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Evolution of Knowledge Bases (KBs) expressed in Description Logics (DLs) has gained a lot
of attention lately. Recent studies on the topic have mostly focused on so-called model-
based approaches (MBAs), where the evolution of a KB results in a set of models. For KBs
expressed in tractable DLs, such as those of the DL-Lite family, which we consider here,
it has been shown that one faces inexpressibility of evolution, i.e., the result of evolution
of a DL-Lite KB in general cannot be expressed in DL-Lite, in other words, DL-Lite is not
closed under evolution. What is still missing in these studies is a thorough understanding
of various important aspects of the evolution problem for DL-Lite KBs: Which fragments of
DL-Lite are closed under evolution? What causes the inexpressibility? Can one approximate
evolution in DL-Lite, and if yes, how? This work provides some understanding of these
issues for an important class of MBAs, which cover the cases of both update and revision.
We describe what causes inexpressibility, and we propose techniques (based on what we
call prototypes) that help to approximate evolution under the well-known approach by
Winslett, which is inexpressible in DL-Lite. We also identify a fragment of DL-Lite closed
under evolution, and for this fragment we provide polynomial-time algorithms to compute
or approximate evolution results for various MBAs.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Description Logics (DLs) provide excellent mechanisms for representing structured knowledge. In DLs, a Knowledge Base
(KB) consists of two components. The first component is a TBox, which describes general knowledge about an application
domain in terms of classes of objects with common properties, so-called concepts, and binary relationships between objects,
so-called roles. The second component of a KB is an ABox, which describes facts about individual objects. DLs constitute the
foundations for various dialects of the Web Ontology Language (OWL) [1], which is the language standardized by the World
Wide Web Consortium (W3C) for representing ontologies in the Semantic Web.

Traditionally DLs have been used for modeling at the intensional level the static and structural aspects of an application
domain [2]. Recently, however, the scope of KBs has broadened, and they are now used also for providing support in the
maintenance and evolution phase of information systems. This makes it necessary to study evolution of KBs [3], where the goal
is to incorporate new knowledge N into an existing KB K so as to take into account changes that occur in the underlying
application domain. In general, N is a set of formulas that represent properties that should be true after K evolves, and the
result of evolution is also intended to be a set of formulas. In the case where N interacts with K in an undesirable way,
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e.g., by causing the KB or relevant parts of it to become unsatisfiable, the new knowledge N cannot be simply added to the
KB. Instead, suitable changes need to be made in K so as to avoid this undesirable interaction, e.g., by deleting parts of K
conflicting with N . Different choices for changes are possible, corresponding to different approaches to the semantics of KB
evolution [4–6].

An important group of approaches to evolution semantics, on which we focus in this paper, is called model-based. Under
model-based approaches (MBAs), the result of evolution K �N is a set of models of N , minimally distant from the models
of K. Depending on how the distance between models is specified, different MBAs can be defined. In this paper we refer to
eight different MBAs presented in [7], which we will define and discuss in detail in Section 2.3. Since the result of evolution
K � N is a set of models, while K and N are logical theories, it is desirable to represent K � N as a logical theory using
the same language as for K and N . Thus, looking for representations of K � N is one of the main challenges in studies
of evolution under MBAs. When K and N are propositional theories, representing K � N as a propositional theory is
always possible [6], while the situation becomes dramatically more complicated as soon as K and N are first-order, e.g., DL
KBs [7,8].

Model-based evolution of KBs where both K and N are expressed in a language of the DL-Lite family [9] has recently
received a lot of attention [8,10–13]. The focus on DL-Lite is not surprising since this family has been specifically designed
to capture the fundamental constructs of widely used conceptual modeling formalisms, such as UML Class Diagrams and
the Entity-Relationship model [14,15]. DL-Lite is also at the basis of OWL 2 QL, one of the tractable fragments (or profiles)
of the OWL 2 standard [1,16]. It has been shown that for each of the eight quite natural model-based semantics presented
in [7], one can find DL-Lite KBs K and N such that K �N cannot be expressed in DL-Lite [7,17], that is, DL-Lite is not closed
under MBAs to evolution. This phenomenon was also noted in [8] for other DLs. What is missing in all these studies of
evolution for DL-Lite is a thorough understanding of:

(1) DL-Lite w.r.t. evolution: Which fragments of DL-Lite are closed under model-based semantics of evolution? Which DL-Lite
formulas are responsible for inexpressibility of model-based semantics of evolution?

(2) Evolution w.r.t. DL-Lite: Is it possible to capture evolution of DL-Lite KBs in richer logics and how can it be done? Which
are these logics?

(3) Approximation of evolution results: For DL-Lite KBs K and N , is it possible to obtain “good” approximations of K �N in
DL-Lite and how can it be done?

In this paper we study Problems (1) and (3)1 for evolution that affects the ABox-level only, so-called ABox evolution,
where N is an ABox, and the TBox of K should stay the same before and after the evolution. ABox evolution is relevant in
those settings where the structural knowledge (TBox) is well crafted and stable, while (ABox) facts about specific individuals
may get changed, or new facts may be inserted in the ABox. These ABox changes should be reflected in the resulting KB
without affecting the TBox. Our study covers both cases of ABox updates and ABox revision [5]. One significant area where
ABox evolution is particularly relevant is Semantic Web services, where one is interested in studying the effects of services
that perform operations over the instance data. Such data are inherently incomplete and thus can be effectively represented
by means of an ABox. Moreover, the services have to obey the semantics of the domain of interest, which is modeled
through a TBox, which is assumed not to change over time.

We now describe the contributions of this work and how it is organized. In Section 2.1, we review relevant notions
from Description Logics and present the DL DL-Litecore , which subsumes the DLs considered in this paper for which we
study evolution; in Section 2.3, we introduce the notion of evolution, eight evolution semantics, and the two main problems
related to evolution. Our contributions are the following:

• In Section 2.2, we introduce DL-Litepr , a restriction of DL-Litecore , which should be interesting in practice because, on
the one hand, it extends the first-order fragment of the RDFS ontology language [19], and, on the other hand, we prove
that it is closed under most of MBAs and for the other MBAs “good” approximations of evolution can be efficiently
computed.

• In Section 3, we study evolution of DL-Litepr KBs under three model-based semantics. More precisely, we prove that
– DL-Litepr is closed under two of them, and for this case we present two corresponding polynomial-time algorithms to

compute evolution results (in Sections 3.1 and 3.2);
– DL-Litepr is not closed under the third semantics, and for this case we present a polynomial-time approximation

algorithm.
• In Section 4, we introduce the notion of subsumption relation between model-based evolution semantics and prove

this relation between some of them, first, for the case of arbitrary DLs, and then for DL-Litepr . In particular, we show
that for DL-Litepr all the eight MBAs considered in this work collapse into three different equivalence classes w.r.t. the
subsumption relation. Moreover, the three MBAs for which we study evolution in Section 3 are representatives of these

1 We focus on these two problems because they are of higher practical value than Problem (2). We refer the reader to [18] for more details on Prob-
lem (2).
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equivalence classes. Thus, the results we present in Section 3 carry over to all the other model-based semantics of this
work.

• In Section 5, we study evolution beyond DL-Litepr under an important MBA corresponding to the well accepted Winslett’s
semantics [20], which is one of the eight MBAs considered in this work.
– For this semantics we show which combination of TBox and ABox assertions in K together with ABox assertions of N

leads to inexpressibility of evolution (Section 5.1).
– We introduce prototypes, which are a generalization of canonical models.

• In Section 6 we continue the study of Section 5 and show how an approximation of evolution under this semantics can
be efficiently computed.

Note. Due to space limitations, some proofs are sketched or omitted from the main body of the paper. Full proofs can be
found in Appendices A–H.

2. The DL-Lite family of Description Logics and knowledge evolution

We first present the Description Logic DL-Litecore and its fragment DL-Litepr . We then define the problem of knowledge
evolution, model-based approaches to the evolution problem, and the main challenges with these approaches.

2.1. The Description Logic DL-Litecore: basic definitions

In DLs [2], the domain of interest is modeled by means of concepts, denoting sets of objects, roles, denoting binary
relations between objects, and constants, denoting objects. Complex concepts and roles are obtained from atomic ones by
applying suitable constructs. We consider here the logic DL-Litecore , a member of the DL-Lite family of lightweight DLs [9].
We observe that all other members of the family extend DL-Litecore with additional constructs (see [9,21] for details). Hence,
all negative results about expressibility that we establish in this work extend immediately to the other members of the
DL-Lite family. In DL-Litecore , (complex) concepts and roles are constructed according to the following syntax:

B ::= A | ∃R, C ::= B | ¬B, R ::= P | P−,

where A denotes an atomic concept, B a basic concept, and C a general concept; P denotes an atomic role and R a basic role,
i.e., either a direct or inverse role. Note that in the following, when we write R− for a basic role R , it will denote (i) P− if
R = P , and (ii) P if R = P− .

In DL-Litecore the knowledge about the domain of interest is represented by means of a knowledge base (KB) K = T ∪A,
constituted by a set of assertions partitioned into a TBox T and an ABox A. A TBox consists of positive and negative (concept)
inclusion assertions (PIs and NIs for short), respectively of the form

B1 � B2, B1 � ¬B2,

which are used to assert intensional domain knowledge. When B1 � ¬B2 ∈ T , we will say that B1 and B2 are disjoint. An
ABox consists of membership assertions (MAs) of the form

P (c,d), A(c), ∃R(c), ¬A(c),

where c and d are constants. MAs of the form ¬A(c) are called negative, while those of the other forms are called positive.
A membership assertion of the form A(c) or P (c,d) is also called an atom. A literal is an atom or the negation of an atom.
With a slight abuse of notation, whenever needed we will use R(a,b) to denote the atom P (a,b) when R = P , and the
atom P (b,a) when R = P− .

Example 2.1. Consider a KB K0 = T0 ∪A0, where

T0 = {
Card � Priest,∃HasHusb− � ¬Priest,Husb � ∃HasHusb−,Wife � ∃HasHusb

}
.

Intuitively, T0 says that cardinals are priests, husbands are not priests, and husbands and wives participate in the HasHusb
relationship. Let now

A0 = {
Priest(pedro),Priest(ivan),Husb(john),Wife(mary),Wife(chloe),HasHusb(mary, john)

}
.

Intuitively A0 says that there are two priests pedro and ivan, one husband john, two wives mary and chloe, and that mary
and john are married. �

A signature Σ is a finite set of concept names, role names, and constants. The signature Σ(F ) of an assertion F is the
set of concept names, role names, and constants occurring in F , and the signature of a KB K is Σ(K) = ⋃

F∈K Σ(F ). The
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size |K| of a KB K is the cardinality |Σ(K)| of its signature. We say that K is over a signature Σ0 if Σ(K) ⊆ Σ0. The active
domain of K, denoted adom(K), is the set of all constants occurring in K. It clearly holds that adom(K) ⊆ Σ(K).

The semantics of DL-Litecore KBs is given in the standard way, using first-order interpretations, which we assume to
be all over the same countably infinite domain �. An interpretation I over a signature Σ0 (or just interpretation when the
signature is clear from the context or not important) is a function ·I that assigns to each constant a an element aI ∈ �, to
each concept C a subset CI of �, and to each role R a binary relation RI over � in such a way that (P−)I = {(a2,a1) |
(a1,a2) ∈ PI}, (∃R)I = {a | ∃a′.(a,a′) ∈ RI}, and (¬B)I = �\ BI . Following a common practice, we adopt so-called standard
names [9,21], that is, we assume that � contains the constants and for every interpretation I and every constant c, it holds
that cI = c. It remains to be investigated how the results of this work can be extended to the case of DL-Litecore without
standard names, though we conjecture that dropping standard names is harmless.

An interpretation I is a model of an inclusion assertion C1 � C2 if CI
1 ⊆ CI

2 , of a membership assertion C(a) if a ∈ CI ,
and of a membership assertion P (a,b) if (a,b) ∈ PI . It is often convenient to view interpretations as sets of atoms and say
that A(a) ∈ I if and only if a ∈ AI , and P (a,b) ∈ I if and only if (a,b) ∈ PI . Under this view, if I ′ ⊆ I , we say that I ′ is
a submodel of I . As usual, we use I |
 F to denote that I is a model of an assertion F , and I |
 K to denote that I is a
model of a KB K, i.e., an interpretation over Σ(K) that is a model of each assertion in K. We use Mod(K) to denote the set
of all models of K. A KB is satisfiable if it has at least one model.

In the following, we consider only satisfiable KBs. Notice that this assumption does not affect the complexity results of
this work due to the nice computational properties of the DL-Lite family.

For example, for DL-Litecore , checking KB satisfiability can be done in polynomial time in the size of the TBox and with
logarithmic-space2 in the size of the ABox [21,22].

We use entailment between KBs, denoted K |
 K′ , in the standard sense, i.e., every model of K is also a model of K′
(similarly, we use entailment between TBoxes and between ABoxes). An ABox A T -entails an ABox A′ , denoted A |
T A′ ,
if T ∪A |
 A′ , and A is T -equivalent to A′ , denoted A ≡T A′ , if A |
T A′ and A′ |
T A. We use ⊥ to denote falsehood,
and A 
|
T ⊥ to denote that the KB K = T ∪A is satisfiable (i.e., A does not T -entail falsehood). We also say that A and
A′ are T -satisfiable if A∪A′ 
|
T ⊥.

The deductive closure of a TBox T , denoted cl(T ), is the set of all TBox assertions F such that T |
 F . For a satisfiable KB
K = T ∪A, the closure of the ABox A (w.r.t. T ), denoted clT (A), is the set of all membership assertions f (both positive and
negative) over adom(K) such that A |
T f . In DL-Litecore , both cl(T ) and clT (A) are computable in time quadratic in the
number of assertions of T and T ∪ A, respectively. Whenever needed, we will assume w.l.o.g. that all TBoxes and ABoxes
are closed.

A homomorphism μ from an interpretation I to an interpretation J over the same signature Σ0, is a structure-preserving
mapping from � to � satisfying: (i) μ(a) = a for every constant a ∈ Σ0; (ii) if x ∈ AI , then μ(x) ∈ AJ for every atomic
concept A; (iii) if (x, y) ∈ PI , then (μ(x),μ(y)) ∈ PJ for every atomic role P . We write I ↪→J if there is a homomorphism
from I to J .

Now we provide the definition of chase3 of an ABox as introduced in [9], which is an adaptation of the notion of
restricted chase from [24]. Let T and A be a DL-Litecore TBox and ABox, respectively. Then, the chase of A w.r.t. T , de-
noted chaseT (A), is an interpretation of T ∪A that can be defined procedurally as follows: take chaseT (A) := {g | g ∈ A
and g has form A(a) or P (a,b)}, and exhaustively apply the following rules.

• if A1(x) ∈ chaseT (A), A1 � A2 ∈ T , and A2(x) /∈ chaseT (A), then chaseT (A) := chaseT (A) ∪ {A2(x)};
• if A(x) ∈ chaseT (A), A � ∃R ∈ T , and there is no y such that R(x, y) ∈ chaseT (A), then chaseT (A) := chaseT (A) ∪

{R(x, ynew)}, where ynew ∈ � \ adom(K) is a fresh element that has not appeared in chaseT (A) before;
• if R(x, y) ∈ chaseT (A), ∃R � A ∈ T , and A(x) /∈ chaseT (A), then chaseT (A) := chaseT (A) ∪ {A(x)};
• if R1(x, z) ∈ chaseT (A), ∃R1 � ∃R2 ∈ T , and there is no y such that R2(x, y) ∈ chaseT (A), then chaseT (A) :=

chaseT (A) ∪ {R2(x, ynew)}, where ynew ∈ � \ adom(K) is a fresh element that has not appeared in chaseT (A) before.

Note that the procedure does not terminate in general and chaseT (A) can be an infinite interpretation. It was shown in [9]
that chaseT (A) is a canonical model for T ∪A, that is, it can be homomorphically embedded into every model of T ∪A.4 In
the following, we will refer to chaseT (A) as Ican , assuming that K is clear from the context. We also can extend naturally
the notion of chase chaseT (A) from ABoxes A to interpretations I i.e., to chaseT (I), since an interpretation can be seen
as an infinite ABox.

Finally, we recall that DL-Litecore has the finite model property, i.e., every satisfiable DL-Litecore KB has at least one finite
model (this follows from results in [26]).

2 Actually, the data complexity of satisfiability and of other inference tasks that involve the ABox is AC0.
3 The notion of chase was originally introduced in [23] to reason about data dependencies.
4 Note that our canonical models are similar to core solutions of data-exchange settings [25] in the sense that they cannot be homomorphically embedded

in their proper sub-models, but they are different because canonical models are in general infinite, while core solutions are always finite.
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2.2. The Description Logic DL-Litepr

In this section we introduce a restriction of DL-Litecore , which we call DL-Litepr (where pr stands for positive role interac-
tion). Intuitively, in DL-Litepr “negative” information that involves roles is forbidden both at the ABox and at the TBox level.
More precisely:

Definition 2.2 (DL-Litepr). A DL-Litecore knowledge base K = T ∪A is in DL-Litepr if for every basic role R , every constant a,
and every basic concept B , neither of the following two entailments holds:

(i) K |
 ¬∃R(a) and (ii) T |
 ∃R � ¬B. �
Example 2.3. Consider again K0 of Example 2.1. To see that K0 is not in DL-Litepr , observe that it violates both Condition (i)
and Condition (ii) of Definition 2.2. Indeed, K0 |
 ¬∃HasHusb−(a) for a ∈ {pedro, ivan}, violating Condition (i). Moreover,
T0 |
 ∃HasHusb− � ¬Priest, violating Condition (ii). Consider the following subset of cl(T0):

T1 = {Card � Priest,Husb � ¬Priest}.
Clearly (T1,A0) is in DL-Litepr . �

DL-Litepr is defined semantically, but one can effectively check in polynomial time whether a given DL-Litecore KB K =
T ∪A is in DL-Litepr . Both conditions of Definition 2.2 can be checked by computing (in time polynomial in |K|) the closure
cl(K) of K (i.e., cl(T ) ∪ clT (A)) and verifying whether an assertion of the form ¬∃R(a) or of the form ∃R � ¬B is in the
closure.

We see DL-Litepr as an important language to study because it is an extension of the RDFS ontology language [19] (more
precisely, of the first-order logic fragment of RDFS) that adds to RDFS the ability of expressing disjointness of concepts
(B1 � ¬B2) and mandatory participation to roles (A � ∃R).

2.3. ABox evolution of knowledge bases

We now formally introduce the problem of ABox evolution of DL knowledge bases, concentrating on model-based ap-
proaches. We discuss different semantics for the problem and put them into relationship with each other. Specifically, we
focus on the eight semantics that have been presented first in [7] (see Fig. 2.1, right). Notice that the notions we introduce
do not depend on any specific DL, although we will apply them later to the cases of DL-Litecore and DL-Litepr .

2.3.1. Model-based evolution
Let K = T ∪ A be a DL KB and N a “new” ABox. Intuitively, N represents information that is considered to be true

and we study how to incorporate assertions of N into K, that is, how K evolves w.r.t. N [3]. More specifically, we study
evolution operators � that take K and N as input and return, preferably in polynomial time, a DL KB K′ = T ∪ A′ (with
the same TBox as that of K) that captures the evolution, and that we call the (ABox) evolution of K w.r.t. N . Based on the
evolution principles of [7,12], which are natural and usually adopted (see, e.g., [12]), we require K and K′ to be satisfiable
and coherent, where the latter means that for every concept and role name occurring in K (resp. K′) there is a model I
of K (resp. K′) that interprets this name as a non-empty set. Note that coherency of a KB is determined only by the KB’s
TBox. Since we study ABox evolution of KBs K, which does not affect the TBox of K, coherency of K implies coherency
of K′ . Now we define formally evolution setting we adopt.

Definition 2.4 (Evolution setting). Let D be a DL. A D-evolution setting (or just evolution setting, when D is clear) is a pair
E = (K,N ), where N is a D ABox containing only positive MAs, and both K = T ∪ A and T ∪ N are satisfiable and
coherent D KBs. �
Example 2.5. Consider the KB K0 from Example 2.1 and the two ABoxes:

N1 = {
Husb(pedro),Wife(tanya)

}
and N2 = {

Priest(john)
}
.

The pairs (K0,N1) and (K0,N2) are DL-Litecore-evolution settings. �
Note that we require N to contain only positive MAs for the ease of exposition only. This does not restrict the appli-

cability of our results since in DL-Litecore-evolution settings (T ∪ A,N ), negative MAs in N can be simulated by a slight
extension of the TBox T .

An evolution for a D-evolution setting E = (K,N ) can now be defined as a D KB K′ that (i) preserves N and (ii) changes
the semantics of K “as little as possible”, due to the principle of minimal change [6]. Under model-based approaches (MBAs),
these two conditions on K′ are reflected as follows: the set Mod(K′) of models of K′ is precisely the set of interpretations
J such that (i) J |
 T ∪N and (ii) J is “minimally distant” from the models of K.
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Fig. 2.1. Left: measuring distances between models and finding local and global minima (Examples 2.7 and 2.9). Right: three-dimensional space of ap-
proaches to model-based evolution semantics.

Katsuno and Mendelzon [5] considered two ways, so-called local and global, of deciding which models are minimally
distant from the models of K (w.r.t. some notion of distance), where the former choice corresponds to knowledge update
and the latter one to knowledge revision. Now we discuss these two ways in more detail.

The idea of the local approaches is to consider all models I of K one by one, and for each such I to take those models
J of T ∪N that are minimally distant from I . Formally,

Definition 2.6 (Local MBA). Let E = (K,N ) be a D-evolution setting, where K = T ∪ A, and let dist(·, ·) be a distance
function between interpretations. For an interpretation I , let loc_min(I,T ,N ) be the set of interpretations J such that
J |
 T ∪N and among all such interpretations the value of dist(I,J ) is minimal on J . Then, K′ in D is an L-evolution for
E if Mod(K′) =K �L N , where

K �L N =
⋃

I∈Mod(K)

loc_min(I,T ,N ). �

The distance function dist varies from approach to approach and commonly takes as values either a number or a set. We
will discuss distance functions later in this section.

Example 2.7. To get a better intuition of the local semantics, consider Fig. 2.1, left, where two models I0 and I1 of a KB
K and four models J0, . . . ,J3 of T ∪ N are presented. The distance between a model of K and a model of T ∪ N is
represented by the length of the line connecting them. Solid lines correspond to minimal distances, while dashed ones to
distances that are not minimal. In this figure, loc_min(I0,T ,N ) = {J0} and loc_min(I1,T ,N ) = {J2,J3}. Hence, K �L N =
{J0,J2,J3}. �

Under a global approach, one chooses models of T ∪N that are minimally distant from the whole set Mod(K):

Definition 2.8 (Global MBA). Let E = (K,N ) be a D-evolution setting and dist(·, ·) a distance function between inter-
pretations. For an interpretation J , let the distance between Mod(K) and J be defined as follows: dist(Mod(K),J ) =
minI∈Mod(K) dist(I,J ). Furthermore, let glob_min(K,N ) be the set of interpretations J such that J |
 T ∪N and among
all such interpretations the value of dist(I,J ) is minimal on J . Then, K′ in D is a G-evolution for E if Mod(K′) =K �G N ,
where

K �G N = glob_min(K,N ). �
Example 2.9. Consider again Fig. 2.1, left, and assume that the distance between I0 and J0 is the global minimum. Thus,
we obtain that K �G N = glob_min(K,N ) = {J0}. �
2.3.2. Measuring distance between interpretations

The classical MBAs were developed for propositional theories [6], where interpretations can be seen as finite sets of
propositional symbols. In that case, two distance functions have been introduced, respectively based on symmetric difference
“�” and on the cardinality of symmetric difference:

dist⊆(I,J ) = I �J and dist#(I,J ) = |I �J |, (1)

where I �J = (I \J ) ∪ (J \ I). Distances under dist⊆ are sets and are compared by set inclusion, that is, dist⊆(I1,J1) �
dist⊆(I2,J2) if and only if dist⊆(I1,J1) ⊆ dist⊆(I2,J2). Finite distances under dist# are natural numbers and are compared
in the standard way.

These distances can be extended to DL interpretations in two ways. First, one can consider interpretations I and J
as sets of atoms, in which case the symmetric difference I � J and the corresponding distances are defined as in the
propositional case. We denote the distances in Eq. (1) extended in this way as dista⊆(I,J ) and dista#(I,J ), respectively.
Note that in contrast to the propositional case, I �J (and hence also distances dista⊆(I,J ) and dista (I,J )) can be infinite.
#
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Finally, one can also define distances at the level of the concept and role symbols in the signature Σ underlying the
interpretations:

dists⊆(I,J ) = {
S ∈ Σ

∣∣ SI 
= SJ
}

and dists#(I,J ) = ∣∣{S ∈ Σ
∣∣ SI 
= SJ

}∣∣.
Summing up across the different possibilities, we have three dimensions with two values each: (1) local vs. global ap-

proach, (2) atom-based vs. symbol-based for defining distances, and (3) set inclusion vs. cardinality to compare symmetric
differences. This gives eight evolution semantics, as shown in Fig. 2.1, right. We denote each of the resulting eight seman-
tics by using a combination of three symbols, indicating the choice in each dimension, e.g., La

# denotes the local semantics
where the distances are expressed in terms of cardinality of sets of atoms. We can then define loc_miny

x and Ly
x -evolution

as in Definition 2.6, and glob_miny
x and Gy

x -evolution as in Definition 2.8, by using the specific distances determined by the
values of x ∈ {⊆,#} and y ∈ {a, s}.

