
Extending DL-LiteA with (Singleton) Nominals

Maxim G. Haddad and Diego Calvanese

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano

Piazza Domenicani 3, Bolzano, Italy
lastname @inf.unibz.it

Abstract. In this paper we study the extension of description logics
of the DL-Lite family with singleton nominals, which correspond in
OWL 2 to the ObjectHasValue construct. Differently from arbitrary (non-
singleton) nominals, which make query answering intractable in data
complexity, we show that both knowledge base satisfiability and con-
junctive query answering stay first-order rewritable when DL-LiteA is
extended with singleton nominals. Our technique is based on a practi-
cally implementable algorithm based on rewriting rules, in the style of
those implemented in current state-of-the-art OBDA systems based on
DL-Lite, such as Quest. This allows us to follow the tradition of the
DL-Lite family for employing relational database technology for query
answering with optimal data complexity.

1 Introduction

The DL-Lite family [7] is a family of descriptions logics (DLs) which is designed
for optimal data complexity of reasoning and query answering, while maintaining
enough expressive power to capture basic ontology and conceptual data modeling
languages [6]. It is at the basis of the OWL 2 QL profile of the Web Ontology
Language (OWL) [11].

The DL-Lite family has been investigated thoroughly in recent years, and
several extensions with respect to the original set of constructs studied in [7]
have been proposed [1,5,14,8]. In particular, DL-LiteA [12,6] is a significant
representative of the DL-Lite family, featuring the the possibility of expressing
both functionality of roles and role inclusion assertions.

Nominals, i.e., concepts interpreted as a singleton, are a significant construct
in DLs, investigated both for expressive DLs [16], including OWL 2 [4], and
for lightweight ones [2]. It is known that the addition to DL-Lite of arbitrary
nominals, i.e., concepts interpreted as a given (in general non-singleton) set of
individuals causes data complexity of query answering to become intractable
[15]. However, the impact of singleton nominals only, i.e., concepts interpreted
as a single individual, has not been investigated so far for the DLs of the DL-
Lite family. Such construct corresponds to the ObjectHasValue construct in the
context of OWL 2.

In this paper, we fill this gap, and present DL-Liteo
A, which extends DL-LiteA

with singleton nominals. We concentrate on the two most significant reasoning

2 Maxim G. Haddad and Diego Calvanese

problems investigated in the context of DL-Lite, namely knowledge base sat-
isfiablity, and conjunctive query answering. We show that under this extension
both inference tasks stay first-order rewritable. Our technique is based on a prac-
tically implementable algorithm based on rewriting rules, in the style of those
implemented in current state-of-the-art OBDA systems based on DL-Lite, such
as QuOnto and Quest. This allows us to follow the tradition of the DL-Lite
family for employing relational database technology for query answering with
optimal data complexity.

After some preliminaries in Section 2, we introduce DL-Liteo
A in Section 3.

We discuss, in Section 4, the problem of query answering for satisfiable knowledge
bases, and then show, in Section 5, how to rely on it to address knowledge base
satisfiability. We draw some conclusions in Section 6. Proofs of most theorems
can be found in the appendix.

2 The Description Logic DL-Liteo
A

We introduce the technical preliminaries, and the lightweight DL DL-LiteA
[12,6], on which we base our results.

In DL-LiteA
1, starting from atomic concepts and atomic roles, respectively

denoted by A and P (possibly with subscripts), we can build basic concepts B
and basic roles R according to the following syntax:

B −→ A | ∃R R −→ P | P−

A DL-LiteA TBox is a finite set of assertions of the following form:

B1 v B2 (concept inclusion assertion)
B1 v ¬B2 (concept disjointness assertion)
R1 v R2 (role inclusion assertion)
R1 v ¬R2 (role disjointness assertion)
(funct R) (functionality assertion)

In order to guarantee the good computational properties of DL-LiteA, in the
TBox we must avoid the interaction between functionality assertions and role
inclusion assertions that would be caused by allowing a functional role to be
specialized [12]. Formally, if the TBox contains (funct P) or (funct P−), then it
cannot contain an assertion of the form P ′ v P or P ′ v P−, for some role P ′.

