
Toward a new
landscape of systems
management in an
autonomic computing
environment

by G. Lanfranchi
P. Della Peruta
A. Perrone
D. Calvanese

In this paper we present IBM Tivoli
Monitoring, a systems management
application that displays autonomic behavior
at run time, and we focus on extending it in
order to encompass the design and the
deployment phases of the product life cycle.
We review the resource model concept,
illustrate it with an example, and discuss its
role throughout the product life cycle. Then
we introduce basic concepts in ontology and
description logics and discuss representing
Common Information Model constructs using
description logics. Finally, we propose
Systems Management Ontology, an approach
to enhancing the autonomic properties of IBM
Tivoli Monitoring based on an ontology
service and the technique of “contextual
pulling” applied to the resource model.

Problems cannot be solved at the same level of awareness
that created them.

—Albert Einstein

The information technology (IT) infrastructure that
supports business systems today continues to evolve
at a breakneck pace, with the integration of new de-
vices, servers, and applications creating highly com-
plex systems. Systems management needs to simi-
larly evolve in order to cope with this increasing
complexity in IT. Management tools need to become
“smarter” if they are to drive successful business sys-
tems. Performance and availability management
tools are, in particular, key enablers of an efficient
and profitable business. A business cannot execute
efficiently unless the mission-critical business appli-

cations and the supporting middleware and operat-
ing systems are available and performing well. Any
component failure or poor performance could ad-
versely impact the business.

To minimize the business downtime, the speedy ex-
ecution of the appropriate corrective action is
needed. An important component of performance
and availability management is the monitoring of the
system in order to detect anomalies as soon as they
occur and to take the necessary corrective actions
(e.g., restore the failing objects to their desired state,
or activate backup resources). The monitoring and
the taking of corrective action should be optimized
with respect to the overall objectives of the entire
business system. Whenever feasible, systems man-
agement tools with predictive capabilities should be
used in order to detect future problem states, and
to allow action to be taken before a failure occurs
and adversely impacts users.

When the tools monitoring the system resources sim-
ply collect raw data (e.g., performance metrics), it
can be difficult to draw any conclusion about the
health of a system. A graphical performance mon-
itor or an event viewer tool can be useful, but only
if a skilled administrator is able to interpret the in-
formation provided, and to determine if a problem
exists or not. Only an experienced administrator has
the ability to correlate the appropriate domain

�Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 0018-8670/03/$5.00 © 2003 IBM LANFRANCHI ET AL. 119

knowledge with the data collected, such as metrics
and events, and come up with answers to questions
such as: Is there a memory bottleneck?, What is its
cause?, and How can I fix it? In the current mon-
itoring environment, the system administrator inher-
ently owns the best practices and applies them in or-
der to identify and cure problems.

We describe here the approach taken in IBM Tivoli
Monitoring,1 in which the monitoring tool directly
models and implements the relevant aspects of the
domain entities as logical objects, and via this im-
plementation it transforms the raw data into the in-
formation required in order to detect, correct, and,
whenever possible, predict abnormal system behav-
ior. The system administrator is thus better able to
address IT problems quickly, and thus concentrate
on better serving business demands.

The best practices embedded in the monitoring tool
enable the autonomic behavior of the monitoring
tool at run time.2 This autonomic behavior can be
extended to the other two phases of the application
life cycle: the design phase (where the best practices
are created), and the deployment phase (where the
best practices are deployed into the managed sys-
tems).

In this paper we first present IBM Tivoli Monitoring
as an existing solution that displays autonomic be-
havior at run time, and then we focus on extending
this solution to encompass the design time and the
deployment time. In the next section, we provide an
overview of IBM Tivoli Monitoring with a particular
focus on the “resource model” concept. In the fol-
lowing section we present the Systems Management
Ontology with an overview of “description logics”
and their use in representing Common Information
Model constructs. Finally, we link the previous
themes in order to illustrate the proposed approach
for autonomic systems management.

The IBM Tivoli Monitoring solution

The IBM Tivoli Monitoring (ITM) solution is based
on the resource model concept. In this section we
define the resource model and illustrate it through
an example. We then discuss the application of the
resource model to all phases of the ITM life cycle.

The resource model concept. The resource model
is the main tool for implementing an “identify, no-
tify, and cure” systems management strategy. A re-

source model has two parts: a dynamic model and
a reference model.

