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Abstract: The integration of the raster data cube alongside another form of geospatial data (e.g., vector
data) raises considerable challenges when it comes to managing and representing it using knowledge
graphs. Such integration can play an invaluable role in handling the heterogeneity of geospatial
data and linking the raster data cube to semantic technology standards. Many recent approaches
have been attempted to address this issue, but they often lack robust formal elaboration or solely
concentrate on integrating raster data cubes without considering the inclusion of semantic spatial
entities along with their spatial relationships. This may constitute a major shortcoming when it
comes to performing advanced geospatial queries and semantically enriching geospatial models.
In this paper, we propose a framework that can enable such semantic integration and advanced
querying of raster data cubes based on the virtual knowledge graph (VKG) paradigm. This framework
defines a semantic representation model for raster data cubes that extends the GeoSPARQL ontology.
With such a model, we can combine the semantics of raster data cubes with features-based models
that involve geometries as well as spatial and topological relationships. This could allow us to
formulate spatiotemporal queries using SPARQL in a natural way by using ontological concepts at
an appropriate level of abstraction. We propose an implementation of the proposed framework based
on a VKG system architecture. In addition, we perform an experimental evaluation to compare our
framework with other existing systems in terms of performance and scalability. Finally, we show the
potential and the limitations of our implementation and we discuss several possible future works.

Keywords: raster data cube; ontology; virtual knowledge graphs; geospatial data integration;
knowledge querying; SPARQL

1. Introduction

Recent advances in geospatial data acquisition, particularly in the areas of remote
sensing as well as positioning and communication technologies, have led to the accumu-
lation of an enormous amount of geospatial data with temporal properties. One widely
used spatiotemporal data structure is the raster data cube, which describes the continuous
distribution of a variable in space and its change over time. It can be seen as a special case
of a multi-dimensional array with three dimensions: two spatial and one temporal [1,2].
Such a form of spatiotemporal data (i.e., a data cube) raises considerable challenges when
it comes to managing and portraying it using a knowledge graph. The smart integration of
data cubes using knowledge graphs can play an invaluable role in handling the heterogene-
ity of geospatial data and linking them with other enhanced semantics and knowledge.
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Knowledge graphs manage data and knowledge in the form of a semantic directed graph
that allows the capture of relationships between instances of different concepts and offers a
quite flexible structure compared to the relational structure [3]. In addition, its reasoning
capabilities can facilitate the inference of more implicit facts and knowledge, and most
importantly, it can verify the consistency of the data/knowledge as a whole, which can
contribute to the intelligent integration of different data sources and forms.

Many thoughtful and recent approaches have been tried to address the representation
of raster data cubes using knowledge graphs [4–6]. However, these solutions are not yet
mature. They either lack strong formal development or focus only on the management
of this form (i.e., a raster data cube) without combining it with other data forms that
represent discrete space with a set of spatial features along with their spatial relationships.
This can present a major shortcoming when it comes to performing advanced geospatial
queries and semantically enriching geospatial models. One feasible solution would be
to translate the raster data cubes into a linked dataset (i.e., a set of RDF triples), manage
them using a knowledge graph, and then combine them with other geospatial knowledge
graphs to perform more advanced geospatial queries [7–9]. However, such a solution
implies the materialization of the data into RDF triples. This directly leads to unnecessary
high redundancy, and then high storage costs and scalability issues when the data size
increases. One alternative approach to avoiding materialization is to use an ontology to
define a semantic layer of the data cube and link it to the data source through mapping.
Thereafter, and only during the query process, the raster knowledge graph (i.e., the RDF
triples representing the raster data cubes) could be generated. This virtual knowledge
graph (VKG) [10] seems to be promising to link different forms of geospatial data and
manage spatiotemporal semantics at a high level of abstraction, which could significantly
reduce the high redundancy that materialization would entail.

In this paper, we propose a framework that can enable such semantic integration and
advanced querying of raster data cubes based on VKG. We define a semantic representation
model for raster data cubes in this framework by extending the GeoSPARQL ontology.
With such a model, we can combine the semantics of raster data cubes with a vector
data model that represents features using geometries and attributes. We propose an
implementation of our framework and confront it with a set of scenarios that take the form
of basic and advanced semantic geospatial queries. With this implementation, one can
formulate spatiotemporal queries using SPARQL in a natural way by using ontological
concepts at an appropriate level of abstraction. We then perform an experimental evaluation
to compare our framework with other existing systems in terms of performance and
scalability and show the potential as well as the limitations of our implementation.

The rest of the paper is organized as follows. Section 2 explores the literature regarding
the integration of raster data cubes and their link to knowledge graphs and summarizes the
different approaches that address this issue. Section 3 explains our proposed framework at
the conceptual level by proposing a semantic representation model as well as a taxonomy
of semantic geospatial queries. Section 4 presents the implementation aspect of the pro-
posed framework and how, concretely, the raster data cube could be linked virtually to the
knowledge graphs with an appropriate architecture and data modeling process. Section 5
evaluates the semantic query capability of our implemented framework by proposing a
use case with its datasets, and formulating basic and advanced geospatial queries using
SPARQL. In addition, this section evaluates the query performance of our approach and
makes a comparison with other systems. Finally, Section 6 concludes the results, highlight-
ing the advantages and disadvantages of our framework, and then provides insights for
future work.

2. Related Works

The smart integration of earth observation (EO) raster data cubes has been extensively
investigated from multiple aspects. While many works have focused on providing an
accurate formalization and algebra to properly represent and manipulate this concept,
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considering it a special case of multidimensional arrays [1,2], other works have focused on
effective processing and analyzing raster data cubes. These works started with the proposal
of array database systems such as SciDB [11] or Rasdaman [12], up to the development
of an appropriate advanced infrastructure capable of supporting such a task with high
performance and appropriate scalability on a large amount of data [13–16].

Further solutions have been proposed to facilitate the efficient integration and query-
ing of raster data cubes. One of the most important advancements in this area was the
creation of the Web Coverage Processing Service (WCPS) [17]. This standard enhances and
expands the basic access to geospatial raster coverage data by providing a web interface
in the form of a retrieval language that can handle on-the-fly processing and filtering of
multi-dimensional raster coverages. It also enables the execution of more complex queries.
The Open Geospatial Consortium (OGC) has been responsible for maintaining this lan-
guage, and it has been further improved by the Petascope implementation of WCPS [18].
This implementation enables the translation of queries from the aforementioned language
into Rasdaman array DBMS queries. However, despite the existence of such powerful
solutions, there has not been coupling between raster data cubes and conventional linked
data technologies.

Several efforts were initiated to address such a coupling, starting first at the concep-
tual level by proposing a semantic model in the form of ontologies to capture the data
cube properties. The main efforts culminated in the proposal of the RDF Data Cube (QB)
ontology by the World Wide Web Consortium (W3C) in 2017 [19]. This ontology was origi-
nally conceived to handle multi-dimensional statistical data, and subsequently adopted
for representing Earth Observation (EO) data that are conceived as a data cube with the
three dimensions of latitude, longitude, and time. The main benefit of QB ontology em-
anates from the combination of several standard vocabularies, such as Simple Knowledge
Organization System (SKOS), sensor network (SSN), OWL-time, and Provenance Ontol-
ogy (PROV-O) [19]. An auxiliary ontology designated as the RDF Data Cube extensions
for spatiotemporal components (QB4ST), was meticulously formulated by the W3C [20].
The objective was to enable a flexible adaptation of data cubes to various dimensions,
with particular emphasis on spatiotemporal aspects, allowing the formation of support
coverage that encompasses dimensions ranging from one to four [21]. Nevertheless, despite
the importance of these conceptual efforts, they have not been able to address implementa-
tion considerations regarding the efficient querying of Earth Observation (EO) data using
SPARQL. In contrast, other initiatives have focused more on this facet of implementation,
resulting in two main solutions, namely SciSPARQL [4,22] and GeoSPARQL+ [23]. The goal
of these solutions was to provide SPARQL support for scientific array data and raster
coverages by defining new data types, algebras, and operators for raster arrays. While
these solutions offered computational benefits, they only considered the static aspect of
raster coverags and did not adequately handle the temporal dimension. Furthermore, users
needed to familiarize themselves with a set of new raster data operators, in addition to the
underlying SPARQL syntax, in order to perform geospatial queries.