Recall that in Definitions 2.6 and 2.8, when we define the set Mod(K′) of models, we indicate the specific evolution
semantics S as a subscript of the evolution operator �, i.e., as in K �S N . In terms of the introduced notation for the
eight semantics, for, say, Ga

# semantics, the set of models Mod(K′) should be denoted as K �Ga
#
N . To avoid this overloaded

notation we will write “K �S N with S = Ga
#” instead of K �Ga

#
N .

2.3.3. Closure under evolution and approximation
In the propositional case, each set of interpretations over finitely many symbols can be captured by a suitable formula,

that is, a formula whose models are exactly those interpretations. In the case of DLs, this is no more necessarily the case,
since, on the one hand, interpretations can be infinite, and on the other hand, logics may miss some connectives, e.g.,
disjunction, that would be necessary to capture those interpretations.

Let D be a DL and M a set of models. We say that M is axiomatizable in D if there is a KB K in D such that
Mod(K) =M.

Definition 2.10 (Closure under evolution). Let S be an MBA. We say that a DL D is closed under S (or, evolution under S is
expressible in D) if for every D-evolution setting E = (K,N ) there is a KB K′ in D such that K′ is an S-evolution for E ,
i.e., Mod(K′) =K �S N . �

The notion of expressibility immediately suggests the following expressibility problem.

[EXPRESS]: Does an S-evolution always exist for a given D-evolution setting and an MBA S?

It has been shown in [7,17] that DL-Lite is not closed under any of the eight model-based semantics presented above.
The observation underlying these results is that, on the one hand, the principle of minimal change intrinsically introduces
implicit disjunction in the evolved KB. On the other hand, since DL-Lite is a slight extension of Horn logic [27], it does not
allow to express genuine disjunction (see Lemma 1 in [7] for details).

The negative answer to the EXPRESS problem for DL-Lite suggests the following approximation problem:

[APPROXIMATE]: If S-evolution does not exists for a given D-evolution setting E = (T ∪A,N ) and an MBA S , is there
a KB K̃ = T ∪ Ã that is a “good” approximation of (T ∪A) �S N ?

There are two commonly used notions of approximation for knowledge evolution [28]: sound and complete approximations.
In this paper we will address sound approximations only and leave the study of complete ones as future work. We now
define the notion of sound approximation formally.

Definition 2.11 (Sound approximation). Let M be a set of models and D a DL. We say that a D KB K̃ is a sound D-
approximation of M if M ⊆ Mod(K̃). Moreover, we say that a sound D-approximation K̃ of M is maximal if for every
sound D-approximation K̃1 of M it holds that Mod(K̃1) 
⊂ Mod(K̃). �
Summary of Section 2. We presented basic definitions from Description Logics and presented two DLs: DL-Litecore and its
sublanguage DL-Litepr . Finally, we defined the notion of knowledge evolution and two main evolution problems: express
and approximate. We now study these evolution problems for DL-Litepr .

3. Evolution of DL-Litepr KBs

In this section, we first consider how to capture evolution under La⊆ and Gs⊆ in DL-Litepr . Further, we show that evolution
under Ls⊆ is inexpressible in DL-Litepr , and we present an algorithm to compute the maximal sound DL-Litepr-approximation
of an evolution under this semantics. In Section 4 we will discuss how the results obtained in the current section can be
applied to the remaining semantics of the eight ones that we have introduced above.
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Algorithm 3.1: AtAlg(E).

INPUT : DL-Litepr -evolution setting E = (T ∪A,N )

OUTPUT: The maximal set A′ ⊆ clT (A) of ABox assertions that is T -satisfiable with N
1 A′ := ∅; X := clT (A);
2 repeat
3 choose some g ∈ X ; X := X \ {g};
4 if {g} ∪N 
|
T ⊥ then A′ := A′ ∪ {g};
5 until X = ∅;
6 return A′ .

3.1. Capturing La⊆-evolution

Consider the algorithm AtAlg presented in Algorithm 3.1, which takes as input a DL-Litepr-evolution setting E = (K,N )

and returns the maximal subset of clT (A) that is T -satisfiable with N . We illustrate how AtAlg works on the following
example.

Example 3.1. Continuing with Examples 2.1, 2.3, and 2.5, we now illustrate how the algorithm AtAlg works on the following
two evolution settings: E1 = (T1 ∪A0,N1) and E2 = (T1 ∪A0,N2), We remind the reader our notations: T1 = {Card � Priest,
Husb � ¬Priest}, N1 = {Husb(pedro),Wife(tanya)}, N2 = {Priest(john)}, and

A0 = {
Priest(pedro),Priest(ivan),Husb(john),Wife(mary),Wife(chloe),HasHusb(mary, john)

}
.

The computation of both AtAlg(E1) and AtAlg(E2) relies on the computation of clT1 (A0), which is equal to:

clT1(A0) = A0 ∪ {¬Husb(pedro),¬Husb(ivan),¬Priest(john),¬Card(john)
}
.

By dropping from clT1 (A0) the atoms that conflict with N1 and N2 we obtain, respectively:

AtAlg(E1) = clT (A0) \ {
Priest(pedro),¬Husb(pedro)

}
,

AtAlg(E2) = clT (A0) \ {
Husb(john),¬Priest(john)

}
. �

We are going to prove that using AtAlg one can efficiently compute La⊆-evolutions in DL-Litepr . Before doing that, we will
present the following definitions, auxiliary propositions, and a lemma. Detailed proofs or proof-sketches can be found in
Appendix A.

Observe an important property of DL-Litepr KBs, which shows that the source of inconsistency in these KBs comes from
the interaction between unary atoms only. As we will see in Section 5, inconsistency of KBs that are not in DL-Litepr can
also come from the interaction between binary atoms, which immediately leads to expressibility issues with evolution (see
Section 5.1 for details).

Proposition 3.2. For a DL-Litepr KB K = T ∪A and an assertion g of the form R(a,b) or ∃R(a), if A |
T g, then also AtAlg(K,N )∪
N |
T g.

Proof (Sketch). The proof is based on the facts that (i) a DL-Litepr TBox T does not entail NIs of the form B � ¬∃R , for a
basic concept B and a basic role R , and (ii) N does not contain negative MAs (due to Definition 2.4). Therefore, assertions
of the form R(a,b) or ∃R(a) cannot T -contradict N . �

The following proposition shows the cases when the union of models of T is also a model of T .

Proposition 3.3. Let T be a DL-Litecore TBox, and let I1 , I2 be models of T . Then, I1 ∪ I2 |
 T if and only if for every f1 ∈ I1 and
f2 ∈ I2 , it holds that { f1, f2} 
|
T ⊥.

Proof (Sketch). The “only if” direction is trivial. Regarding the “if” direction, for the PIs of T it holds since they are satisfied
in both I1 and I2; for the NIs of T it holds since each such assertion involves at most two concepts, and hence its violation
involves at most two atoms. �

We now define how to uproot an atom f from a model w.r.t. a TBox, i.e., how to delete the atoms g of the model
from which f can be “deduced” using the TBox in the logic programming sense. We denote the set of these atoms g to be
uprooted as rootT ( f ). Note that in the following, with a slight abuse of notation, we treat sequences of elements as sets
when needed, e.g., by applying union or set inclusion to sequences. Formally:
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Definition 3.4 (rootT ). Let T be a DL-Litecore TBox and V n
T a sequence 〈 f1, . . . , fn, L〉, where f1, . . . , fn are ground atoms and

L is a ground literal, such that there is a sequence of TBox assertions α1, . . . ,αn in cl(T ), with no αi of the form ∃R � ∃R ,
f i → f i+1 is an instantiation of the first-order interpretation of αi

5 for 1 � i � n − 1, and fn → L is an instantiation of the
first-order interpretation of αn . Note that αn can be either a PI (if L is positive) or an NI (if L is negative), while all the
other αis are PIs. Then,

rootT
(
C(a)

) =
⋃

V n
T (C(a)): n∈N

V n
T

(
C(a)

)
,

rootT
(

R(a,b)
) =

⋃
V n
T (R(a,d)): n∈N,d∈�

V n
T

(
R(a,d)

) ∪
⋃

V n
T (R(d,b)): n∈N,d∈�

V n
T

(
R(d,b)

)
.

If I is an interpretation, then rootIT (C(a)) denotes the restriction of rootT (C(a)) to I , i.e., the subset of rootT (C(a)) for
which each V n

T (C(a)) in the union is contained in I . In the following, whenever we write I \ rootT (g) for an MA g and a
model I , we always mean I \ rootIT (g). �
Example 3.5. Consider a TBox T = {B � ∃R−,∃R � C} and an interpretation I = {B(b), R(a,b), C(a)}. Note that I |
 T . Let
us see how the interpretation I \ rootT (C(a)) (that is, I \ rootIT (C(a))) looks like. Note that the restriction of rootT (C(a))

on I includes only one sequence of atoms of length three, V 2
T = 〈 f1, f2, C(a)〉 (the sequences of smaller lengths are

“subsumed” by V 2
T (C(a))), where f1 = B(b), and f2 = R(a,b); moreover, B(b) → R(a,b) instantiates α1 = B � ∃R− and

R(a,b) → C(a) instantiates α2 = ∃R � C . Thus, I \ rootT (C(a)) = ∅. �
The following proposition shows that I \ rootT (C(a)) is a model of T if I is a model of T .

Proposition 3.6. Let T be a DL-Litecore TBox, and I |
 T . Then, I \ rootT (g) |
 T for every MA g.

Proof (Sketch). Let α be a TBox assertion such that T |
 α. If α is an NI, then we conclude that I \ rootT (g) |
 α since
I |
 α and I \ rootT (g) ⊆ I . If α is a PI of the form B1 � B2, then assume that I \ rootT (g) 
|
 α. This is the case if there
are atoms f1 and f2, that instantiate B1 and B2, respectively, such that f1 ∈ I \ rootT (g) and f2 /∈ I \ rootT (g). Since
I |
 T , we have that f2 ∈ I and hence f2 ∈ rootT (g); by the definition of rootT , we imply that f1 ∈ rootT (g), and therefore
f1 /∈ I \ rootT (g). This contradicts the assumption above and concludes the proof. �

Now we present a lemma that will help us for a given model J ∈ K �S N with S = La⊆ to construct a model I |
 K
such that J ∈ loc_mina⊆(I,T ,N ). This method of constructing I is the key for proving a number of results in this work.
Intuitively, such I can be constructed in two steps: (i) drop from J all unary atomic MAs (i.e., unary atoms) that are not
T -satisfiable with A, and then (ii) add unary atomic MAs that are T -entailed from A. The following notions will be used
in the proof of this lemma below.

Definition 3.7. Let T be a TBox and A an ABox satisfiable with T . Then the unary closure of A w.r.t. T is

uclT (A) = {
A(c)

∣∣ A is an atomic concept, c is a constant, and A |
T A(c)
}
.

Moreover, let J be an interpretation. Then the set of atoms of J that are in conflict with A w.r.t. T is

confT (J ,A) = {
A(c) ∈ J

∣∣ A is an atomic concept, c is a constant, and A∪ {
A(c)

} |
T ⊥}
. �

Lemma 3.8. Let (K,N ), where K = T ∪ A, be a DL-Litepr-evolution setting and let J be a model of T ∪ AtAlg(K,N ) ∪ N . Then,
the following interpretation is a model of K:

I = (
J \ confT (J ,A)

) ∪ uclT (A). (2)

Moreover, J ∈ loc_mina⊆(I,T ,N ) and dista⊆(I,J ) is finite.

Proof. Finiteness of dista⊆(I,J ) follows from finiteness of confT (J ,A) and uclT (A). Indeed, since A |
T A(c) for every
A(c) ∈ uclT (A), we conclude that c ∈ adom(K); since A ∪ {A(c)} |
T ⊥ for every A(c) ∈ confT (J ,A), we conclude that
A |
T ¬A(c), and again c ∈ adom(K). Due to the finiteness of Σ(K), it holds that |adom(K)| � n and |{A | A ∈ Σ(K)}| � m
for some n,m ∈N. Hence, |uclT (A)| � n × m and |confT (J ,A)| � n × m (see details in Appendix A).

5 If αi is of the form A1 � A2, A1 � ∃R , or ∃R � A2, then the first-order interpretation of αi is respectively the implication A1(x) → A2(x), A1(x) →
R(x, y), or R(x, y) → A2(x), where x and y are some variables, and this interpretation can be instantiated with, e.g., atoms A1(a), A2(a) and R(a,b) as
follows: A1(a) → A2(a), A1(a) → R(a,b), or R(a,b) → A2(a).
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Now we prove that I |
 K by showing that I |
 A and I |
 T . Afterwards we will prove that J ∈ loc_mina⊆(I,T ,N ).
Let A′ = AtAlg(K,N ) ∪N .

I |
A: Let g ∈A be an MA; we show that I |
 g . We have the following cases:

(i) g is of the form A(c); then g ∈ uclT (A) and we conclude that g ∈ I by the definition of I , so I |
 g .
(ii) g is of the form R(a,b); then, by Proposition 3.2, it holds that g ∈ J , i.e., J |
 g . Since I and J differ only on unary

atoms by the definition of I , we conclude that g ∈ I , so I |
 g .
(iii) g is of the form ∃R(a); then, by Proposition 3.2, it holds that R(a, x) ∈J for some x ∈ �. Since I and J differ only on

unary atoms by the definition of I , we conclude that R(a, x) ∈ I , so I |
 g .
(iv) g is of the form ¬A(c); from ¬A(c) ∈ A and the definition of confT (J ,A), we conclude that A(c) ∈ confT (J ,A).

Thus, A(c) /∈ I by the construction of I and therefore I |
 g .

Hence we can conclude that I |
A.
I |
 T : We now show that I |
 T in two steps. First, observe that J \ confT (J ,A) |
 T . Indeed, since J |
 T , it is

enough to show that for every f ∈ confT (J ,A), if { f ′} |
T f for some f ′ ∈ J , then f ′ ∈ confT (J ,A). This is clearly the
case because { f ′} |
T f and A ∪ { f } |
T ⊥ imply A ∪ { f ′} |
T ⊥, and consequently f ′ ∈ confT (J ,A). Now we show that
adding uclT (A) to J \ confT (J ,A) does not violate T . Indeed, let f ∈ uclT (A), we need to show that for every MA g
such that { f } |
T g it holds I |
 g . Clearly, g can only be of the form either A(c) or ∃R(a). If g = A(c), then g ∈ uclT (A)

and obviously I |
 g . If g = ∃R(a), then observe that { f } |
T g implies A |
T g; thus, due to Proposition 3.2, A′ |
 g and,
as we showed above, I |
 g .

J ∈ loc_mina⊆(I,T ,N ): By the definition of La⊆-evolution, we need to show that there is no J ′ |
 T ∪ N such that
I � J ′ � I � J . Assume there exists such J ′ . Thus, there is an atom f such that f /∈ I � J ′ while f ∈ I � J . By the
definition of I , interpretations I and J differ only on atoms of the form A(c); hence, f is of the form A(c) (it cannot be
of the form R(a,b)). We have two cases: (i) A(c) ∈ I , A(c) /∈ J , and A(c) ∈ J ′ , and (ii) A(c) /∈ I , A(c) ∈ J , and A(c) /∈ J ′ .
In either case, a contradiction can be obtained (see details in Appendix A).

Thus, J ∈ loc_mina⊆(I,T ,N ) and we conclude the proof. �
Finally, consider the following definition of an auxiliary model I[g].

Definition 3.9 (Submodel I[g]). Let T be a DL-Litepr-TBox, g a positive MA, and I a model of T . Then I[g] is a sub-
interpretation of I satisfying both g and T that is minimal w.r.t. set inclusion. �

We are now ready to state our result formally.

Theorem 3.10. Let E = (K,N ) with K = T ∪A be a DL-Litepr-evolution setting. Then,

K′ = T ∪ AtAlg(E) ∪N (3)

is a DL-Litepr KB and it is an La⊆-evolution for E . Moreover, K′ is computable in time polynomial in |E |.

Proof. Let M denote the set of models K �S N with S = La⊆ . For simplicity we denote: A′′ = AtAlg(E) and A′ = A′′ ∪ N .
Thus, K′ = T ∪A′ . Also, let Σ0 be a signature such that Σ(T ) ∪ Σ(A) ∪ Σ(N ) ⊆ Σ0.

Polynomiality of AtAlg in |K ∪ N | follows from the worst case quadratic size of clT (A) in |K| and polynomiality in
|K ∪N | of the test {φ} ∪N 
|
T ⊥.

Observe that K′ is a DL-Litepr KB. Indeed,

(i) Since T ∪ A is in DL-Litepr and A′′ ⊆ clT (A), we conclude that A′′ 
|
T ¬∃R(a) for every constant a ∈ Σ0 and every
role R ∈ Σ0; since T ∪ N is in DL-Litepr , we conclude that N 
|
T ¬∃R(a) for every constant a ∈ Σ0 and every role
R ∈ Σ0. Now, assume that A′′ ∪ N |
T ¬∃Q (b) for some constant b ∈ Σ0 and some role Q ∈ Σ0. Then we conclude
that there is an MA g ∈ A′′ ∪ N such that {g} |
T ¬∃Q (b) (see Proposition A.1 in Appendix A). Obviously, g ∈ A′′ or
g ∈ N , which contradicts the fact that neither A′′ |
T ¬∃Q (b) nor N |
T ¬∃Q (b). The obtained contradiction yields
A′′ ∪N 
|
T ¬∃Q (b) for every constant b ∈ Σ0 and every role Q ∈ Σ0.

(ii) Since K = T ∪A is in DL-Litepr , we conclude that T 
|
 ∃R � ¬B for every concept B ∈ Σ0 and every role R ∈ Σ0. Note
that K′ = T ∪A′ , i.e., it has the same TBox as K.

Combining the observations above, by Definition 2.2, we conclude that K′ is in DL-Litepr .
To prove that K′ is an La⊆-evolution, we are going to show that M⊆ Mod(K′) and Mod(K′) ⊆M.
M⊆ Mod(K′): Let J ∈M, we show J ∈ Mod(K′), i.e., J ∈ Mod(T ) and J ∈ Mod(A′). By the definition of La⊆-evolution,

J ∈M implies J ∈ Mod(T ).
Assume J /∈ Mod(A′). Since J ∈ M we have J |
 N . Since also J /∈ Mod(A′) we have J 
|
 A′′ . Thus, there is an

MA g ∈ A′′ such that J 
|
 g , where the assertion g can be either a positive MA or a negative one. From J 
|
 g , we will
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deduce a contradiction by showing J /∈ M, that is, by showing that for every I ∈ Mod(K) there is J ′ ∈ Mod(T ∪N ) such
that

I �J ′ � I �J . (4)

(i) Assume g is a positive MA. Consider an arbitrary I ∈ Mod(K). Clearly, I |
 g (since I |
 T ∪A, A |
T A′′ , and g ∈A′′).
Now let J ′ = J ∪ I[g] (recall that I[g] is a minimal (w.r.t. set-inclusion) submodel of I satisfying both g and T ).
Clearly, such I[g] exists while it may be not unique. If I[g] is not unique, then any such I[g] can be used in the
construction of J ′ .
Observe that J ′ |
 N and J ′ |
 T . The former entailment holds since J |
 N . Now we show the latter entail-
ment. Assume J ′ 
|
 T . Since J |
 T , I[g] |
 T , then, due to Proposition 3.3, there are f1 ∈ J and f2 ∈ I[g] such
that { f1, f2} |
T ⊥. Note that, as a consequence of Proposition 3.2, both atoms f1 and f2 are unary. From f2 ∈ I[g]
and I[g] ⊆ I we conclude that f2 ∈ I; combining f2 ∈ I with I |
 T and { f1, f2} |
T ⊥, we conclude that f1 /∈ I .
Now we show that the conclusion f1 /∈ I leads to the contradiction with the fact that J /∈ M, which will prove that
J ′ |
 T . To this effect we need to define another interpretation J1 in the following way: J1 = J \ rootT ( f1). We will
show that J1 |
 T ∪N and I �J1 � I �J , thus J /∈ M, which will give us a contradiction. The entailment J1 |
 T
holds by Proposition 3.6. To see that J1 |
 N , observe that N 
|
T f1. Indeed, if N |
T f1, then from g |
T f2 and
{ f1, f2} |
T ⊥ we can derive that N ∪ {g} |
 ⊥ which contradicts the assumption g ∈ A′′ (such g should have been
dropped by AtAlg from A′′ , see Line 4 of Algorithm 3.1). Using the definition of � and the facts that root J

T ( f1) ∩ I = ∅
and (J \ rootT ( f1)) ⊆J , it is easy to check that I �J1 ⊆ I �J . Inequality I �J1 
= I �J follows from the fact that
f1 /∈ I , f1 /∈J1, and f1 ∈J . This finishes the proof of J ′ |
 T .
It remains to show that Eq. (4) holds for the constructed J ′ . Since I[g] ⊆ I one can apply the definition of � to
conclude that I � J ′ = I � (J ∪ I[g]) ⊆ I � J . The inequality I � J ′ 
= I � J follows from the fact that g ∈ I ,
g ∈J ′ , and g /∈J . Thus, J /∈M and we obtain a contradiction.

(ii) Assume g is a negative MA, i.e., g = ¬h for some positive MA h. Consider an arbitrary I ∈ Mod(K). Clearly, J |
 h
(by the assumption that J 
|
 g) and I 
|
 h (since I |
 T ∪ A, A |
T A′′ , and ¬h ∈ A′′). Now let J ′ := J \ rootT (h).
Observe that J ′ |
N and J ′ |
 T . The former entailment holds since ¬h ∈A′′ and consequently {¬h} ∪N 
|
T ⊥, i.e.,
N 
|
T h; thus, rootT (h) ∩N = ∅. The latter entailment holds due to Proposition 3.6.
Using the fact that J ′ ⊆J , rootT (h) �J ′ , rootT (h) � I , and the definition of �, it is easy to check that I�J ′ ⊆ I�J .
From the facts that h ∈ J , h /∈ J ′ and h /∈ I we conclude that I � J ′ 
= I � J , and therefore I � J ′ � I � J . We
conclude that Eq. (4) holds, J /∈M, and obtain a contradiction.

M ⊇ Mod(K′): Let J |
 K′ . To prove that J ∈ M we need to show that J |
 T ∪N and there exists a model I of K
such that J ∈ loc_mina⊆(I,T ,N ). The former follows from the fact that J |
 K′ , while the latter from Lemma 3.8. Thus,
J ∈ loc_mina⊆(I,T ,N ) and therefore M⊇ Mod(K′) holds, which concludes the proof. �

We conclude this section with an example.

Example 3.11. In the notations of Example 3.1, due to Theorem 3.10 we have that La⊆-evolution for (T1 ∪ A0,N1) is the
following KB:

K′ = T1 ∪ AtAlg(T1 ∪A0,N1) ∪ {
Priest(john)

}
.

This result is quite intuitive and expected: the new knowledge N1 asserts that john is a priest now, while the TBox T1
forbids to be a priest and a husband at the same time; thus, we have to drop from the old knowledge that john is a
husband and that he is not a priest. Also note that K′ contains ¬Card(john), that is, the fact that john became a priest does
not make him a cardinal.

La⊆-evolution for (T1 ∪A0,N2) is the following KB:

K′ = T1 ∪ AtAlg(T1 ∪A0,N2) ∪ {
Husb(pedro),Wife(tanya)

}
.

This result is again expected: pedro becomes a husband and we have to drop the old knowledge that he is a priest and not
a husband. Moreover, tanya becomes a wife and, since this fact does not conflict with anything in the old knowledge, we
just add it. �
3.2. Capturing Gs⊆-evolution

Consider the algorithm GSymbAlg in Algorithm 3.2. It takes a DL-Litepr-evolution setting E = (T ∪A,N ) as input. Then,
it computes the set AtAlg(E) and for every atom φ in N it checks whether ¬φ ∈ clT (A) (Line 4). If it is the case, GSymbAlg
deletes from AtAlg(E) all literals φ′ that share the concept name with φ. Finally, GSymbAlg returns what remains from
AtAlg(E). We will illustrate GSymbAlg with the following example.
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Algorithm 3.2: GSymbAlg(E).

INPUT : DL-Litepr -evolution setting E = (T ∪A,N )

OUTPUT: A set A′ ⊆ clT (A) ∪ clT (N ) of ABox assertions

1 A′ := ∅; X := AtAlg(E); Y := clT (N );
2 repeat
3 choose some φ ∈ Y ; Y := Y \ {φ};
4 if ¬φ ∈ clT (A) then X := X \ {φ′ ∈ clT (A) | φ and φ′ have the same concept name}
5 until Y = ∅;
6 A′ := X ∪N ;
7 return A′ .