The Common Information Model (CIM) formalism
promoted by the Distributed Management Task
Force is a way to organize the available information
about the managed environment that applies the ba-
sic structuring and conceptualization techniques of
the object-oriented paradigm.3 The approach uses
a uniform modeling formalism that, together with
the basic repertoire of object-oriented constructs,
supports the cooperative development of an object-
oriented schema across multiple organizations. The
dynamic model uses CIM classes and CIM properties
to describe resources (such as memory) and their
performance metrics (such as process working set).
Moreover, it uses CIM methods to describe actions
that can be executed against the resource (such as
starting a process). The CIM association is then used
to represent the resource within a high level object
(logical object).

The reference model, implemented as a decision pro-
cedure and coded using either Visual Basic** or
JavaScript**, incorporates best practices that:

● Interpret the status of a problem object against a
defined baseline using the metrics provided by the
dynamic model

● Discover the root cause of the problem
● Correct the problem
● Log performance data related to the domain ob-

jects

The reference model describes the “critical paths”
within systems or applications. It interprets the “qual-
ity” of applications and systems against a predefined
service level in order to discover the root cause of
the problem and to react accordingly. The reference
model has a direct link to the dynamic model de-
scribing the resources and it analyzes the properties
of objects aggregated in the model, generates indi-
cations about the status of those resources, and in-
vokes methods to correct a problem. The reference
model, in effect, implements the best practices nor-
mally used by a system administrator to detect prob-
lems and to identify their root cause.

A resource model is created for each problem and
it contains the best practices used to identify and cor-
rect a well-defined problem. Figure 1 contains an ex-
ample of a resource model used to identify memory
problems in a Microsoft Windows** machine. The
dynamic model is created using a CIM representa-

LANFRANCHI ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003120

Figure 1 Resource model for detecting memory problems in Microsoft Windows machines

RESOURCES
CONTAINMENT

YES

REFERENCE MODEL

PHYSICAL RESOURCES

check to see if
Pagefile.sys
is too small

2-PERFORMANCE
 METRICS
 ANALYSIS

3-RECOVERY
 ACTION
 EXECUTION

1-PERFORMANCE
 METRICS
 ACCESS

DYNAMIC MODEL

Total Byte Available <
Critical Byte Available

MemoryModelToResource

-containing : MemoryModel
-contained : Memory
-cache : Cache
-process : Process
-pageFile : PageFile

Cache

-CopyReadHitsPercent : int
-DataMapHitsPercent : int
-MDLReadHitsPercent : int
-PinReadHitsPercent : int

Process

-process : string [key]
-PageFileBytes : int
-WorkingSet : int
-PageFaultSec : int
-PoolPagedByte : int
-PoolNonPagedByte : int
-id : int
-PrivateBytes : int

PageFile

-PagingFile : string [key]
-PercentUsage : int
-PercentUsagePeak : int

Memory

-Available : int
-cache : int
-PageSec : int
-CommittedByte : int
-CacheFaultSec : int
-PageFaultSec : int
-PercentCommittedByte : int
-CommittedLimit :
-SystemCodeToTotalByte :
-SystemDriverToTotalByte : set indication

CriticalLowAvailable

Total Byte Available <
Minimum Available

Total Byte
Available

MemoryModel

-modelName : [key]String = Memory
-machineName : string = pperuta

+setLargeCache()
+setSmallCache()
+setLevelTo()
+.....()

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 LANFRANCHI ET AL. 121

tion of the resources (Cache, Process, PageFile, Mem-
ory) and the properties that are useful in detecting
memory problems. These classes are then associated
via association class MemoryModelToResource with
object MemoryModel. Class MemoryModel also con-
tains a set of methods, such as setLargeCache, that
can be used to modify the status of some resource
(e.g., Cache).

The reference model is linked to class MemoryModel
(and thus to the dynamic model) and, using this class,
it can access the performance metrics of the asso-
ciated resources and apply the encoded best prac-
tices in order to discover if a memory problem ex-
ists. When a problem is detected, the reference
model can invoke a well-defined method in Memo-
ryModel to fix the problem, and also to notify the sys-
tem operator about the problem resolution. The best

practices are implemented in the form of an algo-
rithm that analyzes and correlates metrics, and com-
pares the results against a well-defined baseline.