An ABox A is a finite set of membership assertions of the form A(d), ¬A(d),
P (d, d′), or ¬P (d, d′), where d, d′ denote individuals. In the following, We use
R− to denote P− if R = P , and P if R = P−. Similarly, we use R(x, y) to denote
P (x, y) if R = P , and P (y, x) if R = P−. A TBox T and an ABox A constitute
a knowledge base (KB) K = 〈T ,A〉.
1 We do not distinguish here between data values and objects, and hence do not

introduce datatypes and attributes as done in [12], since they do not affect reasoning
as far as the results in this paper are concerned.

Extending DL-LiteA with (Singleton) Nominals 3

The formal semantics in DL-LiteA is given in the standard way, by relying
on first-order interpretations I = 〈∆I , ·I〉. We refer to [3] for more details, and
just observe that DL-LiteA adopts the unique name assumption (una), i.e., syn-
tactically different individuals are interpreted as different domain elements. We
make use of the standard notions of satisfaction and model. In this paper, we will
focus on two reasoning problems, namely, query answering and KB satisfiability,
defined in the standard way [7]. The KB satisfiability problem is to check, given
a KB K, whether K admits at least one model. To define query answering, we
present some definitions.

A conjunctive query (CQ) q over a KB K is a first-order formula of the
form: q(x) = ∃y.conj (x,y), such that conj (x,y) is a conjunction of atoms of
the form A(t) and P (t, t′), where A and P are respectively an atomic concept
and an atomic role of K, and t, t′ are terms, i.e., constants in K or variables
in x and y. The free variables x of q(x) are also called distinguished variables,
and their number is called the arity of q. A boolean query is a query without
distinguished variables. A union of conjunctive queries (UCQ) is a disjunction
q(x) =

∨
i=1,...,n ∃yi.conj i(x,yi) of CQs of the same arity. We sometimes use

the Datalog notation for (U)CQs:

q(x) ← ∃y1.conj 1(x,y1)
· · ·

q(x) ← ∃yn.conjn(x,yn)

Given an interpretation I, we denote by qI the set of tuples of elements of
∆I obtained by evaluating q in I. The certain answers of q over a KB K is the
set ans(q,K) of tuples a of constants appearing in K, such that aI ∈ qI for
every model I of K. If K is unsatisfiable, then ans(q,K) is trivially the set of all
possible tuples of constants in K whose arity is the same as that of the query.
We denote such a set by AllTup(q,K). The problem of query answering is the
computation of the set of certain answers for given (U)CQ q and KB K.

Both for KB satisfiability and for query answering, we are interested in the
data complexity, which is the complexity of the problem measured in the size of
the ABox only (i.e., assuming the TBox and the query to be fixed).

3 Adding Nominals to DL-LiteA

We present now the DL DL-Liteo
A, which extends DL-LiteA with nominals.

Specifically, in DL-Liteo
A, we allow for using as basic concepts also nominals,

i.e., concepts of the form {d}, which are interpreted as the singleton denoted
by the individual d. Hence, basic concepts are built according to the following
syntax:

B −→ A | ∃R | {d}
Apart from that, DL-Liteo

A is defined exactly as DL-LiteA.
We observe that, due to the lack of disjunction in the DLs of the DL-Lite

family, we restrict the attention to so-called singleton nominals, which cannot
be composed using disjunction into multiple element nominals.

4 Maxim G. Haddad and Diego Calvanese

Nominals in DL-Liteo
A may appear in the left-hand and in the right-hand side

of concept inclusion and disjointness assertions, and the two kinds of occurrences
play quite different roles in expressiveness and inference. Indeed, a concept in-
clusion assertion {d} v A with a nominal {d} in the left-hand side, corresponds
to an ABox assertion A(d). Similarly, a concept disjointness assertion A v ¬{d}
(or its equivalent form {d} v ¬A) corresponds to an ABox assertion ¬A(d).
Hence, we can eliminate these two kinds of assertions by moving them to the
ABox. Observe also that an assertion of the form {d} v {d′}, where d 6= d′, is
always satisfied due to the una, and hence can be safely eliminated from the
TBox.