Several approaches have been proposed to achieve the integration of raster data cubes,
including their temporal dimension, while establishing connections with knowledge graph
and semantic web technologies. These approaches can be categorized into three main
types. The first approach focuses on feature-based representation, placing emphasis on
the selection or derivation of ontological features through the aggregation of multiple
raster cells. Subsequently, instead of querying and analyzing the data cubes as a whole,
the system directly queries these specific features that emerge as abstractions of the un-
derlying data [24–26]. This approach has been significantly enhanced by the research
conducted by [9,27], which proposed a semantic and configurable extract, transform, load
(ETL) mechanism. This ETL process serves as a pipeline responsible for extracting raster
cells, recognized as observations, and establishing associations with geometric entities
denoted as territorial units. However, despite the significance of this work, a rigorous
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formalism and representation for the semantic model, as well as the mapping process
between datasets and ontological features, are still lacking.

The second type of approach has centered on converting the entire geospatial dataset
into the RDF data format and then storing and managing it in a spatial database. One
of the main systems developed for this purpose was Strabon [28]. Strabon has been
extended to be able to manage and query spatiotemporal data, and more particularly,
time-stamped satellite images in their RDF format [7]. Upon that, and to assist in the
translation between common geospatial formats and linked data, an open-source tool
was developed to facilitate this task [8]. The main advantage of this approach is that the
integrated data are gathered from a unified source; thus, the process of rewriting queries
is not necessary, and the processing of queries is both centralized and prompt. However,
these materialized approaches have major drawbacks, including the necessity of extra
storage since the data are replicated, which implies an added storage cost as well as a
maintenance cost. In addition, materialized data can quickly become stale if the data source
is frequently updated.

The third approach consists of virtually linking a knowledge graph to data cubes with-
out materializing it in the form of a set of RDF triples. Such an approach is essentially based
on the virtual knowledge graph (VKG) paradigm, also known as an OBDA (ontology-based
data access) [29–31]. A VKG consists of three main components: (1) a collection of data
sources, (2) an ontology, and (3) mapping between the two. The ontology provides a high-
level specification of the domain of interest and is semantically linked to the data sources
by a mapping consisting of a series of mapping statements, where the standard mapping
language is R2RML [32]. The ontology and mapping, called the VKG specification, expose
the underlying data sources as a virtual RDF graph that can be accessed at query time using
the standard W3C SPARQL language. When the user expresses SPARQL queries, the VKG
system, e.g., Ontop [33], translates these queries into ones that are directly evaluated by
the underlying database engine (e.g., SQL) without having to convert and materialize the
original data into RDF and then store them in a triple store. The VKG system Ontop has
implemented most of the GeoSPARQL functions [10] elaborated by the Open Geospatial
Consortium (OGC), which is specifically designed as a geographic query language that
extends SPARQL [34]. Using VKG, one can perform geospatial queries on relational data
sources to query features, geometries, attributes, and their topological relationships using
SPARQL [35,36]. Additional efforts have been made to manage knowledge consistency
when querying geospatial data through VKG [37]. Also, work has been performed to
show the potential of VKG to support some spatial–temporal data queries [38]. However,
no work has been carried out on harnessing VKG to properly integrate and query raster
data cubes.

Another solution aligned with the third approach involved the creation of a knowledge
hypergraph system known as Onto-KIT, which aimed to integrate and manage raster data
cubes with their heterogeneous formats [5,39]. This model presents a promising approach,
as a hypergraph structure encompasses a generalization of the conventional graph, allowing
edges to connect more than two nodes. Leveraging the hypergraph-based model enables
the integration and semantic linking of data from multiple sources, facilitating enhanced
information extraction in terms of relationship abundance. The hypergraph structure
serves the dual purpose of representing the semantic model and virtually managing the
population process. Notably, Onto-KIT incorporates a query processing engine based on
hypergraphs, enabling the efficient rewriting and execution of fundamental geospatial
queries on raster data cubes.

Another notable solution in the third category is the development of GeoLD, a system
that offers a dedicated GeoSPARQL query engine to handle queries involving raster data
cubes [6]. This system leverages the Rasdaman array database for efficient data storage
and utilizes the Petascope implementation of WCPS to facilitate web access. To estab-
lish mapping between the ontological domain and the dataset, a novel mapping process
called Coverage to RDF (C2RML) is proposed, wherein the conceptual model extends the
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GeoSPARQL feature class with the coverage class. The system also incorporates a query
engine that efficiently processes and rewrites the geospatial components of the SPARQL
query into the WCPS language. The request is then transformed into the Rasdaman query
language (Rasql) and executed on the Rasdaman system to obtain the desired data output.
Through the mapping process, the entities in the ontological coverage model are populated,
and the result is returned as an RDF dataset. One considerable advantage of this system
is that it does not introduce a new collection of data operators to the SPARQL syntax,
thus making it more accessible for regular SPARQL users to conduct geospatial queries
on data cubes. Additionally, GeoLD demonstrates remarkable performance in executing
spatiotemporal queries on data cubes, outperforming other systems like Geospark+ or Stra-
bon. However, it should be noted that the system currently lacks the capability to perform
aggregation operations, which are crucial in the geospatial query process, necessitating
further development in this aspect.

Despite the valuable capabilities offered by both Onto-KIT and GeoLD, they have been
limited to querying raster data cubes without supporting their combination with vector
features along with their relationships. Such a combination would greatly improve the
integration and semantics of geospatial querying.

In this work, we will rely on the virtual knowledge graph (VKG) paradigm as the foun-
dation for proposing a comprehensive framework that facilitates the seamless integration
of raster data cubes. Our objective is to investigate the potential of this approach (i.e., VKG)
and evaluate its capacity to handle a diverse range of queries. These queries aim to retrieve
information from the data cube while simultaneously combining it with another semantic
layer, specifically feature-based semantics. This integration would enable the formulation
of spatiotemporal queries in a more intuitive manner, leveraging ontological concepts at an
appropriate level of abstraction. By exploring the limits of the VKG approach, we aim to
demonstrate its efficacy in addressing the challenges associated with geospatial querying
and enhancing the overall integration of raster data cubes.

3. An Ontology-Based Framework for Integrating Raster Data Cubes

In this section, we explain the conceptual aspects of our proposed framework. This
mainly includes the modeling process that led us to the ontological representation of a
semantic raster data cube using virtual graph knowledge.

In our ontological representation, we have chosen to rely on and use the GeoSPARQL
standard only instead of reusing the data cube RDF (QB) ontology. The reason for adopting
this approach is that QB, when used to represent raster data cubes, employs the concept
of coverage as its basic element. This concept of coverage consists of a numerical array
characterized by its spatial and temporal dimensions. However, the current landscape
of OBDA systems is limited in its ability to handle spatiotemporal queries that involve
combining raster data cubes with geometric features. Adopting such a coverage model by
OBDA systems requires the development of new operators and functions adapted to the
processing of raster data cubes and the realization of adding geometries to support such
spatial-temporal queries.

In our framework, we introduce a semantic representation approach for raster data
cubes. This approach is based on the concept of a spatiotemporal entity or location that
encapsulates the spatial and temporal dimensions of the geospatial data cube concept.
Although data cubes can possess multiple dimensions (i.e., n-dimensional), in the context of
Earth observation they are often simplified to a three-dimensional model (x, y, t) or may also
be a four-dimensional model known as a voxel data cube (x, y, z, t) [40]. Within our ontology,
we label this spatiotemporal entity SpaceTimeLocation, and its dimensions can be adjusted
based on the specific data cube type under consideration. For our focus, we narrowed the
selection down to the most prevalent and simplified form of data cube, which is the three-
dimensional raster data cube. The spatial aspect of the SpaceTimeLocation is acquired from
the GeoSPARQL feature class for spatial reference. As for the temporal dimension, we adopt
a straightforward linear time model with a single dimension. If required, the temporal
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dimension can be further extended to support a more complex model of time (cyclic
time, relative time, temporal relations, . . . , etc.) by establishing connections between the
SpaceTimeLocation concept and the OWL-time ontology. However, this is not within
the interest or scope of this paper. The advantage of such a semantic representation is
its seamless alignment with a large number of OBDA systems that offer GeoSPARQL-
compliant functionalities and operations.

Additionally, with such a semantic representation, we would be able to formulate
semantic geospatial queries that could combine discrete entities (i.e., features) with the
properties of the continuous space represented by the data cube construct. For the modeling,
we use the description logic, and at the same time, we combine it with the notation of other
web semantics standards like RDF, RDFS, and GeoSPARQL. In addition, this framework
includes a taxonomy of semantic geospatial queries.

3.1. Semantic Representation of Discrete Space

We consider our discrete space as a set of geospatial entities (i.e., features) associated
with their geometries and forming spatial relationships between them. We model such a
space as the quadruplet:

< E, Ty, SR, Fg > where :

• E represents the set of entities (i.e., features) that exist in the space and that inherit all
their properties from the Feature class of the GeoSPARQL ontology (see Figure 1(left)),
such as E v Feature;

• Ty is a function that assigns to each entity e ∈ E its type, which we denote by the func-
tion: Ty : e 7−→ type. This function corresponds to the RDF property rdf:type. In this
case, we try to simplify the model by assigning a unique type to each entity instance.

