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Abstract. Analyses of products during manufacturing are essential to
guarantee their quality. In complex industrial settings, such analyses
require to use data coming from many different and highly heterogeneous
machines, and thus are affected by the data integration challenge. In this
work, we show how this challenge can be addressed by relying on semantic
data integration, following the Virtual Knowledge Graph approach. For
this purpose, we propose the SIB Framework, in which we semantically
integrate Bosch manufacturing data, and more specifically the data nec-
essary for the analysis of the Surface Mounting Process (SMT) pipeline.
In order to experiment with our framework, we have developed an ontol-
ogy for SMT manufacturing data, and a set of mappings that connect
the ontology to data coming from a Bosch plant. We have evaluated SIB
using a catalog of product quality analysis tasks that we have encoded
as SPARQL queries. The results we have obtained are promising, both
with respect to expressivity (i.e., the ability to capture through queries
relevant analysis tasks) and with respect to performance.
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1 Introduction

The digitization trend in manufacturing industry, known as Industry 4.0, leads to
a huge growth of volume and complexity of data generated by machines involved
in manufacturing processes. These data become an asset of key relevance for
enhancing the efficiency and efficacy of manufacturing. However, unlocking the
potential of these data is a major challenge for many organizations. Indeed, often
the data naturally reside in silos, which are not interconnected, but which contain
semantically related data, possibly with redundant and inconsistent information.
As a result, the effective use of data demands data integration, which includes
cleaning, de-duplication, and semantic homogenization. As evaluated at Bosch,
the integration effort needed for data integration is approximately 70–80%, in
comparison to 20–30% required for data analysis [16], where the integration
is mainly hampered by ad-hoc and manual approaches that are prone to data
quality issues. In particular, this affects the reproducibility of analytical results
as well as the consequent decision making [9,16,17].

A Bosch plant located in Salzgitter, Germany, that produces electronic con-
trol units, is not an exception in the digitization trend and the integration chal-
lenge [16]. Indeed, the product quality analysis that is performed at the plants
requires integration of vast amounts of heterogeneous data. For instance, failure
detection for Surface Mounting Process (SMT) fundamentally relies on the inte-
gration and analysis of data generated by the machines deployed in the different
phases of the process. Such machines, e.g., for placing electronic components
(SMD) and for automated optical inspection (AOI) of solder joints, usually come
from different suppliers and they rely on distinct formats and schemata for man-
aging the same data across the process. Hence, the raw, non-integrated data
does not give a coherent view of the whole SMT process and hampers analysis
of the manufactured products.

To address this problem, we propose to adopt an approach for semantic data
integration and access based on virtual knowledge graphs (VKG)1 [5,20,21],
which we illustrate in Fig. 1. In such an approach, we use an ontology that
exposes, in terms of a VKG, a conceptual view of the concepts and properties
of relevance for the SMT manufacturing process. The log data of the process
are extracted directly from JSON files generated by the different machines, and
are loaded into a PostgreSQL database, without further conversion from JSON
into the relational format. From there the data is connected to the ontology by
making use of semantic mappings [1].

The strength of this approach comes on the one hand from the domain
knowledge encoded in the ontology. This knowledge is used to enrich answers
to user queries describing product analysis tasks. Another key advantage is the
use of semantically rich VKG mappings. These bridge the impedance mismatch
between the data layer and the ontology layer, by relying on the template-
based mechanism of R2RML [4] to construct knowledge graph (KG) IRIs out of
database values. Moreover, the mappings provide a solution to the integration

1 Also known in the literature as Ontology-based Data Access/Integration (OBDA/I).
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Fig. 1. Virtual Knowledge Graphs approach exemplified over Bosch SMT scenario.

challenge, since semantically homogeneous information coming from different
log files, which use syntactically different representations, can be reconciled at
the level of the KG. This makes it easy to query the overall data assets in an
integrated way, by exploiting the semantics of the extracted information. For
example, consider various types of machine failures, encoded in the different log
files through different magic numbers, i.e., codes with a specific meaning that
have to be known and interpreted by the Bosch engineers. Once the machine fail-
ures of the same type are reconciled in a single ontology class, Bosch engineers
can effectively understand the meaning of failures, since the mappings guaran-
tee that each failure data item (virtually) populates only the appropriate failure
class. This is of crucial importance to allow engineers take the right decisions in
the SMT process. In general, the approach enables to encode different product
analysis tasks that are of importance in the Bosch SMT manufacturing process,
by means of suitable SPARQL queries over the domain ontology. Notably, such
queries make use of ontology terms to refer to the relevant information assets,
and thus are very close to the natural language formulation of the analysis tasks,
which in turn makes it easy for Bosch engineers to formulate them. We can then
obtain the respective analysis data coming from the process logs, by simply
executing such queries over the underlying database via a VKG engine.

