
Cost-Driven Ontology-Based Data Access
(Extended Version)

Davide Lanti, Guohui Xiao, Diego Calvanese
Faculty of Computer Science

Free University of Bozen-Bolzano, Bolzano, Italy
{dlanti,xiao,calvanese}@inf.unibz.it

Abstract

In ontology-based data access (OBDA), users are provided with a conceptual view of a (relational) data source that
abstracts away details about data storage. This conceptual view is realized through an ontology that is connected to the
data source through declarative mappings, and query answering is carried out by translating the user queries over the
conceptual view into SQL queries over the data source. Standard translation techniques in OBDA try to transform the
user query into a union of conjunctive queries (UCQ), following the heuristic argument that UCQs can be efficiently
evaluated by modern relational database engines. In this work, we show that translating to UCQs is not always the best
choice, and that, under certain conditions on the interplay between the ontology, the mappings, and the statistics of the
data, alternative translations can be evaluated much more efficiently. To find the best translation, we devise a cost model
together with a novel cardinality estimation that takes into account all such OBDA components. Our experiments confirm
that (i) alternatives to the UCQ translation might produce queries that are orders of magnitude more efficient, and (ii) the
cost model we propose is faithful to the actual query evaluation cost, and hence is well suited to select the best translation.

1 Introduction
An important research problem in Big Data is how to provide end-users with effective access to the data, while relieving
them from being aware of details about how the data is organized and stored. The paradigm of Ontology-based Data
Access (OBDA) [19] addresses this problem by presenting to the end-users a convenient view of the data stored in a
relational database. This view is in the form of a virtual RDF graph [16] that can be queried through SPARQL [13]. Such
virtual RDF graph is realized by means of the TBox of an OWL 2 QL ontology [18] that is connected to the data source
through declarative mappings. Such mappings associate to each predicate in the TBox (i.e., a concept, role, or attribute) a
SQL query over the data source, which intuitively specifies how to populate the predicate from the data extracted by the
query.

Query answering in this setting is not carried out by actually materialising the data according to the mappings, but
rather by first rewriting the user query with respect to the TBox, and then translating the rewritten query into a SQL query
over the data. In state-of-the-art OBDA systems [6], such SQL translation is the result of structural optimizations, which
aim at obtaining a union of conjunctive queries (UCQ). Such an approach is claimed to be effective because (i) joins
are over database values, rather than over URIs constructed by applying mapping definitions; (ii) joins in UCQs are
performed by directly accessing (usually, indexed) database tables, rather than materialized and non-indexed intermediate
views. However, the requirement of generating UCQs comes at the cost of an exponential blow-up in the size of the user
query.

A more subtle, sometimes critical issue, is that the UCQ structure accentuates the problem of redundant data, which is
particularly severe in OBDA where the focus is on retrieving all the answers implied by the data and the TBox: each CQ
in the UCQ can be seen as a different attempt of enriching the set of retrieved answers, without any guarantee on whether
the attempt will be successful in retrieving new results. In fact, it was already observed in [2] that generating UCQs is
sometimes counter-beneficial (although that work was focusing on a substantially different topic).

As for the rewriting step, Bursztyn et al. [3, 4] have investigated a space of alternatives to UCQ perfect rewritings, by
considering joins of UCQs (JUCQs), and devised a cost-based algorithm to select the best alternative. However, the scope
of their work is limited to the simplified setting in which there are no mappings and the extension of the predicates in the
ontology is directly stored in the database. Moreover, they use their algorithm in combination with traditional cost models
from the database literature of query evaluation costs, which, according to their experiments, provide estimations close to
the native ones of the PostgreSQL database engine.

In this work we study the problem of alternative translations in the general setting of OBDA, where the presence of
mappings needs to be taken into account. To do so, we first study the problem of translating JUCQ perfect rewritings,

1

ar
X

iv
:1

70
7.

06
97

4v
2

 [
cs

.D
B

]
 2

 F
eb

 2
01

8

such as those from [3], into SQL queries that preserve the JUCQ structure while maintaining property (i) above, i.e., the
ability of performing joins over database values, rather than over constructed URIs. We also devise a cost model based
on a novel cardinality estimation, for estimating the cost of evaluating a translation of a UCQ or JUCQ over the database.
The novelty in our cardinality estimation is that it exploits the interplay between the components of an OBDA instance,
namely ontology, mappings, and statistics of the data, so as to better estimate the number of non-duplicate answers.

We carry out extensive and in-depth experiments based on a synthetic scenario built on top of the Winsconsin Bench-
mark [9], a widely adopted benchmark for databases, so as to understand the trade-off between a translation of UCQs
and JUCQs. In these experiments we observe that: (i) factors such as the number of mapping assertions, also affected
by the number of axioms in the ontology, and the number of redundant answers are the main factors for deciding which
translation to choose; (ii) the cost model we propose is faithful to the actual query evaluation cost, and hence is well suited
to select the best alternative translation of the user query; (iii) the cost model implemented by PostgreSQL performs sur-
prisingly poorly in the task of estimating the best translation, and is significantly outperformed by our cost model. The
main reason for this is that PostgreSQL fails at recognizing when different translations are actually equivalent, and may
provide for them cardinality estimations that differ by several orders of magnitude.

In addition, we carry out an evaluation on a real-world scenario based on the NPD benchmark for OBDA [17]. Also
in these experiments we confirm that alternative translations to the UCQ one may be more efficient, and that the same
factors already identified in the Winsconsin experiments determine which choice is best.

The rest of the paper is structured as follows. Section 2 introduces the relevant technical notions underlying OBDA.
Section 3 place our paper with respect to the field literature. Section 4 provides our characterization for SQL translations of
JUCQs. Section 5 presents our novel model for cardinality estimation, and Section 6 the associated cost model. Section 7
provides the evaluation of the cost model on the Wisconsin and NPD Benchmarks. Section 8 concludes the paper.

2 Preliminaries
In this section we introduce basic notions and notation necessary for the technical development of this work.

From now on, we will denote tuples in bold font, e.g., x is a tuple, and when convenient we treat tuples as sets. Given
a predicate symbol P , a tuple f of function symbols, and a tuple x of variables, we denote by P (f(x)) an atom where
each argument is of the form g(y), where g ∈ f and y ⊆ x.

We rely on the OBDA framework of [19], which we formalize here through the notion of OBDA specification, which
is a triple S = (T ,M,Σ) where T is an ontology TBox, M is a set of mappings, and Σ is the schema of a relational
database. In the remainder of this section, we formally introduce such elements of an OBDA specification.

We assume that ontologies are formulated in DL-LiteR [7], which is the DL providing the formal foundations for
OWL 2 QL, the W3C standard ontology language for OBDA [18]. A DL-LiteR TBox T is a finite set of axioms of the
form C v D or P v R, where C, D are DL-LiteR concepts and P , R are roles, following the DL-LiteR grammar. A
DL-LiteR ABox A is a finite set of assertions of the form A(a), P (a, b), where A is a concept name, P a role name, and
a, b individuals. We call the pair Ø = (T ,A) a DL-LiteR ontology.

We consider here first-order (FO) queries [1], and we use qD to denote the evaluation of a query q over a database
D. We use the notation qA also for the evaluation of q over the ABox A, viewed as a database. For an ontology Ø, we
use cert(q,Ø) to denote the certain answers of q over Ø, which are defined as the set of tuples a of individuals such
that Ø |= q(a) (where |= denotes the DL-LiteR entailment relation). We consider also various fragments of FO queries,
notably conjunctive queries (CQs), unions of CQs (UCQs), and joins of UCQs (JUCQs) [1].

Mappings specify how to populate the concepts and roles of the ontology from the data in the underlying relational
database instance of Σ. A mapping m is an expression of the form L(f(x)) qm(x): the target part L(f(x)) of m
(denoted as target(m)) is an atom over function symbols1 f and variables x whose predicate name L is a concept or role
name; the source part qm(x) of m (denoted as source(m)) is a FO query over Σ with output variables2 x. We say that
the signature sign(m) of m is the pair (L, f), and that m defines L. We also define sign(M) = {sign(m) | m ∈M}.

Following [10], we split each mapping m = L(f(x)) qm(x) inM into two parts by introducing an intermediate
view name Vm for the FO query qm(x). We obtain a low-level mapping of the form Vm(x) qm(x), and a high-level
mapping of the form L(f(x)) Vm(x). In the following, we abstract away the low-level mapping parts, and we consider
M as consisting directly of the high-level mappings. In other words, we directly consider the intermediate view atoms
Vm as the source part, with the semantics V Dm = qDm, for each database instance D. We denote by ΣM the virtual schema
consisting of the relation schemas whose names are the intermediate view symbols Vm, with attributes given by the answer
variables of the corresponding source queries.

1For conciseness, we use here abstract function symbols in the mapping target. We remind that in concrete mapping languages, such as R2RML [8],
such function symbols correspond to IRI templates used to generate object IRIs from database values.

2In general, the output variables of the source query might be a superset of the variables in the target, but for our purposes we can assume that they
coincide.

2

From now on we fix an OBDA specification S = (T ,M,Σ). Given a database instance D for Σ, we call the pair
(S,D) an OBDA instance. We call the set of assertions A(M,D) =

{
L(f(a))

∣∣ L(f(x)) V (x) ∈M and a ∈ V (x)D
}

the virtual ABox exposed by D through M. Intuitively, such an ABox is obtained by evaluating, for each (high level)
mapping m, its source view V (x) over the database D, and by using the returned tuples to instantiate the concept or role
L in the target part of m. The certain answers cert(q, (S,D)) to a query q over an OBDA instance (S,D) are defined as
cert(q, (T ,A(M,D))).

In the virtual approach to OBDA, such answers are computed without actually materializingA(M,D), by transforming
the query q into a FO query qfo formulated over the database schema Σ such that qD

′

fo = cert(q, (S,D′)), for every OBDA
instance (S,D′). To define the query qfo , we introduce the following notions:
• A query qr is a perfect rewriting of a query q′ with respect to a TBox T , if cert(q′, (T ,A)) = qAr , for every ABox
A [7].

• A query qt is anM-translation of a query q′, if qDt = q′A(M,D) , for every database D for Σ [19].
Notice that, by definition, all perfect rewritings (resp., translations) of q′ with respect to T (resp., M) are equivalent.
Consider now a perfect rewriting qT of q with respect to T , and then a translation qT ,M of qT with respect toM. It is
possible to show that such a qT ,M satisfies the condition stated above for qfo .

Many different algorithms have been proposed for computing perfect rewritings of UCQs with respect to DL-LiteR
TBoxes, see, e.g., [7, 14]. As for the translation, [19] proposes an algorithm that is based on non-recursive Datalog [1],
extended with function symbols in the head of rules, with the additional restriction that such rules never produce nested
terms. We consider Datalog queries of the form (G,Π), where G is the answer atom, and Π is a set of Datalog rules
following the restriction above. We abbreviate a Datalog query of the form (q(x), {q(x)← B1, . . . , Bn}), corresponding
to a CQ (possibly with function symbols), as q(x) ← B1, . . . , Bn, and we also call it q. From now on, given a Datalog
rule r = A← B1, . . . , Bn, we denote by head(r) its head A.

Definition 2.1 (Unfolding of a UCQ [19]). Let q(x) ← L1(v1), . . . , Ln(vn) be a CQ. Then, the unfolding unf (q,M)
of q w.r.t.M is the Datalog query (qunf (x),Π), where Π is a (up to variable renaming) minimal set of rules having the
following property:

If ((m1, . . . ,mn), σ) is a pair such that {m1, . . . ,mn} ⊆ M, and
– mi = Li(fi(xi)) Vi(zi), for each 1 ≤ i ≤ n, and
– σ is a most general unifier for the set of pairs {(Li(vi), Li(fi(xi))) | 1 ≤ i ≤ n},

then the query qunf (σ(x))← V1(σ(z1)), . . . , Vn(σ(zn)) belongs to Π.
The unfolding of a UCQ q is the union of the unfoldings of each CQ in q.

It has been proved in [19] that, for a UCQ q, unf (q,M) is anM-translation.

Theorem 2.2 (An Unfolding is a Translation [19]). Let q be a UCQ, andM a set of mappings. Then,

unf (q,M)D = qA(M,D) .

