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Abstract. Practical business intelligence (BI) over heterogeneous data sources,
including relational, vector (e.g., geometries), and raster data (e.g., satellite im-
ages), requires interconnecting the data in a semantically coherent manner so
that they can be queried and analysed in a uniform way to extract business in-
sights that aid informed decision-making. The Virtual Knowledge Graph (VKG)
paradigm addresses the issue of data heterogeneity by relying on an ontology to
expose domain knowledge and connecting it via declarative mappings to the un-
derlying data sources. The VKG paradigm has thus far concentrated mainly on
relational data. At the same time, only a few works address its combination with
vector and raster data, which is especially important within Geospatial Business
Intelligence (GeoBI), such as in the context of earth observation (EO), the inte-
gration of geographic information systems, and building information modelling
(GIS/BIM). However, such a combination presents a considerable challenge for
conventional DBs to manage or query efficiently, due to their multidimensional
and complex characteristics. In this paper, we address this problem by extending
the VKG paradigm to enable interface with specialised array database manage-
ment systems. We then demonstrate how to utilise BI tools to derive location-
based business insights, leveraging both standard semantic technologies and a
novel technology that enables a knowledge graph to be accessed via a traditional
SQL interface.

1 Introduction

Data-driven businesses seek assurance that their information is streamlined, production-
ready, and trustworthy before using it to understand key business factors and make
informed decisions at any given time. As corporate decision-making increasingly de-
pends on data, Business Intelligence (BI), which traditionally concentrated on analysing
attributed numerical data in tabular format, is now rapidly including other forms of data
into its scope, such as graph and array data [11]. Nowadays, data are being generated
relentlessly from various resources in different representations at a massive scale, lead-
ing to bottlenecks in data management and processing, which gives rise to the notori-
ous issue of data heterogeneity [1]. Effective BI over heterogeneous data sources (both
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structured and unstructured) requires interconnecting the data in a semantically coher-
ent manner so that the data can be queried and analysed in a uniform way to extract
business insights that aid informed decision-making [11]. However, current data man-
agement mechanisms do not natively support every data format; for instance, raster data
represented in multidimensional arrays poses a significant challenge in the BI domain.

Virtual Knowledge Graphs (VKGs) [37], also known as Ontology-Based Data Ac-
cess (OBDA), provides a flexible and efficient data integration paradigm for large-scale,
richly structured relational data. In VKGs, end-users interact with a high-level, concep-
tual representation of the relevant domain of interest, presented as an ontology, which
is connected to the data source through declarative mapping assertions. The ontology
is typically expressed in the lightweight OWL 2 QL profile of the Web Ontology Lan-
guage (OWL 2) [30], which has its formal counterpart in a Description Logic (DL)
of the DL-Lite family [9]. The actual data are maintained in a relational data manage-
ment system (RDBMS) but are not materialised at the conceptual level (hence the term
“virtual”). The primary emphasis of research on VKGs has been on query answering,
which involves computing the appropriate responses to a user query formulated over the
ontology. This is achieved by utilising the ontology axioms and the mapping layer to
retrieve pertinent data from the underlying data source. Such traditional VKG systems
are inefficient at query answering over multidimensional raster data [5], and at inte-
grating them with classic relational data and its geometrical variant vector data (e.g.,
points, lines, polygons). Issues regarding the integration of raster and vector data are
addressed in the author’s recent work ONTORASTER [17]. This extended VKG frame-
work+ facilitates the integration and query answering of both raster and relational data
in their native storage format. Still, it has limited support for complex geometrical fea-
ture data (or vector data), such as island features (multi-polygons), enclaves, as well
as publicly available vast geometrical vector datasets, such as GeoNames data, Open-
StreetMap (OSM) data, and CityGML data. All of these are crucial for businesses to
generate actionable location-based insights in the context of location-based services,
urban planning, land-use classification, and other related applications. To further enrich
location-based insights, it would be necessary to obtain information from query an-
swering across a wide range of high-resolution geo-raster data (e.g., satellite imagery);
however, our prior work [17] has only addressed this issue in a limited manner.

