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Abstract. The Virtual Knowledge Graph (VKG) paradigm facilitates access to
large heterogeneous data sources by leveraging an OWL 2 QL ontology repre-
senting the domain knowledge and a set of declarative R2RML mapping asser-
tions. We are interested in heterogeneous data sources consisting of relational
data together with spatial geometrical data (a.k.a. vector data) and large multidi-
mensional raster data. The latter forms of data pose a significant challenge for
traditional DBMSs to manage effectively and are instead efficiently processed by
tailored array database management systems (ArrayDBMSs). To query such data
within the VKG paradigm, we propose a novel framework, called ONTORASTER,
that allows for integrated query processing of relational, raster, and vector data,
by keeping each type of data in the system tailored for their efficient processing,
while minimising costly data-transfer operations. In OntoRaster, we devised cus-
tom raster functions extending SPARQL to query raster data efficiently and devel-
oped mechanisms for delegating their computation to the ArrayDBMS. We have
implemented the whole framework as an extension of the state-of-the-art VKG
system Ontop and have demonstrated its effectiveness and efficiency through a
curated case study.

Keywords: Virtual Knowledge Graphs · Spatial-Temporal Reasoning · Raster
Data · Vector Data · Multidimensional Arrays · Query Answering

1 Introduction

Scientific and business applications produce data in different representations at a mas-
sive scale, leading to bottlenecks in data management and processing and giving rise
to the notorious issue of data heterogeneity [27,28]. Resolution of data heterogeneity
allows for multiple databases (DBs) to be integrated and their contents to be uniformly
queried. In our study, we are considering two different types of data: traditional rela-
tional data and large-scale raster data represented as multidimensional arrays [19,25].
We are particularly interested in spatial data in the Geographic Information System
(GIS) field, which are classified into two types: vector data and raster data. Vector data
are a special kind of relational data that represent geometries (e.g., points, lines, and
polygons) of real-world discrete features such as static locations (points), road networks
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(lines), and country boundaries (polygons), with additional attributes. Geospatial raster
data are a notable example of generic raster data, which have become a prime source
of modern-day big data, e.g., due to advancements in air-borne and space-borne remote
sensing [23]. Geospatial raster data are characterised by differences in spatial, temporal,
and spectral resolutions, varying conditions in observations (e.g., different atmospheric
conditions), and diverse spatial data structures [18]. Tailored array DB systems (Array
DBMSs) are used to store and manage multidimensional arrays due to their outstand-
ing scalability, adaptability, and in-place data processing capacity [6,29]. In our work,
we decided to exploit the capabilities of rasdaman1 (for “raster data manager”) [3,4],
a domain-agnostic Array DBMS that supports a variety of array operations, such as
aggregation, filtering, scaling, and extraction of sub-spaces.

The support for raster data has also been attempted in classical relational DB man-
agement systems (RDBMSs) using spatial extensions. To do so, large raster data must
undergo a conversion (e.g., using raster2pgsql2 for PostgreSQL extended with Post-
GIS) from their native format of multidimensional arrays to a suitable relational form
(e.g., postgis raster) that can be queried using SQL. This conversion leads in general
to a massive increment in the data volume, which might be difficult to manage in a
relational table. Therefore, we take an alternative approach that does not rely on the
RDBMS’s internal materialisation of raster data.

To address data heterogeneity resulting from the combination of the different forms
of data, we rely on the paradigm of Virtual Knowledge Graphs (VKGs) also known as
Ontology-Based Data Access (OBDA) [22,33]. In VKGs, domain knowledge is con-
ceptually represented as an ontology, typically expressed in the lightweight ontology
language OWL 2 QL [21], while actual data are maintained in a relational data source,
but are not materialised at the conceptual level (which justifies the term “virtual”). To
establish the relationship between the ontology and the data at the source, VKGs rely
on a declarative specification, provided in terms of a set of mapping assertions.

In the traditional VKG setting, date sources are restricted to RDBMSs, but such
systems are inefficient at querying raster data in their native multidimensional array for-
mat [7,20], and at combining them with relational data, including vector data. Various
recent proposals aim at addressing these challenges, as also discussed in [15]. Notably,
a semantic data cube system, named Plato [9,10], has been proposed within the EU
H2020 project DeepCube3. The system relies on a geospatial extension of the VKG
system ONTOP [8] and uses PostgreSQL Foreign Data Wrappers. It has been deployed
in a case study on fire risk-management [11]. Similarly, another study [16] proposed
an architecture to query raster data stored in an RDBMS using the VKG paradigm and
extending the GeoSPARQL ontology4 with a semantic representation model for raster
data cubes. Our work differs from these works as we rely on rasdaman’s array manage-
ment abilities to query multidimensional raster data without any conversion.