3 Background on Cost-Based Optimization of Query Rewriting
Bursztyn et. al. [3, 4, 5] study a space of alternatives to UCQ perfect rewritings, in a setting without mappings and in
which the ABox of the ontology is directly stored in the database, under suitable assumptions on the form of the chosen
relations and indexes on them. Their works provides empirical evidence supporting the hypothesis that UCQ perfect
rewritings could be evaluated less efficiently than alternatives forms of rewritings. In particular, they explore a space of
alternatives to the traditional UCQ perfect rewriting in the form of join of unions of conjunctive queries (JUCQs), and
provide an algorithm that, given a cost model, selects the best choice.

Example 3.1. Consider the TBox T = {C v D}, and the query q(x, y) ← D(x), P (x, y). A UCQ perfect rewriting of
q with respect to T is the Datalog query (qrew (x, y),Π), where

Π =

{
qrew (x, y) ← C(x), P (x, y)
qrew (x, y) ← D(x), P (x, y)

}
An alternative perfect rewriting can be obtained by applying well-known distributive rules for disjunction and conjunction
over qrew . By doing so, we obtain the alternative perfect rewriting (q′rew (x, y),Π′), where

Π′ =

 q′rew (x, y) ← qrewD
(x), P (x, y)

qrewD
(x) ← C(x)

qrewD
(x) ← D(x)



3

Observe that the above query is a JUCQ. In particular, it corresponds to the query

qcover (x, y)← qrewD
(x), qrewP

(x, y)

where

• qrewD
(x) is a UCQ perfect rewriting of qD(x)← D(x) with respect to T , and

• qrewP
(x, y) is a UCQ perfect rewriting of qP (x, y)← P (x, y) with respect to T .

In this work we study the problem of alternative translations in a full-fledged OBDA scenario with mapppings. A
classical pitfall in such scenario is that it is very easy to lose the ability of performing joins over database values, so that
one has to perform them over URIs constructed by applying mapping definitions. The next example shows this issue.

Example 3.2. Consider the ontology and queries from Example 3.1 and the following set of mappings:

M =


C(f(a)) V1(a)
D(f(b)) V2(b)
D(g(c)) V3(c)
P (f(d), h(e)) V4(d, e)


By applying the unfolding procedure to queries qrewD

and qrewP
, and joining the resulting queries, we obtain the

followingM-translation qtrans of q′rew :

qtrans(x, y)← qunf D
(x), qunf P

(x, y)

where qunf D
(x) is a Datalog query of program

Πunf D
=

 qunf D
(f(a)) ← V1(a)

qunf D
(f(b)) ← V2(b)

qunf D
(g(c)) ← V3(c)

and qunf P
(x, y) is a Datalog query of program

Πunf P
=
{
qunf P

(f(d), h(e))← V4(d, e)
}

The SQL query corresponding to qtrans , in algebra notation, is a query of the form

πx,y(πx/f(a)(V1) ∪ πx/f(b)(V2) ∪ πx/g(c)(V3)) 1 πx/f(d),y/h(e)(V4)

where each expression of the form x/f(y) appearing in the projections denotes the application of the function symbol f
over database values instantiating the attributes in y, and such applications construct individuals under the answer variable
x. Apart from that π behaves as the standard projection operator.

Observe that qtrans is a JUCQ, and that it contains a join over the result of the application of function symbols to
database values. For instance, in the Ontop OBDA system such application leads to an inefficient join over columns
whose values are constructed from the concatenation of URI templates and database values.

To formalize the intuitions given in the example above, we now introduce some terminology from [3], which we use
in our technical development.

Definition 3.3 (Cover [3]). Let q be a query consisting of atoms F = {L1, . . . , Ln}. A cover for q is a collection C of
non-empty subsets of F , called fragments, such that (i)

⋃
f∈C f = F and (ii) no fragment is included into another one.

Definition 3.4 (Fragment Query [3]). Let C be a cover for a query q. The fragment query q|f (xf), for f ∈ C, is the
query whose body consists of the atoms in f and whose answer variables xf are given by the answer variables x of q that
appear in the atoms of f , union the existential variables in f that are shared with another fragment f ′ ∈ C, with f ′ 6= f .

Given a fragment query q|f (xf), and a TBox T , we use the notation qucq(T)
|f (xf) to denote a UCQ perfect rewriting

of q|f (xf) with respect to T .

Definition 3.5 (Cover-based Perfect Rewriting [3]). Let C be a cover for a query q, and T a TBox. Consider the query
qC(x) ←

∧
f∈C q

ucq(T)
|f (xf). Then qC is a cover-based JUCQ perfect rewriting of q with respect to T and C if it is a

perfect rewriting of q with respect to T .

In DL-LiteR, not every cover leads to a cover-based JUCQ perfect rewriting. Authors in [3] gave a sufficient condition,
called “safety”, to guarantee that every cover leads to a cover-based JUCQ perfect rewriting.

Theorem 3.6 (Cover-based query answering [3]). Applying Definition 3.5 on a safe cover C for q with respect to a TBox
T , and any rewriting technique producing a UCQ, yields a cover-based JUCQ perfect rewriting qr of q with respect to T .

4

4 Cover-based Translation in OBDA
In this section, we propose a cover-based translation of UCQ perfect rewritings. To do so, we rely on our fixed OBDA
specification S = (T ,M,Σ). In addition, we also fix a query q(x) and a (safe) cover C for it, as well as its cover-based
JUCQ perfect rewriting qC(x) ←

∧
f∈C q

ucq(T)
|f with respect to T and C. We introduce two different characterizations

of unfoldings of qC , which produceM-translations of q. The first characterization relies on the intuition of joining the
unfoldings of each fragment query in qC .

Definition 4.1 (Unfolding of a JUCQ – Type 1). Let C be a cover for a query q. For each f ∈ C, let Auxf be an
auxiliary predicate for qucq(T)

|f (xf), and Uf a view symbol for the unfolding unf (q
ucq(T)
|f (xf),M). Consider the set

Maux = {Aux f (xf) Uf (xf) | f ∈ C} of mappings associating the auxiliary predicates to the auxiliary view names.
Then, we define the unfolding unf (qC ,M) of qC with respect toM as unf (qauxC (x)←

∧
f∈C Aux f (xf),Maux).

Theorem 4.2 (Translation 1). Let qC(x) ←
∧n
i=1 q

ucq
|fi be a JUCQ cover-based perfect rewriting. Then, the query

unf (qC ,M) is anM-translation of qC .

Proof. By definition of M-translation, we need to prove that, for each OBDA instance D of S, the following equality
holds:

unf (qC ,M)D = q
A(M,D)

C .

By Definition 4.1, we know that:

unf (qC ,M) = unf (qauxC (x)←
∧
f∈C

Aux f (xf),Maux), (1)

withMaux and Aux f as in Definition 4.1. LetD be an arbitrary database instance for Σ. Then, it is not hard to verify that
qC(x)A(M,D) = qauxC (x)A(Maux ,D) , by applying Definition 2.1 and using the distributive property of the join operation
over the union operation. By using Theorem 2.2, it holds that qauxC (x)A(Maux ,D) = unf (qauxC ,Maux)D. By applying
the transitive property of =, we obtain that qC(x)A(M,D) = unf (qauxC (x),Maux)D. The thesis follows by applying
Equation (1), and from the fact that the choice of D was arbitrary.

The above unfolding characterization for JUCQs corresponds to a translation containing SQL joins over URIs resulting
from the application of function symbols to database values, in a similar fashion as in Example 3.2, rather than over
(indexed) database values directly. In general, such joins cannot be evaluated efficiently by RDBMSs [22].

In the remainder of this section we propose a solution to this issue by defining an alternative characterization for the
unfolding of a JUCQ, that ensures that joins are always performed on database values. To do so, we first need to introduce
a number of auxiliary notions and lemmas.

Definition 4.3 (Equivalent Sets of Mappings). Two sets of mapping assertions M and M′ are said to be equivalent,
denoted asM≡M′, if

For each database instance D of Σ, it holds that A(M,D) = A(M′,D)

A direct consequence of Theorem 2.2 is that unfoldings with respect to equivalent mappings must be equivalent.

Lemma 4.4. LetM′ be a set of mappings such thatM′ ≡M. Then, for every UCQ q, it holds

unf (q,M) ≡ unf (q,M′)

Proof. We prove the contrapositive of the statement.
Without loss of generality, let a be such that a ∈ unf (q,M)D, and a /∈ unf (q,M′)D, for some data instance D of Σ.
For Theorem 2.2, the above implies that

a ∈ qA(M,D) , a /∈ qA(M′,D) .

Hence, A(M,D) 6= A(M′,D), and thereforeM 6≡M′.

Definition 4.5 (Restriction of a Mapping to a Signature). Let (L, f) ∈ sign(M) be a signature inM. Then, the restriction
M|(L,f) ofM with respect to the signature (L, f) is the set {m ∈M | sign(m) = (L, f)} of mappings.

Definition 4.6 (Wrap of a Mapping). Let the set {L(f(vi)) Vi(vi) | 1 ≤ i ≤ n} be the restriction M|(L,f) of M
with respect to the signature (L, f), and f(v) a tuple of terms over fresh variables v. Then, the wrap ofM|(L,f) is the
(singleton) set wrap(M|(L,f)) = {L(f(v)) W (v)} of mappings, where W is a fresh view name for the Datalog query
(W (v), {W (vi)← Vi(vi) | 1 ≤ i ≤ n}) with answer variables v.

The wrap ofM is the set wrap(M) =
⋃

(L,f)∈sign(M) wrap(M|(L,f)) of mappings.

5

Example 4.7. Consider the following set of mapping assertions

M|(A,f) =

{
A(f(x, y)) V1(x, y)

}
A(f(a, b)) V2(a, b)

Let v, v′ be fresh variables. Then, wrap(M|(A,f)) = {A(f(v, v′)) W (v, v′)}, where W (v, v′) is the Datalog query

(W (v, v′), {W (x, y)← V1(x, y),W (a, b)← V2(a, b)})

Lemma 4.8. Given a signature (L, f) ∈ sign(M), the following equivalence holds:

M|(L,f) ≡ wrap(M|(L,f))

Proof. Let M|(L,f) be the set {L(f(vi)) Vi(vi) | i = 1, . . . , n}. Then, for every data instance D, the virtual ABox
A(M|(L,f),D) can be written as: {

L(f(o))
∣∣ ∃i ∈ {1, . . . , n} : o ∈ Vi(vi)D

}
. (2)

The Set (2) can equivalently be rewritten as:{
L(f(o))

∣∣ o ∈ (W (v), {W (vi)← Vi(vi) | i = 1, . . . , n})D
}
, (3)

for some fresh view symbolW . The thesis follows by observing that the Set (3) corresponds to the definition of the virtual
ABox A(wrap(M|(L,f)),D).

Lemma 4.9. LetM be a set of mappings. ThenM≡ wrap(M).

Proof. It follows directly from Lemma 4.8, and from the fact that fresh view symbols are introduced for each signature.

The wrap operation produces a set of mappings in which there do not exist two mappings sharing the same signature.
Hence, it groups the mappings for a signature into a single mapping.The next lemma formalizes this property.

Lemma 4.10. Consider the wrap wrap(M) of the setM of mappings. Then, for every mapping m,m′ ∈ wrap(M), it
holds:

If sign(m) = sign(m′), then m = m′

Proof. It follows directly from the definition of the wrap operation.

We now introduce an operation that splits a mapping according to the function symbols adopted on its source part.

Definition 4.11 (Split). Let m = L(x) U(x) be a mapping where U is a view name for
a NRLP query (U(x), {U(fi(xi))← Vi(xi) | 1 ≤ i ≤ n}). Then, the split of m is the set split(m) =
{L(fi(xi)) Vi(xi) | 1 ≤ i ≤ n} of mappings. For a mapping m′ not of the form above, the split of m′ is defined
as the set {m′}, that is, split(m′) = {m′}. We denote by split(M) the split of the setM of mappings, which is defined
as the set

⋃
m∈M split(m) of mappings.

Example 4.12. Consider a mapping m = A(x) U(x), where U(x) = (U(x),Π) and

Π =

 U(h(a, b)) ← V1(a, b)
U(h(c, d)) ← V2(c, d)

U(i(e, f, g)) ← V3(e, f, g).

Then,

split(M) =

 A(h(a, b)) V1(a, b)
A(h(c, d)) V2(c, d)

A(i(e, f, g)) V3(e, f, g).