Integrating and uniformly querying these different types of data requires practi-
cal geospatial data management skills and extensive domain knowledge, which may
not be readily available to business managers, analysts, or policymakers. Hence, it be-
comes difficult to resolve contemporary issues in big geo data applications, including
Earth Observation (EO), Geographic Information System/Building Information Mod-
elling (GIS/BIM) integration, and 3D/4D urban planning [8]. Moreover, it involves the
visualisation of query results in the form of vectors and rasters to facilitate perpetual
accessibility and reproducibility of geo-visual analytics, which can lead to the gener-
ation of location-based intelligence. In the literature, this issue has been addressed so
far only in a somewhat limited way in the VKG settings and their application towards
BI, which could benefit both the GIS and Semantic Web (SW) communities. A recent
work [27] discusses business insight generation and policymaking by utilising multidi-
mensional satellite imagery (or raster data) and machine learning to detect unplanned
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urbanisation, which contributes to the financial crisis and impedes economic growth. A
prevalent method for accessing and analysing these diverse data sources is to develop
ad-hoc scripts utilising Python, R, or MATLAB; however, this necessitates extensive
topic knowledge and skill across many tools at various levels. Furthermore, whenever
the data sources change, the entire script must be adjusted at a minimum or, in a worst-
case scenario, completely rewritten. Most of these works mentioned in the literature are
related to GIS/BIM utilising basic vector data; however, almost none employ raster data
in VKG settings.

We present three key contributions by using the Virtual Knowledge Graphs (VKGs)
paradigm to mitigate data heterogeneity from diverse data forms.

(1) We extend the open source ONTORASTER framework to support query answer-
ing over integrated data of more complex forms, thus making the framework better
suited for GeoBI applications. Specifically, with our extensions, ONTORASTER now
supports: (i) complex geometrical features, e.g., multi-polygons, polygons with holes,
and their combination, (ii) additional public vector data crucial for business, such as
GeoNames, OpenStreetMap, and CityGML data, with respective ontologies capturing
the relevant concepts therein, (iii) multiple raster data of arbitrary resolutions and di-
mensions. We observe that such raster data is already correctly conceptualised by the
raster ontology of [17].

(2) We provide a comprehensive geo-map-based visualisation of query re-
sults that exhibits at-a-glance location-based information derived from integrated
raster+relational data. Thus, ONTORASTER aids business professionals in making in-
formed decisions, hence enhancing geo-visual analytics within GeoBI.

(3) We provide methods to query ONTORASTER from standard BI tools (e.g.,
Power BI4), so that the query results coming from ONTORASTER can be converted into
actionable insights. For this, we rely on a novel technology that we have developed,
called Semantic SQL-Interface, which enables a KG to be accessed via a traditional
JDBC-based SQL interface.

The updated ONTORASTER framework is available as open source on Github5.

2 Geospatial Business Intelligence (GeoBI)

Geospatial Business Intelligence (GeoBI) integrates Geographic Information Systems
(GIS) with established BI technologies [2], and is becoming a prominent driving force
that empowers geographical location-based decision-making and product design in in-
dustrial organisations [20]. The majority of GeoBI applications are based on relational
data, including vector data. The inclusion of raster data in business analytics is often
overlooked due to its complex nature and the need for domain expertise.

Raster data is often referred to as a data cube in the BI domain since 1990 to de-
scribe OLAP (online analytical processing) cubes [33]. These cubes organise statistical
measures (e.g., mean, variance, median) across multidimensional, sometimes hierar-
chical, data [18]. The concept evolved into spatial OLAP (SOLAP) with the inclusion

4 https://www.microsoft.com/en-us/power-platform/products/power-bi
5 https://github.com/aghoshpro/OntoRaster.git

https://www.microsoft.com/en-us/power-platform/products/power-bi
https://github.com/aghoshpro/OntoRaster.git
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of spatial dimensions and vector features [19]. A variant called MOLAP (multidimen-
sional OLAP) stores data in multifaceted arrays rather than relational tables [21].

In Earth Observation (EO), the term datacube refers to large, analysis-ready raster
datasets generated by satellite sensors such as Landsat and Sentinel. These EO dat-
acubes facilitate the access, analysis, visualisation, and distribution of geospatial
data [16]. While structurally similar to the typically sparse BI data cubes, EO data cubes
are densely populated, limiting the applicability of OLAP methods in EO contexts [4].
This complexity can pose challenges for business analysts lacking GIS expertise, im-
peding location-based BI insights.