In this paper, we present our ongoing work on the ONTORASTER framework, which
allows for integrated querying of both relational data and raster data by extending the

1 http://www.rasdaman.org/.
2 https://postgis.net/docs/using_raster_dataman.html#RT_Loading_Rasters.
3 https://deepcube-h2020.eu/.
4 https://www.ogc.org/standard/geosparql/.

http://www.rasdaman.org/
https://postgis.net/docs/using_raster_dataman.html#RT_Loading_Rasters
https://deepcube-h2020.eu/
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VKG paradigm to handle also array-based sources. In ONTORASTER, we still use a
relational DBMS, namely PostgreSQL, as the main data source to which the VKG sys-
tem connects, and we provide within this DBMS novel functionalities for virtual access
to an Array DBMS, namely rasdaman. Specifically, we have extended the SPARQL
query language with special raster functions (e.g., to compute multi-dimensional aggre-
gations), and we have devised a set of stored procedures for PostgreSQL that translate
such raster functions into array operations supported by rasdaman. These are executed
directly on the Array DBMS, hence avoiding costly transfers and transformations into
relational data of large arrays (unless such arrays need to be returned as an answer to a
query, in which case the data transfer is unavoidable).

2 Preliminaries

In the standard VKG paradigm [22,33], existing heterogeneous data sources (e.g., rela-
tional) are accessed via a domain ontology that is linked to the source through semantic
mappings, and exposes the underlying data as a (virtual) knowledge graph represented
in RDF [26]. Formally, a VKG specification P = (O,M,S) consists of (i) an ontology
O that represents intensional knowledge about the domain of interest and is expressed
as a TBox in the lightweight ontology language OWL 2 QL [21], (ii) a relational data
source schema S, and (iii) a declarative mapping M that associates to each element
(i.e., class or property) in O a (SQL) query over S, specifying how to (virtually) popu-
late that element through the data retrieved from the source.

In traditional VKGs, the mapping M consists of a set of R2RML [13] mapping
assertions of the form sql(x) � E(f(x)), where sql(x) is a (SQL) query over S
with answer variables x, E is a class or property of O, and f(x) denotes a set of so-
called IRI templates applied to the variables in x. Each IRI template is a function that
constructs an ontology literal or an IRI identifying an ontology object, from the values
in each answer to sql(x) instantiating x. Then, a VKG instance is a pair (P,Drel),
where Drel is a relational database instance conforming to S. Thus, by applying the
mapping assertions in M to Drel , one obtains a knowledge graph M(Drel) (which is
actually kept virtual).

Semantic queries formulated in SPARQL [17] are posed over O and are answered
by accessing the data in Drel through the mapping M. Specifically, given a SPARQL
query q over a VKG instance J = (P,Drel), we are interested in the certain answers
to q over J , denoted cert(q,J ), which are the answers obtained by evaluating q over
the knowledge base (O,M(Drel )) under the OWL 2 QL entailment regime [21]. Actual
VKG systems such as ONTOP [12,34] avoid costly materialization of the KG M(Drel)
and its storage in a triple store, and rather translate the SPARQL query into a relational
SQL query that is directly evaluated by the underlying DBMS (e.g., PostgreSQL), thus
ensuring also freshness of query answers concerning source updates.

2.1 Vector Data

Vector data are used to describe the spatial characteristics of discrete real-world phe-
nomena, each conceived as a feature according to the ISO 19123 Geographic Inf. Part 1
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Fig. 1. Primary components of vector data in their respective OGC WKT forms

Standard5. Typical examples of such discrete features are rivers, lakes, and adminis-
trative regions. These are represented by a set of one or more geometric primitives,
such as points, curves, and surfaces with their positional parameters either in Carte-
sian coordinates (X and Y) in a topological planar surface or geographic coordinates
(longitude a.k.a. geoX and latitude a.k.a. geoY). Other characteristics of the discrete
phenomenon are recorded as feature attributes. Vector data are represented in popular
file formats like CSV, shapefiles, and GeoJSON or relational tables in a RDBMS with
a spatial extension.

