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ABSTRACT
WepresentOntop-temporal, an extension of the ontology-based data
access system Ontop for query answering with temporal data and
ontologies. Ontop is a system to answer SPARQL queries over vari-
ous data stores, using standard R2RML mappings and an OWL 2QL
domain ontology to produce high-level conceptual views over the
raw data. The Ontop-temporal extension is designed to handle
timestamped log data, by additionally using (i) mappings support-
ing validity time specification, and (ii) rules based on metric tempo-
ral logic to define temporalised concepts. In this demo we present
how Ontop-temporal can be used to facilitate the access to the
MIMIC-III critical care unit dataset containing log data on hospi-
tal admissions, procedures, and diagnoses. We use the ICD9CM
diagnoses ontology and temporal rules formalising the selection
of patients for clinical trials taken from the clinicaltrials.gov data-
base. We demonstrate how high-level queries can be answered by
Ontop-temporal to identify patients eligible for the trials.
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1 INTRODUCTION
In real-world applications of various domains it is often necessary
to manage temporal information for large amounts of data possibly
spread over multiple data sources, also taking into account complex
forms of knowledge about the domain of interest. In such setting,

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3269230

temporal reasoning over both data and knowledge has been actively
investigated in recent years, e.g., to support turbine diagnosis and
meteorological data analysis [4], and clinical decision making (see
e.g., [1, 2, 9, 16]).

Ontology-based data access (OBDA) is a popular paradigm to
provide a high-level conceptual view of the underlying data [18]. In
this paper, we consider the temporal extension of OBDA and present
the Ontop-temporal system implementing this paradigm. Ontop-
temporal can be used as a query answering tool in application
domains that deal with temporal data.

In the demo, using standard biomedical ontologies, we provide
an ontological view over clinical data stored in relational databases,
and such view can be queried using the W3C standard query
language SPARQL [10]. OBDA systems, such as Ontop [6] and
morph-RDB [14], have been used to access clinical data, e.g., to
identify patients with Type 2 Diabetes Mellitus in Electronic Health
Records [15], to support the HL7 Reference Information Model
(RIM) [13], and to access the Observational Health Data Science and
Informatics (OHDSI) data repositories1 via the FHIR ontology [11].
To deal with temporal information, we consider a temporal exten-
sion of OBDA that supports an expressive rule language [4, 5] for
specifying temporal patterns over clinical data. The demo uses the
MIMIC-III dataset [12] and the ICD9CM ontology2. We present two
use cases on (1) diagnosis and identifying patients at risk [1, 17],
and (2) selection of patients for clinical trials [2, 3].

2 OUR TEMPORAL OBDA SOLUTION
In this section we introduce our temporal OBDA framework and
its implementation in the Ontop-temporal system.

2.1 RDF and OBDA Framework
The vocabulary of RDF [8] consists of three disjoint sets of symbols:
IRIs I, blank nodes B, and literals L. An RDF term is an element in
C = I ∪ B ∪ L, an (RDF) triple (s,p,o) is an element in C × I ×C, an
(RDF) graph is a set of triples, and an (RDF) named graph is a pair
(д,G), where д ∈ I and G is an RDF graph.

Let V be a set of variables, then an element in (C ∪ V) × I ×
(C ∪ V) is a triple pattern, and a basic graph pattern (BGP) is a set
of triple patterns. A filter expression F is a Boolean combination of
expressions x ◦ y, where {x ,y} ⊆ C ∪ V and ◦ ∈ {<, >,=}.

1https://www.ohdsi.org/
2https://bioportal.bioontology.org/ontologies/ICD9CM
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In standard OBDA [18], an OBDA specification P = (O,M,S)
consists of an ontology O, a (relational) data source schema S,
and a mappingM from S to O. The mapping consists of mapping
assertions of the form φ(®x)f sql(®x), where sql(®x) is an SQL query
overS returning columns ®x , andφ(®x) is a template for a set of triples
with ®x as placeholders. Then, an OBDA instance is a pair (P,D),
where D is a relational database instance conforming to schema S.

The semantics of (P,D) is given by the set of (first-order) mod-
els of the OWL knowledge base (O,M(D)), whereM(D) is the
(virtual) RDF graph generated by applyingM over D.