Lemma 4.13. Let m be a mapping. Then {m} ≡ split({m}).

6

Proof. The thesis trivially holds if m is of a form such that {m} = split(m). If {m} 6= split(m), then m
must be of the form L(x) U(x), in which U is a view name for a NRLP query (U(x),Π), where Π =
{U(fi(xi))← Vi(xi) | 1 ≤ i ≤ n}. By Definition 4.3, we need to prove that, for each instance D of S, A({m},D) =
A(split({m}),D). Let D be an arbitrary database instance. By definition of virtual ABox:

A({m},D) =
{
L(fi(ai))

∣∣ fi(ai) ∈ U(x)D
}

The set above is equal to

{
L(fi(ai))

∣∣ ∃(q(fi(xi))← Vi(xi)) ∈ Π s.t. ai ∈ Vi(xi)D
}

=
{
L(fi(ai))

∣∣ ∃(L(fi(xi)) Vi(xi)) ∈ split({m}) s.t. ai ∈ Vi(xi)D
}

= A(split({m}),D).

Corollary 4.14. LetM be a set of mappings. ThenM≡ split(M).

Proof. By Definition 4.3, we need to prove that, for each instance D of S, A(M,D) = A(split(M),D). Let D be a data
instance for S. The following trivially holds:

A(M,D) =
⋃

m∈M
A({m},D).

By Lemma 4.14, ⋃
m∈M

A({m},D) =
⋃

m∈M
A(split({m}),D).

By Definition 4.11, we obtain ⋃
m∈M

A(split({m}),D) = A(split(M),D).

Definition 4.15 (Unfolding of a JUCQ – Type 2). Let qauxC be a query and Maux a set of mappings as
in Definition 4.1. Then, the optimized unfolding unfopt(qC(x),M) of qC with respect to M is defined as
unf (qauxC (x),wrap(split(Maux))).

Observe that the optimized unfolding of a JUCQ is a union of JUCQs (UJUCQ). Moreover, where each JUCQ pro-
duces answers built from a single tuple of function symbols, if all the attributes are kept in the answer. The next example,
aimed at clarifying the notions introduced so far, illustrates this.

Example 4.16. Let q(x, y, z) ← P1(x, y), C(x), P2(x, z), and consider a cover {f1, f2} generating fragment queries
q|f1 = q(x, y)← P1(x, y), C(x) and q|f2 = q(x, z)← P2(x, z). Consider the set of mappings

M =

 P1(f(a), g(b)) V1(a, b) P1(f(a), g(b)) V2(a, b)
P1(h(a), i(b)) V3(a, b) C(f(a)) V4(a)
P2(f(a), k(b)) V5(a, b) P2(f(a), h(b)) V6(a, b)


Translation I. According to Definition 4.1, the JUCQ q(x, y, z) ← q|f1(x, y), q|f2(x, z) can be rewritten as the auxiliary
query qaux (x, y, z) = Aux 1(x, y),Aux 2(x, z) over mappings

Maux =
{

Aux 1(x, y) U1(x, y) Aux 2(x, z) U2(x, z)
}

where U1 is a view name for unf (q|f1(x, y),M) = (U1(x, y),Π1), and U2 is a view name for unf (q|f2(x, z),M) =
(U2(x, z),Π2), such that

Π1 =

{
U1(f(a), g(b)) ← V1(a, b), V4(a)

}
U1(f(a), g(b)) ← V2(a, b), V4(a)

Π2 =

{
U2(f(a), k(b)) ← V5(a, b)

}
U2(f(a), h(b)) ← V6(a, b)

Translation II. By Definition 4.11, we compute the split ofMaux :

split(Maux) =

{
Aux1(f(a), g(b)) V1(a, b), V4(a) Aux2(f(a), k(b)) V5(a, b)

}
Aux1(f(a), g(b)) V2(a, b), V4(a) Aux2(f(a), h(b)) V6(a, b)

By Definition 4.6, we compute the wrap of split(Maux):

wrap(split(Maux)) =

{
Aux1(f(a), g(b)) W3(a, b) Aux2(f(a), k(b)) W4(a, b)

}
Aux2(f(a), h(b)) W5(a, b)

7

where W3(a, b), W4(a, b), W5(a, b) are Datalog queries whose programs are respectively

Π3 =

{
W3(a, b) ← V1(a, b), V4(a)

}
W3(a, b) ← V2(a, b), V4(a)

Π4 =
{

W4(a, b) ← V5(a, b)
}

Π5 =
{

W5(a, b) ← V6(a, b)
}

Finally, by Definition 4.15 we compute the optimized unfolding of qC with respect toM:

unfopt(qC(x, y, z),M) = unf (qaux (x, y, z),wrap(split(Maux))) = (qauxunf (x, y, z),Πunf)

where
Πunf =

{
qauxunf (f(a), g(b), k(b′))←W3(a, b),W4(a, b′)

}
qauxunf (f(a), g(b), h(b′))←W3(a, b),W5(a, b′)

Observe that unfopt(qC(x, y, z),M) is a UJUCQ. Moreover, each of the two JUCQs in qauxunf contributes with answers
built out of a specific tuple of function symbols.

Theorem 4.17 (Translation 2). The query unfopt(qC ,M) is anM-translation of qC .

Proof. By Definition 4.15,

unf opt(qC(x),M) = unf (qauxC (x),wrap(split(Maux))).

By Lemma 4.9 and Corollary 4.14, wrap(split(Maux)) ≡Maux . Hence, by Lemma 4.4,

unf (qauxC (x),wrap(split(Maux))) ≡ unf (qauxC (x),Maux).

The thesis is proved by observing that, according to Theorem 4.2, unf (qauxC (x),Maux) is anM-translation of qC .

5 Unfolding Cardinality Estimation
For convenience, in this section, we use relational algebra notation [1] for CQs. To deal with multiple occurrences of
the same predicate in a CQ, the corresponding algebra expression would contain renaming operators. However, in our
cardinality estimations we need to understand when two attributes actually refer to the same relation, and this information
is lost in the presence of renaming. Instead of introducing renaming, we first explicitly replace multiple occurrences of the
same predicate name in the CQ by aliases (under the assumption that aliases for the same predicate name are interpreted
as the same relation). Specifically, we use alias V[i] to represent the i-th occurrence of predicate name V in the CQ. Then,
when translating the aliased CQ to algebra, we use fully qualified attribute names (i.e., each attribute name is prefixed
with the (aliased) predicate name). So, to reconstruct the relation name V to which an attribute V[i].x refers, it suffices to
remove the occurrence information [i] from the prefix V[i]. When the actual occurrence of V is not relevant, we use V[·] to
denote the alias.

We first consider the restricted case of CQs, which we call basic CQs, whose algebra expression is of the form

E = V 0
[·] 1θ1 V

1
[·] 1θ2 · · · 1θn V n[·] ,

where, the V is denote predicate names, and for each i ∈ {1, . . . , n}, the join condition θi is a single equality, i.e., of the
form V j[·].x = V i[·].y, for some j < i. We then extend our cardinality estimation to arbitrary CQs, allowing for projections
and arbitrary joins.

Given a basic CQ E as above, we denote by E(m), for 1 ≤ m ≤ n, the sub-expression of E up to the m-th join
operator, namely E(m) = V 0

[·] 1θ1 V
1
[·] 1θ2 · · · 1θm V m[·] .

In the following, in addition to an OBDA specification, we also fix a database instance D for Σ. We use V and W to
denote relation names (with an associated relation schema) in the virtual schemaMΣ, whose associated relations consist
of (multi)sets of labeled tuples (see the named perspective in [1]). Given a relation S, we denote by |S| the number of
(distinct) tuples in S, by πL(S) the projection of S over attributes L (under set-semantics), by S|L the restriction of S over
attributes L (under bag-semantics), and by πL1

(S1)eπL2
(S2) intersection of relations disregarding attribute names, i.e.,

πL1(S1) ∩ ρL2 7→L1(πL2(S2)). We also use the classical notation P (α) to denote the probability that an event α happens.

5.1 Background on Cardinality Estimation
In this subsection we list a number of assumptions that are commonly made by models of cardinality estimations proposed
in the database literature (e.g., see [24]). Some of these assumptions will be maintained also in our cardinality estimator,
while others will be relaxed or dropped due to the additional information given by the structure of the mappings and the
ontology, which is not available in a traditional database setting.

8

Uniform distribution in the interval. This assumption holds when values are uniformly distributed across one
interval. Formally:

P (C < v) = (v −min(C))/(max(C)−min(C)) (a1)

for each value v in a column C.

Uniform distribution across distinct values. This assumption holds when values in a column are uniformly
distributed across the range of values. Formally:

∀v1, v2 ∈ C. P (C = v1) = P (C = v2) (a2)

for all values v1 and v2 in a column C.
A consequence of this assumption is that, for each relation name T and set of attributes x,

P (T |x = v) = P (πx(T) = v) = 1/|πx(T)|, ∀v ∈ πx(πx(T)).

Hence, number of repetitions per tuple of elements can be calculated as

|T | · P (T |x = v) =
|T |
|πx(T)|

. (4)

From Equation (4), we directly compute the ratio of distinct tuples over x in T as:

|πx(T)|
|T |

Independent Distributions. This assumption holds when the distributions between different attributes are indepen-

dent. Formally:
P (C1 = v1 | C2 = v2) = P (C1 = v1) (a3)

Facing Values. This assumption holds when attributes join “as much as possible”. That is, given a join T 1x=y S, it is

assumed that
|πx(T) ∩ πy(S)| = min(|πx(T)|, |πy(S)|). (a4)

Under these assumptions, the cardinality of a join V 1x=y W can be estimated [25] to be:

fvD(V 1x=y W) · |V D|
distD(V,x)

· |WD|
distD(W,y)

(5)

where fvD(V 1x=y W) is an estimation of the number of distinct values satisfying the join condition V 1x=y W (i.e.,
fvD estimates |πx(V D)eπy(WD)|, and distD(V,x) (resp., distD(W,y)) corresponds to the estimation of |πx(V D)|
(resp., |πy(WD)|), both calculated according to the aforementioned assumptions. Note that the fractions such as
|V D|

distD(V,x) estimate the number of tuples associated to each value that satisfies the join condition, and derive directly
from Assumption (a2).

5.2 Cardinality Estimation of CQs

Cardinality Estimator. Given a basic CQ E′, ceD(E′) estimates the number |E′D| of distinct results in the evaluation
of E′ over D. We define it as

ceD(E 1V[p].x=W[q].y W[q]) =



⌈
fvD(V[p] 1V[p].x=W[q].y W[q]) · |V D| · |WD|

distD(V, V[p].x) · distD(W,W[q].y)

⌉
, if E = V⌈

fvD(E 1V[p].x=W[q].y W[q]) · ceD(E) · |WD|
distD(E, V[p].x) · distD(W,V[p].y)

⌉
, otherwise.

(6)

Our cardinality estimator exploits assumptions (a2) and (a3) above, and relies on our definitions of the facing values
estimator fvD and of the distinct values estimator distD, which are based on additional statistics collected with the help
of the mappings, instead of being based on assumptions (a1) and (a4), as in Formula (5).

9

a b ...
1 4 ...

2 8 ...

3 12 ...

4 16 ...

5 20 ...

T1
c d ...
1 2 ...

3 4 ...

5 6 ...

7 8 ...

9 10 ...

11 2 ...

13 4 ...

15 6 ...

17 8 ...

19 10 ...

T2

e f ...
1 1 ...

2 8 ...

3 16 ...

4 24 ...

5 32 ...

6 40 ...

7 48 ...

8 56 ...

9 64 ...

10 72 ...

T3

Figure 1: Data instance D.

Facing Values Estimator. Given a basic CQ E′ = E 1V[p].x=W[q].y W[q], the estimation fvD(E′) of the cardinality
|πV.x(ED)eπW.y(WD)| is defined as

fvD(E 1V[p].x=W[q].y W[q]) =


|πx(V D)eπy(WD)|, if E = V⌈
|πx(V D)eπy(WD)| · distD(E, V[p].x)

distD(V, V[p].x)

⌉
, otherwise,

(7)

where |πx(V D)eπy(WD)| is assumed to be a statistic available after having analyzed the mappings together with the
data instance. The fraction distD(E,V[p].x)

distD(V,V[p].x) is a scaling factor relying on assumption (a2).