We consider geometries that conform to the OGC ISO 19125 OpenGIS Standard6,
which foresees Well-Known Text (WKT) literals7 as the most common representation of
geometries. According to this standard, a Point is a pair of longitude and latitude (which
in the WKT representation are separated by blanks), while a LineString is a sequence of
points separated by ’,’. A valid Polygon is a topologically closed planar surface defined
by one exterior boundary and zero or more interior boundaries (where each interior
boundary defines a hole in the polygon). Each boundary is a LinearRing, which is a
LineString in which the last point must coincide with the first point. A MultiPolygon is
a collection of one or more valid Polygons, separated by’,’. Finally, a GeometryCol-
lection is a sequence of one or more of the previously introduced elements. Figure 1
illustrates some of the basic geometry elements of vector data (i.e., regionGeometry)
with their representation as OGC WKT literals (i.e., regionWkt) with examples. All
geometries in OGC ISO 19125 are a combination of these primary geometries.

5 https://www.iso.org/obp/ui/en/#iso:std:iso:19123:-1:ed-1:v1:en.
6 https://www.ogc.org/standard/sfa/.
7 https://docs.ogc.org/is/18-010r7/18-010r7.html.

https://www.iso.org/obp/ui/en/#iso:std:iso:19123:-1:ed-1:v1:en
https://www.ogc.org/standard/sfa/
https://docs.ogc.org/is/18-010r7/18-010r7.html
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Fig. 2. Ontology for generic raster data, including grid coverage

2.2 Raster Data

Raster data, also referred to as gridded data [7], or multidimensional discrete data
(MDD), represent real-world phenomena that vary continuously over space, time, and
maybe even more dimensions, depending on the particular domain of interest (DOI) or
field such as medical, astronomy, geospatial, etc. In this paper, we focus on raster data in
the geospatial domain, also referred to as datacube [2] or gridded coverage as per OGC
Coverage Implementation Schema (CIS) v1.1 Standard [5] adopted by ISO 19123 Geo-
graphic information - Schema for coverage geometry and functions. According to Part 2
of this ISO standard8 the concept of coverage represents multidimensional grids of both
regular and irregular type as the natural representation of various space-time-varying
phenomena predominantly in the geospatial domain. Common examples include 1-D
time series, 2-D imagery, 3-D x/y/t image time-series and x/y/z geophysical data, as
well as 4-D x/y/z/t atmospheric climate and ocean data.

Inspired by [1], we have defined the Raster Ontology shown in Fig. 2, which
describes n-dimensional generic raster data or coverage based on the OGC CIS v1.1
Standard. The ontology describes so far only regular gridded coverage or geospatial
raster data. The RegularGridDomain and RangeType classes capture all the informa-
tion about the domains and ranges of a grid coverage. For measurement units, we use the
UnitOfMeasure class defined by the Quantities, Units, Dimensions, and Types (QUDT)
ontology [24].

Coverages can be encoded in a suitable raster file format such as GML, NetCDF,
GeoTIFF, HDF, etc., which greatly benefits for use case specific small datasets that
can be accessed ad hoc via Python, R, Matlab scripts, etc. However, problems begin to
emerge when data become very large in volume (e.g. terabytes) and it becomes chal-
lenging to query the required information [30]. Moreover, to deal with gridded coverage
data, or raster data, one must also include metadata such as domain, range, and prove-
nance information. In contrast to arrays, the structure of this metadata is substantially
less regular, and it may be incomplete or vary between arrays.

In our research, we rely on rasdaman (for “raster data manager”), a domain-agnostic
array DBMS that implements the OGC standards for gridded coverages, and manages
such large data with its substantially rich array algebra. Rasdaman offers a SQL-like

8 https://www.iso.org/obp/ui/en/#iso:std:70948:en.

https://www.iso.org/obp/ui/en/#iso:std:70948:en
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Fig. 3. The ONTORASTER framework extending the VKG framework

query language known as RaSQL9 to query any kind of raster data of arbitrary dimen-
sions [4] following ISO 9075 SQL Part 15: Multi-Dimensional Arrays (SQL/MDA)10.
It features a geo service front-end component called petascope11, which adds geo
semantics on top of arrays, thereby enabling regular and irregular grids based on the
OGC CIS v1.1. To implement the geo-semantics, petascope uses a relational database
such as PostgreSQL to store related metadata for each raster dataset. This metadata is
distributed across 62 relational tables in a separate database called petascopedb within
PostgreSQL. Rasdaman also includes rasdapy12, a client API that allows building and
executing rasql queries using Python.