Let us analyze a simplified resource model for de-
tecting critical memory leaks (see Figure 2). Classes
Memory and Process, as well as other additional
classes not shown in Figure 2, constitute the dynamic
model. MyMemory is an instance of class Memory,
whereas Netscape is an instance of class Process. No-
tice that property Available of class Memory, and prop-
erties PrivateBytes and WorkingSet of class Process
are represented in class instances MyMemory and
Netscape by their numerical values, respectively 256,
388958, and 109909. The function of layer Provider
is to gather the raw metrics (from the actual re-
sources) in order to supply the above-mentioned val-
ues for properties. The reference model controls the

Figure 2 A simplified resource model for detecting critical memory leaks

CLASSES AND METRICS DEFINITION

CIM CLASSES RESOURCE MODEL

DYNAMIC
MODEL

Memory

Available

PrivateBytes
WorkingSet

Process

Process::Netscape

388 958
109 909

REFERENCE
MODEL

DATA
GATHERING

ALGORITHM

CRITICAL MEMORY LEAK DETECTED

Memory::MyMemory

256 M

ProviderProvider

CIM INSTANCES

INSTANCE OF INSTANCE OF INSTANCE OF

DATA FLOW

LANFRANCHI ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003122

data gathering and interprets the data according to
best-practices algorithms in order to detect the
critical “memory leak” condition.

A “critical memory leak” occurs when the conditions
“low available memory with high working set” and
“memory leak in private bytes” exist. The condition
“low available memory with high working set” can
be detected by examining the number of bytes used
for the working set of the process (property bytTotal-
WorkingSet), the number of bytes used as cache (byt-
TotalCache) and the total memory available (bytTo-
talAvail). Those three values can be calculated using
“raw” metrics as follows.

● List all the process working sets and store the high
working set in bytTotalWorkingSet

● Store the metric Cache from Memory object in byt-
TotalCache

● Store the metric Available from the Memory object
in bytTotalAvail

The values collected for system resources are fur-
ther processed in order to detect the “low available
memory with high working set” condition.

bytTotalRAM � bytTotalWorkingSet �
bytTotalCache � bytTotalAvail

numPercentWS �
(bytTotalWorkingSet/bytTotalRAM) � 100

numPercentCache �
(bytTotalCache/bytTotalRAM) � 100

numPercentAvail �
(bytTotalAvail/bytTotalRAM) � 100

If (numPercentWS � numPercentCache and
numPercentWS � numPercentAvail) then the con-
dition “low available memory with high working
set” is satisfied.

The condition “memory leak in private bytes” is gen-
erated from a metric of the Process resource Private-
Bytes and observing its growth over time.

Store the process private bytes in PrivateBytes.

If the current value of process private bytes � the
previous value of the process private bytes then
the condition “memory leak in private bytes” is
satisifed.

As shown, modeling the “critical memory leak” con-
dition requires metrics provided by the CIM classes
Memory and Process, and the above algorithm.

The design, deploy, and run life-cycle phases. The
complete life cycle of the application, and of the re-
source model, consists of three phases: the design
phase, the deployment phase, and the run-time (or
operational) phase.

During the design phase, the resource model is de-
signed, built, and tested. IBM Tivoli Monitoring sup-
ports this phase by providing an integrated devel-
opment environment known as the Workbench. This
is the phase when best practices are implemented
and the domain knowledge is represented in the dy-
namic model and the reference model. Workbench
users (developers, administrators, etc.) select the CIM
classes for the dynamic model and then code the al-
gorithms that analyze the resource metrics in order
to detect and fix any abnormal behavior.

At deployment time, the resource model produced
using the Workbench is installed in the management
server from where it can be deployed to the target
machines using the profile managers of the Tivoli
Management Environment.4,5

On the target machine the resource model runs
within ITM. Here, instances of classes included in the
dynamic model are located, and the values of the
properties for each of these objects are analyzed by
the reference model. Abnormal conditions and per-
formance degradation are detected and corrected.
The information produced by the resource model
and the performance metrics collected can be re-
trieved and analyzed using the ITM Web Health Con-
sole.1

The next step. Although the operational phase of
monitoring displays autonomic properties—the re-
source model is able to keep resources under con-
trol with reduced human intervention—the design
and deployment phases still require human interven-
tion. Work is under way in the two following aspects
to implement a more autonomic approach.