The above solution has been implemented at Bosch in the VKG-based
data integration framework called SIB (for Semantic Integration at Bosch) and
deployed at Bosch. The purpose of this deployment has been to evaluate the
feasibility of using semantic technologies and data integration based on them
for supporting product quality analysis. More specifically, towards the develop-
ment of SIB, we have overcome the technical challenges posed by semantic data
integration, and we have provided the following contributions: (i) We developed
the SMT Ontology, which is an OWL 2QL ontology capturing the concepts and
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Fig. 2. Surface Mounting Process pipeline. The SMT process comprises four phases:
SPP, SMD, RFL, and AOI. The machines, usually by different suppliers, rely on distinct
formats and schemas for managing the same data across the process pipeline.

properties that are relevant for SMT manufacturing, together with important
domain knowledge. This ontology is the basis of the VKG approach to integra-
tion for SMT manufacturing. (ii) We built a mapping layer that semantically
connects the SMT ontology to a PostgreSQL database. Such a database in turn
collects the relevant log data from JSON files produced by the machine compo-
nents in the manufacturing pipeline. (iii) We encoded relevant product analysis
tasks into a catalog of SPARQL queries formulated over the SMT Ontology.
For processing such queries, taking into account both the SMT Ontology and
mappings, we rely on the state-of-the-art VKG engine Ontop [2].

Moreover, we carried out an experimental evaluation of the SIB approach,
with a two-fold aim. First, we wanted to assess its effectiveness in addressing
significant product analysis tasks by relying on the answers returned by the
SPARQL queries encoding such tasks. Second, we were interested in understand-
ing the performance in query execution, and whether such performance is com-
patible with the requirements coming from product analysis. As a baseline for the
evaluation, we have used SANSA-DL (where “DL” stands for Data-Lake), which
is an alternative implementation of semantic integration based on SANSA [14], a
distributed framework for scalable RDF data processing in turn based on Apache
Spark. Similarly to Ontop, SANSA-DL supports SPARQL queries over an ontol-
ogy connected via mappings to a data source. However, the data source consists
of parquet files, loaded from the JSON data via a Scala script.

Our evaluation showed that, in this real-world use-case in industrial manu-
facturing, semantic data integration based on VKGs as realized in SIB is feasible,
both from the point of view of semantics/expressiveness, and from the point of
view of performance. Moreover, our results indicate that the VKG system Ontop
adopted in SIB outperforms an alternative implementation based on Spark.

The rest of the paper is organized as follows. Section 2 describes the SMT
manufacturing process and the challenges for integrating data generated by the
different machines used for manufacturing. Section 3 describes the components
of the VKG approach and its application to the SMT use case. In Sect. 4, we
outline the evaluation results. In Sect. 5 we discuss the lessons learned, and we
conclude the paper with an outlook and future work in Sect. 6.
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2 Bosch Use Case: SMT Manufacturing Process

In this section we describe the SMT manufacturing process, the analytics it
typically requires, and the challenges in implementing this analytics, which will
be addressed further in the paper.

The SMT Process involves four main phases (cf. Fig. 2): (1) Solder Paste
Printing: This phase consists of pasting solder paste on print circuit boards
(PCBs), and is conducted by a Solder Paste Printing Machine; (2) Surface
Mounting: This is the phase where electronic components are actually mounted
on PCBs in a Surface Mounting Device (SMD); (3) Heating: To solder the
mounted components properly, in this phase the boards are heated inside a
Reflow Oven; and (4) Automated Optical Inspection. In the final phase, the
boards are inspected by an AOI machine to find out whether during the previ-
ous phases any failure occurred, such as component misplacement or bad solder-
ing. When the whole process is completed, the system generates log files, which
contain two types of data: the placement logs by the SMD machine, include
information on which component is mounted on which board; the failure logs
generated by the AOI machine, comprise information where at a board and with
what component a failure is encountered.