3 The OntoRaster Framework

We present the ONTORASTER framework, which extends the capabilities of a
VKG engine to handle also multidimensional raster datasets. The architecture of
ONTORASTER is shown in Fig. 3, and discussed below.

3.1 RasSPARQL: An Extension of SPARQL with Raster Functions

We introduce now RasSPARQL, which extends SPARQL and the OGC GeoSPARQL
functions used to manage vector data [34], with the support for raster data and the
corresponding functions. To provide such an extension, we have first devised and added
to SPARQL, custom raster-based functions and corresponding SQL DB functions, to be
handed over for execution to an Array DBMS. The currently supported RasSPARQL
raster-based functions with their input arguments and output type are listed in Table 1.

Notice that the RasSPARQL functions rasClipRaster(), and rasClipRaster
AnyGeom() return a portion of raster data as an array of values (e.g., pixels) by rely-
ing on rasdaman’s embedded ‘clip’ function13, which extracts a raster array based on

9 https://doc.rasdaman.org/04_ql-guide.html.
10 https://www.iso.org/obp/ui#iso:std:iso-iec:9075:-15:ed-2:v1:en.
11 https://doc.rasdaman.org/02_inst-guide.html?highlight=petascope#petascope.
12 https://pypi.org/project/rasdapy3/.
13 https://doc.rasdaman.org/04_ql-guide.html#clipping-operations.

https://doc.rasdaman.org/04_ql-guide.html
https://www.iso.org/obp/ui#iso:std:iso-iec:9075:-15:ed-2:v1:en
https://doc.rasdaman.org/02_inst-guide.html?highlight=petascope#petascope
https://pypi.org/project/rasdapy3/
https://doc.rasdaman.org/04_ql-guide.html#clipping-operations
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Table 1. RasSPARQL raster functions and respective PL/Python stored procedures

RasSPARQL function Input arguments Output type PL/Python stored proc.

rasDimension() rasterName xsd:string query2string()

rasCellOp() timeStamp, operator, operand, rasterName xsd:string query2array()

rasSpatialAverage() timeStamp, regionGeometry, rasterName xsd:double query2numeric()

rasSpatialMinimum() timeStamp, regionGeometry, rasterName xsd:double query2numeric()

rasSpatialMaximum() timeStamp, regionGeometry, rasterName xsd:double query2numeric()

rasTemporalAverage() startTime, endTime, regionGeometry, rasterName xsd:double query2numeric()

rasTemporalMinimum() startTime, endTime, regionGeometry, rasterName xsd:double query2numeric()

rasTemporalMaximum() startTime, endTime, regionGeometry, rasterName xsd:double query2numeric()

rasClipRaster() timeStamp, regionGeometry, rasterName xsd:string query2array()

rasClipRasterAnyGeom() timeStamp, regionGeometry, rasterName xsd:string query2array()

the geometry (or shape) of a region: all pixels outside of the given region are set to
null or ‘NaN’, while pixels on and within the region are preserved. We represent the
returned array as a string since RDF does not support arrays yet.

3.2 Extending Ontop to Translate RasSPARQL to SQL-SQL/MDA

To properly deal with RasSPARQL functions within Ontop, we have implemented an
extension of the system that, as a part of query reformulation, translates each such func-
tion into a corresponding SQL function and embeds it into the generated SQL/MDA
query as indicated in Fig. 3. Notice that the RasSPARQL query is in general a SPARQL
query that might contain both GeoSPARQL functions and raster functions. This query
is translated to a plain SQL query containing corresponding PostGIS functions and
PL/Python stored procedures that connect to rasdaman, as specified in the last column
of Table 1. As an example, when Ontop parses a RasSPARQL query that embeds the
raster function rasSpatialAverage, it translates it to a call to query2numeric which
in turn executes the SQL/MDA standard rasql query over rasdaman.

3.3 Query Transformation System

We now describe how the generated SQL-SQL/MDA query produced by Ontop is pro-
cessed as shown in Fig. 3. The PostGIS functions embedded in the SQL part can be
directly processed by PostgreSQL through its PostGIS extension. Instead, we rely on
PL/Python and PL/pgSQL stored procedures to ensure smooth retrieval of the metadata
corresponding to the relevant raster data, and the ability to call suitable rasql queries
that are directly executed by rasdaman.

PL/Python Stored Procedures. The stored procedures are specified in the PL/Python
procedural language14, which also supports all PostgreSQL and PostGIS functions, and
rasdapy to connect to rasdaman. The procedures are stored in the VectorTablesDB
database inside PostgreSQL (in a schema called rasdaman_op). We elaborate now on
the stored procedures shown in Table 2.