In OBDA, queries are posed over the ontology O, and are an-
swered by accessing the data inD through the mappingM. Specif-
ically, given a SPARQL query q, an OBDA system computes its
certain answers, which are those answers to q that hold in all mod-
els of the OBDA instance (P,D). The computation is done without
actually materializingM(D) (this is why it is virtual), but by rewrit-
ing q into a query over S that is then answered by the relational
DBMS. We refer to [18] for more details.

2.2 Temporal OBDA
In our approach to temporal OBDA, we extend the RDF data model
used for the conceptual level with (temporal) intervals. Such an
interval τ has the form ⟨t1, t2⟩, where ’⟨’ stands for either ’[’ or ’(’,
respectively specifying that τ is left inclusive or not, and similarly
for ’⟩’. A temporal RDF (t-RDF) triple (or simply t-triple) is of the
form (s,p,o)@τ , stating that the triple (s,p,o) is valid in the interval
τ . A t-RDF graph is a set of t-triples. To stay compatible with the
existing RDF/SPARQL infrastructure, we represent a t-RDF graph
G using a set of standard named graphs. Specifically, for each in-
terval τ appearing in G, we use one named graph (дτ ,Gτ ), where
Gτ contains all RDF triples T such that T@τ ∈ G. Moreover, we
associate to the IRI дτ the temporal properties that characterize the
interval τ , using the W3C standard Time ontology [7].

A temporal OBDA specification extends a classical OBDA spec-
ification (O,M,S) with a temporal mapping Mt and a tempo-
ral rule component Rt . The temporal mapping Mt consists of a
set of temporal mapping assertions, each of which is an expression
φ(®x)@⟨t1, t2⟩ f sql(®x , t1, t2), where sql now returns also tempo-
ral information, and φ(®x)@⟨t1, t2⟩ is a template for a set of t-triples.
Intuitively, for each answer tuple (®a,b, e) to sql(®x , t1, t2), this map-
ping assertion generates a group of t-triples φ(®a,b, e) sharing the
same interval ⟨b, e⟩.

We base our temporal rule language on DatalogMTL [4]. The
temporal rule component Rt consists of a set of temporal rules.
Each temporal rule has the form α ← β1, . . . , βn , where
the head α is a BGP, and each body atoms βi is either a fil-
ter F or an expression A constructed according to the grammar
A ::= B | ⊤ | ⊞ρA | ⊟ρA | ρA | ρA | A Sρ A | AUρ A,
where B is a basic graph pattern to which possibly a filter is applied,
and ρ denotes a range, i.e., an interval with non-negative endpoints.
Intuitively, a temporal rule may derive new t-triples from t-triples
that have been retrieved from the data or already derived and that
satisfy the temporal patterns specified in the rule body. For the
formal semantics of the rule language, we refer to [4].

To avoid unwanted interaction between ontological and tempo-
ral reasoning, we assume that (i) we have two disjoint alphabets Σs

of static predicates and Σt of temporal predicates, (ii) the (static)
mappingM populates only predicates in Σs , (iii) the temporal map-
pingMt populates only predicates in Σt , (iv) the ontology O is
specified only over predicates in Σs , and (v) the rules Rt have in
their head only predicates in Σt . In this way, the semantics of the
temporal OBDA framework can be specified by first retrieving the
(static and temporal) data from D, then deriving the (static) con-
sequences through O , and finally carrying out temporal inference
through Rt . The formal definition is beyond the scope of this paper.

2.3 The Ontop-temporal System
We have implemented the temporal OBDA framework in the sys-
tem Ontop-temporal by extending the OBDA system Ontop [6]. The
system accepts a temporal OBDA specification as input consisting
of (1) an OWL 2QL ontology, (2) a static mapping, (3) a connection
to a relational database for extracting the schema information, (4) a
temporal mapping, and (5) a temporal rule component. Since for the
latter two components no concrete syntax has been specified so far,
we have designed two languages. The temporal mapping language
extends the Ontop mapping language with a new interval compo-
nent. The temporal rule language is inspired by SWRL and SPARQL,
and we respectively denote the temporal operators ⊞, ⊟, , , S,
and U as ALWAYS IN FUTURE, ALWAYS IN PAST, SOMETIME IN FUTURE,
SOMETIME IN PAST, SINCE, and UNTIL. Concrete examples of temporal
mapping and rules are provided in the next section.