Product Analysis Tasks. Several product analysis tasks are carried out by
Bosch engineers in order to be able to assess and evaluate the quality of the
manufactured PCBs, and such tasks require in an essential way to access in an
integrated way the data produced during the SMT process. A typical analytical
request for information in this domain may look as follows: “For the panels
processed in a given time frame, retrieve the number of failures associated with
scrapped boards and grouped by failure types.” To retrieve this information, data
that reside in the SMD and AOI machines need to be semantically integrated.
Referring again to Fig. 2, the SMD machine processes the panel, the board, and
the timestamp information, i.e., the time at which a given panel was processed,
while the AOI machine generates information to check whether a board was
scrapped or not. The meaning of this information is encoded in numbers: a value
of ‘1’ when the board is scrapped and ‘0’ when not. In addition, the AOI machine
contains information about the different failure types, e.g., number 2 representing
“false call” and 21 representing “misplaced component”. The meaning of this
information encoded in numbers is only available in internal documents and
in the head of Bosch engineers. The panel provides the connection between the
data generated by the machines. With this setup, the codes associated to various
kinds of components need to be combined to create the ids for different types
of objects, and this in turn complicates semantic interoperability between SMD
and AOI data.

Technical Challenges. In this work, we focus on addressing the above chal-
lenges by means of semantic data integration. Specifically, we show how a VKG-
based approach enables the semantic integration of the SMD and AOI data, and
how the requests of domain experts can be answered on top of the semanti-
cally integrated data. Towards the objective of applying the VKG approach to
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the Bosch use case, we had to address the following technical challenges: C1:
integration of syntactically heterogeneous machine log data involving semantic
conflicts; C2: development of the SMT Domain Ontology capturing relevant
domain knowledge; C3: transformation of product analysis questions into a cat-
alog of SPARQL queries and evaluation of their effectiveness for product quality
analysis; and C4: evaluation of the efficiency of the VKG approach in the exe-
cution of these queries, which are relevant to the Bosch use case. We discuss in
this paper, how these challenges have been addressed and solved.

Related Work. The VKG-based integration approach has already been success-
fully applied in industrial settings [7]. These include, among many, the case of
manufacturing [18], of assembling complex systems at Festo [6], of turbine diag-
nostics and other tasks at Siemens [8,10–12,17], and of exploration and analyses
of geological data at Equinor [9,13]. In several of these, Ontop has been adopted
as one of the key components. In this work we continue this line of applied
research and bring semantic technologies into the Bosch corporate environment
by adapting them to a concrete scenario.

3 Application of SIB at Bosch

In this section, we present the general VKG approach for semantically integrat-
ing data and its specific application at Bosch in SIB for the semantic integration
of manufacturing data of the SMT process. SIB comprises the following compo-
nents: 1) data sources of the SMT manufacturing process; 2) the SMT Ontology,
i.e, a semantic model of the SMT domain; 3) mappings between the data sources
and the SMT Ontology; 4) queries for expressing the requirements of the domain;
and 5) an implementation of the VKG approach using Ontop to semantically
answer the queries while integrating the SMD and AOI data sources.

3.1 Overview of the SIB Framework

We gave a general overview of the Virtual Knowledge Graph (VKG) paradigm
in Fig. 1 of Sect. 1. In this work we rely on the state-of-the-art VKG framework
Ontop for developing SIB. Ontop computes answers end-user SPARQL queries
by translating them into SQL queries, and delegating the execution of the trans-
lated SQL queries to the original data sources. We remark that with the VKG
approach, there is no need to materialize into a KG all the facts entailed by
the ontology. As seen in Fig. 3, the workflow of Ontop can be divided into an
off-line and an online stage. As the first step at the off-line stage, Ontop loads
the OWL 2QL ontology and classifies it via the built-in reasoner, resulting in
a directed acyclic graph stored in memory that represents the complete hierar-
chy of concepts and that of properties. In the second step, Ontop constructs a
so-called saturated mapping, by compiling the concept and property hierarchies
into the original VKG mapping. This aspect is important also in SIB, since the
domain knowledge encoded in the ontology allows for simplifying the design of
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Fig. 3. The Ontop Workflow for query translation. The figure depicts the SPARQL-
to-SQL query translation workflow of Ontop.

the mapping layer. During the offline stage, Ontop also optimizes the saturated
mapping by applying structural and semantic query optimization [19].