Formally, we call a DL-Liteo
A TBox normalized, if all its nominals appear

only in concept inclusion assertions of the form:

B v {d} (1)

A DL-Liteo
A KB K = 〈T ,A〉 is normalized if T is so.

We can transform each DL-Liteo
A KB K = 〈T ,A〉 into an equivalent normal-

ized KB Kn = 〈Tn,An〉 as follows:

1. Initialize Tn to T and An to A.
2. For each assertion α ∈ Tn of the form {d} v ¬{d′}, where d 6= d′, remove α

from Tn.
3. For each assertion α ∈ Tn of the form B v ¬{d}, where B is not a nominal,

replace in Tn α with {d} v ¬B.
4. For each nominal {d} appearing in the left-hand side of a concept inclusion

or disjointness assertion {d} v C in Tn, introduce a fresh atomic concept
Ad.

5. For each concept inclusion or disjointness assertion α ∈ Tn of the form
{d} v C, replace α in Tn with Ad v C and add Ad(d) to An.

Notice that Steps 4 and 5 above deal correctly also with the case of an
(unsatisfiable) inclusion assertion of the form {d} v {d′}, which for d 6= d′

generate the assertions Ad(d) and Ad v d′.
It is easy to see that the above construction of Kn from K can be done in

logarithmic space in the size of K. The following result is an easy consequence
of the fact that each of the above transformations preserves the semantics of the
KB, and hence Kn is a model-conservative extension of K [10].

Lemma 1. Let K be a DL-LiteoA KB and let Kn be the normalized DL-LiteoA
KB constructed as described above. Then Kn is satisfiable iff K is satifiable, and
for each UCQ Q over K, we have that ans(Q,K) = ansQ,Kn.

By Lemma 1, we can from now on assume without loss of generality to deal
only with DL-Liteo

A KBs that are normalized. For a normalized KB, all nominals
appear in the right-hand side of concept inclusion assertions that have the form
as in Equation (1). In what follows, given a normalized DL-Liteo

A TBox T ,
we consider it partitioned into four parts denoted as follows: Tn contains the
concept and role disjointness assertions; Tf contains the functionality assertions;

Extending DL-LiteA with (Singleton) Nominals 5

To contains the concept inclusion assertions involving nominals; Tp contains the
remaining concept inclusions, and the role inclusions. We call Tp ∪ To the set of
positive inclusions (PIs).

The concept inclusions in To require a specific treatment in the query answer-
ing approach based on rewriting, since they restrict the concept on the left-hand
side of the concept inclusion to be interpreted as a singleton. This leads us to
introduce the notion of domain and range restricted roles, i.e., roles whose do-
main or range is restricted to a nominal. For such a role P for which To contains
∃P v {d}, for a model I of T we have that P I ⊆ {dI} ×∆I , making the inter-
pretation of the role similar to that of a concept. If a concept is restricted to a
nominal via B v {d}, then every other concept that is restricted to the nominal
indirectly, e.g., via B′ v B, should be restricted to the same nominal. Similarly,
if a functional role is domain or range restricted, then the other component
should have maximally one element, i.e., it is restricted to an unnamed nomi-
nal. To represent this fact we make use of underscore elements with subscripts

0, 1, Hence, each of the occurances of these underscore elements denotes
an unnamed individual, possibly coinciding with individuals representing nomi-
nals or with other unnamed individuals (i.e, for unnamed individuals the unique
name assumption does not apply). We will use the underscore symbol without
a subscript to denote an arbitrary unnamed element.

This motivates us to define the notion of singleton closure of a TBox.

Definition 1. Let K = 〈T ,A〉 be a normalized DL-LiteoA KB. Then the single-
ton closure SC(T) of T , is obtained by including T in SC(T), and closing it
according to the following rules:

1. If B1 v {d} is in SC(T) and B2 v B1 is in Tp, then B2 v {d} is in SC(T).
2. If ∃P v {d} is in SC(T) and (funct P) is in T , then ∃P− v { x} is in
SC(T), such that x is a new underscore element.