1. Apply automated reasoning procedures to the
building of resource models. These procedures
would help identify common knowledge, avoid re-
dundancy, and optimize the set of resource mod-
els needed to manage a system or an application.

2. Provide a capability of the managed resource to
“contextually pull” an appropriate set of resource
models needed for its control. This will allow the
management agent itself to pull the resource mod-
els from the central server, thus avoiding the need
for the administrator to configure each monitor-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 LANFRANCHI ET AL. 123

ing agent according to the exact set of applica-
tions present on the machine, and to push to the
target the right set of resource models.

The next section highlights our blueprint for address-
ing these two objectives.

Systems Management Ontology

In this section we introduce basic concepts in on-
tology and description logics in the context of Sys-
tems Management Ontology (SMO) and discuss rep-
resenting CIM models in description logics. We use
the memory model example to highlight the appli-
cation of description logics reasoning capabilities to
resource models.

Ontologies and description logics. Ontologies are
metadata schemas, providing a controlled vocabu-
lary of terms, each with an explicitly defined and ma-
chine understandable semantic.6 They provide a
shared and common understanding of a domain that
can be communicated to people and intelligent sys-
tems, and thus facilitate knowledge sharing and re-
use. Ontologies are intended to overcome the prob-
lem of implicit and hidden knowledge by making the
conceptualization of a domain explicit. Researchers
in artificial intelligence advocate expressing ontol-
ogies in logical terms, which makes them suitable for
automated reasoning. Thus, information sharing and
reuse are facilitated not only by the explicit repre-
sentation of knowledge provided by ontologies, but
also by the automated reasoning services that allow
one to infer consequences from the available knowl-
edge.

Nowadays there is consensus on structuring knowl-
edge on a domain of interest in terms of classes of
objects and relationships between classes. State-of-
the-art ontology languages such as OIL and
DAML�OIL7 follow exactly this point of view. The
need to model domains in terms of classes and re-
lationships and the use of automated reasoning on
such representations leads to description logics be-
ing offered as an ideal candidate for capturing on-
tologies on a given domain in logical terms. Indeed,
both OIL and DAML�OIL can be viewed formally as
dialects of description logics.

Description logics were introduced in the early 1980s
in the attempt to provide a formal foundation to se-
mantic networks and frame systems. Since then they
have evolved into knowledge representation lan-
guages that are able to capture virtually all class-

based representation formalisms used in artificial in-
telligence, software engineering, and databases.8

One of the distinguishing features of the work on
these logics is the detailed computational complex-
ity analysis, both of the associated reasoning algo-
rithms and of the logical implication problem that
the algorithms are supposed to solve. Practical sys-
tems implementing such algorithms are now used in
several projects.9 Generally speaking, in description
logics, the domain of interest is modeled by means
of concepts (unary predicates) and relations (n-ary
predicates), which denote classes of objects and re-
lationships, respectively. Description logics are char-
acterized by three basic components.

1. A description language, which specifies how to con-
struct complex concept and relation expressions,
by starting from a set of atomic concepts and re-
lations and by applying suitable constructs

2. A knowledge specification mechanism, which spec-
ifies how to construct a description logic knowl-
edge base, in which properties of concepts and
relations are specified by means of suitable
assertions

3. A set of reasoning procedures, which allow one to
carry out suitable inferences from the knowledge
expressed in the knowledge base

One of the most expressive description logics stud-
ied so far is DLR.10–12 DLR is equipped with most of
the concepts and relation constructs typical of de-
cidable description logics (concrete domains are a
notable exception) and allows for the most general
form of knowledge assertions while still admitting
decidable reasoning procedures.

Representing CIM in description logics. DLR has
been successfully applied to representing UML (Uni-
fied Modeling Language) class diagrams13 and to rea-
soning with them. Intuitively, classes are represented
by atomic concepts, attributes, and aggregations by
atomic (binary) relations, and each association of
arity n by an atomic concept and n atomic binary
relations. The latter allows for dealing with associ-
ations, with and without a corresponding association
class, in a uniform way. The semantics of the var-
ious UML constructs is captured by suitable DLR as-
sertions. We refer the reader to Reference 14 for
the details of the encoding, while pointing out that
the expressive power of DLR allows one to formalize
several types of constraints that produce a better rep-
resentation of the application semantics and that are
typically not dealt with in a formal way. By making
use of the encoding of UML class diagrams in DLR,

LANFRANCHI ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003124

the following reasoning activities can be reduced to
DLR reasoning tasks.15,16

● Consistency of the class diagram, that is, whether
the diagram admits an instantiation. If this is not
the case, there is no set of instances that satisfies
the diagram, which indicates that the definitions
altogether are inconsistent.