During the online stage, Ontop takes a SPARQL query and translates it into
SQL by using the saturated mapping. To do so, it applies a series of transforma-
tions that we briefly summarize here [2,22]: (i) it rewrites the SPARQL query
w.r.t. the ontology; (ii) it translates the rewritten SPARQL query into an alge-
braic tree represented in an internal format; (iii) it unfolds the algebraic tree
w.r.t. the saturated mapping, by replacing the triple patterns with their opti-
mized SQL definitions; and (iv) it applies structural and semantic techniques to
optimize the unfolded query. One of the key points in the last step is the elimi-
nation of self-joins, which negatively affect performance in a significant way. To
perform this elimination, Ontop utilizes in an essential way the key constraints
defined in the data sources. In those cases where it is not possible to define these
key constraints explicitly in the data sources, or to expose them as metadata of
the data sources so that Ontop can use them, Ontop allows one to define them
implicitly, as part of the mapping specification. The data we have been working
with in the Bosch use case was mostly log data and stored as separate tables
containing often highly denormalized and redundant data. Consequently, there
were a significant amount of constraints in the tables that are not declared as
primary or foreign keys, which brought significant challenges to the performance
of query answering. To address these issues, we had to declare these constraints
manually, and supply them as separate inputs to Ontop.

3.2 Data Sources

Despite the fact that the SMT process comprises multiple data sources, we have
focused in SIB only on the SMD and AOI log data generated by the respective
machines, as these are the main data sources in the SMT process and are required
to answer the queries we derived for product quality analysis. We extract the
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Table 1. SMT Data. The main tables in the SMT schema are given on the left. The
most frequently requested tables are given on the right, with a sample of data.

SMD Tables
smd_event

smd_location

smd_panel

smd_components

AOI Tables
aoi_event

aoi_location

aoi_panel

aoi_failures

smd_panel

panelId boardNo machineName processedTS location

p01 b01 SMD Machine 1 24-04-2020 mes01

smd_components

panelId boardNo headId nozzleId turnNo pickSeqNo placeSeqNo

p01 b01 h01 n01 2 1 3

aoi_failures

panelId boardNo refDesignator windowNo cPinNo failureCode

p01 b01 rd01 w01 pn01 1

SMD and AOI log data from nested JSON files and without any pre-processing,
we store them in a PostgreSQL database, which contains the relational tables
shown in Table 1. The event suffixed tables contain information about mounting
and inspection processes, while the location suffixed tables describe locations
where processed panels are inspected. The panel suffixed tables contain infor-
mation about processed and inspected panels and boards. The SMD data set
tracks the information about the pick-and-place sequences, which is stored in
the smd_components table. It contains the sequence numbers in which the com-
ponent is picked and placed, and the turn number in which the pick-and-place
is performed. Finally, the aoi_failures table encompasses information of the
failures that are detected during the SMT process by visually inspecting the sol-
der joints. It contains information about panels, boards, components, and pins
associated with failures.

3.3 SMT Ontology

In the VKG approach, the domain of interest is described in a ontology in terms
of classes, their data properties (i.e., attributes), and the object properties (i.e.,
relationships) in which they are involved. The ontology serves as an abstraction
over the data sources and is used by the domain experts to formulate queries
over the data. To apply the VKG approach, we developed the SMT Ontology
(cf. Fig. 4), which is used as a domain model for semantic data integration and
access in the domain, and is divided into three modules: 1) SMT Failure Ontol-
ogy (fsmt), modeling the SMT failures that can occur during the process; 2)
SMT Product Ontology (psmt), describing SMT products; and 3) SMT Machine
Ontology (msmt), modeling SMT machines. The SMT Ontology overall comprises
76 classes, 30 object properties, and 57 datatype properties.

The development of the SMT Ontology was the result of six workshops over
a period of eight weeks, involving Bosch experts that include a line engineer,
two line managers from the Bosch plant, an SMT process expert, an SMT data
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Fig. 4. The SMT Ontology. The SMT Ontology comprises the SMT Product, SMT
Machine, and SMT Failure Ontologies. Above, we show a portion of the SMT Ontology.

manager, a project manager, two Big Data managers, and four semantic experts.
The ontology creation process took several iterations that were required to under-
stand the SMT process, the concepts that are relevant to it, and the relationships
between these concepts. We combined a top-down approach in which we mod-
eled classes and properties based on expert knowledge provided by the process
and machine experts, with a bottom-up approach in which we looked at the
JSON data together with the data engineers and experts to identify additional
attributes of classes. We also had to study numerous Wiki pages with technical
documentation created by the process experts of the Bosch plant.