Themain functionality of the system is SPARQL query answering
over a temporal OBDA instance. The system rewrites an input
SPARQL query, using the temporal OBDA specification, into a
complex SQL query that can be executed over the source database.
The algorithm is based on the mapping saturation algorithm used
in Ontop, and has been extended to deal with the temporal mapping
and rule components.

In order to make the system more accessible, we have also ex-
tended the Ontop Protégé plugin to offer a graphical user interface
to edit temporal mapping and rules, and to execute SPARQL queries.

3 THE DEMO
Our demo shows how Ontop-temporal helps facilitating clinical
decision support. The material to reproduce the demo is online3.

3.1 Data Preparation
Dataset. The demo is based on the MIMIC-III dataset, a large data-
base from a real hospital with records of 58,000 hospital admissions
for 38,645 adults and 7,875 neonates. The raw size of the MIMIC-III
dataset is 60GB on disk in a PostgreSQL database. It comes with a
set of sample SQL queries4 focused on the extraction of temporal
data [12]. MIMIC-III has been used to test systems and prototypes
that support biomedical temporal reasoning [17].
Ontology.We define a small ontology that models intensive care
unit (ICU) stays of patients. The main concepts are shown in Fig-
ure 1a. For the taxonomy of Diseases and Injuries we imported
the ICD9CM (International Classification of Diseases, Version 9 –
Clinical Modification) ontology. Figure 1b shows the equivalences

3https://github.com/ontop/ontop-examples/tree/master/cikm-2018-temporal-obda
4https://github.com/MIT-LCP/mimic-code
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(a) A fragment of MIMIC ontology

(b) Importing ICD9CM ontology

Figure 1: Ontology in our use case
mappingId urn:Map -Adult

target :Patient /{ subject_id} a :Adult; :hasPatientID {subject_id }^^ xsd:int.

source SELECT "patients "." subject_id" FROM "icustays", "patients"

WHERE "icustays "." subject_id" = "patients "." subject_id"

AND (" icustays "." intime" - interval '18' YEAR) > "patients "." dob"

mappingId urn:Map -Sepsis

target :Diagnosis /{ icd9_code} a :Sepsis .

source SELECT "d_icd_diagnoses "." icd9_code" FROM "public "." d_icd_diagnoses"

WHERE "d_icd_diagnoses "." icd9_code" = '99591'

Figure 2: Example static mapping assertions

between the concepts in our ontology (with prefix “:”) and those
in ICD9CM (with prefix “icd:”).
Static Mapping.We created 10 static mapping assertions to pop-
ulate the static concepts using the tables of the MIMIC-dataset.
Figure 2 shows two example assertions for the Adults concept with
their hasPatientID role and the Sepsis diagnosis.

3.2 Use-case 1: Kidney Injury Induced by Sepsis
Here, we aim at identifying patients who had sepsis and potentially
suffered from kidney injury as a result. One of the most important
indicators of kidney injury is the level of Creatine in the blood
of a patient. Based on the SQL views defined in the MIMIC-III
dataset for kidney injury diagnosis, it is important to look at the
levels of Creatine observed while patients are in the ICU and at
the levels measured within 24 hours after the admission. Thus,
we make use of the temporal concept mt:ICUStay, which indicates
the time interval of a patient’s stay at the ICU, and of a temporal
role mt:hasCreatinineLevel, which indicates the Creatine level of
a patient (and in this case, the interval consists of one time point).
These mapping assertions are shown in Figure 3.