• SR consists of the set of spatial relations that can link two spatial entities, e1 and e2,
where SR ⊆ E× E. This spatial relation could be metric, directional, or topological (see
Figure 1(right)). For the taxonomy of the topological relations between two entities,
we adopt the one used by the GeoSPARQL standard (see Table 1).

• Finally, Fg is a function that assigns for each entity e ∈ E its geometrical representation,
where Fg : E → G. This function corresponds to the GeoSPARQL property geo :
hasGeometry, where G v geo : Geometry. We adopt the same taxonomy as the
GeoSPARQL standard for this class, which is by default in compliance with OGC
standards (see Figure 2).

Figure 1. An abstract overview of the classes and properties defined in the GeoSPARQL standard (left
sub-figure) and the types of spatial relationships where only the topological ones are implemented
by the GeoSPARQL standard (right sub-figure).

3.2. Semantic Representation of Continuous Space

Within a continuous space, a potentially infinite number of spatially distributed
properties (e.g., temperature, pressure, humidity, etc.) can be identified at each location
in that space. A location in geographic space can be determined using a two-dimensional
coordinate system, represented by (x, y) coordinates, or a three-dimensional coordinate
system, represented by (x, y, z) coordinates. Another alternative is to use geographic
coordinates, which include latitude and longitude values, rather than projected coordinates.
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The relationship or association between a location and its property’s value is represented
in the form of a function called a field [41,42]. A field can be seen as a set of observations
where each one has been measured and associated with a geo-referenced component.

Table 1. Different topological function classifications implemented by GeoSPARQL standard [34].

OGC Egenhofer RCC8

geo:sfEquals geo:ehEquals geo:rcc8eq

geo:sfDisjoint geo:ehDisjoint geo:rcc8dc

geo:sfIntersects geo:ehMeet geo:rcc8ec

geo:sfTouches geo:ehOverlap geo:rcc8po

geo:sfWithin geo:ehCoveredBy geo:rcc8tppi

geo:sfContains geo:ehContains geo:rcc8tpp

geo:sfOverlaps geo:ehInside geo:rcc8ntpp

geo:sfCrosses geo:ehCovers geo:rcc8ntppi

Figure 2. GeoSPARQL geometry taxonomy in compliance with OGC standards [34].

In this section, we use the definition of the spatiotemporal field that has been devel-
oped in the works [43,44] and subsequently further specify it to yield a basic definition of
the notion of a data cube, and finally propose an ontological model to capture the domain
of the semantic data cube.

3.2.1. Definition of Spatiotemporal Field

In the works [43,44], the notion of the spatiotemporal field was defined as a function f :

f : S× T → P(H) where

• S× T consists of a spatiotemporal domain, such that S consists of a set of locations
in geographic space that we denote as spatial atoms, and T is an ordered domain
consisting of a sequence of timestamps: T = {t1, t2, . . . , tk, . . . , tn}.

• H consists of a set of property-value pairs ( M, V ), such that M is a set of properties
and V is the set of numerical values associated with the property M. P(H) represents
the set of all subsets of H (i.e., the power set), which consists of the range of the field f .

The function f assigns for each spatiotemporal location l ∈ L a subset of property-
value pairs (m, v) ∈ M×V. This function will help us define the notion of the data cube
by adding constraints to its domain.

3.2.2. Basic Definition of Data Cube

In our case, we use the previous definition in order to define the notion of the data
cube. This notion is defined as a triplet as follows:

FL = (S× T, f ,P(H))
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We consider the notion of a data cube as a special case of the spatiotemporal field f
applying three constraints, which we express precisely as follows:

• S consists of a set of sampled spatial atoms within a given spatial coverage. Each
spatial atom s ∈ S is bidimensionally indexed by the indices (i, j) ∈ (m, p), where m
and p respectively denote the number of rows and columns. This uniform sample S is
maintained across all timestamps tk where every space–time location (si , j, tk) has one
and only one value from the range of the function f :

∀si , j ∈ S, ∀tk ∈ T ∃!h ∈ P(H) such that f (si , j, tk) = h

• All time elements tk ∈ T are temporally regular, which means that the temporal
distance between each two consecutive times tk and tk+1 corresponds to the duration
constant δt > 0. This constant is designated as the temporal resolution of a data cube.

∀tk, tk+1 ∈ T : (tk+1 − tk) = δt

• The spatial atom s ∈ S of a raster data cube could have many abstractions (i.e., spatial
representation). As shown in Figure 3, a spatial atom can be either abstracted as
a rectangle or as a point (excluding the center or the left/top corner of a rectangu-
lar raster cell). The spatial atoms in the raster data cube must be spatially regular,
which means the size and shape of these spatial atoms (i.e., cells) should be consistent
across the entire raster data cube coverage, forming a regular grid pattern. Addition-
ally, the spatial arrangement and spacing between adjacent spatial atoms should be
constant throughout the entire dataset.

Figure 3. Different abstraction of the data cube spatial atom.

In the case where the spatial atoms are abstracted as points, spatial regularity implies
that vertically and horizontally, the contiguous spatial atoms are separated by the same
consecutive distances δm > 0 and δp > 0. We express this constraint as follows:

∀si , j , si , j+1 , si+1, j : (si , j+1 − si , j) = δp and (si+1, j − si , j) = δm

The pair (δm, δp) is designated as the spatial resolution of a data cube.

3.2.3. An Ontological Representation of Raster Data Cube

We propose an ontology in order to capture the key concepts along with their relation-
ships and constraints pertaining to the notion of a semantic data cube. For this purpose,
we employ description logic (DL), which is considered a fragment of first-order logic and
serves as the formal expressive language of the ontological web language (OWL2). Using
the expressiveness of DL, we formulate the set of axioms that bind higher-level concepts as
well as the set of properties (i.e., roles) that would capture the notion of a semantic data
cube. To do so, three main concepts that were evoked in the basic definition of a data cube
will be semantically defined using DL, especially the main concepts S× T, f , and P(H).

Initially, we need to define the atomic concepts that constitute the building blocks
on which our axioms will be based. The first concept consists of the spatial domain of
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any raster data cube. We represent this concept with the class dcb:FieldAtom, which is
defined as the union of the classes geo:Point and geo:Polygon. This class refers to the set
S defined in the previous section.

FieldAtom ≡ Point t Polygon

In this definition, we assume that any spatial atom of a data cube could be represented
either by a polygon, where a rectangle or a square is a special case of it, or by a point,
which could represent the center or the left/right corner of each spatial atom of a data cube.
The second concept consists of representing the set of all variable names (e.g., temperature,
rainfall, humidity, etc.) with the class dcb:FieldPropertyVar. This class refers to the set
M defined in Section 3.2. The third concept consists of the set of all values V that could
be affected by the spatial atoms of a data cube. Often these values are of the numeric type
and sometimes textual (e.g., a data cube that represents the variable of landcover types).
However, since there is no need to restrict these values to only these types, we prefer to
remain generic and represent the class dcb:Value as equivalent to the related generic type
rdfs:Literal, which represents all data types in the system.

Value ≡ rd f s : Literal

The last concept consists of the time T, which we represent simply using the data property
DateTimestamp, which represents the set of ordered instants.

The second step entails the derivation of key concepts by compounding the atomic
ones and specifying the set of axioms that can be applied to any semantic data cube.
In the previous section, we considered that a spatial atom in a data cube could be associated
with one or a collection (i.e., a subset) of property-value pairs. This subset was represented
by the set H = (M, V). This leads us to represent the first key concept, which consists of
the class dcb:FieldPropValue as follows:

FieldPropValue v = 1 hasFieldProp.FieldPropertyVar u
= 1 hasFieldValue.Value

The class dcb:FieldPropValue is subsumed by the intersections of two classes =
1hasFieldProp.FieldPropertyVar and = 1hasFieldValue.Value ,where the former refers to all
instances having exactly one relationship dcb:hasFieldProp with the class
dcb:FieldPropertyVar and the latter refers to all instances having exactly one relationship
dcb:hasFieldValue with the class dcb:Value. In other words, this description implies that
each instance of the dcb:FieldPropValue class is composed of a unique pair made up of an
instance of the dcb:FieldProperty class together with an instance of the dcb:Value class.
The second key concept consists of defining the spatiotemporal domain (S× T) related to a
semantic data cube, which is represented with the class dcb:SpaceTimeLocation and the
following axiom:

SpaceTimeLocation ≡ ∃ hasSpatialRe f .FieldAtom u
∃ hasTemporalRe f .TimeStamp u
∀ hasField.FieldPropValue