Let us briefly discuss the case of AOI failure types, since these play a crucial
role in the product quality assessment, and understanding their meaning is of
crucial importance to take decisions in the SMT process. The failure types were
partially described in textual form in the Wiki and partially they were only in the
head of the process experts. Typically, the way in which failures are coded differs
between different plants inside the same organization. To address this issue, we
semantically codified the failures in the SMT Failure Ontology. For instance,
the failure type misplaced component, meaning that a component was misplaced
on top of the board, is represented in the data with the magic number 21. We
created a class fsmt:MisplacedComponent to represent this type of failure. The
class is a subclass of fsmt:Position as well as fsmt:ProductFailure, which
semantically group all the failures that fall into these categories. Similarly, we
created a class psmt:ScrappedBoard, for semantically representing all the boards
that are scrapped, represented as subclass of psmt:Board.

3.4 Data-to-Ontology Mapping

A mapping is a set of assertions specifying how the classes and properties of the
ontology are populated by the data from the sources. Each mapping assertion
consists of an identifier, a source part, i.e., a SQL query over the data source
schema, and a target part, i.e., an RDF triple template [3]. The standard language
for representing a mapping is defined by the W3C R2RML specification [4].
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The SMT VKG mapping contains 53 mapping assertions; they link the ele-
ments of the SMT data source to the basic ontological concepts and roles in
the SMT Ontology. For the sake of readability and for lack of space, we present
only a subset of the mappings that we developed. These mappings cover several
important assertions relevant to the queries, and we formulate them using the
Ontop mapping language [2], since we find it more compact and more end-user
oriented than the R2RML mapping language.

The first mapping assertion we consider (with id hasBoard), instantiates the
object property psmt:hasBoard, relating individuals of the classes psmt:Panel
and psmt:Board, and also associates the individuals of psmt:Panel with their
processing times.

mappingId hasBoard
target psmt:Panel/{ panelId} psmt:hasBoard psmt:Board/{ panelId }/{ boardNo} ;

psmt:pTStamp {smdpTStamp }.
source SELECT panelId , boardNo , smdpTStamp FROM smd_panel

The next mapping assertion places some of the individuals of the psmt:Board
class (namely those selected by the WHERE condition in the source query) also in
the psmt:ScrappedBoard class.

mappingId ScrappedBoard
target psmt:Board /{ panelId }/{ boardNo} a psmt:ScrappedBoard .
source SELECT panelId , boardNo FROM aoi_failures WHERE boardScrapped = 1;

As one can notice, this mapping assertion addresses the semantic interoperability
problem, by carrying the information about scrapped boards that is encoded in
numbers, from the data level to the conceptual level.

The following mapping assertion creates a bridge between SMD and AOI
entities, by relating individuals of fsmt:AOIFailures with individuals of
psmt:Panel via the fsmt:hasFailure object property.

mappingId hasFailure
target psmt:Panel/{ panelId} fsmt:hasFailure

fsmt:AOIFailure /{ panelId }/{ boardNo }/{ refDesignator }/{ windowNo }/{ cPinNo }.
source SELECT panelId , boardNo , refDesignator , windowNo , cPinNo

FROM aoi_failures

Finally, the following mapping assertions label the individuals of failures with
a type, which may be either "FalseCall" or "MisplacedComponent", depending
on the numeric value of the failureCode attribute of the aoi_failures table,
which identifies the failure types.

mappingId FalseCall
target fsmt:AOIFailure /{ panelId }/{ boardNo }/{ refDesignator }/{ windowNo }/{ cPinNo}

rdf:type fsmt:FalseCall ;
fsmt:failureType "FalseCall" .

source SELECT panelId , boardNo , refDesignator , windowNo , cPinNo
FROM aoi_failures WHERE failureCode = 2

mappingId MisplacedComponent
target fsmt:AOIFailure /{ panelId }/{ boardNo }/{ refDesignator }/{ windowNo }/{ cPinNo}

rdf:type fsmt:MisplacedComponent ;
fsmt:failureType "MisplacedComponent" .

source SELECT panelId , boardNo , refDesignator , windowNo , cPinNo
FROM aoi_failures WHERE failureCode = 21
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Fig. 5. A VKG. It is built from the mapping over the SMD and AOI data.