Distinct Values Estimator.

Definition 5.1 (Equivalent Attributes). Let Q be a set of qualified attributes, and E be basic CQ. We define the set
ea(E,Q) of equivalent attributes of Q in E as

⋃
i>0 Ci, where

• C1 := {Q}

• Cn+1 := Cn ∪ {Q′ | ∃Q′′ ∈ Cn s.t. Q′ = Q′′ or Q′′ = Q′ is a join condition in E}, n ≥ 1

Definition 5.2 (Join Sub-Expression). Given a basic CQ E and a set V[p].x of qualified attributes, the expression
se(E, V[p].x) denotes the longest sub-expressionE(n) inE, for some n > 1, such thatE(n) = E(n−1) 1W[q].y=U[r].z U[r],
for some relation name W , tuples of attributes y and z such that U[r].z ∈ ea(E, V[p].x), if E(n) exists, and ⊥ otherwise.

For E and V[p].x, the estimation distD(E, V[p].x) of the cardinality |πV[p].x(ED)| is defined as

distD(E, V[p].x) =



|πx(V D)|, if E = V

min

{⌈
fvD(E′) · ceD(E)

ceD(E′)

⌉
, fvD(E′)

}
, if se(E, V[p].x) = E′ 6= ⊥

min

{⌈
|πx(V D)| · ceD(E)

|V D|

⌉
, |πx(V D)|

}
, otherwise.

(8)

where |πx(V D)| is assumed to be a statistic available after having analyzed the mappings together with the data instance.
Observe that the fractions ceD(E)

ceD(E′) and ceD(E)
|V D| are again scaling factors relying on assumption (a2). Also, distD(E, V.x)

must not increase when the number of joins in E increases, which explains the use of min for the case where the number
of distinct results in E increases with the number of joins.

Example 5.3. Consider the data instance D from Figure 1. Relevant statistics are:

• |TD1 | = 5, |TD2 | = |TD3 | = 10

10

• |πa(TD1)| = |πd(TD2)| = 5, |πc(TD2)| = |πf (TD3)| = |πe(TD3)| = 10,

• |πa(TD1)eπc(TD2)| = 3, |πd(TD2)eπe(TD3)| = 5, |πa(TD1)eπf (TD3)| = 1.

We calculate ceD(E) for the basic CQ E = T1 1T1.a=T2.c T2 1T2.d=T3.e T3 1T1.a=T ′3.f
T ′3, where T ′3 is an alias (written

in this way for notational convenience) for the table T3. To do so, we first need to calculate the estimations ceD(E(1))
and ceD(E(2)).

ceD(E(1)) = ceD(T1 1T1.a=T2.c T2) =

⌈
fvD(T1 1T1.a=T2.c T2) · |TD

1 | · |TD
2 |

distD(T1, a) · distD(T2, c)

⌉
=

⌈
|πa(TD

1)eπc(T
D
2)| · |TD

1 | · |TD
2 |

|πa(TD
1)| · |πc(TD

2)|

⌉
= d(3 · 5 · 10)/(5 · 10)e = 3

ceD(E(2)) = ceD(E(1)
1T2.d=T3.e T3) =

⌈
fvD(E(1) 1T2.d=T3.e T3) · ceD(E(1)) · |TD

3 |
distD(E(1), T2.d) · distD(T3, e)

⌉
(9)

By Formula (8), distD(E(1), T2.d) in Formula (9) can be calculated as

distD(E(1), T2.d) = min

{⌈
|πd(TD

2)|
|TD

2 |
· ceD(E(1))

⌉
, |πd(TD

2)|
}

= min

{⌈
5

10
· 3
⌉
, 5

}
=

⌈
3

2

⌉
= 2

By Formula (7), fvD(E(1) 1T2.d=T3.e T3) in Formula (9) can be calculated as

fvD(E(1)
1T2.d=T3.e T3) =

⌈
fvD(T2 1T2.d=T3.e T3)

distD(T2, d)
· distD(E(1), T2.d)

⌉
=

⌈
|πd(TD

2)eπe(TD
3)|

|πd(TD
2)|

· distD(E(1), T2.d)

⌉
=

⌈
5

5
· 2
⌉

= 2

By plugging the values for fvD and distD in Formula (9), we obtain

ceD(E(2)) = d(2 · 3 · 10)/(2 · 10)e = 3

We are now ready to calculate the cardinality of E, which is given by the formula

ceD(E) = ceD(E(2)
1T1.a=T ′3.f

T ′
3) =

⌈
fvD(E(2) 1T1.a=T ′3.f

T ′
3) · ceD(E(2)) · |TD

3 |
distD(E(2), T1.a) · distD(T3, f)

⌉
(10)

By Formula (8), distD(E(2), T1.a) in Formula (10) can be computed as

distD(E(2), T1.a) = min

{⌈
fvD(E(1))

ceD(E(1))
· ceD(E(2))

⌉
, fvD(E(1))

}
= min

{⌈
3

3
· 3
⌉
, 3

}
= 3

Then, by Formula (7), fvD(E(2) 1T1.a=T ′3.f
T ′3) in Formula (10) can be computed as

fvD(E(2)
1T1.a=T ′3.f

T ′
3) =

⌈
fvD(T1 1T1.a=T ′3.f

T ′
3)

distD(T1, a)
· distD(E(2), T1.a)

⌉
=

⌈
3

5

⌉
= 1

By plugging the values for fvD and distD in (10), we finally obtain

ceD(E) = d(1 · 3 · 10)/(3 · 10)e = 1

Observe that, in this example, our estimation is exact, that is, ceD(E) = |ED|.

5.3 Extending Cardinality Estimation to Non-basic CQs
We study now how to extend the cardinality estimation developed above to arbitrary join conditions and to CQs with
existential variables.

11

5.3.1 Extending Cardinality Estimation to Arbitrary Join Conditions

To extend the cardinality estimation to the case of arbitrary join conditions, we exploit the following property of theta-
joins:

σθ2(T1 1θ1 T2) = T1 1θ1∧θ2 T2

The cardinality of a CQ without existential variables, and with n atoms and m join conditions (m ≥ n) can be estimated
in two steps. In the first step, we estimate through the equations in the previous section the cardinality of a basic CQ of n
atoms over n− 1 join conditions. In the second step, we multiply the number obtained in the first step by the probability
that the additional θn, . . . , θm conditions are all satisfied. Such probability can be easily calculated by relying on the
uniformity assumptions. We illustrate this on the case of three atoms and three join conditions. The generalization to an
arbitrary number of atoms and join conditions is straightforward.

Example 5.4.

ceD((T1 1T1.a=T2.d T2) 1T1.h=T3.i∧T2.d=T3.e T3) = ceD((T1 1T1.a=T2.d T2) 1T1.h=T3.i T3) · fvD(T2 1T2.d=T3.e T3)

distD(T2, T2.d)

where fvD(T21T2.d=T3.eT3)

distD(T2,T2.d) is an estimation for P (T2.d = T3.e) under our assumptions.

5.3.2 Extending Cardinality Estimation to CQs with Existential Variables (Projection)

Consequences of Cardinality Assumptions In this paragraph we discuss some important consequences of our assump-
tions of uniform distribution across distinct values (Assumption (a2)) and of independent distributions (Assumption (a3)).

Consider a set of columns C1, . . . , Cn over a table T . Then, Assumption (a2) can be written as

∀v ∈ T |C1,...,Cn
: P (T |C1,...,Cn

= v) =
1

|πC1,...,CnT |
. (11)

A consequence of Assumption (a3) is that

∀(v1, . . . , vn) ∈ C1 × · · · × Cn : P (T |C1
= v1 ∩ · · · ∩ T |Cn

= vn) = P (T |C1
= v1) · · · · · P (T |Cn

= vn). (12)

By Assumption (a2), we know that

∀i ∈ {1, . . . , n} : P (T |Ci
= vi) =

1

|πCiT |
.

Hence, Equation (12) becomes

∀(v1, . . . , vn) ∈ C1 × · · · × Cn : P (T |C1 = v1 ∩ · · · ∩ T |Cn = vn) = Πn
i=1

1

|πCiT |
. (13)

We observe that Equation (13) can equivalently be rewritten as

∀v ∈ πC1,...,Cn
T : P (πC1,...,Cn

T = v) =
1

Πn
i=1

1
|πCi

T |
. (14)

Therefore, by Equation (11), we conclude that

|πC1,...,Cn
T | = Πn

i=1|πCi
T |. (15)

Let πV 1
[·].x1,...,V n

[·].xn
(E) be a CQ, where E is a CQ. Then, by Equation (15), we estimate the cardinality

|πV 1
[·].x1,...,V n

[·].xn
(E)| through the formula3

min{ceD(E),Πi∈{1,...,n}distD(E, V i[·].xi)}
3See also http://adrem.ua.ac.be/sites/adrem.ua.ac.be/files/db2-selectivity.pdf, page 13.

12

http://adrem.ua.ac.be/sites/adrem.ua.ac.be/files/db2-selectivity.pdf

5.4 Collecting the Necessary Base Statistics
The estimators introduced above assume a number of statistics to be available. We now show how to compute such
statistics on a data instance by analyzing the mappings. Consider a set M = {Li(fi(vi)) Vi(vi) | 1 ≤ i ≤ n} of
mappings and a data instance D. We store the statistics:

(S1) |V Di |, for each i ∈ {1, . . . , n};

(S2) |πx(V Di)|, if f(x) is a term in fi(vi), for some function symbol f and i ∈ {1, . . . , n};

(S3) |πx(V Di)eπy(V Dj)|, if f(x) is a term in fi(vi), and f(y) is a term in fj(vj), for some function symbol f and
i, j ∈ {1, . . . , n}, i 6= j.

Statistics (S1) and (S2) are required by all three estimators that we have introduced, and can be measured directly by
evaluating source queries onD. Statistics (S3) can be collected by first iterating over the function symbols in the mappings,
and then calculating the cardinalities for joins over pairs of source queries whose corresponding mapping targets have a
function symbol in common. It is easy to check that Statistics (S1)–(S3) suffice for our estimation, since all joins in
a CQ are between source queries, and moreover, every translation calculated according to Definition 2.1 contains only
joins between pairs of source queries considered by Statistics (S3). The same intuitions apply for the possible projections
applied to a basic CQ in an unfolding.

5.5 Cardinality Estimation of an Unfolding
We now show how to estimate the cardinality of an unfolding4 by using the formulae (6), (7), and (8) introduced for
cardinality estimation. The next theorem shows that such estimation can be calculated by summing-up the estimated
cardinalities for each CQ in the unfolding of the input query, provided that (i) the unfolding is being calculated over the
wrap of the set of mappings, and (ii) the query to unfold is a CQ.

We start our discussion with an auxiliary lemma about rules in an unfolding.

Lemma 5.5. Consider an unfolding (q(v),Π) and two rules r1, r2 ∈ Π. If head(r1) and head(r2) are not unifiable, then
for each database instance D for Σ, we have that

(q(v), {r1})D ∩ (q(v), {r2})D = ∅.

Proof. Let A1 = (q(v), {r1})D, and A2 = (q(v), {r2})D. W.l.o.g., let head(r1) = q(f(x)), and head(r2) = q(g(y)).
Since f(x) and g(y) are not unifiable, it must be that f 6= g. Since no constants occur in either head(r1) or head(r2), it
directly follows from the definition of answer of a Datalog query over an instance D that A1 ⊆ {f(a) | a ∈ adom(D)},
and A2 ⊆ {g(a) | a ∈ adom(D)}, where adom(D) denotes the set of constants occurring in D5. The thesis follows by
observing that {f(a) | a ∈ adom(D)} ∩ {g(a) | a ∈ adom(D)} = ∅.

Theorem 5.6. Consider a CQ q(x)← L1(v1), . . . , Ln(vn) such that x =
⋃n
i=1 vi. Then,

|unf (q(x),M)D| =
∑

qu∈unf (q,wrap(M))

|qu(x)D|

Proof. Since by Lemma 4.9 M ≡ wrap(M), it suffices to prove that for each pair of different queries qu, q′u in
unf (q(x),wrap(M)) it holds that qDu ∩ q′Du = ∅. Consider two arbitrary queries qu, q′u in unf (q(x),wrap(M)). By
Definition 2.1, there must exist two different lists of mappings (m1, . . . ,mn) and (m′1, . . . ,m

′
n) in wrap(M) and two

substitutions σ, σ′ such that:

(i) head(qu) = qu(σ(x)), head(q′u) = q′u(σ′(x));

(ii) target(mi) = Li(σ(vi)), target(m′i) = Li(σ
′(vi)), for each i ∈ {1, . . . , n}.