● Class consistency (association/aggregation consis-
tency), that is, whether there is an instantiation of
the diagram such that a given class (association/
aggregation) has a nonempty extension. Observe
that, if this is not the case, then there is an incon-
sistency in the class specification, or at the very least
the class is inappropriately named since it is a syn-
onym for the empty class.

● Class subsumption (association/aggregation sub-
sumption), that is, whether the extension of one
class (association/aggregation) is a subset of the
extension of another class (association/aggrega-
tion) in every instantiation of the diagram. This
property suggests the possible omission of an ex-
plicit generalization. Alternatively, if all instances
of the more specific class are not supposed to be
instances of the more general class, then something
is wrong in the rest of the diagram, since it is forc-
ing an undesired conclusion.

● Detection of redundancies, for example, if two
classes (associations/aggregations) subsume each
other, then one of them is redundant.

● Refinement of properties, for example, when the
properties of various classes and associations/
aggregations interact to yield stricter multiplicities
or typing than those explicitly specified by the de-
signer. The simplest cases arise with multiple in-
heritance.

The idea of using description logics to deal with re-
source models has its root in two considerations: (1)
Both CIM models and resource models are expressed
using UML class diagrams with specific conventions,
and (2) DLR is able to fully capture UML class dia-
grams together with the specific conventions adopted
in CIM. The approach can be summarized in the fol-
lowing way:

● The CIM core model and the parts of the common
model relevant for a specific management task are
expressed in terms of a DLR knowledge base.

● CIM-based resource models (actually, the dynamic
model part) that are specific for components un-
der analysis are in turn expressed as additional as-
sertions included in the knowledge base.

● Queries posed to the CIM system specification are

translated into queries to the corresponding DLR
knowledge base, and are answered by making use
of typical description logics reasoning tasks.

Representing CIM and resource models in terms of
DLR allows for automated use of the knowledge rep-
resented in such models, making use of state-of-the-
art reasoning tools developed for expressive descrip-
tion logics.

Resource model knowledge exploitation. The ex-
pressive power of description logics and their ability
to capture and model a great variety of constraints
allow for powerful reasoning operators to be applied
across the CIM classes and CIM class properties rep-
resenting a particular IT system. (Note that the stan-
dard UML representation of CIM schema does not
allow this type of reasoning across classes.) We have
successfully applied the capabilities offered by de-
scription logics in our work focused on the “auto-
matic” definition of the dynamic model (aggregation
of CIM classes) during the design phase. In our val-
idation work we used two state-of-the-art descrip-
tion logic reasoning systems: FaCT17,18 and RACER;19

we formalized a CIM core model knowledge base
given as input to FaCT and RACER in order to apply
reasoning and inference operators. This technology
appears suited to provide the reasoning engine for
the resource model ontology service.

Referring again to the critical memory leak exam-
ple (see Figure 2), CIM classes, attributes, and
associations/aggregations are used in the resource
model (actually, the dynamic model) to establish re-
lationships between the various system components.
Such relationships implicitly determine those that
may contribute to the definition of a problem (e.g.,
“critical memory leak” between Memory and Process
classes). If this model is loaded on the ontology
server, the description logic reasoning engine can ex-
ploit it to determine relevant properties to be in-
cluded in other resource models.

As an example, consider a new application installed
on the managed endpoint with the requirement that
resource leaks should be kept under control. This
new application can be viewed as being composed
of multiple processes. The monitoring engine asks
the reasoning engine (by invoking suitable descrip-
tion logic inference requests) to identify the system
components that may be involved in a resource leak.
The reasoning system determines those classes that
are subsumed by the description logic term repre-
senting the resource leak. In our example this is the

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 LANFRANCHI ET AL. 125

“critical memory leak” condition via the Process
class. Thus, the model for the application includes
the classes Memory and Process and the resource
model class representing “critical memory leak.”
Other kinds of resource leaks could be similarly iden-
tified, such as “file descriptor leak” or “queue han-
dle leak.”