In this axiom, we define the class dcb:SpaceTimeLocation as an equivalence of
the intersection of three classes: the ∃hasSpatialRe f .FieldAtom, which starts
with the existential quantifier ∃ that denotes the set of all instances connected to
the class dcb:FieldAtom through the relation dcb:hasSpatialRef. The class
∃hasTemporalRe f .TimeStamp, for which the same case applies and which denotes the set of
all instances connected to the data type TimeStamp through the relation dcb:hasTemporalRef.
And the third class, ∀hasField.FieldPropValue, which starts with the universal quantifier ∀,
defines the set of all instances that have only been connected to the class dcb:FieldPropValue
through the relationship dcb:hasField. This means that any instance that is a sub-
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ject of the dcb:hasField property must necessarily be connected to the instance of the
dcb:FieldPropValue class. However, such a definition does not necessarily imply that
every instance of dcb:SpaceTimeLocation must be associated with an instance of the class
dcb:FieldPropValue. In other words, for an instance to stand for a space–time location, it
must at least be related to a spatial atom (i.e., a cell) represented by the dcb:FieldAtom class
and have at least one temporal reference represented by the TimeStamp data type. Even if
such a space–time location is not associated with a property-value pair, it is nevertheless
still considered an instance of the dcb:SpaceTimeLocation class.

This last point leads us to define the notion of observation and to clearly differentiate it
from the notion of spatiotemporal location. Thus, an observation could be seen as a subclass
of dcb:SpaceTimeLocation with an obligation to be involved in the dcb:hasField relation
along with the dcb:FieldPropValue class. In this case, we formulate this axiom as follows,
using the intersection of two classes:

Observation ≡ SpaceTimeLocation u
∃ hasField.FieldPropValue

This implies that an observation must possess spatial and temporal references, and fur-
thermore, it must be associated with at least one property-value pair that is an instance of
the class dcb:FieldPropValue and this is necessarily through the relation dcb:hasField.
This relationship represents the most important association that plays the role of linking the
spatiotemporal domain of a data cube with its range. Precisely, this relation dcb:hasField
represents the function f , which is considered the definition of the spatiotemporal field in
the previous section. For this reason, we chose to give a definition of this relationship as
follows:

∃ hasField.> v ≤ 1 SpaceTimeLocation
> v ∀ hasField.FieldPropValue

The relationship dcb:hasField has as its domain the class dcb:SpaceTimeLocation
and exclusively as its range the class dcb:FieldPropValue. Since there are no cardinality
restrictions on the range of dcb:hasField, an instance of dcb:SpaceTimeLocation can
have from zero to multiple instances related to the dcb:FieldPropValue class. This means
that a space–time location might have a collection of property-value pairs. This last point
was expressed in the previous section using the range of the function f , which is denoted
by the power set P(H).

On the other hand, the existence of the cardinality notation ≤ 1 in the domain of the
function dcb:hasField implies that this relation is inversely functional. This implies that
each instance of the range related to the dcb:hasField relation can be associated with at
most one spatiotemporal location. Such a characteristic leads us to specify the inverse
function related to the dcb:hasField relation that we call hasSTL.

hasSTL ≡ hasField−

This relation would therefore be functional and would allow one to easily find, for each
instance of the class dcb:FieldPropValue, at most one associated instance of the
dcb:SpaceTimeLocation class.

The last concept and axiom related to the design of our ontology concerns the notion
of a data cube and how it is defined in relation to the other concepts. In this model, a data
cube concept is a subclass of the intersection of three anonymous classes:

DataCube v= 1 hasCoverageParams.CoverageParams u
∃ hasPropSet.FieldPropertyVar u
= 1 hasTimeExtent.TimeExtent
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• An instance of the dcb:DataCube class must first be associated with one and only one
instance of the dcb:CoverageParams class. This class defines the main spatial and
temporal parameters that shape the spatiotemporal domain of a semantic data cube.
It defines exactly its spatial resolution (i.e., (δm, δp)) as well as its temporal resolution
(i.e., δt) and the coordinates of the point that constitutes the left corner of the data cube.
With these parameters, we will be able to reconstruct the spatiotemporal domain of
any given dcb:DataCube instance.

• Each instance of dcb:DataCube records the values of one or more distributed variables
(e.g., temperature, evapotranspiration, cloud cover, etc.). Thus, for each instance of
the dcb:DataCube class, there must be a relationship with at least one instance of the
dcb:FieldPropertyVar class. This last class represents the set of all the distributed
variables. Thus, the relation between the class dcb:DataCube and the other classes
of our ontology is materialized by its relation to the class dcb:FieldPropertyVar
through the relation dcb:hasPropSet.

• Any instance of the dcb:DataCube class embodies a unique temporal extent for which
it holds. The temporal extent signifies the valid time interval between when the
data cube starts recording its values and the end of that recording. Similarly to the
constraint in the dcb:CoverageParams class, each instance of dcb:DataCube must
possess only one and only one temporal extent.

Another property that could potentially be assigned to the dcb:DataCube class is
the abstract relation dcb:DataCubeBinaryRelation which could specifically represent the
set of topological and arithmetic operations between each pair of two instances of the
dcb:DataCube class. A dcb:DataCube class can also be associated with a class that stores
all of its metadata, which may include the type of sensors used, the owner of such data,
and others. The design of the whole ontology, which mentions the characteristics of data
cubes and their relationships with all other classes, is illustrated in Figure 4.

3.3. Ontology-Based Geospatial Queries

To evaluate the expressivity of the proposed semantic representation model, we care-
fully designed a set of geospatial queries. These queries can be classified into a taxonomy
that captures most of their aspects. Thus, we present a taxonomy within which each
query can find its semantic position. We then take a sample of scenarios and classify them
according to this taxonomy.

3.3.1. Taxonomy of Semantic Geospatial Queries

In this taxonomy, and at a high level of abstraction, we characterize any semantic
geospatial query both by the nature of the operations that it involves and by the nature of
the output that it might yield.

Regarding the nature of the operation, we distinguish three main ones: binary opera-
tion, aggregation, and filtering. The binary operation can be of raster type, which means
that the two operands of such an operation are data cube/raster layers, or it could be
feature-based, where the operands are features. These operations are principally topolog-
ical, geometric, or arithmetic. For the aggregation operation, it could be spatial, which
represents the operation of reducing variability within space; temporal, which, by analogy
with space, is the operation of reducing variability over the time interval; or semantic,
which represents the operation of reducing variability over the value range. The same goes
for the filtering operation, which consists of the condition that the query must meet to give
the final result. The filter used can also be spatial, temporal, or semantic (see Figure 5).

Note that there is no exclusivity between each type of operation. This implies that
a geospatial query can, for example, include both aggregation and filtering operations.
Similarly, aggregation can be spatial or temporal in the same query.
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Figure 4. Diagram of the developed raster data cube vocabulary. Solid lines indicate object or data properties, whereas arrows indicate the direction of property
relations. Dotted lines indicate subclass relations. Dashed lines without arrowheads indicate the connection between disjoint classes. The green rectangles indicate
object properties, while the pink rectangles indicate data properties. In the case of object properties, their functional or inverse-functional nature is specified where
applicable. Classes represented in dark blue correspond to the classes of the ontological vocabulary we have developed, while those in lighter blue represent classes
reused from another ontology (in this case, the GeoSPARQL ontology).
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In terms of the output of a semantic geospatial query, it consists of the nature of the
answer sought by the query, which could be raster-based, where the target could be the
value, time, or location of the raster cell, or it could be feature-based, where the target is the
value of an attribute or the position or the type of the feature (see Figure 5).

Figure 5. Taxonomy used for the classification of geospatial semantic queries.

3.3.2. Scenarios and Classifications

We propose a set of geospatial queries that combine the information retrieval from
the data cube with a set of features that are in the same spatial domain as the data cube
(see Table 2). These queries represent a set of generic scenarios related to the study of any
given geographic phenomenon. These queries are only a sample of the total number of
scenarios we could obtain by using all the possibilities within our proposed geospatial
query framework.
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The first four queries are classified as basic since they are exclusively related to
retrieving different patterns of information from data cubes over time without including
any information about geospatial features. For instance, Q1 could be labeled a time range
query (TRQ) since it is searching for the raster cells (i.e., spatial atoms) and their values
over a time range. Q2 could be mostly termed as a field range query (FRQ) since it seeks
to retrieve raster cells and their values that fall within a range of values related to a given
distributed variable. Q3 might be considered mostly a spatial point query (SPQ) since it
seeks to retrieve the raster cells and values related to a given spatial point. The last basic
query, Q4, could be characterized as a spatial range query (SRQ) since it is concerned with
retrieving the raster cells and their values that lie within a given spatial region. We give
more accurate classifications regarding these four queries in both Tables 3 and 4.