W.l.o.g., let mi 6= m′i, for some i ∈ {1, . . . , n}. Moreover, assume that σ(vi) = fi(xi) and σ′(vi) = f ′i(x
′
i), for some

tuples of terms fi(xi) and f ′i(x
′
i). By (ii) and Lemma 4.10, it must be fi 6= f ′i . Hence, fi(xi) and f ′i(x

′
i) do not unify.

Therefore, also σ(vi) and σ′(vi) do not unify. Since, by assumption, x ⊇ vi, we conclude that σ(x) does not unify with
σ′(x). Then, by Lemma 5.5, it follows that

qu(σ(x))D ∩ q′u(σ′(x))D = ∅

By (i), it holds that qDu ∩ q′Du = ∅. Since the choice of qu, q′u was arbitrary, we conclude the thesis.
4Regardless of whether the unfolding is of a UCQ or a JUCQ, as they must be equivalent.
5Called active domain, see [1]

13

The previous theorem states that the cardinality of the unfolding of a query over the wrap of a set of mappings
corresponds to the sum of the cardinalities of each CQ in the unfolding, under the assumption that all the attributes are
kept in the answer. Intuitively, the proof relies on the fact that, when the wrap of a set of mappings is used, each CQ
in the unfolding returns answer variables built using a specific combination of function names. Hence, to calculate the
cardinality of a CQ q, it suffices to collect statistics as described in the previous paragraph, but over wrap(M) rather than
M, and sum up the estimations for each CQ in unf (q,wrap(M)).

The method above might overestimate the actual cardinality if the input CQ contains non-answer variables. In Sec-
tion 5.7 we show how to address this limitation by storing, for each property in the mappings, the probability of having
duplicate answers if the projection operation is applied to one of the (two) arguments of that property.

Also, the method above assumes a CQ as input to the unfolding, whereas a perfect rewriting is in general a UCQ. This
is usually not a critical aspect, especially in practical applications of OBDA. By using a saturated set of mappings (called
T-mapping [20])MT in place ofM, in fact, the perfect rewriting of an input CQ q almost always [15] coincides with
q itself6. Hence, in most cases we can directly use in Theorem 5.6 the input query q, if we use wrap(MT) instead of
wrap(M). In the following subsection we provide a fully detailed example of how this is done, as well as more details
on T-mappings and related techniques.

5.6 A Note on Rewriting
Modern OBDA systems such as Ontop or Ultrawrap [23] use advanced rewriting techniques for the rewriting phase. In
particular, Ontop uses a combination of the T-mapping and tree-witness rewriting [6] techniques. We now give basic
notions about these two techniques that will be useful in the rest of this paper.

Definition 5.7. The saturation AT of an ABox A with respect to a TBox T is the ABox

{L(a) | (T ,A) |= L(a),a is a tuple of individuals}

In OBDA, saturated virtual ABoxes can obtained by compiling the ontology in the mappings so as to obtain a set of
mappings called T-mapping [21]. Intuitively, a T-mapping exposes a saturated ABox.

Definition 5.8. Given an OBDA specification S = (T ,M,Σ), the mapping set of mappingsMT is a T-mapping for S
if, for every OBDA instance D of S, A(M,D)T = A(MT ,D).

The saturation of an ABox is also known as a forward chaining technique, as opposed to backward chaining techniques
such as rewriting algorithms. It is easy to see that, for each saturated ABox AT and single-atom query q(x) ← X(x), it
holds that q(x)AT = cert(q(x), (T ,A)). However, such equality does not hold in case q is a general CQ.

Authors from [12] gave a characterization of queries for which query answering with respect to an ontology corre-
sponds to query evaluation over saturated ABoxes. The tree-witness rewriting technique [12] exploits this characterization
so as to produce perfect rewritings that are minimal with respect to a saturated ABox. In short, queries for which query
answering with respect to an ontology does not correspond to query evaluation over saturated ABoxes are the ones whose
answers are influenced by existentials in the right-hand-side of DL-LiteR TBox axioms. Such queries are called queries
with tree-witnesses.

Example 5.9. Consider the data instance D from Figure 2. Consider the query

q(x, y, z)← C(x), R1(x, y), R2(x, z)

and the set of mappings

M =


A(l(a)) T1(a) P2(l(g),m(h)) T5(g, h)

C(l(b)) T2(b) P2(l(g), n(h)) T5(g, h)
P1(l(c),m(d)) T3(c, d) R2(l(i),m(j)) T6(i, j)
R1(l(e),m(f)) T4(e, f)

Let Ø = {A v C,P1 v R1, P2 v R2}. Since all the variables in q are answer variables, to compute
cert(q, (T ,A(M,D)) it suffices to compute the evaluation qA(MT ,D) , where MT is a T-mapping of M with respect
to T . Such T-mapping is:

MT =M∪
{

C(l(a)) T1(a) R2(l(c),m(h)) T5(g, h)
}

R1(l(c),m(d)) T3(c, d) R2(l(g), n(h)) T5(g, h)

6Always, if the CQ is interpreted as a SPARQL query and evaluated according to the OWL 2 QL entailment regime, or if the CQ does not contain
existentially quantified variables.

14

a ...
1 ...

2 ...

3 ...

4 ...

5 ...

T1

b ...
1 ...

2 ...

3 ...

4 ...

5 ...

T2

c d ...
1 1 ...

2 3 ...

3 5 ...

4 7 ...

5 9 ...

6 11 ...

7 13 ...

8 15 ...

9 17 ...

10 19 ...

T3

e f ...
1 1 ...

2 3 ...

3 5 ...

4 7 ...

5 9 ...

6 11 ...

7 13 ...

8 15 ...

9 17 ...

10 19 ...

11 21 ...

T4

g h ...
1 2 ...

2 4 ...

3 6 ...

4 8 ...

5 10 ...

6 12 ...

7 14 ...

8 16 ...

9 18 ...

10 20 ...

T5

i j ...
1 2 ...

2 4 ...

3 6 ...

4 8 ...

5 10 ...

6 12 ...

7 14 ...

8 16 ...

9 18 ...

10 20 ...

11 22 ...

T6

Figure 2: Data Instance D.

The wrap wrap(MT) ofMT is the set
A(l(a)) T1(a) P2(l(g),m(h)) T5(g, h)

C(l(v)) V1(v) P2(l(g), n(h)) T5(g, h)
P1(l(c),m(d)) T3(c, d) R2(l(z1),m(z2)) V3(z1, z2)
R1(l(w1),m(w2)) V2(w1, w2) R2(l(g), n(h)) T5(g, h)

where V1, . . . , V3 are view names for Datalog queries of programs respectively

Π1 = {V1(a)← T1(a), V1(b)← T2(b)}
Π2 = {V2(c, d)← T3(c, d), V2(e, f)← T4(e, f)}
Π3 = {V3(g, h)← T5(g, h), V3(i, j)← T6(i, j)}.

To estimate the cardinality of qA(MT ,D) by using our cardinality estimator, we need the following statistics:

• |πv(V1)| = 5

• |πw1,w2
(V2)| = 11

• |πz1,z2(V3)| = 11

• |πg,h(T5)| = 10

• |πw1
(V2)| = |πw2

(V2)| = |πz1(V3)| = |πz2(V3)| = 11

15

• |πi(T6)| = |πj(T6)| = 10

• |πv(V1)eπw1
(V2)| = |πv(V1)eπz1(V3)| = 5

• |πv(V1)eπg(T5)| = 5

By applying Definition 2.1, the unfolding unf (q,wrap(MT)) is the NRLP query (q(x, y, z),Πunf), where:

Πunf =

{
q(l(v),m(w2),m(z2)) ← V1(v), V2(v, w2), V3(v, z2)

}
q(l(v),m(w2), n(h)) ← V1(v), V2(v, w2), T5(v, h)

In relational algebra:

E1 = πx/l(v),y/m(w2),z/m(z2)(V1 1V1.v=V2.w2 V2 1V1.v=V3.z2 V3)

∪
E2 = πx/l(v),y/m(w2),z/n(h)(V1 1V1.v=V2.w2 V2 1V1.v=T5.a T5)

According to Theorem 5.6, the cardinality of qunf in D can be calculated as |E1| + |E2|. Such cardinalities can be
computed in the same fashion as in Example 5.3.

5.7 Extending Cardinality Estimation to Input Queries with Projection
In the presence of projection in the input query, our estimation for the cardinality of an unfolding is an upper-bound of the
actual cardinality, if the cardinalities for each single CQ are estimated correctly. In this section we discuss a lower-bound
of the actual cardinality of an unfolding.

We first recall how to compute the cardinality of a union of sets. Given sets A,B, the following equation holds:

|A ∪B| = |A|+ |B| − |A ∩B|. (16)

In general, given n sets A1, . . . , An, it holds that∣∣∣⋃
i

Ai

∣∣∣ =

n∑
i=1

(∑
J⊆{1,...,n}
|J|=i

((−1)i−1 ·
∣∣∣ ⋂
j∈J

Aj

∣∣∣)). (17)

Recall that our estimator stores the cardinalities of the intersections of pairs of joinable columns. An idea could be to
estimate the cardinality of a union between n sets by exploiting such cardinalities. Observe that, according to the equations
above, the information about the cardinality of the intersection of pairs of sets is sufficient to calculate the cardinality of
the union of two sets. However, it is not sufficient to calculate the cardinality of the union of more than two sets. Still,
one can estimate a lower bound for such cardinality, by assuming that for three arbitrary sets A, B, C, we have that

|A ∩B ∩ C| = min {|A ∩B|, |A ∩ C|, |B ∩ C|} . (a4)

Intuitively, we are assuming that elements are shared as much as possible between the three sets A, B, C.
Following this idea, in the next example we show how to calculate the cardinality of a union of n sets by using a set

of linear equations, and by relying only on the information about the cardinalities of the intersections of pairs of sets.

Example 5.10. Consider the sets A = {1, 2, 3, 4}, B = {1, 2, 5, 6}, C = {1, 2, 3, 4}, and D = {5, 6, 7, 8}. We consider
the following cardinalities to be available:

• |A| = |B| = |C| = |D| = 4

• |A ∩B| = 2, |A ∩ C| = 4, |A ∩D| = 0, |B ∩ C| = 2, |B ∩D| = 2, |C ∩D| = 0.

For each expression of the form |S1 ∩ · · · ∩ Sk|, we introduce a variable xS1···Sk
.

In order to calculate |A∪B ∪C ∪D|, by applying Equation (17) we first need to calculate |A∩B ∩C|, |A∩B ∩D|,
|B ∩C ∩D|, |A∩C ∩D|, and |A∩B ∩C ∩D|. Boundaries for such values can be found by using the following system
of linear inequalities:

xABC ≤ min{xAB , xAC , xBC}
xABD ≤ min{xAB , xAD, xBD}
xBCD ≤ min{xBC , xCD, xBD}
xACD ≤ min{xAC , xCD, xAD}
xABCD ≤ min{xABC , xABD, xBCD, xACD}
xAB = 2, xAC = 4, xAD = 0, xBC = 2, xBD = 2, xCD = 0

16

By Assumption (a4), we obtain:

xABC = min{xAB , xAC , xBC} = min{2, 4, 2} = 2
xABD = min{xAB , xAD, xBD} = min{2, 0, 2} = 0
xBCD = min{xBC , xCD, xBD} = min{2, 0, 2} = 0
xACD = min{xAC , xCD, xAD} = min{4, 0, 0} = 0
xABCD = min{xABC , xABD, xBCD, xACD} = min{2, 0, 0, 0} = 0
xAB = 2, xAC = 4, xAD = 0, xBC = 2, xBD = 2, xCD = 0

By applying the results of the system in Equation (17), we obtain:

4 · 4− (2 + 4 + 0 + 2 + 2 + 0) + (2 + 0 + 0 + 0)− 0 = 16− 10 + 2 = 8

Observe that, in this example, the obtained lower bound 8 corresponds to the actual cardinality of A ∪B ∪ C ∪D.