Based on the above mapping assertions defined over the SMD and AOI
data, a VKG (cf. Fig. 5), is built. This graph contains instances of psmt:Panel,
psmt:Board, and fsmt:AOIFailure as nodes, and also object properties
psmt:hasBoard and fsmt:hasFailure as edges. Note that the special object
property (i.e., edge) rdf:type is used to represent the membership of an object
to a class.

4 Evaluation of SIB at Bosch

We have carried out an evaluation of SIB, both with respect to its effectiveness
in supporting the formulation of typical product quality analysis tasks through
SPARQL queries, and with respect to the efficiency with which such queries
are executed by the underlying VKG system Ontop over distinct data sets with
three different sizes.

4.1 Effectiveness of SIB

We start by describing our effectiveness evaluation. We measure the effectiveness
be verifying whether typical product quality queries can be expressed over the
ontologies that we developed. To this end, we developed a catalog of 13 queries
that consolidate the requirements of Bosch experts. These queries were the result
of a collaborative work and a careful selection during two visits to Bosch plants
and meetings with Bosch line engineers and line managers. The queries offer
a good balance among three dimensions: they are representative for product
analyses, offer a good coverage of product analyses tasks, and they are complex
enough to account for a reasonable number of domain terms. All these 13 queries
were expressible over the ontologies of SIB.

Now we present three of these queries, formulating them both in natural
language and in SPARQL. The queries are presented in increasing complexity,
going from a simple query performing joins and applying FILTERs, to a more
complex query involving a nested sub-query, up to a query involving complex
aggregation. The complete query catalog is provided as supplemental material.

Query q2: “Return all panels that have been processed after a given
panel P, and before 2018-06-28T11:05:42.000+02:00.”
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This query fetches all the panels produced in a given time interval between
the production time of panel P and the given time. Since timestamps recording
processing time are associated to panels, we retrieve all panels processed after the
given panel by comparing their timestamps. The query in SPARQL is formalized
as follows:

SELECT DISTINCT ?pn2 ?ts2
WHERE {

?pn psmt:panelId ?panelId ;
psmt:pTStamp ?ts .

?machine psmt:hasProcessedPanel ?pn2 .
?pn2 psmt:pTStamp ?ts2 .
FILTER (?ts < ?ts2 && ?ts2 < ’2018-06-28T11 :05:42.000+02:00 ’^^ xsd:dateTimeStamp)
FILTER (? panelId = "08507999002521806222261041592") }

Query q3: “Return all panels processed from a given time T up to the
detection of a failure.”

This query is temporal in nature in the sense that we are interested in all panels
that did not encounter failures in production until the first failure was encoun-
tered. The query can still be realized in SPARQL as shown below.

SELECT DISTINCT ?panel ?ts ?eventTime
WHERE {

?panel psmt:pTStamp ?ts . {
SELECT ?eventTime
WHERE {

?eventfailure fsmt:eTStamp ?eventTime .
FILTER (? eventTime > ’2018-06-01T00 :06:00.000+02:00 ’^^ xsd:dateTimeStamp)

}
ORDER BY (? eventTime) LIMIT 1

}
FILTER (?ts > ’2018-06-01T00 :06:00.000+02:00 ’^^ xsd:dateTimeStamp && ?ts < ?eventTime) }

Query q9: “For the panels processed in a given time frame, retrieve the
number of failures associated with scrapped boards and grouped by failure
types.”

This query is formalized in SPARQL using an aggregation operator, as shown
below.

SELECT (COUNT(? failure) as ?f) ?type
WHERE {

?pn psmt:pTStamp ?ts ;
psmt:hasBoard ?board ;
fsmt:hasFailure ?failure .

?failure fsmt:failureType ?type ;
rdf:type fsmt:AOIFailure .

?board rdf:type psmt:ScrappedBoard .
FILTER (?ts > ’2018-06-01T02 :17:54+02:00 ’^^ xsd:dateTimeStamp)
FILTER (?ts < ’2018-06-02T07 :04:14+02:00 ’^^ xsd:dateTimeStamp)

} GROUP BY ?type
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Fig. 6. Evaluation Results of executing the 13 queries using Ontop and SANSA on the
three data sets used for the evaluation. The execution times are given in seconds. In
general, Ontop outperforms SANSA. Ontop also supports more queries than SANSA.