3. If ∃P− v {d} and (funct P−) is in T , then ∃P v { x} is in SC(T), such
that x is a new underscore element.

Lemma 2. For every ABox A. The KB K = 〈T ,A〉 is satisfiable iff 〈SC(T), A〉
is satisfiable.

In the following, we make use of these notions to devise query answering and
reasoning techniques for DL-Liteo

A.

4 First-order Rewritablity of Query Answering

Our aim is to extend the query rewriting algorithm of [7,6] to handle also nom-
inals. For this, we exploit the fact that DL-Liteo

A, similarly to other DLs of the
DL-Lite family, enjoys a canonical model property. Specifically, we show how
to adapt the notion of restricted chase, adopted in [9] for the case of inclusion
dependencies in databases, and extended to DL-Lite in [7,8], to show the exis-
tence of a(n in general infinite) canonical model for any given DL-Liteo

A KB. We

6 Maxim G. Haddad and Diego Calvanese

can construct the chase of a KB starting from the ABox, and applying positive
inclusion assertions to the set of membership assertions obtained so far.

The critical difference in DL-Liteo
A with respect to the chase introduced in

[7] is that we have to take care of restricted roles (cf. Section 3), and hence
make use of the singleton closure. As above, we use the underscore symbols
to denote unnamed individuals. Throughout the construction of the canonical
interpretation, some unnamed individuals will be named, and this will change
the singleton closure. However, the cardinality of the singleton closure does not
change. For the application of the chase rules it is assumed that we have a
total (lexicographic) ordering on the assertions and on the constants (includ-
ing the ones not occurring in our KB). The chase of K is the set of member-
ship assertions chase(K) =

⋃
j∈N chasei(K), starting from chase0(K) = A, and

SC0 is obtained from SC(T) by replacing the unnamed individuals in SC(T),
which occur in the ABox with their names. For example, if ∃R v { x} and
R(a, b) is in the ABox, then ∃R v {a} will replace ∃R v { x} in SC0. Then,
chasei+1(K) is obtained from chasei(K) by adding the membership assertion
βnew, i.e., chasei+1(K) = chasei(K) ∪ {βnew}, where βnew is the membership
assertion obtained from chasei(K) by applying one of the chase rules. Similarly,
SCi+1 = SCi[σ], the result of applying σ on SCi, where σ is the substitution
resulting from the application of one of the chase rules. The substitution σ is
the empty substitution by default, unless a concept restricted to an unnamed
individual in the singleton closure has been mapped to a named individual. In
that case, we will substitute the underscore with the named individual.

Table 1. Chase Rules for DL-LiteoA

rule α β /∈ chasei(K) ∈ SCi /∈ SCi βnew σ

cr1 A1 v A2 A1(a) A2(a) A2(a) []

cr2 A v ∃R A(a) R(a, x) R− v { x} R(a, anew) []

cr2o A v ∃R A(a) R(a, x) R− v {d} R(a, d) []

cr2u A v ∃R A(a) R(a, x) R− v { x} R(a, anew) [R− v { x}/R− v {anew}]
cr3 ∃R v A ∃R(a) A(a) A(a) []

cr4 ∃R1 v ∃R2 ∃R1(a) R2(a, x) R−2 v { x} R2(a, anew) []

cr4o ∃R1 v ∃R2 ∃R1(a) R2(a, x) R−2 v {d} R2(a, d) []

cr4u ∃R1 v ∃R2 ∃R1(a) R2(a, x) R−2 v { x} R2(a, anew) [R−2 v { x}/R
−
2 v {anew}]

cr5 R1 v R2 R1(a, b) R2(a, b) R2(a, b) []

The chase rules are listed in Table 1. β is the first (in lexicographic order)
membership assertion in chasei(K) such that there exists a PI (i.e., an inclusion
in Tp ∪ To) that is applicable to it, and α is the first such PI. The notion of
applicability of a PI extends in a straightforward way the one in [7] (see below).
The three subsequent columns in the table express the conditions under which
the chase rule is applied in chasei(K), in terms of the atom that should be
missing from chasei(K), and possibly the inclusion that should be present or
absent from SCi.