Table 2. List of the semantic geospatial queries that should be tested as scenarios for the use case.

Query Code Textual Description

Q1 What are the raster cells and their values related to the variable V
between two times, ti and tj?

Q2 What are the raster cells and their values related to the variable V where these values are greater than
the value vi between two times, ti and tj?

Q3 What are the raster cells and their values related to the variable V at the point pi
between two times, ti and tj?

Basic

Q4 What are the raster cells and their values related to the variable V inside the region R between
two times, ti and tj?

Q5 How is the spatial distribution of the maximum of the variable V within a
feature f between two times, ti and tj?

Q6 How is the spatial distribution of the highest difference between two variables, Vj and Vk ,
in each raster cell within a feature f during a period between ti and tj?

Q7 What and where is the maximum value of the variable V inside the feature fa of the type Ta
holding the maximum number of features of the type Tb between two times, ti and tj?

Q8 How does the maximum value of the variable V evolve during the
period between ti and tj?

Advanced

Q9 When and where does the highest value of the variable V occur during the period
between ti and tj , and which features and their types does this value fall within?

Table 3. Classification of the set of spatiotemporal queries Queries based on the data cube and feature
nature of output as well as their basic operations.

Data Cube-Based
Output

Data Cube Binary
Operations

Feature-Based
Outputs

Feature-Based
Operations

Queries Ref Value Location/Cell Topological Arithmetic/Statistics Attribute Value Position Type Geometric
(e.g., Buffer, Area) Topologic

Q1 × ×
Q2 × × ×
Q3 × × ×
Q4 × ×
Q5 × × ×
Q6 × × ×
Q7 × × × ×
Q8 × × ×
Q9 × × × × × ×

On the other side, we consider the last five queries advanced ones. This is mainly
because all these queries combine information related to geospatial features with the
semantic data cube. These queries also apply to the processes of spatial and temporal
aggregation. We characterize these queries as follows:
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• Queries Q5 and Q6, for instance, first apply temporal aggregation over a time interval.
However, Q5 applies it to a distributed variable, while Q6 performs a difference
operation between two given distributed variables, which could be considered a map
algebra operation qualified as a local one.

• Q7 applies spatial and temporal aggregation to find the maximum value of a given
distributed variable. This value must be within the feature fi that contains the maxi-
mum number of features of the specific type Tb. Thus, this query additionally involves
two spatial topological operations, one between the features of two entity types and
the second between the selected feature and the data cube.

• Q8 applies only a spatial aggregation for each moment in a time interval over a given
distributed variable V. This leads to a trajectory with a sequence of time-stamped
value-point pairs.

• The last query, Q9, also applies spatial aggregation for each time point but also looks
at which feature the trajectory of the highest value crosses and determines the type of
these features. In addition, this query involves a spatial topology operation between
the feature and the data cube.

Table 4. Classification of the set of spatiotemporal queries based on the nature of aggregation and
used filter.

Aggregation-Based Filter-Based

Spatial Temporal Semantic
Queries Ref. Spatial Temporal Semantic

0-Dimension 2-Dimension Time Point Time Range Scalar Range

Q1 ×
Q2 × ×
Q3 × ×
Q4 × ×
Q5 × × ×
Q6 × × ×
Q7 × × × × ×
Q8 × × ×
Q9 × × ×

The precise positioning of these advanced queries can be seen in Tables 3 and 4.
Additionally, each query mentioned in this table has a corresponding equivalent that
effectively illustrates it through a specific example. The chosen illustration revolves around
forest fire data, whereas raster data includes variables such as surface temperature and
evapotranspiration. Similarly, features are represented using entities such as urban regions,
territorial zones, and airports (see Section 5.1). Readers can refer to Appendix A, which
covers queries Q1 to Q4. Similarly, for queries Q5 to Q9, they can refer to Section 5.2.

4. The Implementation of the Proposed Framework

In this section, we explain the overall architecture that our framework uses to imple-
ment the underlying concepts developed. In addition, we describe the VKG specifications
that depict the process through which the framework was implemented.

4.1. System Architecture

As shown in Figure 6, our system architecture is composed of three main layers:

• Data integration layer. This layer lies at the bottom of the architecture and involves
integrating raw data from different geospatial sources, especially raster (e.g., Geotiff
and NetCdf formats) and vector (e.g., Shapefiles and GML formats) data, within a
spatial database that supports both raster and vector data (e.g., PostgreSQL/Post-
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GIS, Oracle, etc.) using well-designed database schemas. In our case, after creating
our database schemas in PostgreSQL, we extracted and loaded the data from their
raw formats (ex. Netcdf, GeoTiff, etc.) along with their metadata into the selected
PostgreSQL relational database. Then, we used PostGIS raster functions, mainly
ST_PixelAsPoint, to extract the center of each pixel related to the coverage of the
data cube and ST_Value to extract the value of such pixel. The aim of this process (i.e.,
process 1) was to fill the schema of our database and, in particular, the three tables of
FieldAtom, SpaceTimeLoc, and FieldPropValue (see Figure 7).

Figure 6. System architecture is presented as three layers and six processes. The orange dashed
arrows indicate the inputs to each system component. The green arrows indicate the processes
involved in the query answer. The numbers indicate the order in which each process must be
performed to obtain an answer to a query.

Figure 7. Database design for representing semantic data cube.

• Ontology-based data access (OBDA) layer. This layer represents the core of the
system. At this layer, a semantic model in the form of an ontology is defined in order
to provide a formal and high-level representation of the domain of interest. In addition,
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the mapping must be defined to link the classes and properties of the ontology to the
tables and attributes of the database schemas. There are three main components in
this layer that are responsible for four related processes:

– Query parser: this component is the upper part of the SPARQL query engine.
Its main role is to receive SPARQL queries and perform a syntax check to verify
their correctness and compliance with the query language syntax. Once queries
have passed the syntax check, this component forwards them to the translation
module for further processing (process 3).

– SPARQL-to-SQL translator: this component receives the analyzed SPARQL
query as input and uses the VKG specification, which includes the ontology and
its mapping. With the support of a reasoner that uses the axioms defined in the
ontology, it transforms the query into an SQL equivalent. The reformulated query
is then sent for execution to the spatial database engine (process 4).

– Query Evaluator: this component utilizes the output of an SQL query executed
within the spatial database engine (process 5). It assesses the query result and
converts it into a collection of RDF triples, without physically materializing
the data. The resulting set of RDF triples includes the original RDF triples
representing the queried records from the database as well as newly inferred RDF
triples. The entire collection of RDF triples generated for a specific query is known
as the virtual knowledge graph (VKG). Finally, the result of this translation is
sent to the query interface for visualization (process 6).

• Query interface for SPARQL layer. This layer consists of a front-end interface that
allows the interaction between users and the proposed system. Users can query the
classes and relations of the ontology using the SPARQL query language (process 2)
and then display the results of their queries.

4.2. The VKG Specifications

As explained earlier, to implement our framework, we need to define the VKG spec-
ification triple (O, M, S) with three key ingredients: the ontology, O, which is defined in
Section 3.2.3, the data source schema, S, which structures the data source into a database
schema, and the mapping, M, which connects the classes and properties of the ontology to
the tables and attributes of the database schema.

For the design of the data source schema, we define the database design model that
is most suitable for our defined ontology. This data model is designed with respect to
the normal form to benefit from all optimizations deployed in the VKG system as well
as to avoid some redundancies and self-joining during query execution and evaluation.
The logical data model (see Figure 7) is composed of six interrelated tables that correspond
to the classes defined in our ontology.

For instance, the class dcb:SpaceTimeLoc is represented by the table SpaceTimeLoc,
where each instance is characterized by a temporal component (i.e., stl_time attribute)
and by a spatial component that is an instance of the spatial domain of a data cube. This
spatial domain is modeled as a table named FieldAtom, which stores the geometries of
all cells in a given data cube. Any given spatiotemporal location should have one and
only one spatial component (i.e., a raster cell), and this spatial component could spawn or
be the source of multiple spatiotemporal locations depending on the size of the temporal
dimension. Thus, to represent such a functional relationship, we move the primary key of
the table FieldAtom to the table SpaceTimeLoc and consider it a foreign key.
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The data cube class is mainly defined on the basis of the relationship between a
spatiotemporal location and a subset of property-value pairs. This subset is materialized
by the table FieldPropValue. This table mainly contains a foreign key (prop_id attribute),
which refers to the table FieldProperty containing the set of all distributed variable names
(i.e., the field properties). Correspondingly, the table FieldPropValue contains the value
(field_value attribute), which is associated with a specific property and characterizes a
unique spatiotemporal location.