Observe that the previous approach for calculating the cardinality of a union of sets comes at the cost of calculating
an expression of length exponential in the size of the union. Thus, this approach is feasible only for unions of a small
number of sets.

We now show how the approach above, or any other approach able to estimate the cardinality for the union of sets,
can be used to calculate the cardinality of an unfolding in the presence of projection. To do so, we first need to introduce
the auxiliary notion of answer template matrix.

Definition 5.11. Let q(x)← L1(v1), . . . , Ln(vn) be a CQ, and consider the unfolding unf (q,M) = (qunf (x),Π) of q
with respect toM. W.l.o.g., we assume Π to be of the form

Π =
{
qunf (fj(yj))← V j1 ∧ · · · ∧ V jn

∣∣∣ 1 ≤ j ≤ m
}
.

Then, the answer template matrix (ATM) of qunf is the matrix

atm(qunf) =

 f1...
fm


of tuples of function templates f1, . . . , fm.

It is possible to use the notion of ATM to improve our estimation for the cardinality of an unfolding in the presence
of the projection operator. The estimation proceeds differently based on whether (i) the ATM does not contain duplicate
rows, or (ii) the ATM contains duplicate rows.

We start our discussion with case (i).

Estimation without Duplicate Rows in the ATM. By arguing as in the proof of Theorem 5.6, it is immediate to see
that the ATM of an unfolding of a CQ q with respect to wrap(M) does not contain repeated rows if q does not contain
existentially quantified variables. By exploiting the notion of ATM, the next result extends Theorem 5.6 to a more general
case.

Theorem 5.12. Consider a CQ q(x) ← L1(v1), . . . , Ln(vn). Then, if atm(unf (q(x),wrap(M))) does not contain
repeated rows, the following holds:

|unf (q(x),M)D| =
∑

qu∈unf (q,wrap(M))

|qu(x)D|

Proof. Since by Lemma 4.9 M ≡ wrap(M), it suffices to prove that for each pair of different queries qu, q′u in
unf (q(x),wrap(M)) it holds that qDu ∩ q′Du = ∅. Consider two arbitrary queries qu, q′u in unf (q(x),wrap(M)). By
Definition 2.1, there must exist two different lists of mappings (m1, . . . ,mn) and (m′1, . . . ,m

′
n) in wrap(M) and two

substitutions σ, σ′ such that

head(qu) = qu(σ(x)) and head(q′u) = q′u(σ′(x)). (18)

Since the ATM of the unfolding does not contain repeated rows, then necessarily σ(x) and σ′(x) are not unifiable. Then,
by Lemma 5.5, it follows that

qu(σ(x))D ∩ q′u(σ′(x))D = ∅
By Equations (18), it holds that qDu ∩ q′Du = ∅. Since the choice of qu, q′u was arbitrary, we conclude the thesis.

Theorem 5.12 gives us a less restrictive condition for calculating the cardinality of an unfolding, as it essentially says
that projecting out variables does not change the number of results as long as duplicate rows do not appear in the ATM of
the unfolding.

17

Estimation with Duplicate Rows in the ATM. We now study the problem of estimating the number of results of an
unfolding for which the ATM contains duplicate rows. First, observe that any unfolding can be partitioned into several
different UCQs where either the ATM does not contain duplicate rows, or all rows are equal. Summing up the cardinalities
of such partitions would give the cardinality of the original unfolding. Hence, we can calculate the cardinality of a general
unfolding by handling such two cases. In the previous paragraph we have already seen how to deal with the case in which
there are no duplicate rows in the ATM. In this paragraph we study the case in which all rows of the ATM are equal. For
this we exploit another useful property of the unfolding with respect to the wrap of a set of mappings.

Theorem 5.13. Let q(x)← L1(v1), . . . , Ln(vn) be a CQ for which the unfolding unf (q,wrap(M)) of q with respect to
wrap(M) is such that all rows in the ATM are equal to some tuple f of templates. Let Li(vi) be an atom in q such that
x ⊇ vi. Then, for each pair of rules

r1 = qu(f(y)) ← V1(y1), . . . , Vi(yi), . . . , Vn(yn),
r2 = q′u(f(y′)) ← V ′1(y′1), . . . , V ′i (y′i), . . . , V

′
n(y′n)

in the program of unf (q,wrap(M)), it holds that Vi = V ′i .

Proof. By Definition 2.1, there must exist two different lists of mappings (m1, . . . ,mn) and (m′1, . . . ,m
′
n) in wrap(M)

and two substitutions σ, σ′ such that:

(i) qu(f(y)) = qu(σ(x)), q′u(f(y′)) = q′u(σ′(x));

(ii) target(mj) = Lj(σ(vj)), target(m′j) = Lj(σ
′(vj)), for each j ∈ {1, . . . , n};

(iii) σ(source(mj)) = Vj(yj), σ′(source(m′j)) = V ′j (y′j), for each j ∈ {1, . . . , n}.

By (iii), in order to show that Vi = V ′i , it suffices to prove that mi = m′i. Assume by contradiction that mi 6= m′i.
Let σ(vi) = fi(xi) and σ′(vi) = f ′i(x

′
i), where fi(xi) and f ′i(x

′
i) are tuples of terms. By (ii) and Lemma 4.10, it must

be fi 6= f ′i . Hence, fi(xi) and f ′i(x
′
i) do not unify. Therefore, also σ(vi) and σ′(vi) do not unify. Since, by assumption,

x ⊇ vi, we conclude that σ(x) does not unify with σ′(x). However, this contradicts with (i). Hence, mi = m′i.

In the next example we show how to exploit Therem 5.13 for the estimation of the cardinality of an unfolding.

Example 5.14. Consider a database instance D and the CQ q(x, y)← P1(x, y), P2(y, z), P3(z, w), for which all rows in
the ATM of unf (q,wrap(M)) = (qunf (x, y),Π) are equal. Then, by Theorem 5.13 above, Π is of the following shape:

cq1 : qunf (f(x), g(y)) ← VP1
(x, y), V 1

P2
(y, z1), V 1

P3
(z1, w1)

...
cqn : qunf (f(x), g(y)) ← VP1(x, y), V nP2

(y, zn), V nP3
(zn, wn)

That is, the relation VP1 appears in each cq1, . . . , cqn. Due to this fact, together with the fact that atoms
V 1
P3

(z1, w1), . . . , V nP3
(zn, wn) do not contain answer variables, we have the interesting property that any duplicate across

different CQs in the occurrences of y in V jP2
(marked in blue), for j ∈ {1, . . . , n}, would produce a duplicate result in qD.

Under Assumption (a2) of uniformity, we get

|q(x, y)D| =
|(πy(cq∗1) ∪ · · · ∪ πy(cq∗n))D|∑n

i=1 |(πy(cq∗i))
D|

·
n∑
j=1

|cqDj |,

where cq∗i represents the query cq i in which we have replaced in the head f(x) with x and g(y) with y, and the fraction

|(πy(cq∗1) ∪ · · · ∪ πy(cq∗n))D|∑n
i=1 |(πy(cq∗i))

D|

denotes the ratio of distinct values across the different CQs over the answer variable y, calculated by assuming uniformity,
i.e., that each value is repeated the same amount of times.

For estimating the cardinality of the unfolding from the previous example, we need to be able estimate the quantity
|(πy(cq∗1)∪ · · · ∪πy(cq∗n))D|. For this, we can resort to Equation (17) as in Example 5.10, by using the available statistics
on intersections between pairs of attributes sets that are arguments for some function symbol. We also observe that, in
the case where V jP2

= V kP2
for some j and k, then |(πy(cq∗j) ∪ πy(cq∗k))D| = max{|(πy(cq∗j))D|, |(πy(cq∗k))D|}, and the

computation of the cardinality of the union can be simplified.

18

Example 5.15. Recall the scenario from Example 5.14. Assume that n = 6, and that

V 1
P2

= V 2
P2

V 3
P2

= V 4
P2

V 5
P2

= V 6
P2

Then, let
|(πy(cq∗1))D| = max{|(πy(cq∗1))D|, |(πy(cq∗2))D|} = |(πy(cq∗1) ∪ πy(cq∗2))D|
|(πy(cq∗3))D| = max{|(πy(cq∗3))D|, |(πy(cq∗4))D|} = |(πy(cq∗3) ∪ πy(cq∗4))D|
|(πy(cq∗5))D| = max{|(πy(cq∗5))D|, |(πy(cq∗6))D|} = |(πy(cq∗5) ∪ πy(cq∗6))D|.

Hence,
|(πy(cq∗1) ∪ · · · ∪ πy(cq∗6))D| = |(πy(cq∗1) ∪ πy(cq∗3) ∪ πy(cq∗5))D|.

By using Equation (17), we get the formula:

|(πy(cq∗1)∪ πy(cq∗3)∪ πy(cq∗5))D| = |(πy(cq∗1))D|+ |(πy(cq∗3))D|+ |(πy(cq∗5))D|
− |(πy(cq∗1) ∩ πy(cq∗3))D| − |(πy(cq∗1) ∩ πy(cq∗5))D| − |(πy(cq∗3) ∩ πy(cq∗5))D|
+ |(πy(cq∗1) ∩ πy(cq∗3) ∩ πy(cq∗5))D|.

(19)
Assume that

max{|(πy(cq∗1) ∩ πy(cq∗3))D|, |(πy(cq∗1) ∩ πy(cq∗5))D|, |(πy(cq∗3) ∩ πy(cq∗5))D|} = |(πy(cq∗1) ∩ πy(cq∗3))D|.

Then, by relying on Assumption (a4), Equation (19) can be rewritten as:

|(πy(cq∗1)∪πy(cq∗3)∪πy(cq∗5))D| = |(πy(cq∗1))D|+ |(πy(cq∗3))D|+ |(πy(cq∗5))D|
− 2 · |(πy(cq∗1) ∩ πy(cq∗3))D| − |(πy(cq∗1) ∩ πy(cq∗5))D| − |(πy(cq∗3) ∩ πy(cq∗5))D|.

We use such formula, containing only binary intersections, to compute the ratio of distinct values

r =
|(πy(cq∗1) ∪ πy(cq∗3) ∪ πy(cq∗5))D|

|(πy(cq∗1))D|+ |(πy(cq∗3))D|+ |(πy(cq∗5))D|
.

Hence, we estimate |q(x, y)D| to be

r ·
6∑
j=1

|cqDj | (20)

The previous example makes use of Equation (17), which is practical only if the union is on a small number of sets.
Additionally, for the sake of clarity, we have used the actual cardinalities, rather than estimates. We observe, however,
that all the cardinalities in Formula (20) can be estimated by using our estimators ceD, fvD, and distD.

6 Unfolding Cost Model
We are now ready to estimate the actual costs of evaluating UJUCQ and UCQ unfoldings, by exploiting the cardinality
estimations from the previous section. Our cost model is based on traditional textbook-formulae for query cost estima-
tion [24], and it assumes source parts in the mappings to be CQs.

6.1 Cost for the Unfolding of a UCQ.
Recall from Section 4 that the unfolding of a UCQ produces a UCQ translation qucq =

∨
i q

cq
i . We estimate the cost of

evaluating qucq as
ceval(q

ucq) =
∑
i

ceval(q
cq
i) + cu(qucq)

where
• ceval(qcqi) is the cost of evaluating each qcqi in qucq ;
• cu(qucq) is the cost of removing duplicate results.

19

In the remainder of this paragraph we explain how we calculate each of these addends.

Value of ceval(qcq). Let qcq = V1 1 · · · 1 Vn, where Vi = Ti1 1 · · · 1 Timi
, where mi ∈ N and 1 ≤ i ≤ n. Then, we

define ceval(qcq) as

ceval(q
cq) =

∑
1≤i≤n

∑
1≤j≤mi

cscan(Tij) + chjoin(qcq)

where

• cscan(Tij) = |TDij | × ct

– where ct is the fixed cost of retrieving one tuple from the database. Such constant, as well as other constants
in this section, can be found through calibration techniques [11].

• chjoin(qcqi) = (
∑n
i=1mi) · ceD(qcqi) · cj

– where cj is the fixed cost of joining one tuple.

Summing up, ceval(q
cq
i) is the cost of scanning each table in the conjunctive query and performing a hash join. We

assume the statistics |TDij |, for 1 ≤ i ≤ n, 1 ≤ j ≤ mi, to be available after having analyzed the database instance
according to the database schema.