(T1) N |
T A(c) and K |
 A(c);
(T2) N |
T ¬A(c) and K |
 ¬A(c);
(T3) N |
T A(c) and K |
 ¬A(c);
(T4) N |
T ¬A(c) and K |
 A(c);
(T5) N |
T A(c) and K ‖ A(c);

(T6) N |
T ¬A(c) and K ‖ A(c);
(T7) N ‖T A(c) and K ‖ A(c);
(T8) N ‖T A(c) and K |
 A(c);
(T9) N ‖T A(c) and K |
 ¬A(c).

Fig. 3.1. Classification of atom A(c) w.r.t. K and N .

Example 3.12. Consider a DL-Litepr-evolution setting E = (T ∪A,N ) with

T = {Priest � ¬Husb}, A = {
Priest(pedro),Priest(ivan)

}
, and N = {

Husb(pedro)
}
.

Observe that GSymbAlg(E) = {Husb(pedro)}. Indeed,

Y = clT (N ) = {
Husb(pedro),¬Priest(pedro)

};
clT (A) = {

Priest(pedro),Priest(ivan),¬Husb(pedro),¬Husb(ivan)
};

therefore, X = AtAlg(E) = {Priest(ivan),¬Husb(ivan)}. Now, the assertions Husb(pedro) and ¬Priest(pedro) satisfy the condi-
tion of Line 4 of GSymbAlg, and therefore the atoms of X should be deleted, that is, GSymbAlg returns A′ = ∅ ∪N . �

We will show that GSymbAlg computes precisely Gs⊆-evolutions for DL-Litepr-evolution settings. Intuitively, GSymbAlg
does so by tracing all assertions of the form B(c) or ¬B(c) entailed by A that should be deleted from (the T -closure of)
A due to N . For such B ’s the change of interpretation is inevitable, i.e., if in some model I of K we had b ∈ BI , then
in every J ∈ K �S N with S = Gs⊆ we have b /∈ BI . Since symbol-based semantics trace changes on symbols only, and the
interpretation of the symbol B is to be changed, one should drop from (the T -closure of) A all the assertions over the
symbol B , that is, of the form B(d) and ¬B(d) for some d. We will illustrate this phenomenon for B = Priest, c = pedro, and
d = ivan in the following example.

Example 3.13. Continuing with Example 3.12, observe that for every model I ∈ Mod(T ∪ A), it holds I |
 Priest(pedro),
and for every model J ∈ Mod(T ∪ N ), it holds J |
 ¬Priest(pedro). Hence, for every pair of models I ∈ Mod(T ∪ A) and
J ∈ Mod(T ∪N ), it holds that {Priest} ⊆ dists⊆(I,J ), and therefore {Priest} ⊆ dists⊆(Mod(T ∪A),J ). Consider the following
models J1,J2 ∈ Mod(T ∪N ):

J1 = {
Husb(pedro),Priest(ivan)

}
, J2 = {

Husb(pedro)
}
.

It is easy to see that for I1 = {Priest(pedro),Priest(ivan)}, we have: dists⊆(Mod(T ∪ A),Ji) ⊆ dists⊆(I1,Ji) = {Priest} for i ∈
{1,2}. Hence, dists⊆(Mod(T ∪ A),Ji) = {Priest}, so we conclude that Ji ∈ (T ∪ A) �S N with S = Gs⊆ and for i ∈ {1,2}.
Observe that J1 |
 Priest(ivan) and J2 
|
 Priest(ivan); thus, for K′ = T ∪ A′ , which is a Gs⊆-evolution for E , it holds that
K′ 
|
 Priest(ivan).

We emphasize that the behavior of Gs⊆-evolution is quite counterintuitive: as soon as we declare that a specific object
is no longer in a concept, say A, (by asserting that it is in the complement to A, e.g., when we declared that pedro is no
longer in Priest by asserting that he is in Husb), the old information about all the other objects in A should be erased (all
old members of Priest should be erased). �

Before proceeding to a formal proof of correctness for GSymbAlg, we present the following notations and a proposition.
With A ‖T φ we denote the fact that neither A |
T φ nor A |
T ¬φ holds. The definition of K ‖ φ is analogous. Observe
that for every KB K and atom A(c), there are three possible relations between them: K |
 A(c), or K |
 ¬A(c), or K ‖ A(c).
For given K = T ∪A, N , and atom A(c), these three relations give nine combinations, which are presented in Fig. 3.1. We
refer to each such combination as type of A(c) (w.r.t. K and N ) and consequently there are nine types: (T1)–(T9).

We recall that J0[A(c)] is a minimal (w.r.t. set inclusion) submodel of J0 containing A(c) and satisfying T (see Defini-
tion 3.9).
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Proposition 3.14. Let T be a DL-Litepr TBox, I and J models of T , and A(c) an atom. Then, the interpretation (I \ rootT (¬A(c))) ∪
J [A(c)] is a model of T .

We proceed to correctness of GSymbAlg.

Theorem 3.15. Let E = (K,N ) be a DL-Litepr-evolution setting. Then,

K′ = T ∪ GSymbAlg(E) (5)

is a DL-Litepr KB and a Gs⊆-evolution for E . Moreover, GSymbAlg(E) is computable in time polynomial in |E |.

Proof. Let K = T ∪ A. The fact that K′ is a DL-Litepr KB follows from the fact that T ∪ AtAlg(E) ∪ N is in DL-Litepr (see
Theorem 3.10) and K′ ⊆ T ∪ AtAlg(E) ∪ N . Polynomiality of GSymbAlg follows from polynomiality of AtAlg, the fact that
|clT (N )| is worst case quadratic in |N ∪T |, and that the test ¬φ ∈ clT (A) is polynomial in |K∪N |. Let M=K�S N with
S = Gs⊆ . We now show that M= Mod(K′) by showing the two inclusions separately.

M⊆ Mod(K′): Consider a model J0 ∈M. We show that J0 ∈ Mod(K′). By the definition of Gs⊆ , we have J0 ∈ Mod(T ∪
N ) and there exists a model I0 ∈ Mod(K) such that for every pair of models J1 ∈ Mod(T ∪ N ) and I1 ∈ Mod(K) the
following inclusion does not hold.

dists⊆(I1,J1) � dists⊆(I0,J0). (6)

Assume that J0 /∈ Mod(K′). We now exhibit a pair of appropriate I1 and J1 that satisfies Eq. (6), thus, obtaining a con-
tradiction. Since J0 /∈ Mod(K′) and J0 |
 T ∪ N , by Line 6 of GSymbAlg (see Algorithm 3.2), J0 
|
 X . Hence, there exists
a literal L(c) ∈ X such that J0 
|
 L(c). Proposition 3.2 and the fact that ¬φ /∈ clT (A), where φ is of the form R(a,b) or
∃R(a), for a DL-Litepr KB imply that L(c) is of the form A(c) or ¬A(c). Moreover, from I0 |
 K we conclude that I0 |
 X
and consequently I0 |
 L(c). Therefore, AI0 
= AJ0 .

Now we construct I1 and J1 from I0 and J0, respectively, in a way that they agree on the interpretation of A. The
construction of these models depends on the type of A(d) ∈ (I0 � J0) \ (I � J ) for d ∈ � w.r.t. K, N (Fig. 3.1). Observe
that A(d) cannot be of type (T1)–(T4). Indeed, if A(d) is of type (T1) or (T2), then A(d) /∈ I0 � J0. If A(d) is of type (T3)
or (T4), then A(d) ∈ I �J . Both cases contradict A(d) ∈ (I0 �J0) \ (I �J ).

We construct I1 from I0 using atoms A(d) of type (T5)–(T7), and then J1 from J0 using atoms A(d) of type (T7)–(T9).
The interpretation I1 is defined as follows:

I1 :=
⋃

A(d)∈I0�J0,J0|
A(d)
A(d) of type (T5) or (T7)

((I0 \ rootT
(¬A(d)

)) ∪J0
[
A(d)

]) \
⋃

A(d)∈I0�J0,J0|
¬A(d)
A(d) of type (T6)

rootT
(
A(d)

)
. (7)

Observe that I1 |
 K. Indeed, due to Proposition 3.6 and Proposition 3.14 we have that I1 |
 T . To see that I1 |
 A, recall
that A(d) is of type (T5)–(T7) and therefore K ‖ A(d). Moreover, due to the fact that K is in DL-Litepr and J0 |
 ¬A(d), each
subtracted set rootT (A(d)) contains only unary atoms of the form A′(d). Combining these two observations we conclude
that K ‖ A′(d) and therefore A′(d) /∈A. Thus, I1 |
A.

The interpretation J1 is defined as follows:

J1 :=
⋃

A(d)∈I0�J0,I0|
A(d)
A(d) of type (T7) or (T8)

((J0 \ rootT
(¬A(d)

)) ∪ I0
[
A(d)

]) \
⋃

A(d)∈I0�J0,I0|
¬A(d)
A(d) of type (T9)

rootT
(
A(d)

)
. (8)

One can show that J1 |
 T ∪N analogously to the proof of I1 |
 T ∪A above. Observe that by construction of I1 and J1,
we have AI1 = AJ1 and dists⊆(I1,J1) ⊆ dists⊆(I0,J0). Finally, the former equality gives that A /∈ dists⊆(I1,J1), which to-
gether with A ∈ dists⊆(I0,J0) implies Eq. (6) and concludes the proof.

Mod(K′) ⊆ M: Let J0 ∈ Mod(K′) = Mod(T ∪ A′) where A′ = GSymbAlg(E), and assume J0 /∈ M, that is: (i) J0 /∈
Mod(T ∪ N ), or (ii) for every I |
 K there is a pair of models I ′ |
 K and J ′ |
 T ∪ N s.t. dists⊆(I ′,J ′) � dists⊆(I,J0).
Case (i) is impossible since N ⊆A′ . If Case (ii) holds, then consider a model I0 as in Eq. (2). By Lemma 3.8, we have I0 |
K.
By our assumption, dists⊆(I ′,J ′) � dists⊆(I0,J0) holds for some I ′ and J ′ . Due to Proposition 3.2, I0 and J0 coincide on

how they interpret roles. Thus, there is a concept A such that AI ′ = AJ ′
while AI0 
= AJ0 , and consequently there is an

atom A(c) ∈ I0 � J0. Note that, by the construction of I0, it holds that A(c) ∈ uclT (A) or A(c) ∈ confT (J0,A). We have
two cases: A(c) ∈ I0 \J0 and A(c) ∈J0 \I0. In either case the fact AI ′ 
= AJ ′

is implied, which yields a contradiction with
AI ′ = AJ ′

(see Appendix B for the details). Thus, J0 ∈M, which concludes the proof. �
3.3. Approximation of Ls⊆-evolution

We start with the observation that Ls⊆ is not expressible in DL-Litepr , because capturing K �S N with S = Ls⊆ requires
disjunction, which is not available in DL-Lite. Formally:
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Algorithm 3.3: LSymbAlg(E).

INPUT : DL-Litepr -evolution setting E = (T ∪A,N )

OUTPUT: A set A′′ ⊆ clT (A) ∪ clT (N ) of ABox assertions

1 A′′ := ∅; X := AtAlg(T ∪A,N ); Y := clT (N );
2 repeat
3 choose some φ ∈ Y ; Y := Y \ {φ};
4 if φ /∈ X then X := X \ {φ′ ∈ clT (A) | φ and φ′ have the same concept name}
5 until Y = ∅;
6 A′′ := X ∪N ;
7 return A′′ .

Theorem 3.16. DL-Litepr is not closed under Ls⊆ semantics.

Proof (Sketch). Let S = Ls⊆ . Consider the KB K = T ∪ A, where T = {A � B} and A = {B(c)}, and N = {B(d)}. It can be
shown that (i) every J |
 K �S N satisfies A(d) → B(c), and (ii) there are models J0,J1 ∈ K �S N such that J0 
|
 ¬A(c)
and J1 
|
 B(c). Due to Lemma 1 in [7], if these two conditions hold, then K �S N is inexpressible in DL-Lite, and hence in
DL-Litepr . �

The theorem above suggests to look for DL-Litepr-approximations of Ls⊆-evolution. We now show that the algorithm
LSymbAlg in Algorithm 3.3 can be used for this purpose. Note that LSymbAlg differs from GSymbAlg in Line 4 only, i.e.,
LSymbAlg in Line 4 performs a test different from the one of GSymbAlg. Intuitively, for an assertion φ of the form A(c),
LSymbAlg checks whether A(c) is in clT (N ) but not in X , and, if it is the case, then LSymbAlg deletes all the assertions
over the concept A from clT (A). Note that the test of LSymbAlg is weaker than the one of GSymbAlg since it is easier to
get changes in the interpretation of A by choosing a model of K that does not include A(c). We illustrate LSymbAlg on the
following example.

Example 3.17. Consider a DL-Litepr-evolution setting E = (T ∪A,N ) with

T = ∅, A = {
Wife(mary),Wife(chloe)

}
, and N = {

Wife(tanya)
}
.

Observe that LSymbAlg(E) = {Wife(tanya)}. Indeed, Y = clT (N ) =N , clT (A) =A, and X = AtAlg(E) =A. Now, the assertion
Wife(tanya) satisfies the condition of Line 4 of LSymbAlg, and therefore both atoms of X should be deleted, that is, LSymbAlg
returns A′ = ∅ ∪N .

Observe that the KB K′′ = T ∪ LSymbAlg(E) that approximates Ls⊆-evolution for E6 is even less intuitive than Gs⊆-
evolution K′ for E from Example 3.12: Ls⊆-evolution erases all the old ABox information about a concept, say B (e.g., in
our case such a B is Wife), as soon as we just add any new object in B that does not even conflict with anything in the
old ABox (in our case we added Wife(tanya) and had to erase from the old knowledge the information about the other two
wives, Wife(mary) and Wife(chloe)). �
Theorem 3.18. Let E = (K,N ) be a DL-Litepr-evolution setting. Then,

K′′ = T ∪ LSymbAlg(E) (9)

is a maximal sound DL-Litepr-approximation of K�S N with S = Ls⊆ . Moreover, LSymbAlg(E) is computable in time polynomial in |E |.

Proof. The fact that K′′ is a DL-Litepr KB follows from the fact that T ∪ AtAlg(E) ∪ N is in DL-Litepr (see Theorem 3.10)
and K′′ ⊆ T ∪ AtAlg(E) ∪ N . Polynomiality of LSymbAlg can be shown analogously to polynomiality of GSymbAlg (see
Theorem 3.15). Let S = Ls⊆ . The fact that K′′ is a sound approximation of K �S N , i.e., K �S N ⊆ Mod(K′′), can also be
shown analogously to the soundness M⊆ Mod(K′) in Theorem 3.15.

Let A′′ = LSymbAlg(E). Suppose that K′′ is not a maximal sound approximation, which means we may add an assertion
A(c) to A′′ , where A(c) is such that K′′ 
|
 A(c). That is, K′′

1 = T ∪A′′ ∪ {A(c)} is another sound approximation. Consider a
canonical model J ′′ of K′′ . Using a similar argument as in the proof of the completeness Mod(K′) ⊆ M in Theorem 3.15,
one can show that J ′′ ∈ K �S N . Clearly, A(c) /∈J ′′ , thus J ′′ 
|
K′′

1 , which contradicts the fact that K′′
1 is a sound approxi-

mation. This concludes the proof. �
Summary of Section 3. La⊆ and Gs⊆-evolutions for DL-Litepr-evolution settings can be computed in polynomial time; Ls⊆-
evolution for a DL-Litepr-evolution setting in general does not exist, but one can find a maximal sound DL-Litepr-
approximation of it in polynomial time.

6 Actually, one can check that in this particular case the algorithm returns not just an approximation, but an Ls⊆-evolution for E .
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Fig. 4.1. Subsumptions for evolution semantics. The arrows stand for the subsumption �sem: “→”: for any DL (Theorem 4.2). “���”: for DL-Litepr (Theo-
rems 4.4, 4.6, 4.8). The dashed frame surrounds those semantics under which DL-Litepr is closed.

4. Relationships between model-based semantics

In this section we define a framework for comparing different model-based evolution semantics and apply it to the eight
semantics that have been presented in Section 2.3. Then we show how to apply the results of Section 3 to all these eight
semantics.

Definition 4.1 (Subsumption for evolution semantics). Let S1 and S2 be two evolution semantics and D a DL. Then, S1 is
subsumed by S2 w.r.t. D, denoted (S1 �sem S2)(D), or just S1 �sem S2 when D is clear from the context, if K �S1 N ⊆
K �S2 N for every D-evolution setting E = (K,N ). Also, S1 and S2 are equivalent w.r.t. D, denoted (S1 ≡sem S2)(D), if
(S1 �sem S2)(D) and (S2 �sem S1)(D). �

The following theorem shows the subsumption relations that hold between different semantics, independently of the
chosen DL. We depict these relations in Fig. 4.1 using solid arrows. Note that Fig. 4.1 is complete in the following sense:
there is a solid oriented path (a sequence of solid arrows) from a semantics S1 to a semantics S2 if S1 �sem S2(D) for every
DL D.

Theorem 4.2. W.r.t. every DL it holds that

Gy
x �sem Ly

x , where x ∈ {⊆,#} and y ∈ {a, s}, Ls
# �sem Ls⊆, and Gs

# �sem Gs⊆.

Proof. Let D be a DL, (K,N ) with K = T ∪A a D-evolution setting,7 and disty
x a distance function. We consider the three

cases one by one.
Gy

x �sem Ly
x : Let MG =K �S1 N with S1 = Gy

x and ML =K �S2 N with S2 = Ly
x be sets of models defined using respec-

tively global (see Definition 2.8) and local (see Definition 2.6) semantics based on disty
x . Let J ′ ∈ MG , then there is I ′ |
K

such that for every I ′′ |
K and J ′′ |
 T ∪N it does not hold that

disty
x
(
I ′′,J ′′) � disty

x
(
I ′,J ′).

In particular, when I ′′ = I ′ , there is no J ′′ |
 T ∪ N such that disty
x (I ′,J ′′) � disty

x (I ′,J ′), which yields that J ′ ∈
loc_miny

x (I ′,T ,N ), and hence J ′ ∈ML , which concludes the proof.
Ls

# �sem Ls⊆: Consider M# = K �S1 N with S1 = Ls
#, which is based on the distance dists#, and M⊆ = K �S2 N with

S2 = Ls⊆ , which is based on dists⊆ . We show that M# ⊆ M⊆ holds. Towards a contradiction, assume that J ′ ∈ M# and
J ′ /∈M⊆ . Then, from the former assumption we conclude the existence of I ′ |
K such that J ′ ∈ loc_mins

#(I ′,T ,N ). From
the latter assumption, considering Definition 2.6, J ′ /∈ loc_mins⊆(I,T ,N ) for every I ∈ Mod(K), in particular for I = I ′ .
Hence, J ′ /∈ loc_mins⊆(I ′,T ,N ) and there exists an interpretation J ′′ |
 T ∪ N such that dists⊆(I ′,J ′′) � dists⊆(I ′,J ′).
Since the signature of K ∪ N is finite (and a signature includes finitely many concept and role names), the distance dists⊆
between every two interpretations over this signature is also finite. Thus, we obtain that dist#(I ′,J ′′)� dist#(I ′,J ′), which
contradicts J ′ ∈M# and concludes the proof.

Gs
# �sem Gs⊆: analogous to Ls

# �sem Ls⊆ . �
4.1. Relationships between atom-based semantics in DL-Litepr

The next theorem shows that all four atom-based semantics are equivalent w.r.t. DL-Litepr . Before proceeding to the
formal statement and proof of this result, we present a technical proposition which is the analog of Proposition 3.2 for
La

#-evolution semantics, i.e., Proposition 3.2 shows which MAs of the original KB are preserved by evolution under La⊆ , while
the following proposition shows the same under La

#.

Proposition 4.3. Let (K,N ) with K = T ∪A be a DL-Litepr-evolution setting and let M = K �S N with S = La
# . Let g be an MA of

the form R(a,b) or ∃R(a). If A |
T g, then for every J ∈M it holds J |
 g.

7 Note that according to Definition 2.4, N should contain only positive MAs, while here we may weaken this requirement since it does not affect the
proof.
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Proof (Sketch). Similar to the case of La⊆ , the semantics La
# preserves role atoms since a KB K′ ∈ DL-Litepr does not en-

tail “negative” information involving role atoms. So, dropping role atoms from the models evolved under La
# violates the

principle of minimal change. �
Theorem 4.4. La

# ≡sem La⊆ ≡sem Ga
# ≡sem Ga⊆ w.r.t. DL-Litepr .

Proof. Due to Theorem 4.2 and transitivity of the relation �sem , to conclude the proof it suffices to show only three rela-
tions: La

# �sem La⊆ , La⊆ �sem Ga
#, and Ga

# �sem Ga⊆ . Consider a DL-Litepr-evolution setting E = (K,N ) with K = T ∪A.
La

# �sem La⊆: Consider a model J ∈K �S N with S = La
#. Then, there is a model I |
K such that J ∈ loc_mina

#(I,T ,N ).
Now consider a model I ′ built as in Eq. (2); then, we have that dista#(I,J ) � dista#(I ′,J ). The latter distance is finite by
Lemma 3.8, so is the former distance, and therefore La

# �sem La⊆ (this can be shown in a similar way as Ls
# �sem Ls⊆ has been

shown in the proof of Theorem 4.2). It only remains to be shown that I ′ |
 K. This can be shown similarly to the proof of
Lemma 3.8, using Proposition 4.3 instead of Proposition 3.2.

La⊆ �sem Ga
#: Let ML = K �S1 N with S1 = La⊆ and MG = K �S2 N with S2 = Ga

#. Consider a model J ∈ ML . We
show that J ∈ MG , that is, that there is a model I |
 K such that for every J ′ |
 T ∪ N and I ′ |
 K it does not hold
that |I ′ �J ′| � |I �J |. Consider I as in Eq. (2). Due to Lemma 3.8, I |
K. Assume there are J ′ |
 T ∪N and I ′ |
 T ∪A
such that |I ′ � J ′| � |I � J |. Since the set I � J is at most countable, I ′ � J ′ is finite, so there exists an atom A(c) ∈
(I � J ) \ (I ′ � J ′). We have two cases: A(c) ∈ I \ J and A(c) ∈ J \ I . In either case a contradiction can be obtained.
Indeed:

(i) A(c) ∈ I \ J : By the definition of I , this condition implies that A(c) ∈ uclT (A). Observe that uclT (A) ⊆ clT (A), and
consequently A(c) ∈ clT (A). Due to Theorem 3.10, the inclusion J ∈ ML implies that J is a model of K′ = T ∪ A′ ,
where A′ = AtAlg(E) ∪ N . Due to A(c) /∈ J , we conclude that A(c) /∈ AtAlg(E). From the last condition and A(c) ∈
clT (A), we obtain {A(c)} ∪N |
T ⊥ (this follows from the definition of AtAlg). This entailment together with J ′ |
 N
implies that A(c) /∈ J ′ . From A(c) /∈ J ′ and A(c) /∈ I ′ � J ′ we get A(c) /∈ I ′ . Finally, since A(c) ∈ clT (A) and I ′ |

clT (A), we have that A(c) ∈ I ′ , which yields a contradiction.

(ii) A(c) ∈ J \ I: By the definition of I , this condition implies A(c) ∈ confT (J ,A) and also {A(c)} ∪ clT (A) |
T ⊥, which
means that ¬A(c) ∈ clT (A). Thus, A(c) /∈ I ′ (otherwise I ′ would not be a model of K). Recall that A(c) /∈ I ′ � J ′ , so
A(c) /∈J ′ . We obtain that J ′ 
|
 A(c). Since A(c) ∈J , we have ¬A(c) /∈A′ , that is, {¬A(c)}∪N |
T ⊥. Now, combining
the last entailment with J ′ |
N , we conclude J ′ 
|
 ¬A(c), which contradicts J ′ 
|
 A(c).

Thus, J ∈MG and consequently La⊆ �sem Ga
#.

Ga
# �sem Ga⊆: Let J ∈ Mod(T ∪ N ). Assume J ∈ K �S1 N with S1 = Ga

#, but J /∈ K �S2 N with S2 = Ga⊆ . The former
assumption implies that there is a model I ∈ Mod(K) such that it is Ga

#-minimally distant from J . The latter assumption
implies the existence of models I ′ ∈ Mod(K) and J ′ ∈ Mod(T ∪N ) such that

I ′ �J ′ � I �J . (10)

Due to the finite model property of DL-Litepr , it holds that |I � J | is finite. (See a detailed proof of this statement in
Proposition D.1 in Appendix D.) This inequality together with Eq. (10) yields that |I ′ �J ′| � |I �J |, which contradicts the
fact that I is Ga

#-minimally distant from J . This concludes the proof. �
From Theorems 3.10 and 4.4 we conclude the following:

Corollary 4.5. Let E = (K,N ) with K = T ∪A be a DL-Litepr-evolution setting. Then, T ∪AtAlg(E)∪N (cf. Eq. (3)) is an S-evolution,
where S ∈ {La

#,La⊆,Ga
#,Ga⊆}.

4.2. Relationships between symbol-based semantics in DL-Litepr

For symbol-based semantics, the local semantics based on cardinality and on set inclusion coincide, as well as the global
ones, while local semantics are not subsumed by the global ones.