Finally, since a data cube can be mainly characterized by the set of its properties (i.e.,
variables) along with the set of parameters related to its spatial and temporal coverage, we
therefore create a table named DataCube and we link it to the table FieldProperty, where
each property of this table characterizes one and only one instance of the DataCube table.
In a similar way, we create the table CoverageParams, which contains all the parameters
that characterize the spatial and temporal extent of a given data cube. A data cube must be
characterized by only one instance of the table CoverageParams.

In order to link the database schema S to the ontology O, we need to define a mapping
M between them. Following the definition in [31,45], a mapping, M, consists of a set of
assertions of the form:

m : φ(a1, a2, a3, . . . , an) ↪→ ψ(a1, a2, a3, . . . , an)

• In this case, φ(a1, a2, a3, . . . , an) represents a query on a data source schema, S, that
selects the attributes (a1, a2, a3, . . . , an) of all tables generated by such a query. In the
case where the data source schema S is relational, such a query is expressed using SQL.

• ψ(a1, a2, a3, . . . , an) represents a RDF triplet statement specifying the way to use RDF
terms constructed from database values to instantiate classes and properties. More
precisely, such a model indicates either that an RDF term (representing an object) is
an instance of a class, or that such a term is related by a property to another term
representing an object or a literal value.

The standard language for representing the mapping, M, is defined by the W3C
R2RML specification. For instance, in Table 5, we define a set of mapping assertions to
associate our database schema, S, with our ontology terms. For example, in the map-
ping assertion called spaceTimeLocation, the source SQL query φ outputs the attributes
(id_stl, time_index, stl_time, id_fm), which are mapped to the RDF triple state-
ment ψ. The statement ψ binds the identifier of the table spaceTimeLoc (i.e., id_stl
attribute) with the URI of the class dcb:SpaceTimeLocation in order to uniquely identify
each instance of this class. Then, in the same mapping, we associate the attribute stl_time
with the data property dcb:hasDateTime and the foreign key id_fm with the data property
dcb:hasSpatialRef, which refer respectively to the temporal and spatial components of
each instance of the class dcb:SpaceTimeLocation.

Once our relational schemas are populated, we obtain the source database, D, which
will serve as the population source of our ontology through the mapping, M. This popula-
tion consists of a set of RDF assertions. Conceptually speaking, we call M(D) the set of RDF
assertions on a database, D, through the mapping, M. Then, by applying the semantics and
axioms related to our ontology, we could derive a new RDF graph, such as the relational
data on the source, which is denoted GM ,D.

In practice, the ontology is populated only at the time of the SPARQL query execution.
The SPARQL query is rewritten into a SQL query based on the mapping, M, and the result
is transformed into a knowledge graph, as illustrated in Section 4.1.
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Table 5. Mapping between the database schema and the ontology.

Mapping Assertions

Mapping ID Source: SQL Query Target: Turtle Template

FieldAtom
select id_fm, st_astext(field_loc) as field_loc, coord_rel_x,
coord_rel_y from FieldAtom

dcb:fad-{id_fm} a dcb:FieldAtom;
dcb:xRelCoord {coord_rel_x}^^xsd:integer;
dcb:yRelCoord {coord_rel_y}^^xsd:integer;
dcb:asFieldWKT {field_loc}^^geo:wktLiteral.

SpaceTimeLocation select from SpaceTimeLoc

dcb:stl-{id_stl} a dcb:SpaceTimeLoc;
dcb:hasRelTime {time_index}^^xsd:integer;
dcb:hasDateTime {stl_time}^^dateTimeStamp;
dcb:hasSpatialRef dcb:fad-{id_fm}.

Field_prop_value select from FieldPropValue

dcb:fpval-{id_stlfv} a dcb:FieldPropValue;
dcb:hasFieldValue {fvalue};
dcb:hasVariableName {prop_name};
dcb:hasFieldProp dcb:fpv-{prop_id};
dcb:hasSTL dcb:stl-{id_stl}.

DataCube_coverage
select id_ps, ps_name, ps_label, dc.id_cp, upperleftx, upperlefty,
dc_width, dc_hight from property_set dc,
coverage_params cp where dc.id_cp = cp.id_cp

dcb:dc-{id_ps} a dcb:DataCube;
dcb:dcHasName {ps_name}^^xsd:string;
dcb:dcHasLabel {ps_label}^^xsd:string;
dcb:hasCoverageParams dcb:cp-{id_cp}.

dcb:cp-{id_cp} a dcb:CoverageParams;
dcb:xLeftCorner {upperleftx}^^xsd:double;
dcb:yLeftCorner {upperlefty}^^xsd:double;
dcb:xspatialSize {dc_width}^^xsd:integer;
dcb:yspatialSize {dc_hight}^^xsd:integer

Field_Property select from FieldProperty
dcb:fpv-{id_prop} a dcb:FieldPropVar;

dcb:hasPropName {prop_name}^^xsd:string;
dcb:hasPropSet dcb:dc-{ps_id}.

5. Use Cases and System Performances Evaluation

We apply our approach to a specific use case using a given dataset by formulating and
executing nine scenarios in the form of spatiotemporal queries. We distinguish between
basic queries that focus on retrieving information only from raster layers and advanced
queries that combine raster layers with discrete features.

5.1. Use Case and Dataset

The modeling approach was tested and applied to the forest fire data, as future climate
variability is expected to increase the risk and severity of forest fires in many regions,
especially in southern Europe and the Mediterranean region (see Figure 8). Properly
managing and exploring raster data cube variables, such as land surface temperature,
in their spatial context can help scientists better recognize areas or regions most likely to
experience forest fires in the future.

For this experiment, we use two main types of geospatial datasets (see Figure 8).
The first type is feature-based data that consists of three vector layers, namely urban
areas, airports, and NUTS [46]. NUTS (nomenclature of territorial units for statistics) is
a hierarchical system dividing the economic territory of the EU and the UK into three
levels known as NUTS 1 (major socio-economic regions), NUTS 2 (basic regions for the
application of regional policies), and NUTS 3 (small regions for specific diagnoses).
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Figure 8. Study area and dataset.

The second dataset type is data cubes, consisting of sequences of time-stamped raster
layers of multiple variables. In our case, we select four variables that are resampled at a
daily temporal resolution and with a spatial resolution of 1 km. These variables are land
surface temperature during the day, land surface temperature at the night, leaf area index,
and evapotranspiration. The spatial size of each temporal raster layer is 117 × 142 pixels,
whereas the temporal dimension we pick up starts from 15 March 2009 and ends on 3 May
2009, and consists of 50 temporal snapshots for each variable (daily temporal resolution).

5.2. SPARQL Query Formulation and Visualization

In this section, we express the set of queries that are presented in Table 2. We map
these queries to our dataset to make them more specific and utilize SPARQL to formulate
and answer such queries. We use the query editor extension developed by the Ontop
system for the Protégé software [33]. We only display the SPARQL formulations relative
to the advanced queries (i.e., from Q5 to Q9). However, the reader can find the SPARQL
formulations relative to the first four queries in Appendix A. To reformulate queries, we
need to define a list of prefixes that must be declared for each query being reformulated
(see Table 6). For query execution, the Ontop system is employed. This system provides
outcomes in either tabular or JSON format and concurrently generates a translation of the
SPARQL query into an SQL query optimized for PostGIS. Utilizing the existing connection
interface between QGIS and PostGIS, these SQL queries are then executed within the QGIS
platform, facilitating the subsequent visualization of results within the QGIS environment.

Table 6. List of prefixes used for SPARQL queries.

Acronym URL

geo <http://www.opengis.net/ont/geosparql/> (accessed on 10 June 2023)

geof http://www.opengis.net/def/function/geosparql (accessed on 10 June 2023)

units http://www.opengis.net/def/uom/OGC/1.0/ (accessed on 10 June 2023)

crs http://www.opengis.net/def/crs/OGC/1.3/CRS84/ (accessed on 10 June 2023)

geo-sf http://www.opengis.net/def/dataType/OGC-SF/1.0/ (accessed on 10 June 2023)

dcb http://www.semanticweb.org/OntologyRasterDataCube/ (accessed on 10 June 2023)

geop http://www.opengis.net/def/property/OGC-GeoSPARQL/1.0/ (accessed on 10 June 2023)

Q5 What is the spatial distribution of the maximum soil temperature within the urban
area named Sofia between two times, 15 March 2009 and 25 March 2009?