4.2 Efficiency of SIB

In order to analyze the performance and scalability of the VKG approach for
the SMT use case, we executed performance tests for the 13 queries in the query
catalog. To evaluate the influence of the size of data on query performance, we
executed all 13 queries on three SMD data sets of different sizes. These SMD data
sets are combined with the AOI data set. Each line in the AOI data set describes
when an error occurs. The three data sets in JSON, i.e., DS1, DS2, and DS3,
have sizes of 3.15GB, 31GB, and 59GB, respectively. Each line of the SMD data
sets represents an event where a panel was produced. DS1 comprises 69995 lines,
DS2 has 699962 lines, whereas DS3 has 1332161 lines. DS3 contains all the SMT
data that was available for the experiment. The experiments were executed on
a machine Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz with 64GB RAM and
Red Hat Linux version 7 installed. As a database system we used PostgreSQL
version 9.2.24. For the execution of the experiments, we used the Ontop v3.0
Plugin for Protégé, which provides an integrated framework for the definition
of the ontology and the mappings to an underlying database, and gives also the
possibility of executing SPARQL queries over such database.

We compared the results with SANSA [14], which is a distributed frame-
work for scalable RDF data processing based on Apache Spark. SANSA allows



Semantic Integration of Bosch Manufacturing Data Using VKGs 477

for accessing both large RDF graphs, and heterogeneous large non-RDF data
sources, thanks to its sub-component SANSA-DataLake (SANSA-DL) [15].
SANSA-DL can query out-of-the-box various types of sources ranging from plain
files and file formats stored in Hadoop distributed file system, e.g., CSV and Par-
quet, as well as various other sources via a JDBC connector. We included SANSA
because it is an open source solution, and also uses a virtualized approach.

Since neither Ontop nor SANSA natively support the JSON format, the
three datasets used for the evaluation have been ingested into a database and
into Parquet files, respectively. For Ontop, we created a Python script to read
the JSON data and insert it into a PostgreSQL database. For SANSA, we have
developed a Scala script to convert the data into Parquet files. Figure 6 reports
on the query execution times in seconds for executing the queries in Ontop
and SANSA with the different data sets. We have used gray bars to depict the
execution times for Ontop, and black bars for those of SANSA.

The experimental results show that Ontop performs well in general and out-
performs SANSA. For most of the queries (namely q1–q5, q6, q7, q12, and q13)
the execution times scale sub-linearly, and most of them finish in less than one
second even over the largest dataset DS3. For most of the complex queries, i.e.,
q5, q7, q9, q10, and q11, the execution lasts in the order of 10 s of seconds,
which is considered a reasonable amount of time in the context of the SIB use
case. We observe that SANSA does not support some queries, i.e., q3, q4, q6,
q7, q9, and q12. This is because subqueries, queries containing variables at both
object and subject position, i.e., joins on the object position, and GROUP BY
clauses in SPARQL queries on variables appearing at subject position are cur-
rently not supported by SANSA. In two of the queries, i.e., q10 and q11 SANSA
behaves better than Ontop. These queries comprise aggregation functions, i.e.,
COUNT in this case. The query processing in Ontop for aggregation functions
require additional operations for query rewriting, while SANSA supports these
functions as part of its SPARQL fragment. SANSA utilizes SPARK DataFrames
to perform aggregation functions on top of the queried data. This seems to have
an influence on the query performance as depicted in Fig. 6. To summarize our
evaluation, Ontop shows quite fast query answering times for most of the queries.
Even complex queries involving sub-queries could be answered at reasonable time
for our use case. In contrast to Ontop, SANSA could not answer some of the
queries. Based on that SANSA was not the first choice for our case as important
queries for product analysis tasks could not be executed.

5 Lessons Learned

Involvement of Domain Experts. Involving the Bosch domain experts in
the process of deploying the VKG approach to the SMT use case early on was
important for the project. Although these experts had no knowledge of semantic
technologies, they quickly understood that the SMT Ontology we developed
together with them will support their product quality analysis tasks. Before we
formally modelled the SMT domain as an Ontology, they started depicting a
model of the process on a whiteboard.
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Integrated View of Data provided by SMT Ontology. The SMT Ontology
and VKG approach enabled complex product analysis tasks that require an
integrated view of manufacturing data over multiple processes. Without this
integrated view, it would have been very difficult for the Bosch domain experts
to formulate their information needs as queries, as they were working on the
level of incompatible raw data sources before.