Value of cu(qucq). We assume the removal of duplicates at this level to be carried out by a sort-based strategy. Under
this assumption, the cost of removal is

cu(qucq) = ceD(qucq) · log(ceD(qucq)) · cu

where ceD(qucq) is the cardinality estimation of the unfolding, calculated as described in Section 5, and cu is a constant
denoting the cost of eliminating a duplicate tuple.

Cost for the Unfolding of a JUCQ. Recall from Section 4 that the optimized unfolding of a JUCQ produces a
UJUCQ. We estimate the cost of a single JUCQ qjucq =

∧
i q

ucq
i in the unfolding as

c(qjucq) =
∑

i ceval(q
ucq
i) +

∑
i6=k cmat(q

ucq
i) + cmjoin(qjucq)

where
• ceval(qucqi) is the cost of evaluating each UCQ component qucqi ;
•
∑
i 6=k cmat(q

ucq
i) is the cost of materializing the intermediate results from qucqi , where the k-th UCQ is assumed to

be pipelined [24] and not materialized;
• cmjoin(qjucq) is the cost of a merge join over the materialized intermediate results.
The cost for a UJUCQ qujucq =

∨
i q
jucq
i , if all the attributes are kept in the answer, is simply the sum

∑
i c(q

jucq
i),

since the results of all JUCQs are disjoint (c.f., Section 4). Otherwise, we need to consider the cost of eliminating duplicate
results.

Value of cmat(q
ucq
i). Let qucqi = qcq1 1 · · · 1 qcqm . Then

cmat(qi)
ucq = ceD(qucqi) · cm

where cm is the fixed cost of materializing a tuple.

Value of cmjoin(q
jucq). Let qjucq = qucq1 1 · · · 1 qucqm . Then

cmjoin(qjucq) = m · ceD(qjucq) · cj

where ceD(qjucq) is the cardinality estimation of the unfolding, calculated as described in Section 5. Observe that we do
not consider the cost of sorting each qucqi , as this cost is already included in ceval(q

ucq
i).

7 Experimental Results
In this section, we provide an empirical evaluation that compares unfoldings of UCQs and (optimized) unfoldings of
JUCQs, as well as the estimated costs and the actual time needed to evaluate the unfoldings. We ran the experiments
on an HP Proliant server with 2 Intel Xeon X5690 Processors (each with 12 logical cores at 3.47GHz), 106GB of RAM
and five 1TB 15K RPM HDs. As RDBMS we have used PostgreSQL 9.6. The material to replicate our experiments is
available online 7.

7https://github.com/ontop/ontop-examples/tree/master/iswc-2017-cost

20

https://github.com/ontop/ontop-examples/tree/master/iswc-2017-cost

0e+00 2e+07 4e+07 6e+07 8e+07 1e+080.
00

00
12

33
.3

33
3

28
77

.7
77

8

estimation

ev
al

ua
tio

n
(s

)

timeout = 3600s

ucq: linear regression

ucq: successful run

ucq: timout run

jucq: linear regression

jucq: successful run

jucq: timeout run

(a) Our cost model vs. evaluation

0.0e+00 5.0e+08 1.0e+09 1.5e+090.
00

00
13

33
.3

33
3

31
11

.1
11

1

estimation

ev
al

ua
tio

n
(s

)

 timeout = 3600s
ucq: linear regression

ucq: successful run

ucq: timout run

jucq: linear regression

jucq: successful run

jucq: timeout run

(b) PostgreSQL cost model vs. evaluation
queries linear regression of our cost linear regression of PostgreSQL cost

succ. time out b0 b1 b0 b1

UCQ 68 16 1.40e+01 6.17e-05 6.16e+01 3.61e+05
JUCQ 83 1 -3.76e+01 6.33e-05 2.56e+01 3.25e-07

(c) Results of linear regressions (evaluation = b0 + b1 × estimation)

Figure 3: Cost estimations vs evaluation running times

7.1 Wisconsin Experiment
We devised an OBDA benchmark based on the Wisconsin Benchmark [9]. In the following subsections we discuss each
element of the benchmark, and their rationale.

Mappings. The mappings set consists of 1364 mapping assertions. Each mapping defines a property of the form
:J20OxxMyRzPropi, where

• J20, read “join selectivity 20%”, denotes that each mapping for that property is on a query retrieving the 20% of
the total tuples;

• Oxx, read “offset xx”, where xx ∈ {0, 5, 10, 15}, denotes the offset for the filter in the mappings based on column
onePercent;

• My, y ∈ {1, . . . , 6} denotes the number of mapping assertions defining the property;

• Rz, z ≤ y denotes the number of redundant mapping assertions, that is, the number of mapping assertions whose
source query does not produces new individuals for the property in the virtual RDF ABox;

• Propi, i ∈ {1, . . . , 3}. The tested BGP is made of three properties.

For instance, we the following listing provides the mapping definition for the property :S20O0M2R0Prop1.
target :number/{unique2} :S20O0M2R0Prop1

:name/{evenOnePercent}/{stringu1}/{stringu2} .
source SELECT "unique2", evenOnePercent, stringu1, stringu2

FROM t1_1m
WHERE "onepercent" >= 0 AND "onepercent" < 20

SPARQL Queries. Our test is on 84 queries, instantiations of the following template:
SELECT DISTINCT * WHERE {

?x :MmRrProp1 ?y1; :JjMmRrProp2 ?y2; :JjMmRrProp3 ?y3
}

where j ∈ {5, 10, 15, 20} denotes the selectivity of the join between the first property and each of the remaining two,
expressed as a percentage of the number of retrieved rows for each mapping defining the property (each mapping retrieves
200k tuples); m ∈ {1, . . . , 6} denotes the number of mappings defining the property (all such mappings have the same
signature), and r ∈ {0, . . . ,m−1} denotes the number of redundant mappings, that is, the number of mappings assertions
retrieving the same results of another mapping definining the property, minus one.

21

−0.12
−0.12 0.41
−0.03 0.29 0.64
−0.11 0.27 0.54 0.76
0.48 0.68 0.83 0.92 0.95
−0.10 0.23 0.59 0.74 0.80 0.86

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=20%

0.08
−0.05 0.33
−0.13 0.31 0.62
−0.03 0.19 0.53 0.73
0.52 0.70 0.83 0.93 0.95
0.17 0.49 0.68 0.80 0.84 0.89

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=15%

−0.17
0.02 0.31
−0.08 0.20 0.58
0.11 0.27 0.51 0.69
0.49 0.68 0.82 0.91 0.93
0.57 0.67 0.78 0.84 0.88 0.89

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=10%

−0.20
−0.08 0.30
0.05 0.33 0.53
−0.01 0.27 0.53 0.66
0.50 0.68 0.81 0.90 0.91
0.50 0.67 0.77 0.84 0.88 0.87

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=5%

Figure 4: Performance gain of JUCQ compared with UCQ

For each query, we have tested a correspondent cover query of two fragments f1, f2, where each fragment is an
instantiation of the following templates:
f1: SELECT DISTINCT ?x ?y1 ?y2 WHERE { ?x :MmRrProp1 ?y1; :JjMmRrProp2 ?y2. }
f2: SELECT DISTINCT ?x ?y3 WHERE { ?x :MmRrProp1 ?y2; ?x :JjMmRrProp3 ?y3. }

Ontology. We have carried out our tests over an empty TBox. Observe that this is not a limitation, as the case with a
TBox can be reduced to the case without a TBox by making use of a T-mapping as in Example 5.9.

Data. We have created several copies of the wisconsin table, and populated each copy with ten million tuples.

Evaluation. In Figure 3, we present the cost estimation and the actual running time for each query. We have the
following observations:
• In this experiment, for the considered cover, JUCQs are generally faster than UCQs. In fact, out of the 84 SPARQL

queries, only one JUCQ was timed out, while 16 UCQs were timed out. The mean running time of successful UCQs
and JUCQs are respectively 160 seconds and 350 seconds.

• In Figure 3a, where the fitted lines are obtained by applying linear regression over successful UCQ and JUCQ
evaluations, we observe a strong linear correlation between our estimated costs and real running times. Moreover,
the coefficients (b1 and b0) for UCQs and JUCQs are rather close. This empirically shows that our cost model can
estimate the real running time well.

• Figure 3b shows that the PostgreSQL cost model assigns the same estimation to many queries having different
running times. Moreover, the linear regressions for UCQs and JUCQs are rather different, which suggests that
PostgreSQL is not able to recognize when two translations are semantically equivalent. Hence, PostgreSQL is not
able to estimate the cost of these queries properly.

In Figure 4, we visualize the performance gain of JUCQs compared with UCQs. The four subgraphs correspond to
four different settings join selectivities. Each subgraph is a matrix in which each cell shows the value of the performance
gain g = 1 − jucq time/ucq time. When g > 0, we apply the red color; otherwise blue. These graphs clearly show that
when there is a large number of mappings and there is high redundancy, we have better performance gains. When the
redundancy is low (0 or 1), and the number of mapping axioms is large, the join selectivity plays an important role in the
performance gain, as discussed in [3]; in other cases, the impacts are non-significant.

Figures 5 and 6 report the cardinalities estimated by PostgreSQL divided by the actual sizes of the query answers
for all UCQ and JUCQ queries. For UCQs, it shows that PostgreSQL normally underestimates the cardinalities, but it
overestimates them when the redundancies are high. As for JUCQS, PostgreSQL always overestimates the cardinalities,
ranging from 40 to 200K times. These numbers partially explains why PostgreSQL estimate the costs of both UCQs and
JUCQs so badly in Figure 3b.

22

0.040
0.040 0.323
0.040 0.137 1.093
0.041 0.096 0.324 2.593
0.040 0.079 0.187 0.630 5.044
0.040 0.070 0.136 0.322 1.088 8.707

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s
 join selectivity=20%

0.054
0.054 0.431
0.054 0.182 1.452
0.054 0.127 0.430 3.442
0.054 0.105 0.248 0.836 6.688
0.054 0.093 0.181 0.429 1.447 11.579

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=15%

0.081
0.081 0.648
0.081 0.273 2.185
0.081 0.191 0.645 5.162
0.080 0.156 0.370 1.249 9.990
0.080 0.138 0.270 0.641 2.163 17.308

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=10%

0.162
0.162 1.294
0.161 0.545 4.358
0.160 0.380 1.282 10.258
0.159 0.311 0.737 2.486 19.886
0.159 0.276 0.538 1.276 4.306 34.452

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=5%

Figure 5: UCQs: (PostgreSQL estimated cardinality) / (real cardinality)

40
81 650
122 413 3307
163 387 1308 10462
203 396 940 3171 25368
243 420 821 1946 6568 52545

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=20%

54
108 867
163 549 4394
217 514 1736 13888
269 526 1246 4205 33639
324 559 1092 2588 8735 69879

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s
 join selectivity=15%

81
163 1305
245 827 6612
325 771 2604 20830
402 785 1861 6281 50247
484 836 1632 3869 13057 104456

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=10%

162
326 2606
488 1649 13188
647 1533 5174 41395
800 1563 3704 12502 100014
963 1663 3249 7701 25990 207920

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=5%

Figure 6: JUCQs: (PostgreSQL estimated cardinality) / (real cardinality)

We obtained similar conclusions for a query with four atoms, and a cover of three fragments.

7.1.1 Wisconsin Experiment II: Four Atoms

In this experiment we consider 84 queries, instances of the following template
SELECT DISTINCT * WHERE {?x :MmRrProp1 ?y1; :JjMmRrProp2 ?y2; :JjMmRrProp3 ?y3; :JjMmRrProp3 ?y4}

where j ∈, m, and r are defined as for the case with three atoms.
For each query, we have tested a correspondent cover query of three fragments f1, f2, f3, where each fragment is an

instantiation of the following templates:
f1: SELECT DISTINCT ?x ?y1 ?y2 WHERE { ?x :MmRrProp1 ?y1; :JjMmRrProp2 ?y2. }
f2: SELECT DISTINCT ?x ?y3 WHERE { ?x a :MmRrProp1; ?x :JjMmRrProp3 ?y3. }
f3: SELECT DISTINCT ?x ?y4 WHERE { ?x a :MmRrProp1; ?x :JjMmRrProp3 ?y4. }

Evaluation. Figures 7, 8, and 9 are the counterparts for the Figures of the three atoms case. Observe that the results
look extremely similar, thus confirming our comments from the previous Subsection.