Theorem 4.6. Ls⊆ ≡sem Ls
# and Gs⊆ ≡sem Gs

# , while Ls⊆ 
�sem Gs
# , w.r.t. DL-Litepr .

Proof. Let (K,N ), where K = T ∪A, be a DL-Litepr-evolution setting. We consider the three cases one by one.
Gs

# ≡sem Gs⊆: Due to Theorem 4.2, it suffices to show Gs⊆ �sem Gs
#. Let M⊆ =K �S1 N with S1 = Gs⊆ and M# =K �S2 N

with S2 = Gs
#. Consider a model J0 ∈ M⊆; we show that J0 ∈ M#. By the definition of Gs⊆ semantics, there is

a model I0 ∈ Mod(K) such that for every pair of models I ∈ Mod(K) and J ∈ Mod(T ∪ N ) it does not hold that
dists⊆(I,J ) � dists⊆(I0,J0). Suppose that J0 /∈ M#, that is, for each model I ′ ∈ Mod(K) there are models I ∈ Mod(K)

and J ∈ Mod(T ∪N ) such that |dists⊆(I,J )| � |dists⊆(I ′,J0)|. In particular, it holds when I ′ = I0. This implies that there is
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an element in the signature of K∪N with the same interpretation in I and J , and different interpretations in I0 and J0.
If this element is a concept A, then AI = AJ and AI0 
= AJ0 (the case when this element is a role symbol is analogous).
Thus, there is an atom A(c) ∈ (I0 �J0) \ (I �J ) for some c ∈ �. We now exhibit models I1 |
K and J1 |
 T ∪N s.t.

dists⊆(I1,J1) � dists⊆(I0,J0), (11)

which contradicts the assumption J0 ∈ M⊆ . Now we construct I1 and J1 as in Eqs. (7) and (8), respectively. The proof
that Eq. (11) holds for these I1 and J1 is similar to the proof that Eq. (6) holds for I1 and J1 in the proof of Theorem 3.15.
Thus, J0 ∈M#.

Ls
# ≡sem Ls⊆: Due to Theorem 4.2, it suffices to show Ls⊆ �sem Ls

#. This can be done similarly to the case of Gs⊆ �sem Gs
#,

by proving dists⊆(I0,J1) � dists⊆(I0,J0) with J1 for A(c) of types (T7)–(T9).
Ls⊆ 
�sem Gs

#: Consider the evolution setting (K,N ), where K = T ∪ A, T = {B � ¬C}, A = {A(c), B(a), B(d)}, and N =
{A(e), C(d)}. Consider the following model of T ∪ N : J = {A(e), C(d)}. To conclude the proof, observe that J ∈ K �S1 N
with S1 = Ls⊆ and J /∈K �S2 N with S2 = Gs

#. �
From Theorems 3.15, 3.18, and 4.6 we conclude the following:

Corollary 4.7. DL-Litepr is not closed under Ls
#-evolution, and for a DL-Litepr-evolution setting E = (K,N ) with K = T ∪A

(i) the KB T ∪ GSymbAlg(E) (cf. Eq. (5)) is an S-evolution for E , where S ∈ {Gs
#,Gs⊆};

(ii) the KB T ∪ LSymbAlg(E) (cf. Eq. (9)) is a maximal sound DL-Litepr-approximation of K �S N with S ∈ {Ls
#,Ls⊆}.

4.3. Symbol vs. atom-based semantics in DL-Litepr

Finally, we show that all atom-based semantics are subsumed by the global symbol-based semantics, while the contrary
does not hold. Due to Theorems 4.2, 4.4, and 4.6, this statement follows from La⊆ �sem Gs

# and Gs
# 
�sem La⊆ . Thus, for DL-Litepr

we essentially have three different evolution semantics: atom-based, local symbol-based, and global symbol-based.

Theorem 4.8. La⊆ �sem Gs
# , while Gs

# 
�sem La⊆ , w.r.t. DL-Litepr .

Proof. We will consider the two cases separately.
La⊆ �sem Gs

#: Let (K,N ) be a DL-Litepr-evolution setting. Consider a model J ∈ K �S1 N with S1 = La⊆ . We show that
J ∈ K �S2 N with S2 ∈ Gs

#. Due to Theorem 3.10, J is a model of K′ = T ∪ A′ as in Eq. (3). Let I be an interpretation
built as in Eq. (2). Due to Lemma 3.8, we obtain I |
 K. Suppose that J /∈ K �S2 N with S2 = Gs

#, that is, there exists a
model J ′ |
 T ∪ N such that |dists⊆(Mod(K),J ′)| � |dists⊆(Mod(K),J )|. Note that by the definition of |dists⊆(Mod(K),J )|,
it holds that |dists⊆(Mod(K),J )| � |dists⊆(I,J )|. By the definition of the distance between a set of interpretations and an
interpretation, there exists a model I ′ |
K such that |dists⊆(I ′,J ′)| � |dists⊆(I,J )|. This implies that there is an element in
the signature of K ∪N with the same interpretation in I ′ and J ′ , but with different interpretation in I and J . Note that
there is no role P ∈ Σ(K∪N ) such that PI 
= PJ due to the construction of I , hence it suffices to consider the case when
this element is a concept A, i.e., AI 
= AJ and AI ′ = AJ ′

. From AI 
= AJ and Eq. (2) we imply that there is an atom A(c)
that is either in confT (J ,A) or in uclT (A).

• If A(c) ∈ confT (J ,A), then ¬A(c) ∈ clT (A), and, since J 
|
 ¬A(c), the literal ¬A(c) was deleted from clT (A) while
building A′ (see Algorithm 3.1), i.e., {¬A(c)} ∪ N |
T ⊥. From this entailment and J ′ |
 N we conclude that J ′ 
|

¬A(c) and consequently I ′ 
|
 ¬A(c) (since AI1 = AJ1 ). We obtain a contradiction with I1 |
 clT (A).

• If A(c) ∈ uclT (A), then A(c) ∈ clT (A) and I ′ |
 A(c). Due to AI ′ = AJ ′
, we have that J ′ |
 A(c). On the other hand,

since I |
 uclT (A) and AI 
= AJ , we conclude that J 
|
 A(c). Thus, A(c) was deleted from cl(A) while building A′
(see Algorithm 3.1) and therefore {A(c)}∪N |
T ⊥. Recall that J ′ |
N , thus, J ′ 
|
 A(c) and we obtain a contradiction.

Gs
# 
�sem La⊆: Consider the evolution setting (K,N ) as in the proof of the case Ls⊆ 
�sem Gs

# in Theorem 4.6 and take the
following model of T ∪ N : J = {A(c), A(e), C(d)}. To conclude the proof observe that J ∈ K �S1 N with S1 = Gs

#, while
J /∈K �S2 N with S2 = La⊆ . �
Summary of Section 4 and on DL-Litepr . Atom-based approaches (which all coincide) can be captured using a polynomial-
time algorithm AtAlg. Moreover, the evolution results produced under these MBAs are intuitive and expected. Symbol-based
approaches on the contrary produce quite unexpected and counter-intuitive results since the corresponding semantics delete
too much data. Two global symbol-based approaches coincide and can be captured using the polynomial-time algorithm
GSymbAlg. Two local symbol-based approaches also coincide, cannot be captured in DL-Litepr , but can be approximated
using the polynomial-time algorithm LSymbAlg. Based on these results we conclude that using atom-based approaches
for applications seems to be more practical. In Fig. 4.1, using dashed arrows, we illustrate all the subsumptions between
semantics that have been established in this section. Note that Fig. 4.1 is complete for DL-Litepr in the following sense: there
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is an oriented path with solid or dashed arrows (a sequence of such arrows) between any two semantics S1 and S2 if and
only if (S1 �sem S2) (DL-Litepr). Moreover, in Fig. 4.1 we framed with a dashed rectangle the six out of eight MBAs under
which DL-Litepr is closed.

5. Understanding La⊆-evolution of DL-Litecore KBs

In the previous sections, we showed that atom-based MBAs behave better than symbol-based ones for DL-Litepr-
evolution. This suggests to investigate atom-based MBAs for the entire DL-Litecore . Here we focus on one of four atom-based
MBAs, namely La⊆ . The remaining three semantics are subjects of future work.

As a further motivation for the study of La⊆ , note that La⊆ is essentially the same as so-called Winslett’s semantics
(WS) [20], which was widely studied in the literature [8,10]. Liu, Lutz, Milicic, and Wolter studied WS for expressive DLs [8].
Most of the DLs they considered are not closed under WS. Poggi, Lembo, De Giacomo, Lenzerini, and Rosati studied WS
in a similar setting as the one adopted in this paper. They called it instance-level update for DL-Lite [10] and proposed an
algorithm to compute the result of updates. However, the algorithm turned out to have technical issues, and it was later
shown that it is neither sound nor complete [7]. Note that the extension of this algorithm that approximates ABox updates
in fragments of DL-Lite [10] inherits these technical issues. Actually, such an ABox update algorithm cannot exist since it
was shown that DL-Lite is not closed under La⊆-evolution [17].

The remaining part of the section is organized as follows. In Section 5.1, we explain why DL-Litecore is not closed under
La⊆-evolution and show which combination of DL-Litecore formulas is responsible for inexpressibility. In Section 5.2, we
introduce so-called prototypes, which give a characterization of K �S N with S = La⊆ and are further used to approximate
La⊆-evolution. In Section 5.3, we present the procedure BP, which constructs prototypes for DL-Litecore-evolution settings,
and in Section 5.4 we show correctness of BP.

5.1. Understanding inexpressibility of La⊆-evolution in DL-Litecore

Using the following example, we illustrate why K �S N with S = La⊆ is not expressible in DL-Litecore .

Example 5.1. Consider a DL-Litecore KB K2 = T2 ∪A2, new information N2, and I |
K2:

T2 = {
Wife � ∃HasHusb,∃HasHusb− � ¬Priest

};
A2 = {

Priest(pedro),Priest(ivan),∃HasHusb−(john)
};

N2 = {
Priest(john)

};
I: WifeI = {girl}, PriestI = {pedro, ivan}, HasHusbI = {

(girl, john)
}
,

where girl ∈ � \ adom(K2) is an element of the domain. The following models belong to loc_mina⊆(I,T2,N2) and conse-
quently to K2 �S N2 with S = La⊆:

J0: WifeJ0 = ∅, PriestJ0 = {john,pedro, ivan}, HasHusbJ0 = ∅,

J1: WifeJ1 = {girl}, PriestJ1 = {john, ivan}, HasHusbJ1 = {
(girl,pedro)

}
,

J2: WifeJ2 = {girl}, PriestJ2 = {john,pedro}, HasHusbJ2 = {
(girl, ivan)

}
,

J3: WifeJ3 = {girl}, PriestJ3 = {john,pedro, ivan}, HasHusbJ3 = {
(girl,guy)

}
,

where guy ∈ � \ adom(K2) \ {girl} is an element of the domain.
Indeed, all Ji ’s satisfy N2 and T2. To see that they are in loc_mina⊆(I,T2,N2), observe that every model J ∈

loc_mina⊆(I,T2,N2) can be obtained from I by making modifications that guarantee that J |
 N2 ∪ K2 and that the dis-
tance between I and J is minimal. What are these modifications? Clearly, Priest(john) should hold in J . Moreover, no
priest can be in the HasHusb relation since Priest � ¬∃HasHusb− ∈ T2. Hence, john cannot be in the HasHusb relation with
girl after evolution of K2, and the first necessary modification in I is to drop the atom HasHusb(girl, john) and to add the
atom Priest(john):

J ′ = (
I \ {

HasHusb(girl, john)
}) ∪ {

Priest(john)
}
.

Observe that this modification is not enough, i.e., J ′ /∈ loc_mina⊆(I,T2,N2), since J ′ does not satisfy the TBox, namely, the
assertion Wife � ∃HasHusb. Indeed, girl is still a wife in J ′ , while there is no husband for her, that is, no atom of the form
HasHusb(girl, x) for any x is in J ′ . This problem can be solved by either dropping Wife(girl) from J ′ or by assigning to girl
a husband, that is, adding HasHusb(girl, x) to J ′ for some x. The model J0 corresponds to the former option, that is

J0 = J ′ \ {
Wife(girl)

}
, (12)

and the other three Ji ’s correspond to the latter one.
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Regarding the other option, who should be the husband x of girl in J ? There are two possibilities in general: the
husband is either one of the two priests (i.e., x = pedro or x = ivan), or some other person (e.g., x = guy). Clearly, if a priest,
say pedro, is a husband of girl in J , then he should quit the priesthood due to the TBox assertion Priest � ¬HasHusb− , i.e.,
Priest(pedro) should not be in J . Thus, further modifications corresponding to these possibilities give exactly the models
J1, J2, and J3 defined above, i.e.:

J1 = (
J0 \ {

Priest(pedro)
}) ∪ ({

HasHusb(girl,pedro)
} ∪ {

Wife(girl)
})

, (13)

J2 = (
J0 \ {

Priest(ivan)
}) ∪ ({

HasHusb(girl, ivan)
} ∪ {

Wife(girl)
})

, (14)

J3 = (J0 \ ∅) ∪ ({
HasHusb(girl,guy)

} ∪ {
Wife(girl)

})
.

Note that we wrote the three formulas above in a specific way: first we subtract atoms about Priest from J0 (whenever it
is needed), and then we add HasHusb and Wife-atoms that are required to comply with the TBox T2. This is done in order
to be coherent with the BP procedure, which we present later in this section (see Section 5.3). �
Lack of canonical models. Recall that for every DL-Litecore KB K, the set Mod(K) has a canonical model. At the same time,
continuing with Example 5.1, one can verify that any model Jcan that can be homomorphically embedded into the four Ji s
is such that WifeJcan = HasHusbJcan = ∅, and pedro /∈ PriestJcan and ivan /∈ PriestJcan . It is easy to check that any such Jcan
is not in K1 �S N1 with S = La⊆ . Thus, there is no canonical model in K2 �S N2 with S = La⊆ and, hence, this set is not
expressible in DL-Litecore . This gives us the first reason why DL-Litecore is not closed under La⊆-evolution.

Local functionality. Another problem with models K �S N with S = La⊆ is that they satisfy a special kind of functionality
constraints on roles.

Definition 5.2 (Local functionality). Let R be a role and c a constant; then we call local functionality of R on c the formula

func(R, c) = ∀x∀y.
(

R(x, c) ∧ R(x, y) → y = c
)
. �

Example 5.3. Continuing with Example 5.1, one can see that K2 �N2 satisfies local functionality of HasHusb on both priests
pedro and ivan, for example:

func(HasHusb,pedro) = ∀x∀y.
(
HasHusb(x,pedro) ∧ HasHusb(x, y) → (y = pedro)

)
.

That is, if in J ∈K2 �N2 either pedro or ivan is a husband of girl, then she cannot be married to anyone else. For example,
the following model J ′ , which violates the local functionality, is not in K2 �N2 since it is not minimally La⊆-distant from I
(or any other model of K2):

WifeJ
′ = {girl}, PriestJ

′ = {john, ivan}, HasHusbJ
′ = {

(girl,pedro), (girl,guy)
}
.

To see this, one can check that it holds that I �J1 ⊂ I �J ′ for every model I ∈ Mod(K).
At the same time, if girl has a husband in J who is neither pedro nor ivan, then she can have several husbands with the

same property. For example, the following model J ′′ is in K2 �N2:

WifeJ
′′ = {girl}, PriestJ

′′ = {john,pedro, ivan}, HasHusbJ
′′ = {

(girl,guy1), (girl,guy2)
}
. �

The following proposition shows that local functionality is not expressible in DL-Litecore .

Proposition 5.4. Let K be a satisfiable DL-Litecore KB, R a role, and c a constant. Then, K |
 func(R, c) iff K |
 ¬∃R−(c).

As a corollary of the proposition above, the set K2 �S N2 from Example 5.1 is not axiomatizable in DL-Litecore . Indeed,
K2 �S N2 satisfies local functionality func(HasHusb,pedro), but, due to J1 
|
 ¬∃HasHusb−(pedro) and J1 ∈K2 �S N2, it holds
that K2 �S N2 
|
 ¬∃HasHusb−(pedro). This gives us the second argument why DL-Litecore is not closed under La⊆-evolution.

Dually-affected roles. Both lack of canonical models and local functionality for K �S N with S = La⊆ observed above are due
to dual-affection and triggering defined as follows.

Definition 5.5 (Dual-affection and triggering). Let E = (K,N ), where K = T ∪ A, be a DL-Litecore-evolution setting. Then
a role R is dually-affected in T if there are atomic concepts A1 and A2 such that T |
 A1 � ∃R and T |
 ∃R− � ¬A2.
A dually-affected role R is triggered in E if A 
|
T ¬∃R−(b) and N |
T ¬∃R−(b), for some constant b ∈ adom(E). �
Example 5.6. In Example 5.1 the role HasHusb is dually-affected in T2. Indeed, T2 |
 Wife � HasHusb and T2 |
 ∃HasHusb− �
¬Priest. This role is also triggered in (K2,N2) since A2 
|
T ∃HasHusb−(john), and N2 |
T ¬∃HasHusb−(john). �
2 2
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The following theorem shows that if there is a dually-affected role, we can always find A and N to trigger it and thus,
to guarantee that (T ∪A) �S N with S = La⊆ is inexpressible in DL-Litecore .

Theorem 5.7. Let T be a DL-Litecore TBox and R a role dually-affected in T . Then there are ABoxes A and N such that (T ∪A,N ) is
a DL-Litecore-evolution setting and (T ∪A) �S N with S = La⊆ is inexpressible in DL-Litecore.

Proof. By definition, there are concepts A and C such that T |
 A � ∃R and T |
 ∃R− � ¬C . Now it is enough to take A
and N analogous to A2 and N2 from Example 5.1, respectively. Then (T ∪ A) �S N with S = La⊆ is non-axiomatizable in
DL-Litecore since it has no canonical model or since it violates Proposition 5.4. �
5.2. Prototypes

As we discussed above, the set of models K �S N with S = La⊆ may not have a canonical model. A closer look at this
K �S N gives a surprising result: this set can be divided (but in general not partitioned) into a finite number of subsets
X0, . . . , Xn , that is, Xi ⊆ K �S N for i ∈ {0, . . . ,n} and

⋃n
i=0 Xi = K �S N , where each Xi includes a canonical model for Xi

itself.

Definition 5.8 (Prototypal set). Let M be a set of models. A prototypal set for M is a finite subset J = {J0, . . . ,Jn} of M
satisfying the following property: for every model J ∈ M there exists Ji ∈ J such that Ji ↪→ J . We call each Ji in J a
prototype for M. �

The notion of prototypes generalizes the notion of canonical model: for example, if K is a DL-Litecore KB, then {Ican} is
a prototypal set for Mod(K). Clearly, since a prototypal set is required to be finite, not every set of models has a prototypal
set.

In [29] the notion of F -universal model set and in [30] the notion of universal basis (a special case of F -universal model
set), which are similar to the notion of prototypal set, have been considered. Intuitively, an F -universal model set is defined
as follows: given a set X of models and a set F of mappings between models, a finite subset U ⊆ X of finite models is
an F -universal model set if for every X ∈ X there is U ∈ U and a mapping f ∈ F s.t. f maps U to X in the “right” way;
moreover, U should be minimal (w.r.t. set inclusion and F -embedding) among all finite subsets of finite models of X that
satisfy this condition. If one considers F to be the class of all homomorphisms, then prototypal sets look similar to F -
universal sets of models. Crucial differences between the two are that (i) each element of U is finite, but elements of J are
in general infinite, (ii) U is required to be finite and minimal (w.r.t. set inclusion and F -embedding), but J is only required
to be finite, and (iii) in [29] F -universal model sets are applied to X , which consists of models defined by constraints,
and in that settings U does not always exist; we will apply prototypal sets to K �S N with S = La⊆ , where (K,N ) is a
DL-Litecore-evolution setting, and in our setting prototypal sets always exist. Furthermore, the BP procedure for constructing
prototypal sets, which we present later in this section, has different properties from the extended core chase algorithm for
computing F -universal model sets: (i) BP is an abstract procedure and not an algorithm (it manipulates infinite objects),
(ii) BP and extended core chase are completely different in the approach to computation, and (iii) BP is sound and complete
(see Theorem 5.21), while the extended core chase is only complete. Due to these differences, the applicability of results
from [29] to our setting and vise-versa is unclear and requires further investigation.

Definition 5.9 (Prototypal set for evolution settings). Let S be a model-based semantics, E = (K,N ) an evolution setting, and
J a prototypal set for K �S N . Then J is called an S-prototypal set for E . �

Since we will study only La⊆-prototypal sets, in the following we will refer to them as prototypal sets for (K,N ) and omit
the La⊆ prefix.

Example 5.10. Continuing with Example 5.1, one can check that the sets X = {J0,J1,J2,J4} and Y = {J0,J1,J2,J3,J4}
are prototypal for (K2,N2), where J0, . . . ,J3 are as in Example 5.1, and J4 is:

J4: WifeJ4 = {girl1,girl2}, PriestJ4 = {john}, HasHusbJ4 = {
(girl1,pedro), (girl2, ivan)

}
.

Note that X = Y \ {J3}, i.e., J3 is not needed in the prototypal set X . This holds due to the fact that J0 � J3 and J0 is
homomorphically embeddable in J3. At the same time, if we drop any model from X , then the resulting set of models is
not a prototypal for (K2,N2) anymore.

Observe that the prototypes J0,J1,J2 were obtained by manipulations of the model I from Example 5.1, while J4 can
be obtained from the following interpretation I ′ |
K2:

I ′: WifeI
′ = {girl1,girl2}, PriestI

′ = {pedro, ivan}, HasHusbI
′ = {

(girl1, john), (girl2, john)
}
. �
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We will show later in this section that for every DL-Litecore-evolution setting E there is a prototypal set of size exponential
in |E |. To this effect we will present a procedure BP (where BP stands for Build Prototypes) that, given E , constructs such a
prototypal set. For the ease of exposition of BP, we consider a restricted form of evolution settings.

Definition 5.11 (Simple evolution setting). A DL-Litecore-evolution setting (K,N ), where K = T ∪A, is simple, if

(i) for every role R there is no atomic concept A such that T |
 ∃R � A,
(ii) for every two different roles R and R ′ , neither T |
 ∃R � ∃R ′ nor T |
 ∃R � ¬∃R ′ holds,

(iii) if N |
T ∃R(a), then N |
T R(a,b) for some constant b, and
(iv) if for an atomic concept A there are B and R such that B � ∃R and ∃R− � ¬A are in cl(T ), then for every role R ′ it

holds that A � ∃R ′ /∈ cl(T ). �
These four restrictions guarantee that evolution under La⊆ semantics affects roles independently one from another. Later

on we explain how the following techniques can be extended to the case of general DL-Litecore-evolution settings.

5.3. Procedure BP to build prototypal sets for evolution settings

We now introduce the procedure BP(E) that takes a DL-Litecore-evolution setting E as input and returns the prototypal
set for (K,N ).

The components of the BP procedure. Before introducing BP, we will introduce several notions and notations that the proce-
dure is based upon. We start with the notion of alignment of a model, in which the facts that contradict a given ABox are
removed from the model.

Definition 5.12 (T -alignment of a model with an ABox). Let T be a DL-Litecore TBox, N an ABox with only positive assertions
and satisfiable with T , and I a model of T . Then the T -alignment of I with N , denoted AlignT (I,N ), is defined as follows:

AlignT (I,N ) = I \
⋃

g∈I s.t. {g}∪N |
T ⊥
rootT (g). �

In Example 5.1, the only atom g of I such that {g}∪N2 |
T ⊥ is g = HasHusb(girl, john); then, rootT2 (g) = {HasHusb(girl,
john),Wife(girl)}; thus, AlignT2

(I,N2) = {Priest(pedro),Priest(ivan)}.
The next definition introduces the set of triggered roles, building on the notion of dually-affected roles (cf. Definition 5.5).

Definition 5.13 (Set of triggered roles). Let (K,N ) be a simple DL-Litecore-evolution setting. Then, TR[K,N ] (where TR stands
for triggered roles), or simply TR when K and N are clear, is the set of all roles dually-affected in K and triggered in
(K,N ). �

In Example 5.1, TR[K2,N2] = {HasHusb}. The next definition introduces the notion of disjoint atoms.

Definition 5.14 (Disjoint atoms). Let R be dually-affected and triggered in a simple DL-Litecore-evolution setting (K,N ). Then,
the set of unary atoms DjnAts[K,N ](R) ⊆ clT (A) (where DjnAts stands for Disjoint Atoms) contains D(c) if T entails that
the range of R is disjoint with D , while N “says” nothing about D(c). Formally:

DjnAts[K,N ](R) = {
D(c) ∈ clT (A)

∣∣ R ∈ TR[K,N ], {∃R−(c), D(c)
} |
T ⊥,

N 
|
T D(c), and N 
|
T ¬D(c)
}
. �

In Example 5.1, DjnAts[K2,N2](HasHusb) = {Priest(pedro),Priest(ivan)}. The set of disjoint atoms for the entire KB
K = T ∪ A and N , denoted DjnAts(K,N ), or DjnAts when the parameters are clear, is

⋃
R∈TR DjnAts[K,N ](R). The next

definition introduces immediate subconcepts.