<http://www.opengis.net/ont/geosparql/>
http://www.opengis.net/def/function/geosparql
http://www.opengis.net/def/uom/OGC/1.0/
http://www.opengis.net/def/crs/OGC/1.3/CRS84/
http://www.opengis.net/def/dataType/OGC-SF/1.0/
http://www.semanticweb.org/OntologyRasterDataCube/
http://www.opengis.net/def/property/OGC-GeoSPARQL/1.0/
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select ?location (max(?val) as ?max_soil_temp) where {

?stl dcb:hasDateTime ?time_ref;
dcb:hasSpatialRef ?sp. ?sp dcb:asFieldWKT ?location.
?stl dcb:hasField ?f. ?f dcb:hasFieldValue ?val;
dcb:hasVariableName ?var.
?urb dcb:area_name ?urb_name;
geo:hasGeometry ?urbgeom.
?urbgeom geo:asWKT ?urb_wkt.
FILTER (?time_ref >= "2009-03-14T00:00:00+01:00"^^xsd:dateTimeStamp && ?time_ref <=

"2009-03-25T00:00:00+02:00"^^xsd:dateTimeStamp && ?var = ’LST_Day_1km’ &&
geof:sfWithin(?location, ?urb_wkt) && ?urb_name = ’Sofia’) } group by ?location

Q6 What is the spatial distribution of the highest difference in soil temperature in
each raster cell between day and night within a feature f during a time interval
between 15 March 2009 and 25 March 2009?

select ?location (MAX((?v1 - ?v2)) as ?max_diff_soil_temp) where {
?stl dcb:hasDateTime ?time_ref;
dcb:hasSpatialRef ?sp. ?sp dcb:asFieldWKT ?location.
?stl dcb:hasField ?fpv;
dcb:hasField ?fpv2. ?fpv dcb:hasFieldValue ?v1;
dcb:hasVariableName ’LST_Day_1km’.
?fpv2 dcb:hasFieldValue ?v2; dcb:hasVariableName~’LST_Night_1km’.

?urb dcb:area_name ?urb_name;
geo:hasGeometry ?urbgeom.
?urbgeom geo:asWKT ?urb_wkt.
FILTER (?time_ref >= "2009-03-14T00:00:00+01:00"^^xsd:dateTimeStamp && ?time_ref <=

"2009-03-25T00:00:00+02:00"^^xsd:dateTimeStamp && geof:sfWithin(?location,
?urb_wkt) && ?urb_name = ’Sofia’) } group by ?location

Q5 applies temporal aggregation along with a spatial filter to extract the maximum
value of soil temperature for each raster cell in the selected urban area. Figure 9 (left) shows
the visualization of the query result from Q5, with colors from blue to red indicating the
maximum soil temperature from low to high. While Q6 applies the same operations, it
calculates, in addition, the difference between day and night soil temperatures, which
requires crossing two data cubes. In Figure 9 (right), the red-colored area shows a strong
disparity, while the blue-colored area shows a relative concordance between day and night
soil temperatures.

Figure 9. Map visualization of query results of Q5 (left) and Q6 (right).

Q7 What is the maximum soil temperature inside the entity holding the maximum
number of airports between two times, 15 March 2009 and 14 May 2009?

select ?urbnm ?airport_number (max(?val) as ?max_soil_temp) where {
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?stl dcb:hasDateTime ?dt;
dcb:hasSpatialRef ?sp. ?sp dcb:asFieldWKT ?gwkt. ?stl dcb:hasField ?f.
?f dcb:hasFieldValue ?val;
dcb:hasVariableName ?var.
?urb2 dcb:area_name ?urbnm;
geo:hasGeometry ?urbgeom2. ?urbgeom2 geo:asWKT ?urb_wkt2.
{
select ?urb_name (count(?airname) as ?airport_number) where {
?urb dcb:area_name ?urb_name;
geo:hasGeometry ?urbgeom. ?urbgeom geo:asWKT ?urb_wkt.
?airport dcb:airport_name ?airname;
geo:hasGeometry ?geom. ?geom geo:asWKT ?air_wkt.
Filter(geof:sfContains(?urb_wkt, ?air_wkt) )
} group by ?urb_name order by desc(?airport_number) limit 1 }

FILTER (?dt >= "2009-03-15T00:00:00+01:00"^^xsd:dateTimeStamp && ?dt
<="2009-05-04T00:00:00+02:00"^^xsd:dateTimeStamp && ?var = ’LST_Day_1km’ &&
geof:sfWithin(?gwkt, ?urb_wkt2) && ?urbnm = ?urb_name) } group by ?urbnm
?airport_number order by ?airport_number

Q7 uses a subquery to make a selection of the urban area containing the maximum
number of airports and then returns that area for applying spatial and temporal aggregation
to select the maximum soil temperature value. The resulting map shows the selected area
along with the maximum value, which is 286.072 (see Figure 10).

Q8 How does the maximum soil temperature evolve during the period between 15
March 2009 and 25 March 2009?

select ?soil_temp_location ?time_stamp ?val_soil_temp where {

?stl dcb:hasDateTime ?time_stamp;
dcb:hasSpatialRef ?sp. ?sp dcb:asFieldWKT ?soil_temp_location.

?stl dcb:hasField ?f. ?f dcb:hasFieldValue ?val_soil_temp;
dcb:hasVariableName ?var.
{ select ?dt (max(?val) as ?max_soil_temp) where {
?stl dcb:hasDateTime ?dt;
dcb:hasField ?f. ?f dcb:hasFieldValue ?val;
dcb:hasVariableName ?var.

FILTER (?dt >= "2009-03-15T00:00:00+01:00"^^xsd:dateTimeStamp && ?dt <=
"2009-03-25T00:00:00+02:00"^^xsd:dateTimeStamp && ?var = ’LST_Day_1km’) }

group by ?dt }
Filter(?val_soil_temp = ?max_soil_temp && ?time_stamp = ?dt && ?var =

’LST_Day_1km’)} order by ?time_stamp

Q9 When and where did the highest soil temperature value occur during the period
between 15 March 2009 and 17 March 2009 and what are the entities and their types
that this value falls within?

select ?feature ?entityType ?soil_temp_location (?t as ?Time) (?val as ?VALUE) where
{

?feature rdf:type ?entityType;
geo:hasGeometry ?fgeom. ?fgeom geo:asWKT ?urban_area.
{
select ?soil_temp_location ?t ?val where {

?stl dcb:hasDateTime ?t;
dcb:hasSpatialRef ?sp. ?sp dcb:asFieldWKT ?soil_temp_location.
?stl dcb:hasField ?f. ?f dcb:hasFieldValue ?val;
dcb:hasVariableName ?var.
{
select ?dt (max(?val) as ?max_val) where {
?stl dcb:hasDateTime ?dt;
dcb:hasField ?f. ?f dcb:hasFieldValue ?val;
dcb:hasVariableName ?var.
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FILTER (?dt > "2009-03-14T00:00:00+01:00"^^xsd:dateTimeStamp && ?dt <
"2009-03-17T00:00:00+02:00"^^xsd:dateTimeStamp && ?var = ’LST_Night_1km’) }
group by ?dt }

Filter(?val = ?max_val && ?t = ?dt && ?var = ’LST_Night_1km’)
}} Filter(geof:sfWithin(?soil_temp_location, ?urban_area) && ?entityType not in

(geo:SpatialObject, geo:Feature )) }}

Figure 10. Map visualization of the query result for Q7.

Q8 uses a subquery to calculate the maximum value for each time. This sequence of
values is then returned and used in the outer query to find the locations corresponding to
each maximum value. Figure 11 shows the path that was drawn to track the maximum at
each time.

Figure 11. Visualization of the query result for Q8. The numbers ranging from 1 to 5 delineate the
chronological order of paths followed, beginning from the initial point and concluding at the final
destination while tracking the maximum temperature. The directional arrows positioned along these
pathways serve to illustrate the specific direction of movement.
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Q9 involves two nested subqueries. The first selects the maximum value of the soil
temperature for each time and returns this sequence to the outer subquery to find all
locations corresponding to each maximum value in this sequence. We then use a spatial
filter with a topological relationship to try to find the geometric features in which these
locations are contained. Finally, using the reasoning capabilities of the system, the query
can infer the entity type of each geometric feature that meets the spatial criteria. Figure 12
shows the result of this query.

Figure 12. List of query results of Q9.

5.3. Performance Evaluation

This section evaluates the computational performance of our implemented framework.
This experimentation consists of two parts:

• In the first experiment, we compare our framework implemented on the basis of the
Ontop system against GeoLD and Strabon. For this comparison, we use the four
basic spatiotemporal queries formulated in Appendix A. We examine the runtime
performance of each query and observe how the graphical curves evolve as the size of
the temporal dimension (i.e., the number of time-stamped layers) increases for each
system. These experiments have been conducted and are illustrated in Figure 13.