23

0.0e+00 1.0e+08 2.0e+08 3.0e+080.
00

00
12

33
.3

33
3

28
77

.7
77

8

estimation

ev
al

ua
tio

n
(s

)

timeout = 3600s

ucq: linear regression

ucq: successful run

ucq: timout run

jucq: linear regression

jucq: successful run

jucq: timeout run

(a) Our cost model vs. evaluation

0e+00 2e+12 4e+12 6e+12 8e+120.
00

00
13

33
.3

33
3

31
11

.1
11

1

estimation

ev
al

ua
tio

n
(s

)

 timeout = 3600s

ucq: linear regression

ucq: successful run

ucq: timout run

jucq: linear regression

jucq: successful run

jucq: timeout run

(b) PostgreSQL cost model vs. evaluation
queries linear regression of our cost linear regression of PostgreSQL cost

succ. time out b0 b1 b0 b1

UCQ 50 34 1.22e+01 6.20e-05 8.78e+01 2.21e-05
JUCQ 79 5 -1.30+e02 8.95e-05 2.74e+02 5.84e-10

(c) Results of linear regressions (evaluation = b0 + b1 × estimation)

Figure 7: Cost estimations vs evaluation running times

Table 1: Evaluation over the NPD benchmark

SPARQL Query Unfolding of UCQs Unfolding of JUCQs
name # triple patterns time (s) # CQs time (s) # Frags # CQs

q6 7 2.18 48 1.20 2 14
q11 8 3.39 24 0.40 2 12
q12 10 6.67 48 0.47 2 14
q31 10 54.27 3840 1.58 2 327

7.2 NPD Experiment
The goal of this experiment is to verify that cost-based techniques can improve the performance of query answering over
real-world queries and instances. This test is carried on the original real-world instance (as opposed to the scaled data
instances) of the NPD benchmark [17] for OBDA systems. We pick the three most challenging UCQ queries (namely q6,
q11, and q12) from the query catalog, and create another even more difficult query (called q31) by combining q6 and q9.
Query q31, in the listing below, retrieves information regarding wellbores (from q6) and their related facilities (from q9).
SELECT DISTINCT ?fn ?c ?id ?wlb ?year ?comp WHERE {

Fragment 1
?f a npdv:Facility ; npdv:name ?fn ; npdv:regInCountry ?c; npdv:idNPD ?id .
?w npdv:productionFacility ?f.

Fragment 2
?w rdf:type npdv:Wellbore ; npdv:name ?wlb ; npdv:wellbCYear ?year;

npdv:drillOpComp [npdv:name ?comp]
FILTER (?id > "0"ˆˆxsd:integer) }

In Table 1, we show the evaluation results over the NPD benchmark for UCQs and JUCQs. The unfoldings of JUCQs are
constructed using cover queries of 2 fragments, each guided by our cost model. We observe that the sizes of the unfoldings
of JUCQs, measured in number of CQs, are sensibly smaller than the size of the unfoldings of UCQs. Finally, we observe
that the unfoldings of the JUCQ version of the considered queries improve the running times up to a factor of 34.

8 Conclusion and Future Work
In this paper, we have studied the problem of finding efficient alternative translations of a user query in OBDA. Specif-
ically, we introduced a translation of JUCQ queries that preserves the JUCQ structure while maintaining the possibility
of performing joins over database values, rather than URIs constructed by applying mappings definitions. We devised a
cost model based on a novel cardinality estimation, for estimating the cost of evaluating a translation of a UCQ or JUCQ
over the database. We compared different translations on both a synthetic and fully customizable scenario based on the
Wisconsin Benchmark and on a real-world scenario from the NPD Benchmark. In these experiments we have observed

24

0.008

0.008 0.130

0.008 0.041 0.659

0.008 0.026 0.130 2.073

0.008 0.020 0.062 0.316 5.051

0.008 0.017 0.041 0.129 0.652 10.432

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s
 join selectivity=20%

0.011

0.011 0.171

0.011 0.055 0.872

0.011 0.034 0.172 2.745

0.011 0.026 0.083 0.420 6.712

0.011 0.022 0.054 0.172 0.870 13.919

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=15%

0.016

0.016 0.259

0.016 0.082 1.309

0.016 0.050 0.255 4.087

0.016 0.039 0.124 0.625 10.004

0.016 0.033 0.081 0.257 1.300 20.796

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=10%

0.033

0.032 0.515

0.032 0.162 2.585

0.032 0.100 0.504 8.072

0.032 0.078 0.245 1.242 19.865

0.032 0.066 0.161 0.510 2.580 41.274

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=5%

Figure 8: UCQs: (PostgreSQL estimated cardinality) / (real cardinality)

8051
32710 523354
73601 372606 5961697
129706 409936 2075299 33204777
202071 493339 1559193 7893417 126294669
291387 604220 1475146 4662191 23602341 377637462

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=20%

10881
43022 688355
97394 493055 7888874
171691 542629 2747058 43952925
268508 655538 2071823 10488602 167817639
388757 806127 1968084 6220117 31489343 503829489

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=15%

16395
65046 1040732
146245 740365 11845836
255655 807995 4090476 65447609
400181 977005 3087820 15632087 250113386
580844 1204439 2940524 9293507 47048381 752774100

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=10%

32633
129446 2071130
288694 1461515 23384237
504933 1595839 8078933 129262929
794647 1940057 6131538 31040911 496654572
1152800 2390446 5836050 18444801 93376805 1494028886

2

4

6

0 2 4 6
redundant mappings

m

ap
pi

ng
 a

xi
om

s

 join selectivity=5%

Figure 9: JUCQs: (PostgreSQL estimated cardinality) / (real cardinality)

that (i) our approach based on JUCQ queries can produce translations that are orders of magnitude more efficient than
traditional translations into UCQs, and that (ii) the cost model we devised is faithful to the actual query evaluation cost,
and hence is well suited to select the best translation.

As future work, we plan to implement our techniques in the state-of-the-art OBDA system Ontop and to integrate
them with existing optimization strategies. This will allow us to test our approach in more and diversified settings. We
also plan to explore alternatives beyond JUCQs. An interesting line of research would be on the problem of relaxing the
uniformity assumption made in our cost estimator, by integrating our model with existing techniques based on histograms.
Finally, we plan to improve our approach for dealing with projection in an unfolding. In fact, the approach proposed here
relies on a formula that has size exponential in the number of queries in the unfolding. To overcome this problem, we plan
to remove such formula from our estimation by relying on additional statistics provided by the mapping and the ontology,
such as the cardinality of the projection over one of the two arguments of a property defined in the wrap of a T-mapping.

References
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley Publ. Co., 1995.

[2] Meghyn Bienvenu, Magdalena Ortiz, Mantas Simkus, and Guohui Xiao. Tractable queries for lightweight descrip-
tion logics. In Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI). IJCAI/AAAI, 2013.

25

[3] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. Efficient query answering in DL-Lite through FOL
reformulation (extended abstract). In Proc. of the Int. Workshop on Description Logic (DL), volume 1350 of CEUR
Workshop Proceedings, http://ceur-ws.org/. CEUR-WS.org, 2015.

[4] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. Reformulation-based query answering in RDF: alter-
natives and performance. Proc. of the VLDB Endowment, 8(12):1888–1891, 2015.

[5] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. Teaching an RDBMS about ontological constraints.
Proc. of the VLDB Endowment, 9(12):1161–1172, 2016.

[6] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin Rezk, Mariano
Rodriguez-Muro, and Guohui Xiao. Ontop: Answering SPARQL queries over relational databases. Semantic Web
J., 8(3):471–487, 2017.

[7] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning,
39(3):385–429, 2007.

[8] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF mapping language. W3C Recom-
mendation, World Wide Web Consortium, September 2012. Available at http://www.w3.org/TR/r2rml/.

[9] David J. DeWitt. The Wisconsin benchmark: Past, present, and future. In The Benchmark Handbook for Database
and Transaction Systems. Morgan Kaufmann, 2 edition, 1993.

[10] Floriana Di Pinto, Domenico Lembo, Maurizio Lenzerini, Riccardo Mancini, Antonella Poggi, Riccardo Rosati,
Marco Ruzzi, and Domenico Fabio Savo. Optimizing query rewriting in ontology-based data access. In Proc. of the
16th Int. Conf. on Extending Database Technology (EDBT), pages 561–572. ACM Press, 2013.

[11] Georges Gardarin, Fei Sha, and Zhao-Hui Tang. Calibrating the query optimizer cost model of iro-db, an object-
oriented federated database system. In VLDB’96, Proceedings of 22th International Conference on Very Large Data
Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 378–389, 1996.

[12] Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, Thomas Schwentick, and Michael Za-
kharyaschev. The price of query rewriting in ontology-based data access. Artificial Intelligence, 213:42–59, 2014.

[13] Steve Harris and Andy Seaborne. SPARQL 1.1 query language. W3C Recommendation, World Wide Web Consor-
tium, March 2013. Available at http://www.w3.org/TR/sparql11-query.

[14] Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, and Michael Zakharyaschev. Exponential lower bounds
and separation for query rewriting. In Proc. of the 39th Int. Coll. on Automata, Languages and Programming
(ICALP), volume 7392 of Lecture Notes in Computer Science, pages 263–274. Springer, 2012.

[15] Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev. Conjunctive query answering with OWL 2 QL.
In Proc. of the 13th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR), pages 275–285,
2012.

[16] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Concepts and abstract syntax.
W3C Recommendation, World Wide Web Consortium, February 2004. Available at http://www.w3.org/TR/
rdf-concepts/.

[17] Davide Lanti, Martin Rezk, Guohui Xiao, and Diego Calvanese. The NPD benchmark: Reality check for OBDA
systems. In Proc. of the 18th Int. Conf. on Extending Database Technology (EDBT), pages 617–628. OpenProceed-
ings.org, 2015.

[18] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz. OWL 2 Web
Ontology Language profiles (second edition). W3C Recommendation, World Wide Web Consortium, December
2012. Available at http://www.w3.org/TR/owl2-profiles/.

[19] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Linking data to ontologies. J. on Data Semantics, X:133–173, 2008.

[20] Mariano Rodriguez-Muro and Diego Calvanese. High performance query answering over DL-Lite ontologies. In
Proc. of the 13th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR), pages 308–318,
2012.

26

http://ceur-ws.org/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/sparql11-query
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/owl2-profiles/

[21] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. Ontology-based data access: Ontop of
databases. In Proc. of the 12th Int. Semantic Web Conf. (ISWC), volume 8218 of Lecture Notes in Computer Science,
pages 558–573. Springer, 2013.

[22] Mariano Rodriguez-Muro and Martin Rezk. Efficient SPARQL-to-SQL with R2RML mappings. J. of Web Seman-
tics, 33:141–169, 2015.

[23] Juan F. Sequeda and Daniel P. Miranker. Ultrawrap: SPARQL execution on relational data. J. of Web Semantics,
22:19–39, 2013.

[24] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts, 5th Edition. McGraw-Hill
Book Company, 2005.

[25] Arun Swami and K. Bernhard Schiefer. On the estimation of join result sizes. In Proc. of the 4th Int. Conf. on Ex-
tending Database Technology (EDBT), volume 779 of Lecture Notes in Computer Science, pages 287–300. Springer,
1994.

27

	1 Introduction
	2 Preliminaries
	3 Background on Cost-Based Optimization of Query Rewriting
	4 Cover-based Translation in OBDA
	5 Unfolding Cardinality Estimation
	5.1 Background on Cardinality Estimation
	5.2 Cardinality Estimation of CQs
	5.3 Extending Cardinality Estimation to Non-basic CQs
	5.3.1 Extending Cardinality Estimation to Arbitrary Join Conditions
	5.3.2 Extending Cardinality Estimation to CQs with Existential Variables (Projection)

	5.4 Collecting the Necessary Base Statistics
	5.5 Cardinality Estimation of an Unfolding
	5.6 A Note on Rewriting
	5.7 Extending Cardinality Estimation to Input Queries with Projection

	6 Unfolding Cost Model
	6.1 Cost for the Unfolding of a UCQ.

	7 Experimental Results
	7.1 Wisconsin Experiment
	7.1.1 Wisconsin Experiment II: Four Atoms

	7.2 NPD Experiment

	8 Conclusion and Future Work