Definition 5.15 (Immediate sub-concept). For a role R , the set ISubCon[T ](∃R) (where ISubCon stands for Immediate Sub-
Concepts) is the set of atomic concepts that are subsumed by ∃R and are “immediately” under ∃R in the concept hierarchy
generated by T . Formally:

ISubCon[T ](∃R) = {
A

∣∣ T |
 A � ∃R and there is no A′ s.t. T |
 A � A′, T 
|
 A′ � A, and T |
 A′ � ∃R
}
. �

In Example 5.1, ISubCon[T2](∃HasHusb) = {Wife}.
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BZP(E)

1. J0 := AlignT (Ican,N ), where Ican is the canonical model of K;
2. For each R ∈ TR[K,N ] do

for each A ∈ ISubCon[K](∃R) do
if A(x) ∈ J0 for some x ∈ �, and for every b ∈ adom(K∪N ): J0 
|
T R(x,b), N 
|
T R(x,b)

then J0 := J0 \ (rootT (A(x)) ∪ ⋃
y∈�\adom(K){R(x, y)});

3. J0 := chaseT (J0 ∪N );
4. Return J0.

Fig. 5.1. BZP(E) procedure for building the zero prototype J0 for a simple DL-Litecore-evolution setting E = (K,N ) where K = T ∪A.

BP(E)

1. J0 := BZP(E);
2. For each 1 � k � |DjnAts[K,N ]| and for each set D = {D1(c1), . . . , Dk(ck)} ⊆ DjnAts[K,N ] do

for each vector R = 〈R1, . . . , Rk〉, s.t. R j ∈ TR and D j(c j) ∈ DjnAts(R j) for j ∈ {1, . . . ,k} do
for each vector B = 〈A1, . . . , Ak〉 s.t. A j ∈ ISubCon[T ](∃R j) for j ∈ {1, . . . ,k} do
J [D,R,B] := (J0 \ ⋃k

i=1 rootT (Di(ci))) ∪ ⋃k
i=1 chaseT ({Ri(xi , ci), Ai(xi)}),

where {x1, . . . , xk} are pairwise distinct constants from � \ adom(K) and fresh for J;
J := J∪ {J [D,R,B]}.

3. Return J;

Fig. 5.2. BP(E) procedure of building the prototypal set J for a simple DL-Litecore-evolution setting E = (K,N ) with K = T ∪A.

We are ready to proceed to the description of the BP procedure. It works similar to the way we described in Eqs. (12)–
(14) of Example 5.1, i.e., by first constructing one prototype J0 by “aligning” Ican of K with N and post-processing the
result (in J0 of Example 5.1, girl is not a Wife anymore and all the priests of I remain priests), and then manipulating J0
in order to get all the other prototypes. We will further refer to such a model J0 as the zero prototype. We start with a
procedure BZP for constructing the zero prototype.

Procedure BZP for building zero prototype. The procedure BZP(E) (where BZP stands for Build Zero Prototype) in Fig. 5.1
constructs the zero prototype J0 for a simple DL-Litecore-evolution setting E = (K,N ). It works as follows. First, it deletes
from the canonical model Ican of K all the atoms that are not T -satisfiable with N (Step 1). Then, in Step 2 the procedure
does the following: from the interpretation J0 resulting from Step 1 it deletes all atoms of the form A(a) (together with the
atoms that T -entail A(a)) for which there is no constant b from adom(K ∪N ) such that J0 |
 R(a,b) or N |
T R(a,b) for
some role R ∈ TR[K,N ] s.t. A ∈ ISubCon[K](∃R). Moreover, it further deletes from J0 all atoms of the form R(a, x) where
x ∈ � \ adom(K ∪ N ). Intuitively, Step 2 works as follows: if neither J0 nor N entails an atom of the form R(a,b) (e.g.,
in Example 5.1, there is no active-domain husband b of a girl provided by J0 or N2), then the zero prototype should not
contain A(a) (e.g., in Example 5.1, girl stops to be a wife) and also all atoms R(a, x) for some non-active x. Step 3 combines
J0 resulting from Step 2 with N and chases them in order to obtain a model of T ∪N . Finally, Step 4 returns J0.

We illustrate BZP on the following example.

Example 5.16. In Example 5.1, the zero prototype obtained by BZP(K2,N2) is J0. Indeed, the canonical model
of K2 is Ican = {Priest(pedro),Priest(ivan),HasHusb(x, john)}. Step 1 of BZP(K1,N1) returns the interpretation Ican \
{HasHusb(x, john)} and Step 2 does nothing. Finally, Step 3 returns chase({Priest(pedro),Priest(ivan)} ∪ {Priest(john)}), which
coincides with J0 of Example 5.1.

Consider another example: A={C(a)}, T ={C � A, A �∃R,∃R− �¬B}, and N ={B(b)}. Then, Ican ={C(a), A(a), R(a, x)}.
Step 1 of BZP(K,N ) returns the model Ican; Step 2 deletes from Ican the atom R(a, x) and rootT (A(a)) = {C(a), A(a)}, that
is, it returns ∅; finally, Step 3 returns J0 = chaseT {∅ ∪ {B(b)}} = {B(b)}. �
Procedure BP for building prototypes. The procedure BP(E) for constructing J (see Fig. 5.2) takes a simple DL-Litecore-
evolution setting E = (K,N ) with K = T ∪ A as input, constructs the zero prototype J0 by calling BZP (at Step 1), and
based on J0 builds the other prototypes of J (Step 2). Each element in J corresponds to a distinct triple consisting of a
set D, a tuple R (which depends on D), and a tuple B (which depends on R) that are constructed from K and N . More
precisely, BP first chooses a triple D, R, B that is composed of

(i) a set D of disjoint atoms from DjnAts[K,N ] (in Example 5.1, D is any subset of the priests from A, that is, of
{Priest(pedro),Priest(ivan)});

(ii) a tuple R of roles R , one for each D(c) ∈ D, such that D(c) is a disjoint atom for R , that is, D(c) ∈ DjnAts(R) (in
Example 5.1, R= 〈HasHusb〉 for every possible D since D(c) can be either Priest(pedro) or Priest(ivan) and it holds that
Priest(pedro) ∈ DjnAts(HasHusb) and Priest(ivan) ∈ DjnAts(HasHusb));

(iii) a tuple B of immediate subconcepts A of ∃R for each R ∈ R (in Example 5.1, B = 〈Wife〉 since Wife is the only
immediate subconcept of HasHusb).
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Then, BP

(a) deletes from J0 all the atoms D(c) of D (that is, it deletes c from DJ0 ) together with all the atoms that T -entail them.
In Eqs. (13) and (14) of Example 5.1, this corresponds to

J0 \ {
Priest(pedro)

}
and J0 \ {

Priest(ivan)
};

(b) adds to what remains from J0 the chase of pairs of atoms of the form R(x, c), A(x), that is, it connects with R some
elements x of � \ adom(K) to the constants c. In Eqs. (13) and (14) of Example 5.1, this respectively corresponds to
adding{

HasHusb(girl, ivan)
} ∪ {

Wife(girl)
}

and
{

HasHusb(girl,guy)
} ∪ {

Wife(girl)
}
.

Note that BZP(E) ⊆ BP(E) and J0 corresponds to J [∅, ε, ε], where ε is the empty tuple.

5.4. Correctness of the BP procedure

Before we proceed to the main result of this section, i.e., to the proof that for a simple DL-Litecore-evolution settings E ,
the set BP(E) is prototypal for E , we present a number of technical lemmas, propositions and observations that will help
us to prove this result.

Let E = (K,N ) be a simple DL-Litecore-evolution setting where K = T ∪ A and S = La⊆ . Let J0 be the zero proto-
type for E and J [D,R,B] a prototype for E as defined in the BP procedure. We now exhibit models I0 |
 K and
I[D,R,B] |
 K which can be considered as “preimages” of J0 and J [D,R,B] under La⊆ , respectively, in the sense that
J0 ∈ loc_mina⊆(I0,T ,N ) and J [D,R,B] ∈ loc_mina⊆(I[D,R,B],T ,N ).

Lemma 5.17. Let S = La⊆ and let E = (K,N ) be a simple DL-Litecore-evolution setting with K = T ∪ A. For the model J0 re-
turned by BZP(E) and every other model J [D,R,B] returned by BP(E), it holds that J0 ∈ loc_mina⊆(I0,T ,N ) and J [D,R,B] ∈
loc_mina⊆(I[D,R,B],T ,N ), where I0 and I[D,R,B] are models of K defined as follows:

I[D,R,B] = Ican ∪
⋃

1�i�|D|
chaseT

({
Ri(xi,d), Ai(xi)

∣∣ Ri ∈ R, Ai ∈ B, N |
T ¬∃R−
i (d), A 
|
T ¬∃R−

i (d),
})

(15)

I0 = chaseT

(
A∪

⋃
A(a)∈A1

{
Ra(a,ba)

∣∣ for corresponding Ra and ba
})

, (16)

where the auxiliary ABox A1 is as follows:

A1 = {
A(a) ∈ clT (A)

∣∣ there is Ra ∈ TR[K,N ], s.t. A ∈ ISubCon[T ](∃Ra) and ∀x ∈ �:
N 
|
T Ra(a, x), A 
|
T Ra(a, x) and there is ba ∈ �: N |
T ¬∃R−(ba)

}
.

Our next observation is that all J ∈ loc_mina⊆(I,T ,N ) share the alignment of I without disjoint atoms and immediate
sub-concepts. In terms of Example 5.1, these J ’s share I without Priest(pedro), Priest(ivan), and Wife(girl).

Lemma 5.18. Let S = La⊆ and let E = (K,N ) be a simple DL-Litecore-evolution setting.

(i) For every I ∈ Mod(K) and J ∈ loc_mina⊆(I,T ,N ) it holds that:

AlignT (I \ BI ,N ) ⊆ J , where BI =
⋃

D(c)∈S
rootIT

(
D(c)

)
and

S = {
D(c) ∈ I

∣∣ N 
|
T D(c), N 
|
T ¬D(c), and there is R dually-affected in K s.t.{∃R−(c), D(c)
} |
T ⊥, and there are x,d ∈ � s.t. I |
 R(x,d), N |
 ¬∃R−(d)

}
.

(ii) In particular, if I is Ican , i.e., a canonical model of K, then for every J ∈ loc_mina⊆(Ican,T ,N ) it holds that

AlignT
(
Ican \ DjnAts[K,N ],N ) ⊆ J .

Note that BI in the lemma above can be seen as an extension of the set of disjoint atoms DjnAts[K,N ] from KBs to
models of this KBs, in the sense that BI ∩ clT (A) = DjnAts[K,N ]. As a consequence of Lemma 5.18, consider the following
definition.
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Definition 5.19 (Constant and variable parts of models). For a given I ∈ Mod(K), every model J ∈ loc_mina⊆(I,T ,N ) can be
partitioned in two parts:

(i) a constant part Jc = AlignT (I \BI ,N ), which is the same across all elements of loc_mina⊆(I,T ,N ), and
(ii) a variable part Jv =J \Jc , which varies from one element of loc_mina⊆(I,T ,N ) to another. �

Note that Jc is the constant part of the entire set loc_mina⊆(I,T ,N ) in the sense that Jc ⊆ ⋂
J ′∈loc_mina⊆(I,T ,N ) J ′ .

Finally, consider the following property of models I and J w.r.t. disjoint atoms, where I and J are related as follows:
J ∈ loc_mina⊆(I,T ,N ).

Lemma 5.20. Let (K,N ), where K = T ∪ A, be a simple DL-Litecore-evolution setting, I |
 K, and J ∈ loc_mina⊆(I,T ,N ). If
D(c) ∈ DjnAts[K,N ], then the following holds:

(i) If D(c) /∈J , then there exist R ∈ TR and A ∈ ISubCon[T ](∃R) s.t. D(c) ∈ DjnAts[K,N ](R) and{
R(x, c), A(x)

} ⊆ J for some x ∈ �. (17)

(ii) If D(c) ∈ J , then for every unary MA, an atom A(c) satisfying K |
 A(c), where T |
 A � D and A(c) ∈ AlignT (I,N ), the
inclusion A(c) ∈J holds.8

The following result establishes the fundamental property of the set of models computed by BP: this set is prototypal
for the input evolution setting and exponential in the size of the setting.

Theorem 5.21. Let E be a simple DL-Litecore-evolution setting. Then, the set BP(E) is a prototypal set for E . Moreover, |BP(E)| is
exponential in |E |.

Proof. Let S = La⊆ . To see the bound on |BP(E)| observe that the number of prototypes is polynomial in the number of
triples D, R[D] and B[R], where the number of different components in each triple is exponential in |E |.

By the definition of prototypal sets, in order to prove that BP(E) = J is a prototypal set, we need to show the following
two conditions:

1. BP(E) ⊆K �S N and
2. for every model J ∈K �S N there exists a model J ′ ∈ BP(E) such that

J ′ ↪→ J . (18)

Condition 1 follows from Lemma 5.17. Indeed, for every element J of BP(E) the lemma presents a model I of K
that “evolves” in J , i.e., for J0 and J [D,R,B] it presents I0 and I[D,R,B] such that J0 ∈ loc_mina⊆(I0,T ,N ) and
J [D,R,B] ⊆ loc_mina⊆(I,T ,N ). Therefore BP(E) ⊆K �S N .

Now we prove Condition 2. Let J ∈K �S N , we will exhibit J ′ ∈ BP(E) such that J ′ ↪→J . To this effect, consider DJ ,
the set of all (redundant) atoms from DjnAts[K,N ] that are not in J , that is, DJ ⊆ DjnAts[K,N ] and

• for every D(c) ∈DJ we have D(c) /∈J , while
• for every D(c) ∈ DjnAts[K,N ] \DJ we have D(c) ∈J .

Assume that DJ = {D1(c1), . . . , Dn(cn)} for some n ∈ N and for every Di(ci) from DJ let R Di(ci)

i be a role name such that

Di(ci) ∈ DjnAts[K,N ](R Di(ci)

i ). Note that for two different Di(ci) and D j(c j), the corresponding roles R Di(ci)

i and R
D j(c j)

j may

coincide. Moreover, for every R Di(ci)

i let ARi
i be a concept name such that ARi

i ∈ ISubCon[K](R Di(ci)

i ). Now take

RJ = 〈
R D1(c1)

1 , . . . , R Dn(cn)
n

〉
, BJ = 〈

AR1
1 , . . . , ARn

n
〉
,

and define the model J ′ using the BP procedure in Fig. 5.2 for constructing J [DJ ,RJ ,BJ ] as follows:

J ′ := J [DJ ,RJ ,BJ ].
We now show that this J ′ together with J from which it is constructed satisfies Eq. (18).

8 Recall that the evolution setting (K,N ) is simple and therefore there is no role R such that ∃R � D .
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Note that

(a) J ∈K �S N implies that there exists I ∈ Mod(K) such that J ∈ loc_mina⊆(I,T ,N ), and
(b) since, by its definition, J ′ belongs to BP(E), Condition 1 implies that J ′ ∈ K �S N and therefore there exists I ′ ∈

Mod(K), which may differ from I , such that J ′ ∈ loc_mina⊆(I ′,T ,N ).

Recall that due to Lemma 5.18 we can partition J (resp., J ′) in two parts: a constant part Jc (resp., J ′
c ) and a variable

part Jv =J \Jc (resp., J ′
v ).

Now, to conclude that J ′ ↪→ J holds, i.e., (J ′
c ∪ J ′

v) ↪→ (Jc ∪ Jv) holds, we show that there are homomorphisms hc

and hv such that:

(a) hc : J ′
c → Jc and (b) hv : J ′

v → Jv ,

and the combination of hc and hv will be a homomorphism from J ′ to J .

• We prove Condition (a) using Lemmas 5.17 and 5.18. Indeed, combining Eq. (15) of Lemma 5.17 if DJ 
= ∅ and Eq. (16)
of Lemma 5.17 otherwise, with Lemma 5.18, Case (ii), we obtain that the constant part J ′

c of J ′ is:

J ′
c = AlignT

(
Ican \ DjnAts[K,N ],N )

.

Due to Lemma 5.18, Case (i), we have that the constant part of J is Jc = AlignT (I \ DjnAts[K,N ],N ). Now recall
that by the definition of canonical models, Ican ↪→ I holds and this implies that AlignT (Ican \ DjnAts[K,N ],N ) ↪→
AlignT (I \ DjnAts[K,N ],N ) holds as well. I.e., there is a homomorphism hc from J ′

c to Jc .
• We prove Condition (b) using Lemma 5.20. Observe that by the definition of the BP procedure the variable part J ′

v =
J [DJ ,RJ ,BJ ]v of J ′ is the following:

J ′
v =

⋃
D(c)∈DJ

{
R D(c)(x′, c

)
, AD(c)(x′) ∣∣ x′ is fresh

}
(19)

∪
⋃

D(c)∈DjnAts[K,N ]\DJ

({
D(c)

} ∪ {
A(c)

∣∣ K |
 A(c), A(c) /∈ DJ , A(c) ∈ AtAlg(E), T |
 A � D
})

, (20)

where “x′ is fresh” means that it is in � \ adom(K), distinct for each set {R D(c)(x′, c), AD(c)(x′)} defined by D(c), and
does not appear in J ′

c . Also observe that if D = ∅, then J [DJ ,RJ ,BJ ] is the zero prototype J0.
It remains to show that there is a homomorphism from J ′

v to Jv . Consider a mapping hv such that it is the identity
mapping on every element of J ′

v , but x′ (see Eq. (19)), and hv(x′) = x, where x is from Eq. (17) of Lemma 5.20, for every
such x′ . To see that hv is a homomorphism, observe how it works on every atom that occurs in Eqs. (19) and (20):
(i) on atoms from Eq. (19):

R D(c)(hv
(
x′),hv(c)

) = R D(c)(x, c) and AD(c)(hv
(
x′)) = AD(c)(x),

where R D(c)(x, c) ∈Jv and AD(c)(x) ∈Jv hold due to Lemma 5.20, Case (i);
(ii) on atoms from Eq. (20):

D
(
hv(c)

) = D(c) and A
(
hv(c)

) = A(c),

where A(c) ∈ Jv holds since A(c) satisfies the conditions of Lemma 5.20, Case (ii), and D(c) ∈ Jv holds since
D(c) ∈ DjnAts \DJ and consequently D(c) ∈J .

Now we consider the following mapping from J ′ to J , which we prove to be a homomorphism:

h(x) =
{

hc(x) if x appear in J ′
c ,

hv(x) otherwise.

The correctness of this definition of h follows from the following observation. Note that, by the construction of J ′ by the
BP procedure, the elements appearing in J ′ are either constants (i.e., from adom(E)) or “fresh” elements. The fact that
hc(a) = hv(a) for a being a constant guarantees the correctness of homomorphic embedding of atoms containing constants,
no matter whether an atom with this constant is in J ′

c or J ′
v ; the fact that “fresh” elements appear only in J ′

v again
guarantees that this part will be homomorphically embedded into J by h correctly, since hv does so. The elements of �

which are neither constants nor “fresh” will be homomorphically embedded into J by h as well, since hc does so. �
As a corollary from the theorem, note that a prototypal set always exists for every simple DL-Litecore-evolution setting.
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Extension of BP to DL-Litecore KBs without restrictions. The results of Theorem 5.21 can be extended to the general case when
the DL-Litecore-evolution setting is not simple. Observe that in the general case the BP procedure does return prototypes
but not all of them. Weakening the restrictions in Cases (i) and (iii) in the definition of simple evolution settings (i.e.,
allowing entailments from K of the form ∃R � A and T -entailments from N of the form ∃R(a)) results in more than one
zero prototype. Weakening the restrictions in Case (ii) (i.e., allowing entailment from K of direct role interactions of the
form ∃R � ∃R ′ and ∃R � ¬∃R ′) leads to the need to iterate BP over constructed prototypes. More precisely, to gain the
missing prototypes in this case one should run BP several times (finitely many times) iterating over (already constructed)
prototypes until no new prototypes can be constructed. Intuitively, the reason is that BP deletes disjoint atoms (atoms of
DjnAts) and adds new atoms of the form R(a,b) for some triggered dually-affected role R , which may in turn trigger another
dually-affected role, say P , and such triggering may require further modifications, already for P . These further modifications
require a new run of BP. For example, if we have ∃R− � ¬∃P− in the TBox and we set R(a,b) in a prototype, say Jk , this
modification triggers role P and we should run BP again with the prototype Jk as if it were the zero prototype. We will
not discuss the general procedures in more detail due to space limitations.

Summary of Section 5. We discussed why K �S N with S = La⊆ in general cannot be axiomatized in DL-Litecore , introduced
prototypal sets, and a procedure that constructs these sets with exponentially many prototypes for simple DL-Litecore-
evolution settings.

6. Approximating La⊆-evolution

Capturing La⊆-evolution in richer logics. We start with a discussion on how to capture La⊆-evolution of DL-Litecore KBs in logics
richer than DL-Litecore . As we saw in the previous section, for every DL-Litecore-evolution setting (K,N ), the evolution result
K�S N with S = La⊆ is a finite union of sets of models, K�S N = ⋃

i Mi , where each Mi contains a prototype Ji . Thus, for
S = La⊆ axiomatization of K �S N boils down to axiomatization of each Mi with some theory Thi , that is, Mi = Mod(Thi),
and taking the disjunction across these theories. As shown in [18], each Thi can be computed based on a prototype of
Mi using a DL-Litecore KB Ki[Ji] (whose canonical model is precisely Ji ) and a compensation formula Ψ , which is not
expressible in DL-Litecore , as Thi ≡ Ki[Ji] ∧ Ψ . The compensation formula Ψ cuts off the models which are not in K �S N ,
but cannot be filtered out by a DL-Litecore KB, e.g., models not satisfying local functionality. It turned out [18] that Ψ is the
same for each Thi , hence

K �S N = Mod

(
Ψ ∧

n∨
i=1

K[Ji]
)

.

Moreover, ThK�SN = Ψ ∧ ∨n
i=1 K[Ji] can be expressed in FO[2], the fragment of first-order logic that restricts formulas to

have at most two variables, and even in SHOIQ [2], the DL underlying the Web Ontology Language OWL 2.
To the best of our knowledge, it is unknown how to do La⊆-evolution of SHOIQ KBs: if for S = La⊆ one wants to apply

evolution to the evolution setting (ThK�SN ,N1), where N1 is some new knowledge, then it is still unclear which logic is
needed to capture the evolution result and how to compute it. Moreover, we would like to stay within DL-Litecore , i.e., to
return a DL-Litecore KB as the evolution result. Therefore, we study now how for S = La⊆ we can approximate ThK�SN in
DL-Litecore .

Approximating evolution results. Since for S = La⊆ neither the disjunction of Ki[Ji] nor Ψ is expressible in DL-Litecore , one
way to approximate ThK�SN is to take one of Ki[Ji]. Unfortunately, such an approximation is not sound, that is, for each i
there are models of Ki[Ji] that are not in K �S N . What we propose next is a DL-Litecore-approximation that is sound and
keeps the certain knowledge of K �S N , that is, ABox assertions shared by all Ki[Ji].

We now formalize the notion of certain knowledge, which is the key component in our DL-Litecore-approximation of
La⊆-evolution.

Definition 6.1 (S-certain MA). Let S be an MBA, (K,N ) an evolution setting, and K′ an S-evolution for (K,N ). Then,
a membership assertion g (positive or negative) is S-certain for (K,N ) if K′ |
 g . �

Consider the algorithm ApproxAlg that computes all La⊆-certain membership assertions for a given DL-Litecore-evolution
setting E = (T ∪ A,N ). As we show later in this section, the KB T ∪ ApproxAlg(E) is a maximal sound DL-Litecore-
approximation of (T ∪ A) �S N with S = La⊆ . ApproxAlg uses the algorithm Weeding (which was introduced in [7]) as a
subroutine. Intuitively, Weeding works as follows: it takes as input a DL-Litecore KB T ∪ A and a set D of ABox assertions
to be deleted, and returns as output an ABox Aw such that Aw 
|
T D. It starts with Aw = clT (A) (Line 1), and then for
each MA B1(c) in A, the algorithm deletes B1(c) and all the assertions of clT (A) that T -entail B1(c) (Lines 2–10). Coming
back to ApproxAlg, intuitively it works as follows: it takes as input a simple DL-Litecore-evolution setting E = (T ∪ A,N )

and returns a DL-Litecore ABox Aapp such that T ∪ Aapp is a minimal sound approximation of K �S N . First, it computes
AtAlg(E) (Line 1) in order to get rid of the assertions that T -contradict N . Second, it computes the positive MAs of AtAlg(E)

(Lines 2–7) and negative MAs of AtAlg(E) (Lines 8–10) that are not certain. Finally, it deletes the uncertain MAs from
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Algorithm 6.1: Weeding(T ,A,D).

INPUT : TBox T , and ABoxes A, D, each satisfiable with T
OUTPUT: finite set Aw of membership assertions

1 Aw := clT (A);
2 for each B1(c) ∈ D do
3 Aw := Aw \ {B1(c)} and;
4 for each B2 � B1 ∈ cl(T ) do
5 Aw := Aw \ {B2(c)};
6 if B2(c) = ∃R(c) then
7 for each R(c,d) ∈ Aw do D := D ∪ {R(c,d)}
8 end
9 end

10 end
11 return Aw .