Extending DL-LiteA with (Singleton) Nominals 7

Algorithm PerfectRef(q, T)
Input: union of conjunctive queries Q, DL-LiteoA TBox T
Output: union of conjunctive queries Qr
Qr := Q;
ST = SC(T);
repeat (1)

Q′r := Qr;
for each q ∈ Q′r
(O) q = reducesingleton(q,SC(T));
(a) for each g in q

for each PI I in ST
if I is applicable to g
then Qr := Qr ∪ {remdup(q[g/gr(g, I)])};

(b) for each g1, g2 in q
if g1 and g2 unify
then Qr := Qr ∪ {remdup(τ(reduce(q, g1, g2)))};

until Q′r = Qr;
return Qr.

Fig. 1. The algorithm PerfectRef

The canonical interpretation can(K) = 〈∆can(K), ·can(K)〉 is defined from
chase(K) as follows: ∆can(K) is the set of constants occurring in chase(K),
acan(K) = a for each constant a occurring in chase(K), Acan(K) = {a | A(a) ∈
chase(K)} for each atomic concept A, and P can(K) = {(a1, a2) | P (a1, a2) ∈
chase(K)} for each atomic role P . The construction of the canonical interpreta-
tion guarantees the satisfiability of the positive inclusion assertions in the TBox,
and if 〈SC(T),A〉 is satisfiable, then it also guarantees the satisfiability of the
nominal inclusion assertions.

Lemma 3. For every i ≥ 0, if chasei(K) satisfies SC(T) then chasei+1(K)
satisfies SC(T)

Lemma 4. Let K = 〈T ,A〉 be a DL-LiteoA KB. Then, can(K) is a model of K
iff K is satisfiable.

Now we can provide an adapted version of the PerfectRef algorithm presented
in [7,6], which takes into account the presence of nominals in DL-Liteo

A. It takes
a DL-Liteo

A TBox T and a UCQ Q and returns a UCQ Qr, which we will
show to be the FO-rewriting of Q w.r.t. T . In the following, after discussing
some preliminary notions, we explain the algorithm PerfectRef, and show its
termination and correctness.

Briefly, the algorithm PerfectRef, shown in Figure 1, iterates over the CQs
in Q and takes into consideration those assertions in T that are relevant for the
computation of the answers of Q in order to produce Qr. Note that only the
assertions in Tp and To play a role in the computation of Qr. Roughly speaking,
the algorithm checks the atoms, sees whether we can rewrite them into other
atoms in each query in Q using the PIs as rewriting rules, reduces the restricted

8 Maxim G. Haddad and Diego Calvanese

roles in the queries using the inclusions in To, and unifies any resulting unifiable
atoms.

We recall here the basic features that our variant of PerfectRef has in common
with the original version as presented in [7]2. We say that a PI I is applicable
to an atom g if g is unifiable with the right-hand side of the assertion. The
result of the application of a PI gr(g, I)on an atom is the atom unifiable with
the left-hand side of the assertion. For example, the PI A v ∃P is applicable
to the atoms P (x,) and P (,), with the atoms resulting from this application
being A(x) and A(), respectively. We use q[g/g′] to denote the CQ obtained by
replacing every occurrence of the atom g in the query q by the atom g′. The
function remdup removes from the body of a CQ atoms occurring more than
once. We define the most general unifier (mgu) of two unifiable atoms g1, g2
occurring in a CQ q as in [7]. The function reduce computes the mgu of its two
arguments g1, g2, and applies it to the CQ q. Finally, the function τ takes as
input a CQ q and replaces every variable occurring only once with the symbol .