14 https://www.postgresql.org/docs/current/plpython.html.

https://www.postgresql.org/docs/current/plpython.html
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Table 2. Selected PL/Python stored procedures to connect Ontop and rasdaman federated by
PostgreSQL via rasdapy

Stored procedure Input arguments Output

geo2grid_coords() GEOMETRY regionGeometry, DOUBLE minLon,

DOUBLE minLat, DOUBLE resLon, DOUBLE resLat

GEOMETRY regionGrid

query2numeric() STRING rasqlQuery DOUBLE value

query2array() STRING rasqlQuery DOUBLE[] array

– geo2grid_coords(): Being a domain-agnostic array DBMS, rasdaman (rasql pre-
cisely) only supports array indices (i and j) or grid coordinates (gridX and gridY)
and does not consider any domain-specific coordinates such as geo-coordinates
(i.e., longitude and latitude) natively. Therefore, we devised this mapping func-
tion inspired by a generic affine transformation model [32], which translates the
geo-coordinates to corresponding grid coordinates, taking into account the respec-
tive geographical coordinate reference system (CRS). Our current implementation
assumes that both the vector and the raster data use the same CRS, which we require
to be WGS8415. We will provide support for different CRSs in the future. In prac-
tice, this function takes five input arguments, namely the geometry of the chosen
region of interest (ROI), and minLon, minLat, resLon, resLat of the selected raster
data. It returns a translated grid geometry of the region (regionGrid) as output.
This enables the user to send the geometry (polygon or multi-polygon) of any ROI
to rasdaman as a part of the rasql query. The embedded geometry will be translated
into grid coordinates to be used as an input to rasql’s array operations to extract data
from raster data. As an example, rasql’s ‘clip‘operation can crop out a portion of
raster data based on the translated geometry of a user’s region.

– query2numeric(): Takes a rasql query as a string input and executes it over raster
data stored inside rasdaman using rasdaman’s supported array condenser opera-
tions16, such as avg_cells, max_cells, etc. and retrieve aggregated numeric results
back to PostgreSQL.

– query2array(): Evaluates rasql queries over raster arrays using rasdaman sup-
ported array operations17 such as clip, concatenation, scaling and retrieve filtered
arrays back to PostgreSQL.

PL/pgSQL Stored Procedures. - timestamp2grid(): This PL/pgSQL function trans-
lates timestamp from’DateTime’ format to integer format (e.g., gridTime) that is com-
prehended by rasdaman since rasdaman treats the timestamp as an integer instead of the
actual’DateTime’ format.

These are just selected necessary stored procedures that make PostgreSQL a feder-
ator between rasdaman and Ontop. In the future, more stored procedures can be added
based on the user’s demands. Based on these stored procedures (both PL/Python and

15 https://epsg.io/4326.
16 https://doc.rasdaman.org/04_ql-guide.html#condensers.
17 https://doc.rasdaman.org/04_ql-guide.html#array-operations.

https://epsg.io/4326
https://doc.rasdaman.org/04_ql-guide.html#condensers
https://doc.rasdaman.org/04_ql-guide.html#array-operations
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PL/pgSQL), Ontop-generated SQL/MDA queries can be executed on any geospatial
raster data using the array manipulation capabilities of rasdaman.

Raster LookUp Table Creation. As previously stated, the essential metadata stored
in petascopedb must accompany the corresponding raster in order to interact with it.
Every time a user queries specific raster data, the relevant metadata needs to be searched
among 62 separate tables in petascopedb and attached with the corresponding raster
data automatically for subsequent processing. If the user selects another raster dataset
to query, the automatic search and combine procedure is repeated, resulting in overhead.
To address this issue, we created a Raster Lookup, a single table that stores all neces-
sary metadata in one place for every raster data stored in rasdaman. We have built this
table inside the VectorTablesDB database from the petascopedb database using dblink18

where petascopedb serves as a remote database. Whenever a new raster data is uploaded
to rasdaman, we defined a PostgreSQL trigger to automatically update the LookUp table
with the metadata of newly added raster data.

4 Case Study for the OntoRaster System

We demonstrate the proposed ONTORASTER framework on a case study where we inte-
grate vector data (i.e., regions) with geospatial raster data and return their spatiotempo-
ral patterns and correlations as a knowledge graph, for possible further processing. We
build the mappings using the Protégé ontology editor [14] with the Ontop plugin [12]
and set up a SPARQL endpoint available on GitHub19 including the complete imple-
mentation as docker with the required data.