Algorithm 6.2: ApproxAlg(E).

INPUT : DL-Litecore-evolution setting E = (T ∪A,N )

OUTPUT: ABox Aapp

1 Aapp := AtAlg(E); X := ∅;
2 for each R ∈ TR[T ,N ] and for each a ∈ adom(T ∪A∪N ) do
3 if there is no R(a,b) ∈ Aapp ∪N for some b ∈ adom(T ∪A∪N ) then
4 X := X ∪ {∃R(a)};
5 end
6 end
7 for each A(c) ∈ DjnAts[T ∪A,N ] do X := X ∪ {A(c)};
8 for each R ∈ TR[T ,N ] do
9 for each A(c) ∈ DjnAts[T ∪A,N ](R) do Aapp := Aapp \ {¬∃R−(c)};

10 end
11 Aapp := N ∪ Weeding(T ,Aapp, X);
12 return Aapp .

AtAlg(E) by means of the Weeding algorithm and adds N to the result (Line 11). The following example illustrates how the
algorithm works.

Example 6.2. Continuing with Example 5.1, we compute the approximation of K2 �S N2 with S = La⊆ . First, we compute the
necessary components clT (A2), AtAlg(K2,N2), and X : we start with X = ∅, and

clT (A2) = A2 ∪ {¬Priest(john),¬∃HasHusb−(pedro),¬∃HasHusb−(ivan)
}
,

AtAlg(K2,N2) = {
Priest(pedro),Priest(ivan),¬∃HasHusb−(pedro),¬∃HasHusb−(ivan)

}
.

Second, we re-compute X as in Lines 2–6: X := X ∪ ∅. Third, we re-compute X as in Line 7: X := X ∪ {Priest(pedro),

Priest(ivan)}. Then, we delete from Aapp the MAs ¬∃HasHusb(pedro) and ¬∃HasHusb(ivan) as in Lines 8–10; one can
check that these MAs are not certain; indeed, it holds that J1 
|
 ¬∃HasHusb(pedro) and J2 
|
 ¬∃HasHusb(ivan). Finally,
Weeding(T ,Aapp, X) returns ∅. Therefore, Aapp =N = {Priest(john)}.

To sum up, as soon as husband john, who is married to some unknown individual, decides to become a priest, the
algorithm that computes maximal sound approximation forces us to delete all the priests and all the wives from the old
knowledge. The reason is that we do not know who of the wives from the old knowledge were married to john and who
are their new husbands: either some of the former priest, or even no one. To account for this uncertainty, the atoms about
wives and priests should be erased from the old KB. Thus, the minimal sound approximation Kapp may erase a lot of old
knowledge and the approximation result may be quite unexpected from the user’s point of view. �

Before proceeding to the formal proof of the algorithm’s correctness, consider the following two lemmas. They char-
acterize positive and negative La⊆-certain membership assertions. The first lemma shows that positive La⊆-certain MAs are
characterized by prototypes of K �S N with S = La⊆ .

Lemma 6.3. Let (K,N ) be a simple DL-Litecore-evolution setting, g a positive membership assertion, andJ a prototypal set for K�S N
with S = La⊆ . Then, g is La⊆-certain for (K,N ) if and only if J |
 g for every J ∈ J.

Proof. Let S = La⊆ , let K′ be an S-evolution for (K,N ), and J a prototypal set for K �S N . The “only-if” direction is
trivial. Indeed, if a positive MA g is La⊆-certain for (K,N ), then K′ |
 g and consequently, by the definition of S-evolution,
K �S N |
 g . To conclude the proof, it suffices to observe that J⊆K �S N .



862 E. Kharlamov et al. / Journal of Computer and System Sciences 79 (2013) 835–872
We now show the “if” direction. Suppose that g is a positive MA such that J |
 g for every J ∈ J. Let J0 be a model
in K �S N . Consider a prototype J ′

0 in J for which there exists a homomorphism h such that h : J ′
0 ↪→ J0. Since J ′

0 |
 g ,
we have three possibilities:

(i) If g is of the form A(b) and b ∈ adom(K ∪N ), then A(b) ∈J ′
0 and hence A(h(b)) = A(b) ∈J0.

(ii) If g is of the form R(b, c) and b, c ∈ adom(K ∪N ), then, analogously to the previous case, R(b, c) ∈J0.
(iii) If g is of the form ∃R(b) and b ∈ adom(K ∪ N ), then there exists an element α ∈ � such that R(b,α) ∈ J ′

0, and
therefore R(h(b),h(α)) = R(b,h(α)) ∈J0.

In all the cases, we have that J0 |
 g , which concludes the proof. �
The next lemma (which proof can be found in Appendix H) shows that negative La⊆-certain MAs for (K,N ) are charac-

terized by the elements of clT (N ) or AtAlg(K,N ).

Lemma 6.4. Let (K,N ), where K = T ∪A, be a simple DL-Litecore-evolution setting, and g a negative membership assertion. Then g
is La⊆-certain for (N ,K) if and only if

g ∈ clT (N ) ∪
(

AtAlg(K,N ) \
⋃

R∈TR

⋃
A(c)∈DjnAts[K,N ](R)

{¬∃R−(c)
})

.

Based on the preceding lemmas, we conclude with the main result of this section:

Theorem 6.5. Let E = (K,N ), where K = T ∪A, be a simple DL-Litecore-evolution setting and let Aapp = ApproxAlg(E). Then,

(i) g is La⊆-certain for E if and only if g ∈Aapp , and
(ii) Kapp = T ∪Aapp is a maximal sound DL-Litecore-approximation of K �S N with S = La⊆ .

Moreover, ApproxAlg(E) can be computed in time polynomial in |E |.

Proof (Sketch). The proof follows from Lemma 6.4, and Lemma 6.3 coupled with the correctness of the BP procedure. More
precisely, polynomiality follows from polynomiality of the AtAlg and Weeding algorithms and polynomiality of computing
TR[T ,N ] and DjnAts[K,N ].

Case (i): Suppose that an MA g is certain. Consider the following two cases.

• Assume that g is positive. Then, by Lemma 6.3, for every J ∈ BP(E) it holds that J |
 g . By the definition of the BP
and BZP procedures, the prototypes from BZP(E) differ only on: (a) atoms over roles from TR[T ,N ]; (b) MAs from
DjnAts[K,N ] and; (c) atoms which are in rootT of the ones in Items (a) and (b). Atoms described in Items (a)–(c) are
uncertain by their definition. Note, that the algorithm ApproxAlg adds the atoms of Items (a)–(c) to X and then deletes
them at Line 11 by means of the Weeding algorithm.

• Assume that g is negative. Then, by Lemma 6.4, it belongs to clT (N ) or AtAlg(K,N ) \ Z , where Z =⋃
R∈TR

⋃
A(c)∈DjnAts[K,N ](R){¬∃R−(c)}. In the former case, it holds that Aapp |
T g since N ⊆Aapp . In the latter case, it

again holds that Aapp |
T g since the algorithm deletes negative MAs from AtAlg(K,N ) only in Line 9, and those MAs
are from Z .

Case (ii): Suppose that T ∪Aapp is not a maximal sound approximation, that is, there is an MA g′ such that T ∪Aapp ∪
{g′} is a sound approximation. Note that g′ is not certain since T ∪Aapp entails all the certain MAs. Thus, by Definition 6.1,
there is a model J ′ ∈K �S N such that J ′ 
|
 g′ . Clearly, J ′ /∈ Mod(T ∪Aapp ∪ {g′}), that is, T ∪Aapp ∪ {g′} is not a sound
approximation. The obtained contradiction concludes the proof. �

As a corollary of the theorem above, consider the case of a simple evolution setting E = (K,N ) such that K is a
DL-Litepr KB. Then, observe that in this case both TR[T ,N ] and DjnAts[K,N ] are empty sets, and therefore the algorithm
ApproxAlg(E) runs only Lines 1 and 12. That is, in this case ApproxAlg(E) = AtAlg(E). This is quite expected since, as shown
in Section 3.1, La⊆-semantics is expressible in DL-Litepr and a maximal sound approximation should be logically equivalent
to the exact evolution result.

Summary of Section 6. For DL-Litecore-evolution settings, La⊆-evolution can be efficiently DL-Litecore-approximated and we
presented an algorithm ApproxAlg which can be used to compute these approximations.
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7. Practical considerations and conclusion

We summarize here how one can use the results of this paper to do ABox evolution of DL-Litecore KBs in practice. Given
a DL-Litecore-evolution setting (K,N ), one can first check (in polynomial time) whether K is in DL-Litepr . If this is the case,
then one can compute in polynomial time S-evolution for E , where S is any of atom-based semantics Ga⊆ , La⊆ , Ga

#, and La
#, or

global symbol-based semantics Gs⊆ and Gs
#, using the techniques of Theorem 3.10 or 3.15, respectively. One can also compute

a maximal sound DL-Litepr-approximation of S-evolution under the remaining two local symbol-based semantics Ls⊆ and Ls
#

using the techniques of Theorem 3.18. The choice of evolution semantics for DL-Litepr is up to the user, although we believe
that atom-based semantics behave more intuitively. For the case when K is not in DL-Litepr , the set of evolved models
K �S N is in general not axiomatizable in DL-Litecore for S being any of the eight MBAs [7,17]. At the same time, if S = La⊆ ,
then one can compute in polynomial time a maximal sound DL-Litecore-approximation of K �S N using the techniques of
Theorem 6.5.

We studied model-based approaches to ABox evolution (update and revision) over DL-Litecore and its fragment DL-Litepr ,
which extends (the first-order fragment of) RDFS. DL-Litepr is closed under most of the MBAs, while DL-Litecore is not closed
under any of them. We showed that if the TBox of K entails a pair of assertions of the form A1 � ∃R and ∃R− � ¬A2, then
an interplay of N and A may lead to inexpressibility of K �S N with S = La⊆ . For DL-Litepr we provided the algorithms to
compute evolution results for six model-based approaches and approximate evolution for the remaining two. For DL-Litecore

(under some restrictions) we studied the properties of evolution under the local model-based approach La⊆ . In particular,
we introduced the notion of prototypal sets that extends the notion of canonical models. We proved that prototypal sets
for K �S N with S = La⊆ exist, and that they are of exponential size in |K ∪ N |, and showed an abstract procedure that
constructs them. Based on the insights gained, we proposed a polynomial-time algorithm to compute a maximal sound
DL-Litecore-approximation of K �S N with S = La⊆ . We also believe that prototypes are important since they can be used to
study evolution for ontology languages other than DL-Litecore . In general, we provided some understanding on why DL-Lite is
not closed under MBAs to evolution, and what are the properties of sets of models K�S N with S = La⊆ . This understanding
is a prerequisite to proceed with the study of evolution in more expressive DLs and to understand what to expect from
MBAs in such logics.

Future directions for work include also to study complete approximations of La⊆-evolution for DL-Litecore-evolution set-
tings and to gain a good understudying of how results on F -universal model sets from [29] and universal bases from [30]
are related to our results on prototypal sets.

Appendix A. Proofs for Section 3.1

In this and the following appendix we will need the following property of DL-Litecore .

Proposition A.1. Let T ∪A be a satisfiable DL-Litecore KB and L be a membership assertion. If A |
T L, then there exists a membership
assertion L0 ∈A such that L0 |
T L.

Proof. Assume that L is a positive assertion, i.e., of the form P (a,b), A(c), or ∃R(c). Since chaseT (A) is a model of
T ∪A [9], the entailment A |
T L implies that chaseT (A) models L. Suppose that L ∈A, then, by taking L0 = L, the lemma
trivially holds. Suppose that L /∈A, then we have that either L ∈ chaseT (A) with a,b, c ∈ adom(K), when L ∈ {P (a,b), A(c)},
or R(c, x) ∈ chaseT (A) with c ∈ adom(K) and x /∈ adom(A), when L = ∃R(c). By the definition of chase, for every atom
in chaseT (A), there is a sequence of atoms f1, . . . , fn , where (i) fn = L or fn = R(c, x), depending on the shape of L;
(ii) f1 ∈ A, or ∃R ′(c′) ∈ A and f1 = R ′(c′, x′), where x′ /∈ adom(A); (iii) each f i+1 is derivable from f i by triggering a pos-
itive inclusion assertion of T , that is, f i |
T f i+1. Due to transitivity of |
T , due to f1 |
T fn , and by taking L0 = f1 or
L0 = ∃R ′(c′) depending on the shape of f1, we obtain L0 |
T L and conclude the proof.

Assume that L is a negative inclusion assertion of the form ¬A(c). If L ∈ A, then, by taking L0 = L, we conclude the
proof. Assume that L /∈A. Assume that

for every assertion L′ ∈ A it holds L′ 
|
T L. (A.1)

Let L1, . . . , Ln be all the PIs of A. Consider the interpretation:

I =
n⋃

i=1

chaseT (Li) ∪ chaseT
(

A(c)
)
.

Clearly, I 
|
 L. We now show that I |
 A ∪ T , so we will obtain a contradiction with A |
T L. Observe that I is a model
of A. Indeed, it models all the positive MAs of A by construction. Each chaseT (Li) (and consequently their union) satisfies
all negative MAs of A. Assume there is i for which chaseT (Li) does not satisfy a negative MA ¬g of A. Thus, {Li,¬g} |
T ⊥
which contradicts satisfiability of T ∪ A. Finally, chaseT (A(c)) satisfies all negative MAs of A. Assume it is not the case,
and there is a negative MA ¬g ∈ A such that chaseT (A(c)) |
 g . Then, A(c) |
T g , and ¬g |
T ¬A(c), thus we found an
assertion in A that T -entails L, which contradicts Eq. (A.1). Clearly, I models all the PIs of T . It remains to show that
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I models each NI of T . Assume there is an NI α such that I 
|
 α. Then, there are two atoms f and f ′ in I such that
f → ¬ f ′ is an instantiation of the first-order interpretation of α. This implies that { f ,α} |
 ¬ f ′ . Clearly, ABoxes {Li} for
1 � i � n and {A(c)} satisfy α, so does chaseT (Li) for 1 � i � n and chaseT (A(c)) due to Lemma 12 of [9]. This implies
that { f , f ′}� chaseT (Li) for each 1 � i � n and { f , f ′} � chaseT (A(c)). Thus, two cases are possible:

(i) f ∈ chaseT (Li) for some i ∈ {1, . . . ,n} and f ′ ∈ chaseT (A(c)) (the case when f ′ ∈ chaseT (L) and f ∈ chaseT (A(c)) is
symmetric),

(ii) f ∈ chaseT (Li) and f ′ ∈ chaseT (L j) for some different i, j ∈ {1, . . . ,n}.

In Case (i), f ′ ∈ chaseT (A(c)) implies that ¬ f ′ |
T ¬A(c). Combining the latter entailment with { f ,α} |
 ¬ f ′ we obtain
f |
T ¬A(c). Since Li |
T f , we conclude that Li |
T ¬A(c) which contradicts the assumption in Eq. (A.1) and concludes
the proof. In Case (ii), analogously to Case (i), we conclude that Li |
T ¬L j , thus A does not satisfy α which yields a
contradiction with satisfiability of T ∪A.

The case when L = ¬∃R(c) is analogous to the previous one. �
Proof of Proposition 3.2. It follows from the definition of AtAlg and the facts that in DL-Litepr disjointnesses that involve
roles or their projections are forbidden and N contains only positive membership assertions. Indeed, let A |
T R(a,b)

and AtAlg(K,N ) ∪ N 
|
T R(a,b). Then, {R(a,b)} ∪ N |
T ⊥ (see Algorithm 3.1). Thus, there are membership assertions
L1 and L2, and an NI α ∈ cl(T ) such that {R(a,b)} ∪ N |
T {L1, L2} and α |
 L1 → ¬L2. Note that L1 → ¬L2 should be
seen as a first-order formula with two subformulas L1 and L2, both without free variables. The semantics of this formula is
defined straightforwardly: I |
 L1 → ¬L2 if I |
 L1 and I 
|
 L2 for every interpretation I . Due to Proposition A.1, one of the
following two cases holds: R(a,b) |
T L1 or R(a,b) |
T L2. Consider the first case (the second one is symmetric). Combining
R(a,b) |
T L1 and α |
 L1 → ¬L2 we obtain that α |
 R(a,b) → ¬L2. Thus, α is of the form ∃R � ¬B or ∃R− � ¬B for
some basic concept B . Either case contradicts the fact that (T ∪A) is a DL-Litepr KB. Similarly, the case when A |
T ∃R(a)

can be proved. �
Proof of Proposition 3.3. ⇐. Assume that for every f1 ∈ I1 and f2 ∈ I2 it holds that { f1, f2} 
|
T ⊥, but I1 ∪I2 
|
 T . Then,
there is an assertion α ∈ cl(T ) such that I1 ∪ I2 
|
 α.

Suppose α is a PI, then there is a ground atom g1 in I1 ∪ I2 satisfying the property: for every ground atom g2 such
that g1 → g2 is an instantiation of the first-order translation of α, it holds that g2 /∈ I1 ∪ I2. The fact that g1 ∈ I1 ∪ I2
implies that one of the two cases holds: (i) g1 ∈ I1 or (ii) g1 ∈ I2. From Case (i) together with g2 /∈ I1 ∪ I2, we conclude
that I1 
|
 α, and from Case (ii) together with g2 /∈ I1 ∪ I2, we conclude that I2 
|
 α. Either case contradicts the fact that
I1 and I2 are models of T .

Suppose α is an NI, then, due to Lemma 12 (more precisely, its straightforward extended to the case when A is a
possibly infinite set of atoms) of [7], there are two atoms f1 and f2 in I1 ∪ I2 such that { f1, f2} |
T ⊥. Since I1 |
 α and
I2 |
 α, neither { f1, f2} ⊆ I1 nor { f1, f2} ⊆ I2 holds. Thus, either of the two cases holds: f1 ∈ I1 and f2 ∈ I2, or f2 ∈ I1
and f1 ∈ I2. Either case contradicts the assumption of the “if” direction.

⇒. Assume that there are f1 ∈ I1 and f2 ∈ I2 such that { f1, f2} |
T ⊥. Then, I1 ∪ I2 
|
 T , which contradicts the
assumption of the “only if” direction. �
Proof of Proposition 3.6. Assume that there is a general MA g such that I \ rootT (g) 
|
 T . Then, there is an assertion
α ∈ cl(T ) s.t.

I \ rootT (g) 
|
 α. (A.2)

Assume that α is an NI. Clearly, if a set of atoms satisfies a negative inclusion assertion, then any subset of this set of
atoms does so. This implies that, since I |
 α and I \ rootT (g) ⊆ I , I \ rootT (g) |
 α, which contradicts the assumption in
Eq. (A.2).

Assume that g is a positive MA and α is a PI. Then, Eq. (A.2) implies that there is a ground atom f1 in I \ rootT (g)

satisfying the property: for every ground atom f2 such that f1 → f2 is an instantiation of the first-order translation of α,
f2 /∈ I \ rootT (g). Observe that f1 ∈ I and I |
 α, thus at least one such f2, say f̂2, is in I . Since f̂2 /∈ I \ rootT (g), we have
that f̂2 ∈ rootT (g). Therefore, by the definition of rootT (g), f1 ∈ rootT (g) and f1 /∈ I \ rootT (g), which contradicts the fact
that f1 ∈ I \ rootT (g) and concludes the proof.

Assume that g is a negative MA and α is a PI. Let α be B � B ′ . By exactly the same reason as the case of positive g , there
are the atoms f1 and f̂2 such that f1 → f̂2 instantiate B � B ′ . Since f̂2 ∈ rootT (g), there is an NI of the form B ′ � ¬B ′′ such
that T |
 B ′ � ¬B ′′ and f̂2 → g is its instantiation. From T |
 B ′ � ¬B ′′ and T |
 B � B ′ , we conclude that T |
 B � ¬B ′′
and therefore f1 ∈ rootT (g) which contradicts the fact that f1 ∈ I \ rootT (g) and concludes the proof. �
Proof of Lemma 3.8. In the proof of the lemma in the paper, due to the space limitation, we shortened the proof of the fact
that J ∈ loc_mina⊆(I,T ,N ). The full proof of the fact can be found below.
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J ∈ loc_mina⊆(I,T ,N ): By the definition of La⊆-evolution, we need to show that there is no J ′ |
 T ∪ N such that
I � J ′ � I � J . Assume there exists such J ′ . Thus, there is an atom f such that f /∈ I � J ′ while f ∈ I � J . By the
definition of I , interpretations I and J differ only on atoms of the form A(c); hence, f is of the form A(c) (it cannot be
of the form R(a,b)). We have two cases:

(i) A(c) ∈ I , A(c) /∈ J , and A(c) ∈ J ′: By construction of I , A(c) ∈ uclT (A), while A(c) /∈ J implies A(c) /∈ A′ . Thus,
{A(c)} ∪N |
T ⊥. On the other hand, A(c) ∈J ′ and J ′ |
N imply that {A(c)} ∪N 
|
 ⊥, which yields a contradiction.

(ii) A(c) /∈ I , A(c) ∈ J , and A(c) /∈ J ′: From A(c) /∈ J ′ and J ′ |
 N we imply that N 
|
 A(c). By the definition of I , the
assumptions A(c) /∈ I and A(c) ∈J imply that {A(c)}∪A |
T ⊥, and therefore ¬A(c) ∈ clT (A). By the definition of J ,
the assumption A(c) ∈ J implies ¬A(c) /∈ AtAlg(K,N ). From ¬A(c) ∈ clT (A) and ¬A(c) /∈ AtAlg(K,N ) we conclude
that {¬A(c)} ∪N |
T ⊥, and, therefore, N |
 A(c) holds, which yields a contradiction.

Thus, J ∈ loc_mina⊆(I,T ,N ) and we conclude the proof. �
Appendix B. Proofs for Section 3.2

Proof of Proposition 3.14. Due to Proposition 3.3, it suffices to show that for every f1 ∈ (I \ rootT (¬A(c))) and f2 ∈J [A(c)]
we have { f1, f2} 
|
T ⊥. Assume this is not the case, that is, there is f1 ∈ (I \ rootT (¬A(c))) and f2 ∈ J [A(c)] such that
{ f1, f2} |
T ⊥. We now show that{

f1, A(c)
} |
T ⊥. (B.1)

From { f1, f2} |
T ⊥ it clearly follows that there is an NI of the form A1 � ¬A2 such that T |
 A1 � ¬A2, and there are
atoms A1(d) ∈ (I \ rootT (¬A(c)))[ f1] and A2(d) ∈ J [A(c)]. From A2(d) ∈ J [A(c)] we conclude that d = c. Indeed, from
A2(d) ∈ J [A(c)] we conclude that there is a sequence of atoms f1, . . . , fn , where (i) f1 = A(c); (ii) fn = A2(d), (iii) each
f i+1 is derivable from f i by triggering a positive inclusion assertion αi of cl(T ). If c 
= d, then there is a role symbol
occurring in at least one αi . Indeed, if each αi has no role symbol, then due to transitivity of |
T , we have f1 |
T fn and
therefore c = d. Let R be a role symbol occurring in α j with the highest index, that is, j = n, or j < n and for each αi where
j < i < n there is no role symbol occurring in αi . Then, α j is of the form ∃R � A′ . Thus, T |
 ∃R � A2. Combining this with
T |
 A1 � ¬A2, we obtain that T |
T ∃R � ¬A1, which contradicts the fact that T is in DL-Litepr . Thus, there is no role
symbol in each αt , where 1 � t � n. Therefore, c = d and A(c) |
T A2(c).

Analogously, one can show that A1(c) ∈ (I \ rootT (¬A(c)))[ f1] implies that f1 |
T A1(c). To sum up, we proved that

f1 |
T A1(c), A(c) |
T A2(c), A1(c) |
{A1�¬A2} ¬A2(c),

thus Eq. (B.1) holds.
Since for every f2 ∈ J [A(c)] it holds that A(c) |
T f2, we have { f1, A(c)} |
T ⊥. Thus, { f1, A(c)} |
T ¬A(c). There

are only two literals in { f1, A(c)} and A(c) 
|
T ¬A(c). Thus, due to Proposition A.1, we conclude that f1 |
T ¬A(c). This
contradicts the assumption that f1 ∈ (I \ rootT (¬A(c))) and concludes the proof. �
Proof of Theorem 3.15. In the proof of the theorem in the body of the paper, due to the space limitations, we shortened
the proof of the fact that Mod(K′) ⊆M. The full proof of this fact is given below.