3 Semantic Technologies for Accessing Geospatial Data

Knowledge graphs (KG) are by now a well-established paradigm grounded in the Se-
mantic Web for representing, retrieving, and integrating data from highly heterogeneous
sources [23]. KG-based solutions often rely on an ontology that conceptualises a user-
specific domain of interest (e.g., medical, geospatial, life sciences) and thus imparts
meaning to the data. The instances of an ontology are represented as Resource Descrip-
tion Framework (RDF) triples and queried using the SPARQL query language. Laborie
et al., [28] described two possible approaches to combine the semantic web and BI:
(i) the analysis-oriented, (ii) the modelling-oriented approach. In the former case, a
standard ETL (extract-transform-load) process is executed. A SPARQL query retrieves
the data, and the results are then loaded. The latter entails conducting the analysis di-
rectly on the Linked Data without prior ETL. This strategy appears more effective, but it
necessitates an advanced conceptual representation of data, which is our primary focus
for our methodology.

Virtual Knowledge Graphs (VKGs). We consider here a setting where the domain
ontology conceptualises the information stored in a set of existing, typically hetero-
geneous (e.g., relational, tabular, or tree-structured) data sources and is linked to the
sources through semantic mappings that expose the underlying data as a KG. Typically,
the KG is not materialised but kept virtual, i.e., the relevant portions necessary to an-
swer a query expressed over the ontology are generated at query time, hence the name
of VKG given to this framework. Formally, a VKG specification P = (O,M,S) con-
sists of (i) an ontology O expressed as a TBox in the lightweight ontology language
OWL 2 QL, (ii) a relational data source schema S, and (iii) a declarative mapping M
that associates to each element (i.e., class or property) in O a (SQL) query over S,
specifying how to (virtually) populate that element through the data retrieved from the
source. . In traditional VKGs, the mapping M consists of a set of R2RML mapping
assertions of the form

Qsql(x)⇝ E(f(x)),

where Qsql(x) is a SQL query (called source query) over S with answer variables
x, and the target E(f(x)) consists of a class or property E of O, and a set f(x)
of so-called IRI-templates applied to the variables in x. Each IRI-template is a func-
tion that constructs an ontology literal or an IRI identifying an ontology object, from
the values in each answer to Qsql(x) instantiating x. Then, a VKG instance is a pair
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(P,Drel), where Drel is a relational database instance conforming to S. By “applying”
the mapping assertions in M to Drel , i.e., by evaluating each source query Qsql(x)
over Drel and using the returned answers to instantiate the target E(f(x)), one ob-
tains a KG M(Drel), which, however, is kept ’virtual’. Semantic queries formulated in
SPARQL are posed over O and are answered by accessing the relational data Drel

through the mapping M. Specifically, given a SPARQL query q over a VKG in-
stance J = (P,Drel), we are interested in the certain answers to q over J , denoted
cert(q,J ), which are the answers obtained by evaluating q over the knowledge base
(O,M(Drel)) under the OWL 2 QL entailment regime. Actual VKG systems, such as
ONTOP [38], avoid costly materialisation of the KG M(Drel) and its storage in a triple
store and rather translate the SPARQL query into a relational SQL query that is directly
evaluated by the underlying RDBMS (e.g., PostgreSQL), thus ensuring also freshness
of query answers concerning source updates.