4.1 VKG Specification for OntoRaster

Ontology (O). We rely on the GeoSPARQL ontology, representing the geometries of a
vector region (See footnote 4).

Data Sources (Drel , Darr ). Table 3 displays all the vector and raster datasets consid-
ered for the ONTORASTER framework demonstration. In our work, we represent vector
data with their corresponding geometries (e.g., regionGeometry) and attributes (e.g.,
regionId, regionName), using one or more relational tables for every area of interest
(AOI), stored in a DB named VectorTablesDB within PostgreSQL, as shown in Fig. 4.
For the case study, we consider Sweden, Bavaria (Germany), and South Tyrol (Italy)
as our AOIs with their corresponding municipalities as ROIs (resulting in ∼500 unique
ROIs in total).

Related vector data are downloaded as shapefiles from GADM20. Then utilizing the
shp2pgsql21 data loader we import each shapefile as a suitable default SQL binary
object format (with regionGeometry in hex format, i.e., regionHex) into separate

18 https://www.postgresql.org/docs/current/contrib-dblink-function.html.
19 https://github.com/aghoshpro/OntoRaster.git.
20 https://gadm.org/index.html.
21 https://postgis.net/docs/using_postgis_dbmanagement.html#shp2pgsql_usage.

https://www.postgresql.org/docs/current/contrib-dblink-function.html
https://github.com/aghoshpro/OntoRaster.git
https://gadm.org/index.html
https://postgis.net/docs/using_postgis_dbmanagement.html#shp2pgsql_usage
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Fig. 4. VectorTablesDB containing tables for Areas of Interest and Raster Lookup

tables into VectorTablesDB, as shown in Fig. 4. Notice that we have used convenient
names for the tables and their columns in VectorTablesDB, However, any other choice
would have been possible, as long as such names are used in a coherent way in the
source queries of the VKG mappings that provide the link between vector and raster
data (see, e.g., Fig. 5).

As for raster data, we use the MODIS land surface temperature dataset [31] from
NASA’s Earth Science Data Systems (ESDS) covering the respective AOIs, i.e., Swe-
den, Bavaria, and South Tyrol. This is 3-D raster data with a spatial dimension (2-D)
and a temporal dimension (1-D) with temperature as a field (or band). ONTORASTER

also supports an arbitrary number of fields, such as precipitation, elevation, etc., sharing
the same axis extents (cf. the ontology in Fig. 2). The Raster Lookup table, of which we
show in Table 4 only five out of seventeen columns, maintains the necessary metadata
of the raster datasets and is stored in VectorTablesDB, as shown in Fig. 4.

Mappings (M). We show in Fig. 5 only one example mapping, in which the class
Region is mapped with its respective data properties such as id, name, and geometry in
OGC WKT geometry serialization, i.e., regionWkt, for all regions of Sweden. Based
on this mapping, at query execution time, the geometry is retrieved using the input
region name . The SQL source query of the mapping contains a CASE statement that

Table 3. Heterogeneous datasets used for the case study

Areas of Interest (AOI) Sweden Bavaria (Germany) South Tyrol (Italy)

Datasets Vector Raster Vector Raster Vector Raster

Type Municipalities Temperature Municipalities Temperature Municipalities Temperature

Native Format .shp NetCDF .shp NetCDF .shp NetCDF

Logical Format relational MDA relational MDA relational MDA

Array Dim (t x lon x lat) – 217× 1586 × 1648 – 305× 584 × 396 – 305× 252 × 106

Spatial Resolution None 1 km × 1 km None 1 km × 1 km None 1 km × 1 km

Temporal Resolution None daily None daily None daily

Temporal Coverage None 1 year None 1 year None 1 year

Features 290 1,001,057,824 96 70,006,640 116 8,038,275
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Table 4. Raster Lookup

raster_id raster_name min_lon max_lon res_lon ...

407 Surface_Temperature_Sweden 10.9583 24.1749 0.00833 ...

1661 Bavaria_Temperature_MODIS_1km 8.9749 13.8416 0.008333332653 ...

800 South_Tyrol_Temperature_MODIS_1km 10.3833 12.4833 0.0083332586793 ...

Fig. 5. Example mapping to retrieve region id, name and geometry

checks whether the geometry of the input region is a polygon or a multi-polygon, as
they need to be treated differently in the geo2grid_coords function. This is necessary
to transform any single polygon represented as a multi-polygon (technically possible
but a bad representation) into its actual polygonal format. Similar types of mapping
apply for all other vector regions, including the regions of Bavaria and South Tyrol.