Further research into System Management Ontol-
ogy aims at extending the description logic formal-
ization from the domain of CIM classes and prop-
erties (dynamic model) to the domain of “best
practices” and baselines (reference model). This may
require extending the expressiveness of the adopted
description logics (to include, for example, concrete
domains) or taking into account the representation
of extensional aspects and/or more expressive que-
rying mechanisms.

The implications of this ongoing research effort are
fascinating and challenging: we could apply reason-
ing mechanisms not only across classes and class
properties but also across resource models. The rea-
soning mechanisms working across resource mod-
els could gracefully extend from the autonomic man-
agement of a single element (such as an operating
system, a database, a business application) toward
the autonomic management of an entire business
solution.

In fact, because the resource model is fully repre-
sented via description logics, the ontology service can
be used for reasoning across resource models, for
detecting and correcting problems, for optimizing
system behavior, or for achieving a specified quality-
of-service (QoS). The derived resource model, or set
of resource models, would then be “contextually
pulled” to the relevant resource.

The use of description logics to represent and per-
form reasoning across resource models significantly
augments the autonomic features of the IBM Tivoli
Monitoring solution during the design and deploy-
ment phases. Figure 3 illustrates the basic flow when
a managed resource uses SMO services.

Every time the managed resource undergoes a sig-
nificant state change (such as when a new applica-
tion is installed, or a new QoS is enforced on a run-
ning application) the monitoring agent uses the
ontology service for reasoning about the appropri-
ate management model for enforcing the desired
QoS. This phase is controlled by means of user-de-
fined policies that define the configuration for the

monitoring agent, for example, “call the ontology ser-
vice whenever application X is installed or when QoS
is modified” (see items 1 through 3 in Figure 3).

The end result of the reasoning process performed
by the ontology engine is the resource model (or set
of resource models) best suited to address the spe-
cific condition at the target (e.g., “application X with
QoS Q has been installed”). Default configuration pa-
rameters (cycle time, thresholds, etc.) are also ap-
plied to complete the definition of the reference
model20 (see item 4 in Figure 3).

The target knows (usually a URL is provided) where
the resource model is located, or where it will be built.
The resource model is then pulled to the target, typ-
ically in a Web environment (item 5 in Figure 3),
where it exercises its problem-detecting capabilities
(item 6 in Figure 3).

The described contextual pulling approach, with the
support of an ontology service, represents a step
toward the autonomic computing vision:

● The resource model can be selected and built, with-
out human intervention, based on the context
(state changes, specified QoS, etc.).

● The resource model is pulled “on demand” accord-
ing to the state of the target.

These enhanced autonomic capabilities do not in-
tend to exclude completely the human intervention
from the monitoring process. The human adminis-
trator will continue to be involved in the definition
of the appropriate policies, in the supervision of the
entire process, and in the tuning/correcting of spe-
cific “pathological” conditions.

Conclusions

The resource model technology, currently imple-
mented in the ITM product, helps realize the auto-
nomic computing vision in systems management and
specifically in the monitoring space: the resource
model captures the key characteristics of a managed
resource and allows the system to detect and cor-
rect any behavior not in line with the expected QoS.

In this paper, we proposed to use the resource model
technology in order to extend the autonomic behav-
ior across the entire life cycle of the application, in-
cluding the design phase and the deployment phase.
The CIM ontology and its representation by descrip-
tion logics raises the possibility to make better use

LANFRANCHI ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003126

of the knowledge available in CIM itself, and ulti-
mately to perform automated reasoning on this
knowledge base system. Finally, the contextual pull-
ing approach is seen as an autonomic evolution of
the management paradigm offered today by the
Tivoli Management Environment:5 it is the managed
resource that, through the use of the SMO service,
will be able to find and deploy the right resource
model for keeping its QoS under control.

Acknowledgments

The authors wish to thank Giuseppe De Giacomo,
Richard Szulewski, Scot MacLellan, Daniela Berardi,
Andrea Cali, and Maurizio Lenzerini for sharing
their insight and for their suggestions on the topic
of this paper.