Our addition to PerfectRef is Step (O) which is used to handle assertions in-
volving nominals. This step involves the reduction of restricted roles to concepts.
This turns out to be necessary, since if R is a restricted role, i.e., ∃R v {d}, then
for every model I we will have that RI ⊆ {dI} ×∆I , which makes R “behave
like a concept” w.r.t. rewriting steps. Hence, we can replace an atom R(x, y)
occurring in a CQ q by ∃R−(y), and replace any further occurrence of x in q
with d. This is accomplished by the function reducesingleton, which makes use
of the singleton closure SC(T).

Example 1. For example, if we have q(x, y) ← R1(x, y), R2(x, y), and we have
R−2 v {d} in the TBox T , then reducesingleton will reduce q to q′(x, d) ←
R1(x, d), R2(x,) (i.e., y is being bound to d in the answers of q). ut

It is possible that one role is indirectly restricted to a singleton nominal, e.g.,
the assertions A v B and B v {d} induce the restriction A v {d}. PerfectRef
handles the effect of this interaction of positive inclusion assertions with nominal
inclusion assertions by making use of SC(T), instead of T .

Taking into consideration that the presence of nominals does not lead to an
increase of the number of atoms in the rewritten queries, the termination of
PerfectRef can be proved similarly to Lemma 34 in [7].

Lemma 5. Let T be a DL-LiteoA TBox, and Q be a union of conjunctive queries
over T . Then, the algorithm PerfectRef(Q, T) terminates.

To compute the answers of Q, given the KB K = 〈T ,A〉, we need to evaluate
the set of conjunctive queries Qr produced by the algorithm PerfectRef on the
ABox A, which can be done in AC0 in data complexity.

Now we can start observing that query answering over satisfiable knowledge
bases can in principle be done by evaluating the query over the model can(K).

2 Extensions of PerfectRef to deal with additional constructs have also been presented
in [5,13,8].

Extending DL-LiteA with (Singleton) Nominals 9

Theorem 1. Let K be a satisfiable DL-LiteoA KB, and let Q be a union of con-
junctive queries over K. Then, ans(Q,K) = Qcan(K)

The proof is done analogously to the proof of Theorem 29 in [7], which states
an analogous result for DL-LiteR and DL-LiteF .

Taking into consideration that can(K) is infinite in general, we cannot com-
pute and evaluate queries over it. However, as for DL-LiteA, we can show that in-
stead of computing Qcan(K) we can evaluate the UCQ Qr computed by PerfectRef
directly over the ABox, considered as a database. For this purpose, we extend
the definition of database interpretation given in [7] so as to handle the presence
of nominals. The database interpretation db(T ,A) = 〈∆db(T ,A), ·db(T ,A)〉 of a
KB 〈T ,A〉 is the interpretation whose domain ∆db(T ,A) is the non-empty set
consisting of all constants appearing in A and in nominals in T , and such that
adb(T ,A) = a for each constant a, and Adb(T ,A) = {a | A(a) ∈ A} for each
atomic concept A, and P db(T ,A) = {(a1, a2) | P (a1, a2) ∈ A} for each atomic
role P .

Theorem 2. Let T be a DL-LiteoA TBox, Q a UCQ over T , and Qr =
PerfectRef(Q, T) the UCQ returned by PerfectRef. Then, for every DL-LiteoA
ABox A such that 〈T ,A〉 is satisfiable, we have that ans(Q, 〈T ,A〉) = Q

db(T ,A)
r .

Corollary 1. Query answering in DL-LiteoA is in AC0 with respect to the data
complexity

5 FO-Rewritability of KB Satisfiability

We now consider KB satisfiablity in DL-Liteo
A, and provide a technique to solve

it via query evaluation, hence showing its FO-rewritablity. The first case to be
considered is a special case where the TBox has only positive inclusion assertions,
in this case the knowledge base is just a DL-LiteA knowledge base with only
positive inclusion assertions which is satisfiable according to lemma 7 in [7].

However, in the general case, we cannot construct the canonical interpreta-
tion unless the nominal inclusion assertions are satisfied. According to theorem 3
it suffices to show that the db(T ,A) satisfies the nominal inclusion assertions in
the singleton closure in order to show that can(K) satisfies the singleton closure
(and hence the nominal inclusion assertions in the TBox).