In our framework, we have set up a number of mappings to connect the data
attributes of the Region and Raster classes, for which we refer the reader to the GitHub
repository (See footnote 19). We will further extend this set of mappings in the future.

4.2 Queries (Q)

To demonstrate our results, and the capability of ONTORASTER for query answering
over virtually integrated vector data and raster data under the VKG paradigm, we pro-
vide RasSPARQL queries of four types: simple, with spatial aggregation, with temporal
aggregation, and with spatial raster filtering. All queries can be found on GitHub (See
footnote 19). Here we show only a few of them. The used prefixes are listed in Table 5
and refer to the base namespaces of the ONTORASTER and auxiliary vocabularies, such
as RDFS and GeoSPARQL.

Q1 is a simple raster query that retrieves dimension information of the input raster
data. Query Q2 conducts element-wise operations on raster arrays.

Queries Q3–Q5 perform spatial aggregations and return a single aggregated value
from a chosen raster dataset over a vector region at a specific timestamp.
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Table 5. List of prefixes used for RasSPARQL queries

Prefix IRI Namespace

: https://github.com/aghoshpro/OntoRaster/

geo http://www.opengis.net/ont/geosparql#

rdfs http://www.w3.org/2000/01/rdf-schema#

rasdb https://github.com/aghoshpro/RasterDataCube/

– Q3: Find the spatial average temperature over München on 24 July 2023, using the
available temperature raster data over Bavaria.

1 SELECT ?answer {

2 ?region a :Region ; rdfs:label ?regionName ; geo:asWKT ?regionWkt .

3 ?gridCoverage a :Raster ; rasdb:rasterName ?rasterName .

4 FILTER (?regionName = ’München’)

5 FILTER (CONTAINS(?rasterName, ’Bavaria’)

6 BIND (’2023-07-24T00:00:00+00:00’^^xsd:dateTime AS ?timeStamp)

7 BIND (rasdb:rasSpatialAverage(?timeStamp, ?regionWkt, ?rasterName)

8 AS ?answer)

9 }

Similarly, Q4 and Q5 enable the user to find the maximum and minimum tempera-
ture values by using the respective RasSPAQRL spatial functions rasSpatialMaximum
and rasSpatialMinimum over ‘München’, or any other region from VectorTa-
blesDB, combined with the corresponding raster datasets (i.e., Bavaria, Sweden, or
South-Tyrol).

Queries Q6–Q8 perform temporal aggregations and return a single aggregated value
by integrating a user-specific vector region and a raster dataset over a time interval
between the given start and end times.

– Q7: Find the maximum temperature over Göteborg between 5 April 2022 and
19 June 2022, using the available temperature raster data over Sweden.

1 SELECT ?answer {

2 ?region a :Region ; rdfs:label ?regionName ; geo:asWKT ?regionWkt .

3 ?gridCoverage a :Raster ; rasdb:rasterName ?rasterName .

4 FILTER (?regionName = ’Göteborg’)

5 FILTER (CONTAINS(?rasterName, ’Sweden’))

6 BIND (’2022-04-05T00:00:00+00:00’^^xsd:dateTime AS ?startTimeStamp)

7 BIND (’2022-06-19T00:00:00+00:00’^^xsd:dateTime AS ?endTimeStamp)

8 BIND (rasdb:rasTemporalMaximum(?startTimeStamp, ?endTimeStamp,

9 ?regionWkt, ?rasterName) AS ?answer)

10 }

Queries Q9 and Q10 perform a ‘clipping’ operation by cropping a portion of the
actual raster data based on the geometrical extent of the specified region at a given
time, and return a filtered array that covers the input region.

https://github.com/aghoshpro/OntoRaster/
http://www.opengis.net/ont/geosparql#
http://www.w3.org/2000/01/rdf-schema#
https://github.com/aghoshpro/RasterDataCube/
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– Q9: Clip an available temperature raster data for South Tyrol with region Bolzano
on 24 September 2023 at time 00:00:00, and return filtered arrays.

1 SELECT ?answer {

2 ?region a :Region ; rdfs:label ?regionName ; geo:asWKT ?regionWkt .

3 ?gridCoverage a :Raster ; rasdb:rasterName ?rasterName .