• The second experiment consists of examining, using the Ontop system, the evolution
of the execution time of advanced geospatial queries reformulated in Section 5.2.
Similarly, we examine the runtime cost as the size of the temporal dimension increases.
However, in this evaluation, a comparison is made between and among these queries
to see how the Ontop system behaves with each of them. This is illustrated in Figure 14.

For each query in the experiments, three separate consecutive calls are made to collect
their average response times. For the first part of the experiment, we can clearly see
from Figure 13 that for the three queries, Q2, Q3, and Q4, the framework implemented
under the VKG system performs well, and scales quite well with the growing size of
the temporal dimension. The performance of Ontop is very close to that of the GeoLD
system, even though the GeoLD system uses an array-based database system (Rasdaman),
which is considered the most efficient for storing and querying raster data cubes. Both
Ontop and GeoLD significantly outperform the Strabon system for these queries. However,
with respect to Q1, Ontop does not perform as well as GeoLD and Strabon. This may be due
to several reasons. Indeed, the wider the temporal range of the query is, the less efficient
the spatial index of the database can be. The reason is that all raster cells of the study
area are requested, which leads to a high amount of requested spatiotemporal cells. Thus,
the on-the-fly translation process of this output data into RDF format that is performed
by the Ontop system becomes costly and has a significant impact on the performance and
scalability of the system. In this case, a time range query with a spatial filter could be highly
desirable to obtain a better response. In addition, a partitioning strategy for temporal data
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in PostgreSQL could help improve the scalability of the system. Finally, improving the
computational performance of the algorithm that translates geospatial data on the fly into
RDF format could help reduce the cost of the query answer.

Figure 13. Graphs highlighting the evolution of computation time of four queries of the Ontop system
depending on the size of temporal window in comparison with Geold and Strabon.

Figure 14. Graphs highlighting the evolution of computation time of five advanced queries on the
Ontop system depending on the size of temporal window.

In the second part of the experiment, we can observe three main patterns: the first
one shows that Ontop performs very well for three queries, Q5, Q7, and Q8. These
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queries involve a time range with a spatial filter (Q5), a spatial and temporal aggregation
(Q7), and a spatial-only aggregation (Q8). The second trend is related to the behavior of
Ontop regarding the Q9 query, which involves spatial aggregation together with a spatial
filter. In addition, it involves a reasoning operation to infer the entity types from selected
instances. The execution time in this case becomes more expensive but the system still
shows acceptable scalability. The last trend is related to query Q6. It is obvious that when
the size of input data increases, the system shows poor scalability and the curve tends to
have exponential growth. This is due to the fact that this query involves a binary operation
between two data cubes. This type of query can be performed naturally and efficiently
when the data cubes are encoded as multidimensional arrays. However, with a VKG system
like Ontop and its relational databases, this type of query requires the development of
optimal operators or functions that can efficiently handle such binary operations.

It is worth mentioning that, to perform such an experiment, we used the Ontop
version 4.2.1, which is integrated with the Protégé software. This package enables the user
to load the ontology, define the mapping, and reformulate SPARQL queries. The generic
data model schema has been implemented in the PostgreSQL 13 software. Tests were
performed on a Dell LAT 7520 with 3 GHz Max, 11th generation, Intel Core i7, and 32 GB
of RAM. The operating system used was Windows 10.

6. Conclusions and Discussion

This paper proposed a framework to enable the semantic integration and advanced
querying of raster data cubes based on VKG. In this framework, we defined a semantic
representation model for raster data cubes as a module that extends the GeoSPARQL
ontology. With such a model, we could combine the semantics of raster data cubes with
feature-based models that involve geometries as well as spatial/topological relationships.
This allowed us to formulate spatiotemporal queries using SPARQL in a natural way by
using ontological concepts at an appropriate level of abstraction. In order to evaluate the
expressivity of any semantic representation model, we confronted it with a set of scenarios
that, in our case, were a set of geospatial queries. We further presented a taxonomy
within which each query can find its semantic positioning. We then took a sample of
scenarios and classified them according to this taxonomy. Furthermore, we explained the
system architecture that enabled us to implement our proposed framework. We applied our
approach to forest fire data and formulated nine basic and advanced spatiotemporal queries
to retrieve information from only raster and from both raster and vector layers, respectively.
To evaluate the computational performance of our implemented framework, we designed
an experiment with two parts: In the first one, we compared our framework implemented
using the Ontop system against GeoLD and Strabon. In the second one, we examined the
runtime cost as the size of the temporal dimension increased, and made a comparison
between and among these queries to see how the system behaved with each query.

In conclusion, the proposed framework expands the ability to express enhanced
geospatial queries and enables the intelligent integration of a semantic data cube. Further-
more, the implementation of this framework shows reasonable performance, especially
with respect to the complexity of the formulated queries. However, for some queries,
the system shows weak performance and scalability. This mainly concerns queries involv-
ing binary operations on data cubes (e.g., arithmetic, topological, etc.). In addition, other
operations are not yet properly supported. This includes rolling or focal operations, as well
as operations that manipulate the shape and dimensions of the data cube. For future work,
this part still needs to be developed and supported efficiently at the SPARQL level in order
to enable the full manipulation and integration of the data cube. Another challenge for
future work is to develop an approach that not only handles static geometric features but
also evolving entities and to combine them with raster data cubes, which can help develop
a powerful and intelligent analytical query system for dynamic GIS.
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Appendix A

Q1 What are the raster cells (i.e., locations) and their values related to the variable
LST_Day_1km between two times, 15 March 2009 and 25 March 2009?

select ?raster_cell ?LST_Day_value ?time_stamp where {
?f dcb:hasSTL ?stl. ?stl dcb:hasDateTime ?time_stamp;
dcb:hasSpatialRef ?sp. ?sp dcb:asFieldWKT ?raster_cell.
?f dcb:hasFieldValue ?LST_Day_value; dcb:hasVariableName ?var.

FILTER (?time_stamp > "2009-03-15T00:00:00+02:00"^^xsd:dateTimeStamp &&
?time_stamp < "2009-03-25T00:00:00+02:00"^^xsd:dateTimeStamp && ?var = ’LST_Day_1km’

) }

Q2 What are the raster cells and their values related to the variable LST_Night_1km
where these values are superior to value 304 between two times, 15 March 2009 and
25 March 2009?

select ?raster_cell ?LST_Night_value ?time_stamp where {
?stl dcb:hasDateTime ?time_stamp;
dcb:hasSpatialRef ?sp. ?sp dcb:asFieldWKT ?raster_cell;
?stl dcb:hasField ?f.
?f dcb:hasFieldValue ?LST_Night_value;
dcb:hasVariableName ?var.

FILTER (?dt > "2009-03-15T00:00:00+01:00"^^xsd:dateTimeStamp && ?time_stamp <
"2009-03-25T00:00:00+02:00"^^xsd:dateTimeStamp && ?var = ’LST_Night_1km’ &&
?LST_Night_value > 304 )

https://github.com/ynsHamdani/Raster-DataCube-VKG
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}

Q3 What are the raster cells and their values related to the variable Lai_500m at the
point s between two times, 15 March 2009 and 25 March 2009?

select ?raster_cell ?Lai_value ?time_stamp where {

?stl dcb:hasDateTime ?time_stamp;
dcb:hasSpatialRef ?sp. ?sp dcb:asFieldWKT ?raster_cell;
?stl dcb:hasField ?f.
?f dcb:hasFieldValue ?Lai_value;
dcb:hasVariableName ?var.

FILTER (?time_stamp >= "2009-03-14T00:00:00+01:00"^^xsd:dateTimeStamp && ?time_stamp
< "2009-03-18T00:00:00+02:00"^^xsd:dateTimeStamp && ?var = ’LST_Day_1km’ &&
geof:ehEquals(?raster_cell, "POINT(27.362432036429922
41.914806332822195)"^^geo:wktLiteral))

}

Q4 What are the raster cells and their values related to the variable Lai_500m inside
the polygon P between two times, 15 March 2009 and 25 March 2009?

select ?raster_cell ?Lai_value ?time_stamp where {
?stl dcb:hasDateTime "2009-03-14T00:00:00+01:00"^^xsd:dateTimeStamp;
dcb:hasSpatialRef ?sp.?sp dcb:asFieldWKT ?raster_cell;
?stl dcb:hasField ?f. ?f dcb:hasFieldValue ?Lai_value;
dcb:hasVariableName~’Lai_500m’.

FILTER ( geof:sfContains("POLYGON((25.857121 44.215505,25.857121 44.612258,26.463456
44.612258,26.463456 44.215505,25.857121
44.215505))"^^geo:wktLiteral,?raster_cell ))}
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