Now, we define the temporal concept mt:ICUStayFirstDay, which
indicates the period(s) of stay of a patient at the ICU within the
first 24 hours after the admission. We also represent Creatine levels

mappingId urn:Map -icustay

target ms:Patient /{ subject_id} a mt:ICUStay .

interval [{ intime }^^ xsd:dateTimeStamp , {outtime }^^ xsd:dateTimeStamp]

source SELECT "subject_id", "intime", "outtime"

FROM "public "." icustays"

mappingId urn:Map -CreatinineLevel

target ms:Patient /{ subject_id} mt:hasCreatinineLevel {v}.

interval [ {lab_begin }^^ xsd:dateTimeStamp , {lab_end }^^ xsd:dateTimeStamp ]

source SELECT "subject_id", ." valuenum" AS "v",

"charttime" AS "lab_begin", "charttime" AS "lab_end"

FROM "public "." labevents"

Figure 3: Example temporal mapping assertions

Figure 4: Temporal rules

during this period using the role mt:hasFirstDayCreatinineLevel.
The temporal rules defining these two temporal predicates are
shown in the last two segments of Figure 4. To identify the patients
diagnosed with sepsis, we rely on the static concept Sepsis.

Finally, we use the SPARQL query depicted in Figure 5 to return
Creatine levels for the periods of ICU stay within 24 hours from
admission for the patients diagnosed with sepsis. Recall that tempo-
ral concepts (e.g., mt:hasFirstDayCreatinineLevel) are placed into
named graphs (e.g., the one named ?g in the query in Figure 5), and
the information about the interval associated with the graph can
be queried using the vocabulary of the W3C Time ontology.

It is known that significantly high levels of Creatine indicate
kidney injury, and the levels above 4 are considered significantly
high [17]. Thus, the answers returned to our query can help a
medical specialist in identifying patients who may have had such
injuries as a result of sepsis.

3.3 Use-case 2: Patients Selection for HIV Trials
Here we aim at assisting a medical specialist in selecting patients
for trials of medications and procedures. For this use case, we
have chosen the HIV medication trial5. It is reasonable to conduct
this trial among the patients who have a diagnosis in the class
icd:MM_CLASS_4648, which represents “Endocrine, Nutritional and
Metabolic Diseases, and Immunity Disorders”, according to the
ICD9CM ontology. Then, we can use in our SPARQL queries the

5https://clinicaltrials.gov/ct2/show/NCT02355184

https://clinicaltrials.gov/ct2/show/NCT02355184


Figure 5: SPARQL query for use-case 1 and its execution

Figure 6: SPARQL query for use-case 2 and its execution

static concept icd:MM_CLASS_4648, which we import together with
the ICD9CM taxonomy.

Not every patient in our group of interest is eligible, be-
cause the HIV medication trial prescribes exceptions. One
of such exceptions can be defined by the temporal con-
cept AdultICUPatientExcludedFromHIVClinicalTrial (see first three
rules of Figure 4). Now, in order to identify the adult patients from
the group of interest who are not eligible for the trials, a medical
specialist can run the SPARQL query shown in Figure 6, asking for
patients having diagnosis of class icd:MM_CLASS_4648 that are also
in AdultICUPatientExcludedFromHIVClinicalTrial. With this query,
which indirectly accesses the superclass of the other diagnoses, we
show that our system is able to combine temporal reasoning with
static ontological reasoning.

3.4 Performance
The experiments were run on an AWS server with an Intel Xeon
Platinum-8175 processor having 16 logical cores at 2.5 GHz and
64GB of RAM. During the experiments Ontop-temporal translated
the SPARQL query into SQL and then executed this SQL translation
over the MIMIC-III dataset. For the queries, our system generated
SQL of rather complex structure, with 115 and 174 lines respectively
for the SPARQL queries used in two use cases. The translation time

is negligible. Since the input SPARQL queries are not selective, we
run these queries with a limit of 10000. The two SPARQL queries
take 251 seconds and 36 seconds respectively.

4 CONCLUSIONS
In this paper, we introduced a tool for practical temporal OBDA,
and demonstrated use cases from a clinical domain in order to
present the functionalities of Ontop-temporal. As future work, we
plan to connect Ontop-temporal to a big data processing framework
(e.g., Spark), which can run the SQL translation in parallel, and
evaluate it over large scale heterogeneous time series data. Another
direction is to support temporal aggregations at the ontological
level. Moreover, we will improve the graphical user interface to
visualize the query results with their temporal duration.
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