4 FILTER (?regionName = ’Bolzano’)

5 FILTER (CONTAINS(?rasterName, ’Tyrol’))

6 BIND (’2023-09-24T00:00:00+00:00’^^xsd:dateTime AS ?timeStamp)

7 BIND (rasdb:rasClipRaster(?timeStamp, ?regionWkt, ?rasterName)

8 AS ?answer)

9 }

– Q10: Clip a portion of user-specific raster data based on a custom vector region on
24 July 2024 at time 00:00:00, and return filtered arrays.

1 SELECT ?answer {

2 ?gridCoverage a :Raster ; rasdb:rasterName ?rasterName .

3 FILTER (CONTAINS(?rasterName, ’Bavaria’))

4 BIND (’POLYGON((11.324157714843748 48.29050321714061,

5 11.911926269531248 48.279537342260085,

6 11.88995361328125 48.01932418480118,

7 11.340637207031248 48.01564978668938,

8 11.324157714843748 48.29050321714061))’ AS ?customRegionWkt)

9 BIND (’2023-07-24T00:00:00+00:00’^^xsd:dateTime AS ?timeStamp)

10 BIND (rasdb:rasClipRasterAnyGeom(?timeStamp, ?customRegionWkt,

11 ?rasterName) AS ?answer)

12 }

4.3 Issues

Currently, the ONTORASTER system provides support for the types of RasSPARQL
queries shown in Sect. 4.2. However, the system is still under development and we
intend to extend it to support more general forms of RasSPARQL queries, so as to
accommodate arbitrary multivariate raster data of n-dimensions. We are also working
to make our solution more robust by addressing the following issues:

– Multi-polygons with holes and multi-polygons with small polygons (sometimes the
area is smaller than the pixel size of the corresponding raster arrays) still have limited
support. Hence, the geo2grid_coords function needs to be improved to translate the
aforementioned types of multi-polygonal geometry to an equivalent grid geometry.

– Multiple raster data sets with the same name have to be taken into account. A possi-
ble solution is to include a second filter argument in addition to the raster name, to
distinguish different fields of the raster.

– Missing timestamps between the start time and end time of the raster data are not
taken into account in the timestamp2grid function.

– RDF does not yet support array datatype, leading to optimisation issues when raster
arrays that are retrieved as RDF strings require further processing.



OntoRaster: Extending VKGs with Raster Data 121

– The inclusion of post-processing operations for raster data is crucial in converting
the raw data values to a format that is convenient for the end user. But their usage
differs for every raster dataset, may not always be included in the metadata, and
whether to use them or not, depends on the end user’s objective with the data. All
these aspects need to be taken into account.

5 Conclusions

We have presented a novel extended VKG framework, ONTORASTER to query for the
first time multidimensional raster data combined with relational data, including vector
data, on the fly by connecting the array DBMS rasdaman to the VKG system Ontop.
To achieve this, we defined the RasSPARQL language, by extending SPARQL with
custom raster functions to query over VKGs. Then we developed a query transforma-
tion system that includes several stored procedures defined in PL/Python and PL/pgsql
that make PostgreSQL a federator between VKG engine Ontop and heterogeneous data
sources (e.g., raster and relational). It guides the translated SQL-SQL/MDA query com-
ing from Ontop to the respective data sources stored in RDBMS & array DBMS as
mentioned in the RasSPARQL query by the user and executes them separately. After
execution, the retrieved sub-answers (containing relational and raster arrays) are joined
and then guided back to the Ontop to generate a virtual knowledge graph (VKG) that
answers the user’s semantic query. The most notable contribution of this article lies in
its utilisation of the array handling capabilities of an array DBMS to perform queries on
large raster data in their original data structure, i.e., multidimensional arrays, without
any conversion. This eliminates the need for costly data transfer and transformation of
raster data into relational databases. ONTORASTER supports a wide range of potential
queries, only limited to the data processing and functional capabilities of PostgreSQL
(RDBMS) and rasdaman (array DBMS) for managing relational data and raster data,
respectively.

We plan to continue the work on ONTORASTER along the following lines:

– It is of interest to incorporate SPARQL endpoints of public knowledge graphs (e.g.,
DBPedia, LinkedGeoData, and Wikidata) into the ONTORASTER framework, to
enable the building of a coherent (partially virtual and partially materialized0 knowl-
edge graph that can be queried holistically.

– The possibility to delegate further procession of the query results to BI Tools such
as MS Power BI and Tableau.

– Publishing and displaying query results as an interactive visualisation on the web,
using the OGC CoverageJSON22.

– Translating natural language queries into RasSPARQL queries to explore VKG
using NLP and LLMs.
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