**Trademark or registered trademark of Microsoft Corporation
or Sun Microsystems, Inc.

Cited references and notes

1. IBM Tivoli Monitoring, IBM Corporation, http://www.
tivoli.com/products/index/monitor/.

2. Autonomic Computing, IBM Research Division, IBM Cor-
poration, http://www.research.ibm.com/autonomic/.

3. The Distributed Management Task Force, Inc., http://www.
dmtf.org/index.php.

4. Tivoli Management Framework 3.7.1, IBM Corporation, http:
//www.tivoli.com/support/public/Prodman/public_manuals/
td/ManagementFramework3.7.1.html.

5. Tivoli Management Environment provides centralized man-
agement and a single point of control for data distribution
to groups of systems. In the Tivoli environment, a profile pro-
vides a container for application-specific information about
a particular type of resource. Profiles can be specialized and
configured, distributed across a network, and applied to a di-

Figure 3 A managed resource using SMO services—the basic flow

REASONING SYSTEM

RESOURCE MODELS
REPRESENTATION IN DLR

3-THE
 REASONING
 SYSTEM IS
 ACCESSED

1- RESOURCE WITH
 A SPECIFIED
 QoS IS INSTALLED
 IN THE SYSTEM

4-THE REASONING
 SYSTEM FINDS
 THE RIGHT
 RESOURCE MODEL
 FOR MAINTAINING
 THE QoS OF THE
 RESOURCE

5-THE RESOURCE
 MODEL IS PULLED
 TO THE
 MANAGED SYSTEM

RESOURCE
MODELS
REPOSITORY

RESOURCE MODEL

MONITORING ENGINE
2-RESOURCE IS
 DISCOVERED
 BY THE
 MONITORING
 ENGINE

6-THE RESOURCE
 MODEL DETECTS
 AND CORRECTS
 PROBLEMS,
 NOTIFIES
 MANAGING
 SYSTEM

SMO SERVICES

MANAGED SYSTEM

MANAGED RESOURCE

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003 LANFRANCHI ET AL. 127

verse set of machines, according to a subscription paradigm.
The profile feature is scalable with the number of distributed
systems.

6. D. Fensel, Ontologies: A Silver Bullet for Knowledge Manage-
ment and Electronic Commerce, Springer, New York (2001).

7. D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness,
and P. F. Patel-Schneider, “OIL: An Ontology Infrastructure
for the Semantic Web,” IEEE Intelligent Systems 16, No. 2,
38–45 (2001).

8. D. Calvanese, M. Lenzerini, and D. Nardi, “Unifying Class-
Based Representation Formalisms,” Journal of Artificial In-
telligence Research 11, 199–240 (1999).

9. The Description Logic Handbook: Theory, Implementation and
Applications, F. Baader, D. Calvanese, D. McGuinness,
D. Nardi, and P. F. Patel-Schneider, Editors, Cambridge Uni-
versity Press (2002). To appear.

10. D. Calvanese, G. De Giacomo, and M. Lenzerini, “On the
Decidability of Query Containment under Constraints,” Pro-
ceedings of the 17th ACM SIGACT SIGMOD SIGART Sym-
posium on Principles of Database Systems (PODS’98), ACM,
New York (1998), pp. 149–158.

11. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and
R. Rosati, “Description Logic Framework for Information
Integration,” Proceedings of the 6th International Conference
on Principles of Knowledge Representation and Reasoning
(KR’98), Morgan Kaufmann Publishers, San Francisco, CA
(1998), pp. 2–13.

12. D. Calvanese, G. De Giacomo, and M. Lenzerini, “Identi-
fication Constraints and Functional Dependencies in Descrip-
tion Logics,” Proceedings of the 17th International Joint Con-
ference on Artificial Intelligence (IJCAI 2001), Morgan
Kaufmann Publishers, San Francisco, CA (2001), pp. 155–
160.

13. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Mod-
eling Language Reference Manual, Addison-Wesley Publish-
ing Co., Boston, MA (1998).

14. A. Calı̀, D. Calvanese, G. De Giacomo, and M. Lenzerini,
“A Formal Framework for Reasoning on UML Class Dia-
grams,” Proceedings of the 13th International Symposium on
Methodologies for Intelligent Systems (ISMIS 2002), Lecture
Notes in Computer Science 2366, Springer, New York (2002),
pp. 503–513.

15. D. Berardi, D. Calvanese, and G. De Giacomo, “Reasoning
on UML Class Diagrams Using Description Logic Based Sys-
tems,” Proceedings of the KI’2001 Workshop on Applications
of Description Logics, CEUR Electronic Workshop Proceed-
ings (2001), http://ceur-ws.org/Vol-44/.