Mod(K′) ⊆ M: Let J0 ∈ Mod(K′) = Mod(T ∪ A′) where A′ = GSymbAlg(E), and assume J0 /∈ M, that is: (i) J0 /∈
Mod(T ∪ N ), or (ii) for every I |
 K there is a pair of models I ′ |
 K and J ′ |
 T ∪ N s.t. dists⊆(I ′,J ′) � dists⊆(I,J0).
Case (i) is impossible since N ⊆A′ . If Case (ii) holds, then consider a model I0 as in Eq. (2). By Lemma 3.8 we have I0 |
K.
By our assumption, dists⊆(I ′,J ′) � dists⊆(I0,J0) holds for some I ′ and J ′ . Due to Proposition 3.2, I0 and J0 coincide on

how they interpret roles. Thus, there is a concept A such that AI ′ = AJ ′
while AI0 
= AJ0 , and consequently there is an

atom A(c) ∈ I0 � J0. Note that, by the construction of I0, it holds that A(c) ∈ uclT (A) or A(c) ∈ confT (J0,A). We have
two cases:

(i) A(c) ∈ I0 \J0: From A(c) ∈ I0 we conclude that A(c) ∈ uclT (A) ⊆ clT (A). From A(c) /∈ J0 and J0 |
 K′ , we conclude
that A(c) /∈ X (see Line 6 in Algorithm 3.2). From these two statements, A(c) ∈ clT (A) and A(c) /∈ X , we imply that
for some constant b ∈ adom(T ∪ A) (including c) one of the two cases holds: ¬A(b) ∈ clT (N ) and A(b) ∈ clT (A), or
A(b) ∈ clT (N ) and ¬A(b) ∈ clT (A). Either case together with J ′ |
 clT (N ) and I ′ |
 clT (A) implies AI ′ 
= AJ ′

and
yields a contradiction with AI ′ = AJ ′

.
(ii) A(c) ∈J0 \I0: In this case A(c) ∈ confT (J0,A) (see Eq. (2)) which means that {A(c)}∪clT (A) |
T ⊥ and consequently

¬A(c) ∈ clT (A). From J0 |
 A(c) we conclude that ¬A(c) /∈ X . Finally, from the two statements ¬A(c) ∈ clT (A) and
¬A(c) /∈ X we conclude that AI ′ 
= AJ ′

using the same argument as for A(c) ∈ clT (A) and A(c) /∈ X of Case (i) above.

Thus, J0 ∈M, which concludes the proof. �
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Appendix C. Proofs for Section 3.3

Proof of Theorem 3.16. Let S = Ls⊆ . Consider the KB K = T ∪A, where: T = {A � B}, A= {B(c)}, and N = {B(d)}. It can be
shown that (i) every J |
 K �S N satisfies A(d) → B(c), and (ii) there are models J0,J1 ∈ K �S N such that J1 
|
 ¬A(c)
and J2 
|
 B(c). Due to Lemma 1 in [7], if these two conditions hold, then K �S N is inexpressible in DL-Lite, and hence in
DL-Litepr .

To see that Condition (i) holds, assume there is a model J ∈ K � N such that J 
|
 A(d) → B(c), i.e., A(d) ∈ J but
B(c) /∈ J . By the definition of Ls⊆ , there is I |
 K such that: for every J ′ |
 T ∪ N it does not hold that dists⊆(I,J ′) �
dists⊆(I,J ). Since I |
K and B(c) ∈ I we have that B ∈ dists⊆(I,J ). There are two cases:

• If A(d) ∈ I , then also B(d) ∈ I; thus, I |
 T ∪N and, by taking J ′ = I , one obtains dists⊆(I,J ′) � dists⊆(I,J ) which
yields a contradiction.

• If A(d) /∈ I , then {A, B} ∈ dists⊆(I,J ). Now consider an interpretation J ′ = I ∪ {B(d)}, which is clearly a model of
T ∪N . If B(d) ∈ I then dists⊆(I,J ′) = ∅, otherwise dists⊆(I,J ′) = {B}. In either case dists⊆(I,J ′) � dists⊆(I,J ), which
yields a contradiction.

Thus, every J ∈K �N satisfies A(d) → B(c).
To see that Condition (ii) holds, consider the following interpretations J1 and J2:

J1 = {
A(d), B(d), B(c)

}
, J2 = {

B(d)
}
.

It is easy to see that (a) Ji ∈ Mod(T ∪ N ) for i = 1,2, (b) J1 
|
 ¬A(d), and (c) J2 
|
 B(c). It remains to show that Ji ∈
K �S N , so the conditions of Lemma 1 in [7] will be satisfied, and inexpressibility of Ls⊆ in DL-Litepr will be proved. Let us
show this.

• J1 ∈ K �S N : Note that J1 ∈ Mod(T ∪ A), so we conclude that dists⊆(J1,J1) = ∅. Thus, J1 ∈ loc_mins⊆(J1,T ,N ) and
therefore J1 ∈K �S N .

• J2 ∈ K �S N : Consider an interpretation I2 = {B(c)}, which is clearly a model of T ∪A. Note that dists⊆(I2,J2) = {B}.
Then, for every model J ∈ Mod(T ∪ N ), it holds that {B} ⊆ dists⊆(I2,J ) since I2 
|
 B(d) and J |
 B(d). Thus, we
conclude that it does not hold dists⊆(I2,J ) � dists⊆(I2,J2), that is, J2 ∈ loc_mins⊆(I2,T ,N ) and therefore J2 ∈K �S N .

Thus, Conditions (i) and (ii) hold and we conclude the proof. �
Appendix D. Proofs for Section 4.1

Proof of Theorem 4.2. It remains to show the case Gs
# �sem Gs⊆ . Consider M# = K �S1 N with S1 = Gs

#, which is based on
the distance dists#, and M⊆ = K �S2 N with S2 = Gs⊆ , which is based on dists⊆ , for an evolution setting (K,N ). We now
are interested in establishing whether M# ⊆ M⊆ holds. Assume J ′ ∈ M# and J ′ /∈ M⊆ . From the former assumption,
we conclude existence of a model I ′ such that for every pair of models I ∈ Mod(K) and J ∈ Mod(T ∪ N ), it does not
hold that dists#(I,J ) � dists#(I ′,J ′). From the latter assumption, J ′ /∈ M⊆ , we conclude existence of models I ′′ ∈ Mod(K)

and J ′′ ∈ Mod(T ∪ N ) such that dists⊆(I ′′,J ′′) � dists⊆(I ′,J ′). Since the signature of K ∪ N is finite, the distance dists⊆
between every two interpretations over this signature is also finite. Thus, we obtain that dists#(I ′′,J ′′) � dists#(I ′,J ′),
which contradicts the fact that J ′ ∈M# and concludes the proof. �
Proof of Proposition 4.3. Let S = La

#. Let g = R(a,b), then the case when g = ∃R(a) is analogous. Assume A |
T R(a,b),
while there is J0 ∈K �S N such that J0 
|
 R(a,b). Let I0 be a model of T ∪A such that J0 ∈ loc_mina

#(I0,T ,N ). We now
exhibit J ′

0 |
 T ∪N such that |I0 �J ′
0| < |I0 �J0|. Consider J ′

0 =J0 ∪ I0[R(a,b)]. Note that A |
T R(a,b) and therefore
the set I0[R(a,b)] is not empty.

Observe that J ′
0 |
 T ∪ N . Indeed, J ′

0 |
 N since N contains positive MAs only and J0 |
 N . J ′
0 models all PIs from

T since both J0 and I0[R(a,b)] do so. Assume there is an NI α ∈ cl(T ) of the form A1 � ¬A2, where A1 and A2 are
atomic, such that J ′

0 
|
 α.9 Thus, there is a pair of atoms {A1(c), A2(c)} ⊆ J ′
0. Observe that {A1(c), A2(c)} � I0[R(a,b)]

and {A1(c), A2(c)} � J0. Indeed, the ABox {R(a,b)} obviously satisfies α and, due to Lemma 12 of [9], so does the model
I0[R(a,b)], and therefore {A1(c), A2(c)} � I0[R(a,b)]. Since J0 |
 T , it holds that {A1(c), A2(c)} � J0. Therefore, one of
the two cases holds: A1(c) ∈ J0 and A2(c) ∈ I0[R(a,b)], or A2(c) ∈ J0 and A1(c) ∈ I0[R(a,b)]. Either case is possible
since neither J0 nor I0[R(a,b)] is empty. Consider the first case, the second case is symmetric. The membership A2(c) ∈
I0[R(a,b)] implies an existence of a sequence of atoms f1, . . . , fn in I0[R(a,b)] such that n � 2, f1 = R(a,b), fn = A2(c),
and for each 1 � i � (n − 1) there is a PI α1 ∈ cl(T ) such that f i → f i+1 is an instantiation of αi . We now show by
induction on n that cl(T ) contains an NI of the form ∃R ′ � ¬A′ for some role R ′ and atomic concept A′ , which will give

9 Note that T ∪A is a DL-Litepr KB and therefore all NIs in cl(T ) has only atomic concepts on the left and the right of �.
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a contradiction with the fact that T ∪A is a DL-Litepr KB. If n = 2, then α1 = ∃R � A2 or α1 = ∃R− � A2. The former case
combined with α gives that ∃R � ¬A1 ∈ cl(T ), and the latter one: ∃R− � ¬A1 ∈ cl(T ). Thus, we obtain a contradiction. If
n > 2, then consider αn−1. The shape if αn−1 is either A′ � A2 or ∃R ′ � A2. Combining the former case with α, we obtain
that A1 � ¬A′ and we conclude the proof by the induction assumption. Combining the later case with α we obtain that
∃R ′ � ¬A1, which gives a contradiction. We conclude that J ′

0 |
 T ∪N .
It remains to show that |I0 � J ′

0| < |I0 � J0|. By construction, I0 � J ′
0 � I0 � J0. Since T ∪ A is a DL-Litepr KB, in

particular, T 
|
 ∃R � ¬A for any role R , it holds that |I0 �J0| is finite. Thus, |I0 �J ′
0| < |I0 �J0|. �

Proposition D.1. Let (K,N ) with K = T ∪A be a DL-Litepr-evolution setting. Let J0 ∈K �S N with S = Ga
# , I0 ∈ Mod(K), and I0

is Ga
#-minimally distant from J0 . Then, |I0 �J0| is finite.

Proof. Let S = Ga
#. Suppose that |I0 � J0| is infinite. If there exist models I ′ ∈ Mod(K) and J ′ ∈ Mod(T ∪ N ) such that

|I ′ �J ′| is finite, this will contradict the fact that J0 ∈ K �S N since |I ′ �J ′| < |I0 �J0|. It is easy to see that these I ′
and J ′ always exist. Indeed, since DL-Litepr is a sub-language of DL-Litecore and DL-Litecore enjoys the final model property,
one can choose finite models I ′ and J ′ (for them I ′ �J ′ is clearly a finite set). Then, |I ′ �J ′| � |I ′ ∪J ′|, i.e., |I ′ �J ′|
is finite. �
Appendix E. Proofs for Section 5.1

Proof of Proposition 5.4. Recall that func(R, c) = ∀x∀y.(R(x, c) ∧ R(x, y) → y = c). The “⇐” direction is trivial.
Now we show the “⇒” direction. Assume there is a DL-Litecore KB K = T ∪A such that K |
 func(R, c), but K 
|
 ¬∃R−(c).

Let a and b be constants not occurring in K. Consider A′ = A ∪ {R(a, c), R(a,b)}. We now show that A′ satisfies all the
NIs of cl(T ). If this is the case, then, due to Lemma 12 of [9], this observation gives that T ∪ A′ is satisfiable. If in this
case we consider a model I of T ∪ A′ , then it holds that I |
 A since I |
 A′ and A ⊆ A′ , and therefore I |
 K while
I |
 {R(a, c), R(a,b)}, i.e., I does not satisfy func(R, c). This contradicts the fact that K |
 func(R, c).

So, it remains to show that A′ satisfies all the NIs of cl(T ). Assume there is an NI α ∈ cl(T ) such that A′ does not
satisfy α. Then, there are two MAs f and g in clT (A′) such that { f , g} |
{α} ⊥. Four cases are possible:

(i) { f , g} ⊆ {R(a, c), R(a,b)}. One possibility of { f , g} ⊆ {R(a, c), R(a,b)} is when f = R(a, c) and g = R(a,b). Then, α =
∃R � ¬∃R , which contradicts the coherency of K. The other possibility of { f , g} ⊆ {R(a, c), R(a,b)} is analogous.

(ii) f ∈ A and g ∈ {R(a, c), R(a,b)}. Let g = R(a,b). Let f ′ → ¬g instantiate α, where f ′ = f if f ∈ {A(x), P (x, y)} or
f ′ = Q (x, z) if f = ∃Q (x) for x, y ∈ adom(K). Then, f and g should share at least one constant. Since f ∈ A and
neither a nor b occurs in A, this constant is c. Hence, g 
= R(a,b) and therefore g = R(a, c). Thus, α is of the form
B � ¬∃R− , and B(c) ∈A. Thus, K |
 ¬∃R−(c), which contradicts the assumptions of the proposition on K.

(iii) g ∈A and f ∈ {R(a, c), R(a,b)}. Analogous to Case (ii).
(iv) { f , g} ∈A. A 
|
 α and due to Lemma 12 of [9] T ∪A is unsatisfiable, which contradicts the satisfiability of K. �
Appendix F. Proofs for Section 5.3

Proof of Lemma 5.17. First, we show that I0 |
 T ∪ N . Indeed, I0 |
 A follows from the definition of chase and Eq. (16).
To see that I0 |
 T , observe that, by the definition of A1, the set A ∪ {Ra(a,ba)} satisfies all the NIs in cl(T ). Moreover,
{Ra(a,ba), Ra′ (a′,ba′ )}, where a and a′ are such that A(a) and A′(a′) are in A1 for some concepts A and A′ , satisfies all the
NIs in cl(T ). Thus, the set of MAs that is chased in Eq. (16) satisfies all the NIs in cl(T ). Hence, due to Lemma 12 of [9],
I0 |
 T .

Now we show that I[D,R,B] |
 T ∪N . The fact that I[D,R,B] |
 A trivially follows from the fact that Ican |
 A. To
see that I[D,R,B] |
 T , observe that for each i the set {Ri(xi,d), Ai(xi)} satisfies all the NIs in cl(T ), so does its chase
with T . Since xi s are fresh and (K,N ) is a simple DL-Litecore-evolution setting, for any g1 ∈ chaseT ({Ri(xi,d), Ai(xi)}) and
g2 ∈ chaseT ({R j(x j,d), A j(x j)}), it holds that {g1, g2} 
|
T ⊥. Therefore, we can apply Proposition 3.3 to the union of chases
over 1 � i � |D| and conclude that it satisfies T . Clearly, for each g1 ∈ Ican and g2 in the union of chases, {g1, g2} 
|
T ⊥
and again, by applying Proposition 3.3, we conclude that I[D,R,B] |
 T .

The proof of J0 ∈ loc_mina⊆(I0,T ,N ) and J [D,R,B] ∈ loc_mina⊆(I[D,R,B],T ,N ) is straightforward by the definition
of BZP and BP procedures. �
Appendix G. Proofs for Section 5.4

In order to prove Lemma 5.18, we show the following two technical propositions.

Proposition G.1. Let n � 2 be a natural number, α1 = B1 � B ′
1, . . . ,αn = Bn � B ′

n DL-Litecore PIs, β = B � ¬B ′ a DL-Litecore NI,
and g0, . . . , gn, f a sequence of ground atoms such that gi−1 → gi for 1 � i � n instantiates αi , and gn → ¬ f instantiates β . If
B1 � ¬B ′ /∈ cl({α1, . . . ,αn, β}), then at least one of the following conditions holds
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(i) there is 1 � i � n − 1 such that αi is Bi � ∃R and αi+1 is ∃R− � B ′
i+1 , where R ∈ Σ(T ).

(ii) B ′
n = ∃R and B = ∃R− , where R ∈ Σ(T ).

Proof. We prove it by induction on n. Assume n = 1; thus, g1 instantiates B ′
1 and B , and therefore B ′

1 and B share the
predicate symbol (concept or role name). Case (i) is not applicable, since there is only one αi . Assume that Case (ii) does
not hold. Then, one of the following options holds: (1) either B ′

1 is (of the form) ∃R and B is ∃R , or (2) B ′
1 is A and B is A.

From either case we conclude that B1 � ¬B ′ ∈ cl({α1, β}), which contradicts the assumption of the proposition.
Assume n > 1. If Case (i) does not hold, then consider αi and αi+1 for some i < n. Since gi instantiates B ′

i and Bi+1,
they share the predicate symbol, thus one of the following options hold: (1) either B ′

i is ∃R and Bi+1 is ∃R or (2) B ′
i is A

and Bi+1 is A. Thus, as in the case above, we conclude that Bi � B ′
i+1 ∈ cl({αi,αi+1}). Applying this argument iteratively to

pairs of αi and αi+1 from i = 1, . . . ,n − 1, we obtain that B1 � B ′
n ∈ {α1, . . . ,αn}. If Case (ii) does not hold, then, using the

same argument as in the case of n = 1 to B1 � B ′
n and B � B ′ , we obtain that B1 � ¬B ′ ∈ {α1, . . . ,αn, β}, which contradicts

the assumption of the proposition. �
Proposition G.2. Let (K,N ), where K = T ∪ A, be a simple DL-Litecore-evolution setting, I |
 K, and J ∈ loc_mina⊆(I,T ,N ). If
N |
T ∃R(a), N 
|
T R(a,b), and there is an NI α ∈ cl(T ) such that I ∪ {R(a,b)} 
|
 α, then R(a,b) /∈J .

Proof. Assume R(a,b) ∈ J , then consider J ′ = J \ {R(a,b)}. We now show that J ′ |
 T ∪ N and I � J ′ � I � J , thus
contradicting the fact that J ∈ loc_mina⊆(I,T ,N ). Since N 
|
T R(a,b), it clearly holds that J ′ |
 N . Since N |
T ∃R(a)

and the evolution setting is simple, there is c such that N |
T R(a, c) Thus, R(a, c) ∈ J ′ and therefore J ′ satisfies PIs of
cl(T ). Since J ′ ⊆J and J satisfies NIs of cl(T ), so does J ′ . We conclude that J ′ |
 T ∪N .

Finally, observe that the fact that I ∪ {R(a,b)} 
|
 α implies that R(a,b) /∈ I . Taking into account that R(a,b) /∈ J ′ , we
conclude that R(a,b) /∈ I � J ′ . At the same time R(a,b) ∈ J and therefore R(a,b) ∈ I � J . Thus, I � J ′ � I � J holds
and we conclude the proof. �
Proof of Lemma 5.18. Let K = T ∪ A and S = AlignT ((I \ BI),N ). Assume there exists a model J ′ ∈ loc_mina⊆(I,T ,N )

such that S �J ′ . Consider J ′′ =J ′ ∪S . We will show that J ′′ |
 T ∪N and I�J ′′ � I�J ′ which yields a contradiction
with J ′ ∈ loc_mina⊆(I,T ,N ).

To see that I �J ′′ � I �J ′ observe the following:

I �J ′′ = (
I \J ′′) ∪ (

J ′′ \ I)
= ((

I \J ′) \ S) ∪ ((
J ′ \ I) ∪ (S \ I)

)
�due to S⊆I and S�J ′

(
I \J ′) ∪ (

J ′ \ I) ∪ (S \ I)

=due to S⊆I
(
I \J ′) ∪ (

J ′ \ I) = I �J ′.
It remains to show that J ′′ |
 T ∪N . The fact that J ′′ |
 N follows trivially from the fact that J ′ ∈ Mod(N ), J ′ ⊆ J ′′

and N does not contain negative MAs. We now prove that J ′′ |
 T by showing that both S and J ′ are models of T
and then by applying Proposition 3.3. Obviously, J ′ |
 T holds by the definition of J ′ . Observe that by the definition of
alignment:

S = (I \ BI) \
⋃

g∈I\BI s.t. {g}∪N |
T ⊥
rootT (g).

Since I |
 T , one can show that S |
 T by applying Proposition 3.6 a necessary (probably infinite) number of times: first
to BI and then to each g ∈ I \BI s.t. {g} ∪N |
T ⊥.

Since we proved that S |
 T and J ′ |
 T we can apply Proposition 3.3, that is, S ∪ J ′ |
 T if for every f ∈ S and
g ∈J ′ it holds: { f , g} 
|
T ⊥. Assume this is not the case, and there are f ∈ S and g ∈J ′ such that { f , g} |
T ⊥. Let

– G be the set of atoms g of J ′ such that { f , g} |
T ⊥ for some f ∈ S and rootJ
′

T (g) ∩N = ∅, and

– H be the set of atoms g of J ′ such that { f , g} |
T ⊥ for some f ∈ S and rootJ
′

T (g) ∩N 
= ∅.

By our assumption, H ∪ G 
= ∅. Note that it is enough to consider only the case when f is a unary atom. Indeed, if f
is binary, i.e., if f = R(a,b), then, due to the fact that in DL-Litecore disjointness is allowed between basic concepts only,
{R(a,b), g} |
T ⊥ holds if and only if either {∃R(a), g} |
T ⊥ or {∃R−(b), g} |
T ⊥. If the first case holds, then we can
introduce a fresh concept name A∃R and extend I by assigning AI∃R = (∃R)I to be the interpretation of RI projected on
the first coordinate. Then, both the original I and the extended one will behave equivalently w.r.t. to the proposition.

We first show that H = ∅. Assume this is not the case and there is g ∈ H. Let g′ ∈ rootJ
′

T (g) ∩ N . By the definition of

rootT for models, there is a sequence of PIs α1 = B1 � B ′
1, . . . ,αn = Bn � B ′

n in cl(T ) and of atoms g0, . . . , gn in rootJ
′

T (g)

such that g0 = g′ , gn = g and gi−1 → gi for 1 � i � n instantiates αi . From { f , g} |
T ⊥ and Lemma 12 of [9] it follows that
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there is an NI β = B � ¬B ′ in cl(T ) such that gn → ¬ f instantiates β . We now show that B1 � ¬B ′ /∈ cl({α1, . . . ,αn}) holds
and then apply Proposition G.1. Assume B1 � ¬B ′ ∈ cl({α1, . . . ,αn}), then it holds that T |
 B1 � ¬B ′ . Moreover, g0 → ¬ f
instantiates B1 � ¬B ′ and therefore, { f , g0} |
{B1�¬B ′} ⊥. Combining { f , g0} |
{B1�¬B ′} ⊥ and T |
 B1 � ¬B ′ , we conclude
that { f , g0} |
T ⊥. Taking into account that g0 ∈ N , we finally conclude that { f } ∪N |
T ⊥. Therefore, f /∈ S which gives
a contradiction with f ∈ S . Thus, we can apply Proposition G.1.

Assume that Case (ii) of Proposition G.1 holds, that is αn = Bn � ∃R and β = ∃R− � ¬B ′ . In particular, this means
that g is of the form R(x, y). Since the evolution setting is simple, T 
|
 ∃R1 � ∃R for any role R1. Combining this with
αn = Bn � ∃R , we obtain that Bn and all Bi and B ′

i occurring in αi for 1 � i � n − 1 are atomic concepts, say Ai and A′
i ,

respectively. Indeed, let B ′
k be of the form ∃R−

1 and has the highest index among Bi s with this property. Then, T |
 ∃R−
1 �

∃R , which contradicts the fact that K, N is a simple setting. This implies that {α1, . . . ,αn} |
T A1 � ∃R . Combining this
with the our assumption that g′ instantiates A1 and g = R(x, y), we obtain that g′ = A(x) and A1(x) → R(x, y) instantiates
A1 � ∃R . Since g′ ∈ N , we conclude that N |
T ∃R(x). Recall that { f , R(x, y)} |
T ⊥ and f ∈ I (since f ∈ S and S ⊆ I),
thus I ∪ {R(x, y)} does not satisfy at least one NI of cl(T ). Now if N 
|
T R(x, y) holds, then we are in the conditions
of Proposition G.2 and can conclude that R(x, y) /∈ J ′ , which contradicts the fact that R(x, y) = g ∈ J ′ . Therefore, N |
T
R(x, y). Combining this with { f , R(x, y)} |
T ⊥, we obtain that { f } ∪N |
T ⊥. Since f is unary we conclude that f ∈ BI
which contradicts the fact that f ∈ S .

Assume that Case (i) of Proposition G.1 holds but Case (ii) does not. Then, let k be the maximal index satisfying that αk
and αk+1 are respectively of the form Bk � ∃R and ∃R− � B ′

k+1. If k = n − 1, then αn = ∃R− � B ′
n . Moreover, since Case (ii)

of Proposition G.1 does not hold and in the evolution settings the entailment T |
 ∃R− � ∃R ′ is not possible for any role R ′ ,
we have that Bi = Ai and B ′

i = A′
i (in fact, it even holds that Bi = Ai and B ′

i = Ai+1) for 1 � i � n − 2, Bn−1 = An−1, B ′
n = A,

B = A and B ′ = A′ , where all A j , A′
j and A, A′ are from Σ(T ∪N ). Thus,

αn−1 = An−1 � ∃R, αn = ∃R− � A, g0 = A1(x), gn−1 = R(x, y), gn = A(y) and f = A′(y).