The ABox A satisfies SCo(T) when it satisfies all the assignments in SCo(T).
An inclusion assertion A v {x} is satisfied when no individual, different than x,
is asserted as a member to the concept A in A, whereas the assertion: A v { x}
is satisfied when no two different individuals are asserted to the concept A in A.
In order to formulate the latter statement, we need to introduce the notion of a
(boolean) query associated to a nominal inclusion assertion (which was originally
applied only to negative inclusion assertions). This query evaluates false iff the
assertion is satisfied. In the following, we make use of CQs and UCQs enriched
with inequalities, and express them in the Datalog notation as in [8].

10 Maxim G. Haddad and Diego Calvanese

Definition 2. Given a DL-LiteoA nominals inclusion assertion O in SCo(T),
the form B v {d}, such that B is a basic concept and d is an individual, the
query associated to O is a boolean conjunctive query qO of the form:

qO ← ∃x : B(x), x 6= d

Whereas, assertions of the form: B v { } are associated with the following query:

qO ← ∃x∃y : B(x), B(y)x 6= y

The following Lemma states that satisfiability for a DL-Liteo
A knowledge base

K = 〈T ,A〉, where T contains positive inclusions and nominal inclusions, can
be reduced to answering a UCQ with inequalities over A.

Lemma 6. Let K = (Tp ∪ TO,A) be a DL-LiteoA KB, and QO =
∨
O∈SC(T) qO.

Then, K is satisfiable iff A 6|= QO.

Having checked the satisfiabilty of the singleton closure, we can build the
canonical interpretation satisfying a TBox containing only positive and nominal
inclusion assertions. Now we have to consider negative inclusion assertions and
functionality assertions. Functionality restrictions interact with the nominal re-
strictions, in the sense that if a role is restricted and functional then not only
the restricted component but also the other component has to be taken into the
singleton closure. We have already handled this situation in our definition of the
singleton closure. Finally, we have to check whether the functionality restric-
tions are fullfilled. This we do by defining the query associated to a functionality
restriction.

Definition 3. Given a DL-LiteoA functionality restriction F of the form
(funct R) in Tf , the query associated to F is a boolean conjunctive query qF
of the form:

qF ← R(x, y), R(x, z), y 6= z

Lemma 7. Let K = (Tp ∪ TO ∪ Tf ,A) be a DL-LiteoA KB, and QO =∨
O∈SC(T) qO and QF =

∨
F∈Tf qF . Then, K is satisfiable iff A 6|= QO and

A 6|= QF .

Notably, since answering of QF and QO over the ABox A involves only evalu-
ating QF and QO over db(T ,A), the above lemma also entails that satisfiablity of
DL-Liteo

A knowledge bases without NIs is FO-rewritable. Now, we can continue
the tradition of [8] in using the algorithm PerfectRef, presented in Section 4, to
check the satisfiablity of the negative inclusion assertions. Note that PerfectRef
only requires the inclusions in Tp and To.

Definition 4. Given a DL-LiteoA negative inclusion assertion N of the form
B1 v ¬B2 in Tn, the query associated to N is a boolean conjunctive query qN of
the form:

qN ← B1(x), B2(x)

Extending DL-LiteA with (Singleton) Nominals 11

Algorithm Consistent(K)
Input: DL-LiteoA K = 〈T ,A〉
Output: true if it is unsatisfiable, false otherwise

• Normalize knowledge base
K = Normalize(K)
• Build singleton closure
SC(T) = SingletonClosure(T)
• Check Singleton Closure and functionality restrictions
qO := ⊥;
foreach α ∈ SCo(T) ∪ SCF (T)

qSC(T) = qSC(T) ∨ qα;

if q
db(T ,A)

SC(T) 6= ∅ return true;

qTn := ⊥;
foreach N ∈ Tn
qTn = qTn ∪ {qTn}

qTn = PerfectRef(qTn , Tp ∪ TO)

return q
db(T ,A)
Tn

Fig. 2. The algorithm Consistent

Theorem 3. Let 〈T ,A〉 be a satisfiable DL-LiteoA KB, Tn a set of NIs, Qn =⋃
N∈Tn qN the UCQ associated to Tn. Then, K = 〈T ∪ Tn,A〉 is satisfiable iff
〈T ,A〉 6|= Qn.