Methodology and Tooling. The adoption of the VKG approach is a labor-
intensive process. In particular, in the design phase of mappings three pieces
of knowledge need to be combined: the domain knowledge of the SMT manu-
facturing process, the detailed database schemas, and how the VKG approach
works. This makes it challenging to produce high-quality mappings. A proper
methodology and tooling support will be important to improve the productivity.
By applying the VKG approach we learned several guidelines that should be
followed when designing the mappings, notably the following: (i) it is necessary
to avoid joining multiple tables inside a mapping to reduce the complexity of
query-rewriting; (ii) indexes in the database should be used for speeding up the
processing of certain translated SQL queries; (iii) all necessary key constraints
should ideally be defined and exported via JDBC, to enable the VKG system
Ontop to perform extensive query optimization.

Handling Denormalized Data. The data we have been working with in this
project is mostly log data. Each large log file was treated as a separate table.
Such tables are often highly denormalized and contain a lot of redundancy. Con-
sequently, there are a significant amount of constraints in the tables that are not
declared as primary or foreign keys. These redundancies bring significant chal-
lenges to the performance of query answering. To address these issues, we have
supplied the constraints as separate inputs to Ontop so as to avoid generating
queries with redundancies. This optimization is critical and we have observed it
turns many queries from timing out to almost finishing instantly. Currently, these
constraints are declared manually, but in the future, we envision to automate
this step as well.

Efficiency of VKG Approach. Bosch domain experts were skeptical in the
beginning about the VKG approach, and they were confident that it could result
in rather long query execution times for product quality analysis. After we pre-
sented our evaluation, they were quite enthusiastic about the results as their
complex queries could be answered in a reasonable amount of time.

Impact of Our Approach to I4.0 at Bosch. The results of applying the VKG
approach to the problem of integrating heterogeneous manufacturing data for the
SMT manufacturing process are quite promising. We integrated the heteroge-
neous data sources to answer complex queries while at the same time achiev-
ing reasonable query execution times. We also showed that the SIB framework
bridges the gap between the complex SMT domain and the underlying data
sources, which is important for enabling the vision of I4.0. We see that the SIB
framework can also be applied to other use cases at Bosch.
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6 Conclusions and Outlook

Conclusions. We have presented the SIB Framework, in which we apply the
VKG approach for the efficient integration of manufacturing data for product
quality analysis tasks at Bosch. We introduced an ontology that models the
domain knowledge and abstracts away the complexity of the source data for
the Surface Mounting Technology Manufacturing Process. We mapped the data
sources into ontological concepts and formulated queries that encode important
product quality analysis tasks of domain experts at Bosch. We evaluated SIB
over three different SMT data sets of different scales. We have presented the
evaluation results and have shown that our framework retrieves the requested
information mostly at reasonable time.

Outlook. This work is a first and important step towards adapting the VKG
technology for integration of manufacturing data at Bosch, but there is a number
of further steps to do. So far, we heavily involved domain experts from the Bosch
Salzgitter plant in the development of the query catalog and ontologies and in
the interpretation of results. This effort has shown that it is important to extend
SIB with GUIs that will ease the interaction with domain experts, and will allow
them to use SIB for various analytical tasks. This would enable us to conduct a
user study that is needed for a more in depth evaluation of SIB. Moreover, this
will permit us to scale the evaluation of the system from 13 queries to a much
more substantial catalog. Then, it is important to show the benefits of SIB with
analytical tasks beyond product analysis and evaluate the ability of the SMT
ontology to accommodate a wider range of use cases. Another important next
step is to extend SIB with a number of dashboards to facilitate aggregation and
visualisation of query results. Moreover, an additional core step is popularization
and validation of the SIB technology and its benefits with Bosch colleagues from
various departments, where we already did the first step by presenting our results
in an internal Bosch “Open Day” for internal projects. All of this should allow
us to make SIB accessible and attractive to Bosch domain experts from factories
and move us closer towards integrating SIB in the tool-set of Bosch analytical
software. Finally, we plan to extend our solution and directly connect ontologies
to the native JSON data, avoiding the intermediate step of materializing JSON
into a relational DB. We also plan to compare the VKG approach to native triple
stores.
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