If N |
T R(x, y), then N |
T A′(y), and we obtain that { f } ∪ N |
T ⊥, which contradicts f ∈ S . If N 
|
T R(x, y), then
due to R(x, y) |
{αn} A(y) and the fact that {A(y), A′(y)} violates β , we conclude that {R(x, y), A′(y)} violates ∃R− �
¬A′ ∈ cl(T ). Thus, I ∪ {R(x, y)} violates ∃R− � ¬A′ and we can apply Proposition G.2 to conclude that R(x, y) /∈ J ′ , which
contradicts the fact that R(x, y) ∈ rootJ

′
T (g). If 1 � k < n − 1, then analogously to the previous case we can show that

B ′
k = ∃R Bk+1 = ∃R− , for each 1 � i � k − 2 and k + 1 � i � n it holds that Bi = Ai and B ′

i = A′
i (in fact, it even holds that

B ′
i = Ai+1) and also B = A′

n and B ′ = A′ , where all A j , A′
j , A′ and R are from Σ(T ∪N ). Moreover,

αk = Ak � ∃R, αk+1 = ∃R− � Ak+2, g0 = A1(x), gk = R(x, y), gn = An(y) and f = A′(y).

Thus, applying the same reasoning as above we obtain a contradiction either with f ∈ S or g ∈J ′ . We conclude that H = ∅
and G 
= ∅.

Now consider

Ĵ ′ = J ′ \
⋃
g∈G

rootT (g) ∪
⋃

h∈rootJ
′

T (g) s.t. g∈G, h∈S
S[h].

We now show that Ĵ ′ � I � J ′ � I and Ĵ ′ |
 T ∪N , which contradicts the fact that J ′ ∈ I �N under La⊆ . The inclusion

Ĵ ′ �I ⊆J ′ �I follows from the fact that each S[h] ⊆ I . The inclusion is strict since G 
= ∅, G ⊆J ′ , and G∩I = ∅. Since for
each g ∈ G it holds that rootJ

′
T (g)∩N = ∅, we have that Ĵ ′ |
N . To see that Ĵ ′ |
 T , observe that J ′ \⋃

g∈G rootT (g) |
 T
due to Proposition 3.6, and clearly

⋃
h∈rootJ

′
T (g) s.t. h∈S S[h] |
 T . Therefore, we can apply Proposition 3.3: assume there is

g′ ∈J ′ \⋃
g∈G rootT (g) and f ′ ∈ S[h] for some h such that {g′, f ′} |
T ⊥. Since g′ ∈J ′ and f ′ ∈ S , one of the two options

should hold: either g′ ∈ G or g′ ∈H. The first option is impossible since g′ ∈J ′ \ ⋃
g∈G rootT (g), and therefore g′ /∈ G . The

second option is also impossible since H = ∅. Thus, Ĵ ′ |
 T , we obtain a contradiction with J ∈ I � N under La⊆ , hence
G = ∅ and we conclude the proof. �

In order to prove Lemma 5.20, we need the following technical property.

Proposition G.3. Let E = (K,N ) be a simple DL-Litecore-evolution setting, whereK=T ∪A. Let I |
K and J ∈ loc_mina⊆(I,T ,N ).
Then,

(i) if N 
|
T A(a) and there is an NI α ∈ cl(T ) such that I ∪ {A(a)} 
|
 α, then A(a) /∈J ;
(ii) if N 
|
T ∃R(a), N 
|
T ∃R−(b) and there is an NI α ∈ cl(T ) s.t. I ∪ {R(a,b)} 
|
 α, then R(a,b) /∈J .

Proof. Analogous to the proof of Proposition G.2. �
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Proof of Lemma 5.20. Case (i): Let I |
K be such that J ∈ loc_mina⊆(I,T ,N ). Assume that D(c) /∈J , and{
R(x, c), A(x)

}
� J for each x ∈ �, each R ∈ TR and each atomic concept A such that

D(c) ∈ DjnAts[K,N ](R) and A ∈ ISubCon[T ](∃R). (G.1)

Observe that the condition {R(x, c), A(x)} �J is satisfied when R(x, c) ∈J and A(x) /∈J . Let

D = {
R(x, c)

∣∣ x ∈ �, R(x, c) ∈ J , D(c) ∈ DjnAts[K,N ](R)
}
.

Assume D 
= ∅. Consider rootJT (R(x, c)). Due to the assumption in Eq. (G.1), there are no unary atoms in rootJT (R(x, c)).

Moreover, since (K,N ) is a simple evolution setting there are no binary atoms in rootJT (R(x, c)) besides R(x, c). Thus,

rootJT (R(x, c)) = {R(x, c)}. Consider a model

J ′ = J \
⋃

R(x,c)∈D

{
R(x, c)

}
.

We now show that J ′ |
 T ∪N and I �J ′ � I �J , which contradicts the fact that J ∈ loc_mina⊆(I,T ,N ). Observe that
J ′ |
N . Assume this is not the case and there is an MA g such that N |
 g and J ′ 
|
 g . We have two cases here.

• Assume that g is a positive MA. Since J |
 N , we conclude that g ∈ ⋃
R(x,c)∈D{R(x, c)}. Therefore, g = R(x, c) for

some R(x, c) ∈ D, we have that R(x, c) ∈ N . Combining this with the fact that {D(c),∃R−(c)} |
T ⊥ we conclude that
{D(c)} ∪N |
T ⊥. This contradicts the fact that N 
|
T D(c). Thus, J ′ |
N .

• Assume that g is a negative MA. Since J |
N and J ′ ⊆J , it trivially holds that J ′ |
N .

Due to Proposition 3.6, J ′ |
 T . Therefore, J ′ |
 T ∪N . By construction of J ′ , we have that every R(x, c) from D is not in
I and J ′ , while it is in J . Therefore, I �J ′ � I �J and we conclude the proof.

Assume D = ∅, then consider

J ′ = J ∪ I
[

D(c)
]
.10

Again, we now show that J ′ |
 T ∪ N and I � J ′ � I � J , which contradicts the fact that J ∈ loc_mina⊆(I,T ,N ). The
inclusion I �J ′ � I �J follows from I[D(c)] ⊆ I , and I[D(c)] ⊆J ′ , and D(c) /∈J . Then, J ′ |
N follows from J |
N .
It remains to show that J ′ |
 T holds, and we proceed to a proof of this entailment.

Clearly, both J and I[D(c)] satisfy T . Due to Proposition 3.3, to finish the proof of J ′ |
 T , it remains to show that
for every g1 ∈ J and g2 ∈ I[D(c)] it holds that {g1, g2} 
|
T ⊥. Assume this is not the case and there are g1 ∈ J and
g2 ∈ I[D(c)] such that {g1, g2} |
T ⊥. Then, there is an NI α in cl(T ) such that g1 → ¬g2 is an instantiation of the first-
order interpretation of α. Observe that g2 
= D(c). Indeed, if g2 = D(c), then, since D(c) is a unary atom, α is of the form
D � ¬B .

(i) If B = A′ for some atomic concept A′ , then g1 = A′(c) ∈ J . If N |
T A′(c), then N |
T ¬D(c), which contradicts
the fact that N 
|
T ¬D(c). If N 
|
T A′(c), then, due to Case (i) of Proposition G.3 and the facts that D(c) ∈ I and
{D(c), A′(c)} |
T ⊥, we conclude that A′(c) /∈J , which gives a contradiction.

(ii) If B = ∃R1 for some role R1, then g1 = R1(c, y) ∈ J for some y ∈ �. Assume that N |
T R1(c, y), then N |
T ¬D(c),
which gives a contradiction. If N 
|
T R1(c, y), and also N 
|
T ∃R1(c), N 
|
T ∃R1(y), then, due to Case (ii) of Propo-
sition G.3 and the facts that D(c) ∈ I and {D(c), R ′(c, y)} |
T ⊥, we conclude that R ′(c, y) /∈ J and again obtain a
contradiction. If N 
|
T R1(c, y) and either N |
T ∃R1(c) or N |
T ∃R−

1 (y) holds, then, due to Proposition G.2 and the
fact that D(c) ∈ I and {D(c), R ′(c, y)} |
T ⊥, one can conclude that R ′(c, y) /∈J ′ , thus we obtain a contradiction.

Since (K,N ) is a simple evolution setting, every g′ ∈ I[D(c)] is unary11 and D(c) |
T g′ . Thus, we can apply to such
g′ the same argument as to D(c) above to obtain a contradiction. Thus, due to Proposition 3.3, we conclude that J ∪
I[D(c)] |
 T . This implies that J /∈ loc_mina⊆(I,T ,N ), yields a contradiction, and concludes the proof of Case (i).

Case (ii): Assume there is D(c) ∈ J and a unary MA A(c) satisfying K |
 A(c), T |
 A � D , and A(c) ∈ AlignT (I,N ),
while A(c) /∈J holds. Let I be a model of K such that J ∈ loc_mina⊆(I,T ,N ). Consider

J ′ = J ∪ I
[

A(c)
]
.

Again, we now show that J ′ |
 T ∪N and I�J ′ � I�J , which contradicts the fact that J ∈ loc_mina⊆(I,T ,N ). Observe
that J ′ |
 N , since J does so. Since both J and I[A(c)] satisfy T , then, due to Proposition 3.3 and Lemma 12 of [9], it

10 Recall that I
[

D(c)
]

is a minimal (w.r.t. set inclusion) submodel of I containing D(c).
11 In particular, Restriction (ii) of Definition 5.11 implies that there is no role Q such that T |
 ∃Q � D .
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suffices to show that for every NI α ∈ cl(T ) and every g ∈ J and f ∈ I[A(c)], { f , g} satisfies α. Assume there is an NI
α in cl(T ), g ∈ J and f ∈ I[A(c)] such that {g, f } |
{α} ⊥. If N |
T g , then N ∪ { f } |
{α} ⊥. Thus, A(c) ∈ rootIT ( f ) and
therefore A(c) /∈ AlignT (I,N ) which gives a contradiction. Assume N 
|
 g . If g is unary, then we can apply Case (ii) of
Proposition G.3 to obtain a contradiction. If g is binary, then, as in the proof of Case (i) of the current proposition, we can
apply Case (ii) of Proposition G.3 or Proposition G.2, and obtain a contradiction. �
Appendix H. Proofs for Section 6

Proof of Lemma 6.4. Let S = La⊆ .
First we show the “if” direction. Suppose that g ∈ clT (N ) ∪ Y , where

Y = AtAlg(K,N ) \
⋃

R∈TR

⋃
A(c)∈DjnAts[K,N ](R)

{¬∃R−(c)
}
.

If g ∈ clT (N ) then, clearly, by the definition of K �S N , g is certain. Suppose that

g ∈ Y \ clT (N ) and consequently g ∈ AtAlg(K,N ). (H.1)

Assume g is not certain, that is, there is a model J0 ∈ K �S N such that J0 |
 ¬g . Let I0 be a model of K such that J0 ∈
loc_mina⊆(I0,T ,N ). We now exhibit a model J ′

0 such that I0 �J ′
0 � I0 �J0 which will give us a contradiction with J0 ∈

loc_mina⊆(I0,T ,N ). Consider the following two cases:

• g is of the form ¬A(c), that is, A(c) ∈J0. Now we show that in this case N ‖T A(c), i.e., N 
|
T ¬A(c) and N 
|
T A(c).
Indeed, (a) N 
|
T ¬A(c) holds since J0 |
 A(c) and J0 |
 N , and (b) N 
|
T A(c): suppose by contradiction that
N |
T A(c), then ¬A(c) /∈ AtAlg(K,N ) by the definition of AtAlg (note that in this case N ∪ {¬A(c)} |
T ⊥); on the
other hand, ¬A(c) ∈ Y by Eq. (H.1), that is, ¬A(c) ∈ AtAlg(K,N ) and we obtain a contradiction.
Now consider the following interpretation: J ′

0 =J0 \ rootT (A(c)). Due to N ‖T ¬A(c), we have that J ′
0 ∈ Mod(N ). Also,

J ′
0 is in Mod(T ) due to Proposition 3.6. It is easy to check that, by the definition of J ′

0 and due to the restrictions of the
simple evolution settings (in particular, Restriction (ii) of Definition 5.11 yields that rootT (A(c)) consists only of atomic
MAs), the following hold: (a) J0 and J ′

0 differ only on finitely many assertions of rootT A(c), and (b) rootT A(c) � I0
since ¬A(c) ∈ AtAlg(K,N ), that is, K |
 ¬A(c), and I0 |
 K. This leads to I0 �J ′

0 ⊆ I0 �J0. Then, A(c) ∈ (I0 �J0) \
(I0 �J ′

0), which means that the inclusion is strict, i.e., I0 �J ′
0 � I0 �J0. Thus, we obtain a contradiction with J0 ∈

loc_mina⊆(I0,T ,N ).
• g is of the form ¬∃R−(c), that is, there exists α ∈ � such that R(α, c) ∈ J0. We now show that N ‖T ∃R−(c). Indeed,
N 
|
T ∃R−(c) holds, otherwise, since N ∪ {¬∃R−(c)} |
T ⊥ (see the definition of AtAlg), it would hold that ¬∃R−(c) /∈
AtAlg(K,N ), which contradicts Eq. (H.1); furthermore, N 
|
 ¬∃R−(c) holds since J0 |
 R(α, c) and J0 |
 N . Thus,
N ‖T ∃R−(c).
Observe that N 
|
 ¬∃R(α) due to J0 |
 R(α, c) and J0 |
 N . We are ready to define J ′

0. Consider now two follow-
ing cases: N 
|
T ∃R(α) and N |
T ∃R(α). In the former case we have that N ‖T ∃R(α) and define J ′

0 as follows:
J ′

0 = J0 \ rootT (∃R(α)) \ rootT (∃R−(c)). Due to N ‖T ∃R−(c) and N ‖T ∃R(α), we have that J ′
0 ∈ Mod(N ). Due to

Proposition 3.6 we have that J ′
0 is in Mod(T ). Thus, taking into account that (rootT (∃R(α))∪ rootT (∃R−(c))) \ {R(α, c)}

consists of unary atoms only (this holds due to Restriction (ii) of Definition 5.11), we obtain that I0 � J ′
0 ⊆ I0 � J0

and R(α, c) ∈ (I0 �J0) \ (I0 �J ′
0), which yields I0 �J ′

0 � I0 �J0 and a contradiction with J0 ∈ loc_mina⊆(I0,T ,N ).
In the latter case, when N |
T ∃R(α), we define J ′

0 as follows: J ′
0 = J0 \ rootT (∃R−(c)). Due to Restriction (iii) of

Definition 5.11, it holds that N |
T R(α,d) for some d. Note that d 
= c since N 
|
T ∃R−(c), and therefore J ′
0 is a

model of N (as in the previous case, rootT (∃R−(c)) \ {R(α, c)} consists of only unary atoms). By Proposition 3.6, we
have that J ′

0 is in Mod(T ). As in the previous case, we obtain I0 �J ′
0 ⊆ I0 �J0 and R(α, c) ∈ (I0 �J0) \ (I0 �J ′

0),
which yields I0 �J ′

0 � I0 �J0 a contradiction with J0 ∈ loc_mina⊆(I0,T ,N ).

Therefore, if g ∈ clT (N ) ∪ Y , then K �S N |
 g .
We show now the “only-if” direction. Suppose that K �S N |
 g , but g /∈ clT (N ) ∪ Y . There are two possible

cases: g ∈ AtAlg(K,N ) or g /∈ AtAlg(K,N ). In the former case we have that g ∈ AtAlg(K,N ) and g ∈⋃
R∈TR

⋃
B(c)∈DjnAts[K,N ](R){¬∃R−(c)}, so there exists a concept B such that T |
 ∃R− � ¬B and A |
T B(c). Observe that

the prototype J [{B(c)}, 〈R〉, 〈A〉] for some A ∈ ISubCon(R) is such that it does not satisfy ¬∃R−(c). We obtain a contra-
diction with the assumption that g is certain, and therefore K �S N 
|
 g . Finally, suppose that g = ¬ f /∈ AtAlg(K,N ). First,
observe that N ‖T f ; indeed, (i) since g /∈ clT (N ), we conclude that N 
|
T ¬ f , (ii) since K �S N |
 ¬ f , we conclude
that N 
|
T f . Second, observe that A ‖T f ; indeed, (i) suppose that A |
T f , i.e., f ∈ clT (A), then, since N 
|
T ¬ f , it
holds that f ∈ AtAlg(K,N ), which is not the case, and therefore we conclude that A 
|
T f ; (ii) similarly to the previous
case, one can show that A 
|
T ¬ f . Recall that K �S N |
 ¬ f . Consider models J0 ∈ K �S N and I0 ∈ Mod(K) such that
J0 ∈ loc_mina⊆(I0,T ,N ). Then, consider a set Y = chaseT ( f ), where all the �-elements are such that they do not occur in
adom(K∪N ) and models I0 and J0. Using Y we define the following two models: I ′ = I0 ∪Y and J ′ =J0 ∪Y . It is easy to
0 0
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check that I ′
0 ∈ Mod(T ∪A) and J0 ∈ Mod(T ∪N ). We are going to show now that J ′

0 ∈ loc_mina⊆(I ′
0,T ,N ), which will lead

to a contradiction with the fact that K �S N |
 g since J ′
0 
|
 g . Suppose that J ′

0 /∈ loc_mina⊆(I ′
0,T ,N ), that is, there exists a

model J ′′
0 ∈ Mod(T ∪N ) such that I ′

0 �J ′′
0 � I ′

0 �J ′
0. Thus, there is an atom f ′ ∈J ′

0 such that f ′ ∈ (I ′
0 �J ′

0) \ (I ′
0 �J ′′

0 ).
Note that f ′ /∈ Y since Y � I ′

0 �J ′
0, and also J ′′ =J ′′

0 \ (Y \J0) is in Mod(T ∪N ). These two observations lead to the fact
that I0 � J ′′ � I0 � J0 which contradicts J0 ∈ loc_mina⊆(I0,T ,N ). Therefore, J ′

0 ∈ loc_mina⊆(I ′
0,T ,N ). From J ′

0 
|
 g we
conclude that g is not certain. �
References

[1] W3C OWL Working Group, OWL 2 Web Ontology Language: Document overview, W3C Recommendation, World Wide Web Consortium, available at:
http://www.w3.org/TR/owl2-overview/, 27 October 2009.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation and Applications,
Cambridge University Press, 2003.

[3] G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, G. Antoniou, Ontology change: Classification and survey, Knowl. Eng. Rev. 23 (2) (2008)
117–152.

[4] S. Abiteboul, G. Grahne, Update semantics for incomplete databases, in: Proc. of the 11th Int. Conf. on Very Large Data Bases (VLDB’85), 1985, pp. 1–12.
[5] H. Katsuno, A. Mendelzon, On the difference between updating a knowledge base and revising it, in: Proc. of the 2nd Int. Conf. on the Principles of

Knowledge Representation and Reasoning (KR’91), 1991, pp. 387–394.
[6] T. Eiter, G. Gottlob, On the complexity of propositional knowledge base revision, updates and counterfactuals, Artificial Intelligence 57 (1992) 227–270.
[7] D. Calvanese, E. Kharlamov, W. Nutt, D. Zheleznyakov, Evolution of DL-Lite knowledge bases, in: Proc. of the 9th Int. Semantic Web Conf. (ISWC 2010),

in: Lecture Notes in Comput. Sci., vol. 6496, Springer, 2010, pp. 112–128.
[8] H. Liu, C. Lutz, M. Milicic, F. Wolter, Updating description logic ABoxes, in: Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation

and Reasoning (KR 2006), 2006, pp. 46–56.
[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: The DL-Lite

family, J. Automat. Reason. 39 (3) (2007) 385–429.
[10] G. De Giacomo, M. Lenzerini, A. Poggi, R. Rosati, On instance-level update and erasure in description logic ontologies, in: Special Issue on Ontology

Dynamics, J. Logic Comput. 19 (5) (2009) 745–770.
[11] Z. Wang, K. Wang, R.W. Topor, A new approach to knowledge base revision in DL-Lite, in: Proc. of the 24th AAAI Conf. on Artificial Intelligence (AAAI

2010), 2010.
[12] G. Qi, J. Du, Model-based revision operators for terminologies in description logics, in: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI

2009), 2009, pp. 891–897.
[13] E. Kharlamov, D. Zheleznyakov, On prototypes for Winslett’s semantics of DL-Lite ABox evolution, in: Proc. of the 24th Int. Workshop on Description

Logic (DL 2011), in: CEUR Electronic Workshop Proceedings, vol. 745, 2011, pp. 213–223, http://ceur-ws.org/.
[14] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodríguez-Muro, R. Rosati, Ontologies and databases: The DL-Lite approach, in:

S. Tessaris, E. Franconi (Eds.), Semantic Technologies for Informations Systems – 5th Int. Reasoning Web Summer School (RW 2009), in: Lecture Notes
in Comput. Sci., vol. 5689, Springer, 2009, pp. 255–356.

[15] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Conceptual modeling for data integration, in: A.T. Borgida, V. Chaudhri, P. Giorgini,
E. Yu (Eds.), Conceptual Modeling: Foundations and Applications – Essays in Honor of John Mylopoulos, in: Lecture Notes in Comput. Sci., vol. 5600,
Springer, 2009, pp. 173–197.

[16] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, OWL 2: The next step for OWL, J. Web Semant. 6 (4) (2008) 309–322.
[17] D. Calvanese, E. Kharlamov, W. Nutt, D. Zheleznyakov, Evolution of DL-Lite knowledge bases (extended version), Tech. Rep. KRDB-11-3, KRDB Research

Centre for Knowledge and Data, Free University of Bozen-Bolzano, 2011.
[18] E. Kharlamov, D. Zheleznyakov, Capturing instance level ontology evolution for DL-Lite, in: Proc. of the 10th Int. Semantic Web Conf. (ISWC 2011), in:

Lecture Notes in Comput. Sci., vol. 7031, Springer, 2011, pp. 321–337.
[19] W3C RDF Working Group, Resource Description Framework primer, W3C Recommendation, World Wide Web Consortium, available at:

http://www.w3.org/TR/rdf-primer/, 10 February 2004.
[20] M. Winslett, Updating Logical Databases, Cambridge University Press, 1990.
[21] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations, J. Artificial Intelligence Res. 36 (2009) 1–69.
[22] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies, J. Data Semant. 10 (2008) 133–173.
[23] D. Maier, A.O. Mendelzon, Y. Sagiv, Testing implications of data dependencies, ACM Trans. Database Syst. 4 (4) (1979) 455–469.
[24] D.S. Johnson, A.C. Klug, Testing containment of conjunctive queries under functional and inclusion dependencies, J. Comput. System Sci. 28 (1) (1984)

167–189.
[25] R. Fagin, P.G. Kolaitis, L. Popa, Data exchange: Getting to the core, ACM Trans. Database Syst. 30 (1) (2005) 174–210.
[26] R. Rosati, On the decidability and finite controllability of query processing in databases with incomplete information, in: Proc. of the 25th ACM SIGACT

SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2006), 2006, pp. 356–365.
[27] D. Calvanese, E. Kharlamov, W. Nutt, A proof theory for DL-Lite, in: Proc. of the 20th Int. Workshop on Description Logic (DL 2007), in: CEUR Electronic

Workshop Proceedings, vol. 250, 2007, pp. 235–242, http://ceur-ws.org/.
[28] M. Schaerf, M. Cadoli, Tractable reasoning via approximation, Artificial Intelligence 74 (2) (1995) 249–310.
[29] A. Deutsch, A. Nash, J.B. Remmel, The chase revisited, in: Proc. of the 27th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems

(PODS 2008), 2008, pp. 149–158.
[30] A. Fuxman, P.G. Kolaitis, R.J. Miller, W.C. Tan, Peer data exchange, in: Proc. of the 24rd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database

Systems (PODS 2005), 2005, pp. 160–171.

http://www.w3.org/TR/owl2-overview/
http://ceur-ws.org/
http://www.w3.org/TR/rdf-primer/
http://ceur-ws.org/

	Capturing model-based ontology evolution at the instance level: The case of DL-Lite
	1 Introduction
	2 The DL-Lite family of Description Logics and knowledge evolution
	2.1 The Description Logic DL-Litecore: basic deﬁnitions
	2.2 The Description Logic DL-Litepr
	2.3 ABox evolution of knowledge bases
	2.3.1 Model-based evolution
	2.3.2 Measuring distance between interpretations
	2.3.3 Closure under evolution and approximation
	Summary of Section 2.



	3 Evolution of DL-Litepr KBs
	3.1 Capturing L⊆a-evolution
	3.2 Capturing G⊆s-evolution
	3.3 Approximation of Ls⊆-evolution

	4 Relationships between model-based semantics
	4.1 Relationships between atom-based semantics in DL-Litepr
	4.2 Relationships between symbol-based semantics in DL-Litepr
	4.3 Symbol vs. atom-based semantics in DL-Litepr

	5 Understanding La⊆-evolution of DL-Litecore KBs
	5.1 Understanding inexpressibility of La⊆-evolution in DL-Litecore
	5.2 Prototypes
	5.3 Procedure BP to build prototypal sets for evolution settings
	5.4 Correctness of the BP procedure

	6 Approximating La⊆-evolution
	7 Practical considerations and conclusion
	Appendix A Proofs for Section 3.1
	Appendix B Proofs for Section 3.2
	Appendix C Proofs for Section 3.3
	Appendix D Proofs for Section 4.1
	Appendix E Proofs for Section 5.1
	Appendix F Proofs for Section 5.3
	Appendix G Proofs for Section 5.4
	Appendix H Proofs for Section 6
	References