16. A. Calı̀, D. Calvanese, G. De Giacomo, and M. Lenzerini,
“Reasoning on UML Class Diagrams in Description Logics,”
Proceedings of IJCAR Workshop on Precise Modelling and De-
duction for Object-Oriented Software Development (PMD’01),
(2001), http://i12www.ira.uka.de/�beckert/PMD/proceedings.
html.

17. I. Horrocks, “The FaCT System,” H. C. M. de Swart, Editor,
Proceedings of the 2nd International Conference on Analytic
Tableaux and Related Methods (TABLEAUX’98), Lecture
Notes in Artificial Intelligence 1397, Springer, New York
(1998), pp. 307–312.

18. I. Horrocks, “Using an Expressive Description Logic: FaCT
or Fiction?” Proceedings of the 6th International Conference
on Principles of Knowledge Representation and Reasoning
(KR’98), Morgan Kaufmann Publishers, San Francisco, CA
(1998), pp. 636–649.

19. V. Haarslev and R. Moeller, “RACER System Description,”
Proceedings of the International Joint Conference on Automated

Reasoning (IJCAR 2001), Lecture Notes in Artificial Intel-
ligence 2083, Springer, New York (2001), pp. 701–705, http://
www.globus.org/OGSA

20. The most appropriate values for the configuration param-
eters heavily depend on the operational conditions at the tar-
get. In ITM Version 5.1 a default setting is given, which the
user may change during the configuration phase. In the fu-
ture, we envision an Adaptive Manager running at the target
whose function is to tune the configuration parameters of the
resource models according to the operational conditions of
the hosting environment.

Accepted for publication September 20, 2002.

Giovanni Lanfranchi IBM Software Group, Rome Tivoli Lab-
oratory, Via Sciangai 53, I-00144 Roma, Italy (electronic mail:
Giovanni_Lanfranchi@it.ibm.com). Mr. Lanfranchi is currently
technical strategist for the Performance and Availability depart-
ment in Tivoli. He received his degree in physics in 1986 at the
University of Milan. Before joining IBM he was responsible for
research and development at several companies in the robotics
and automotive field. At IBM he was an architect in the Computer-
Aided Engineering department, where he developed leading-edge
technologies in the surface modeling area. Mr. Lanfranchi is cur-
rently with the IBM Tivoli Division where he is involved in the
design of the “new wave” of systems management applications
with specific focus on performance and availability.

Pietro Della Peruta IBM Software Group, Rome Tivoli Labo-
ratory, Via Sciangai 53, I-00144 Roma, Italy (electronic mail:
pietro_della_peruta@it.ibm.com). Mr. Della Peruta is currently
principal engineer in the performance and availability unit of IBM
Tivoli. In this role he is responsible for technical strategy and im-
plementation of performance and availability management ap-
plications. Previously he worked on the design of the IBM Tivoli
Monitoring product. He joined Tivoli in 1996 after six years as
technical architect of IBM performance products such as Net-
View Performance Monitor. He holds a B.A. degree in electron-
ics engineering from the University of Naples.

Antonio Perrone IBM Software Group, Rome Tivoli Labora-
tory, Via Sciangai 53, I-00144 Roma, Italy (electronic mail:
antonio.perrone@it.ibm.com). Mr. Perrone graduated cum laude
in information sciences in 1989 at the University of Bari, Italy.
He joined IBM in 1990, where he has held several positions in
development and support. He has been with the IBM Tivoli Di-
vision since 1996, where he is currently an architect of IBM Tivoli
Monitoring. His interests include systems management, perfor-
mance, and availability, knowledge representation, data integra-
tion, transaction and process modeling, and software develop-
ment.

Diego Calvanese Università di Roma “La Sapienza,” Diparti-
mento di Informatica e Sistemistica, Via Salaria 113, I-00198 Roma,
Italy (electronic mail: calvanese@dis.uniroma1.it). Dr. Calvanese
is Assistant Professor in the Department of Informatics and Sys-
tems of the University of Rome, where he received his Ph.D. in
computer science in 1995. His research interests include theo-
retical aspects of data and information integration, semi-struc-
tured data, logics for knowledge representation, and in partic-
ular description logics and their relationship to data models.

LANFRANCHI ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003128

