:ol="http://www.owllink.org/owllink-xml"

xmlns:ox="http://www.w3.org/ns/owl2-xml#">

<!-- KB management --> </SetOfClasses>

<KB ol:kb="KB_1"/> <BooleanResponse ol:result="false"/>

<KB ol:kb="KB_2"/> <SetOfClassSynsets>

<!-- tell --> <ClassSynset>

<OK/> <ox:OWLClass ox:URI="&owl;Nothing"/>

<!-- ask --> </ClassSynset>

<SetOfClasses> </SetOfClassSynsets>

<ox:OWLClass ox:URI="A"/> <!--Some tells in another KB -->

<ox:OWLClass ox:URI="B"/> <OK/>

<ox:OWLClass ox:URI="C"/> <!-- KB management -->

<ox:OWLClass ox:URI="D"/> <OK/>

<ox:OWLClass ox:URI="E"/> <!-- One more ask -->

</SetOfClasses> <KBError errorMessage=

<SetOfClasses> "KB KB_1 does not exist!"/>

<ox:OWLClass ox:URI="E"/> </ResponseMessage>