Now, given Lemma 6 and Theorem 3, we can establish the satisfiability of a
DL-Liteo

A. This allows us to say that checking the satisfiability of DL-Liteo
A KB

is first-order rewritable, and we can now write an algorithm to check the satisfi-
abilty of KBs (see Figure 2). Briefly, the algorithm first normalizes the KB, then
it checks whether the singleton closure is satisfied. Afterwards, it checks if the
funcionality restrictions are satisfied, and finally considers the satisfiablity of the
negative inclusion assertions. We will make use of the algorithms Normalize and
SingletonClosure, where SingletonClosure is an algorithm for calculating SC(T) .
The next Theorem follows directly from the FO-rewritablity.

Theorem 4. KB satisfiablity in DL-LiteoA is in AC0 with respect to data com-
plexity.

6 Conclusion

This paper shows that the extending DL-LiteA with singleton nominals does
not have an impact on the data complexity of reasoning. The structure of the
paper follows similar ideas to those in [7,8], but is based first define a singleton
closure, and build a canonical interpretation based on this closure. Furthermore,
we define a modified version of the algorithm PerfectRef to handle the nomianl
constructions, which shows the FO-rewritability of query answering for satisfi-
able knowledge bases, and finally make use of this algorithms to check for the

12 Maxim G. Haddad and Diego Calvanese

satisfiability of DL-Liteo
A knowledge bases using first-order query evaluation.

Thus, showing the FO-rewritablity of the satisfiablity problem.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. of Artificial Intelligence Research 36, 1–69 (2009)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). pp. 364–369 (2005)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

4. Bao, J., et al.: OWL 2 Web Ontology Language document overview (second edi-
tion). W3C Recommendation, World Wide Web Consortium (Dec 2012), available
at http://www.w3.org/TR/owl2-overview/

5. Botoeva, E., Artale, A., Calvanese, D.: Query rewriting in DL-LiteHNhorn . In: Proc. of
the 23rd Int. Workshop on Description Logic (DL 2010). CEUR Electronic Work-
shop Proceedings, http://ceur-ws.org/, vol. 573, pp. 267–278 (2010)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodŕıguez-
Muro, M., Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tes-
saris, S., Franconi, E. (eds.) Reasoning Web. Semantic Technologies for Informa-
tions Systems – 5th Int. Summer School Tutorial Lectures (RW 2009), Lecture
Notes in Computer Science, vol. 5689, pp. 255–356. Springer (2009)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3), 385–429 (2007)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. Artificial Intelligence 195, 335–360
(2013)

9. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. of Computer and System Sciences 28(1),
167–189 (1984)

10. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007).
pp. 453–458 (2007)

11. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language profiles (second edition). W3C Recommendation, World Wide
Web Consortium (Dec 2012), available at http://www.w3.org/TR/owl2-profiles/

12. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. on Data Semantics X, 133–173 (2008)

13. Savkovic, O.: Managing Data Types in Ontology-based Data Access. Master’s the-
sis, KRDB Research Centre for Knowledge and Data, Free University of Bozen-
Bolzano (2011)

14. Savkovic, O., Calvanese, D.: Introducing datatypes in DL-Lite. In: Proc. of the
20th Eur. Conf. on Artificial Intelligence (ECAI 2012) (2012)

15. Seylan, I., Franconi, E., de Bruijn, J.: Effective query rewriting with ontologies
over DBoxes. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2009). pp. 923–925 (2009)

http://www.w3.org/TR/owl2-overview/
http://ceur-ws.org/
http://www.w3.org/TR/owl2-profiles/

Extending DL-LiteA with (Singleton) Nominals 13

16. Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals
in expressive description logics. J. of Artificial Intelligence Research 12, 199–217
(2000)

	Extending DL-LiteA with (Singleton) Nominals