Geospatial Knowledge Graphs (GeoKGs). In this research, we consider GeoKGs,
which are KGs where geospatial information is modelled using geo-coordinates that
capture, on the one hand, geometric regions delimited by polygons (i.e., vector data)
and, on the other hand, values from a continuous domain (e.g., temperature, precipita-
tion) associated to all points in a specified region (i.e., raster data) [14,17]. GeoKGs
are often converted from geospatial vector data stored in spatial databases (Post-
GIS/PostgreSQL) or other popular formats like shapefile, CSV, and GeoJSON. VKGs
provide a systematic method for such conversion by relying on the GeoSPARQL on-
tology [3], which has been designed by the Open Geospatial Consortium (OGC). The
GeoSPARQL ontology utilises a representation of vector geometry literals compliant
with Geography Markup Language (GML) and Well-Known Text (WKT), and relies
on a vocabulary for topological relationships and ontologies for qualitative reasoning.
The GeoSPARQL language itself extends SPARQL with geometrical functionalities to
represent and query geo-enriched KGs. However, it still suffers from several limitations
that restrict its effective use in practical settings, specifically when raster data plays a
prominent role. The GeoSPARQL+ framework [24] provides an enhanced version of
the GeoSPARQL vocabulary, query language, and ontology, extending RDF to support
geospatial raster data. However, it has limited support for complex multidimensional
raster and multi-polygonal vector data. Moreover, it relies on materialising geospa-
tial data as RDF triples, resulting in very large KGs with potential efficiency issues.
LinkedGeoData (LGD) [32] is one of the well-known GeoKG projects that relies on
the VKG approach to expose OpenStreetMap (OSM)6 data as RDF knowledge graphs.
YAGO2geo [25] is another popular GeoKG that claims to be the largest currently, con-
taining detailed geometries, i.e., 700,000+ polygons and 3.8 million lines, taken from
the Global Administrative Data and Maps (GADM)7 and OSM data.

The World Wide Web Consortium (W3C) has standardised the representation of
statistical data cubes using the RDF Data Cube Vocabulary [34]; however, it provides
minimal support for representing the multidimensional model. These limitations are ad-
dressed by QB4OLAP [35], a vocabulary for BI over Linked Data that facilitates the

6 https://www.openstreetmap.org/
7 https://gadm.org/index.html

https://www.openstreetmap.org/
https://gadm.org/index.html
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representation of OLAP cubes in RDF and provides standard OLAP operations (includ-
ing roll up, slice, dice, and drill-across) through SPARQL queries directly over RDF
representations. Still, it does not support raster functionalities to query complex EO
data cubes, which constitutes an important missing feature of location-based BI. No-
tably, a semantic data cube system, named Plato [7], has been proposed within the EU
H2020 project DeepCube8, which relies on a geospatial extension of the VKG system
ONTOP [6] and uses PostgreSQL Foreign Data Wrappers.

The ONTORASTER framework. The recently proposed ONTORASTER [17] frame-
work has been developed to overcome the limitations mentioned above by supporting
on-the-fly query answering on multidimensional raster data integrated with relational
data (including vector data). Specifically, it builds on the VKG framework and ex-
tends it as follows: (i) For the query language, it relies on RasSPARQL, which extends
SPARQL with novel raster functionalities. (ii) It utilises an extended variant of the VKG
engine ONTOP to translate RasSPARQL queries containing raster functions into suit-
able queries with corresponding database functions. (iii) Such queries are processed by
a query transformation system implemented within PostgreSQL, which uses stored pro-
cedures in PL/Python to issue queries to an array DBMS and combine the results with
relational data (including vector data).

Specifically, ONTORASTER utilises Rasdaman, a domain-agnostic array DBMS
that exclusively accepts array indices or grid coordinates. However, it does not na-
tively accommodate any domain-specific coordinates, such as geographic coordinates
(i.e., longitude and latitude), which are the building blocks of vector geometries. There-
fore, ONTORASTER provides the geo2grid_coords() function, implemented in
PL/Python inside PostgreSQL, which translates geographic geometries into grid-based
representations (grid geometries) by considering the respective coordinate reference
system (CRS) of both vector and raster data. At its core, the geo2grid_coords()
function manages the coordinate transformation process by generating an affine trans-
formation matrix [36] derived from the metadata of the specified raster data in the user
query, encompassing the minimum longitude, maximum latitude, and resolution values
for both x and y axes. This matrix is then used to convert geographic coordinates to
grid coordinates, with the results being rounded to integer values to ensure compati-
bility with a grid-based representation suitable for Rasdaman’s query language rasql.
The transformation process maintains the spatial relationships between points while
adapting them to the grid system.

4 Enhancing the OntoRaster Framework

In this work, we have extended the ONTORASTER framework along different direc-
tions, which we discuss below.

4.1 Supporting Complex Geometrical Features

ONTORASTER still lacks support for complex geometries, such as polygons with holes,
and multi-polygons, which are common in real-world GeoBI use cases. In the case

8 https://deepcube-h2020.eu/

https://deepcube-h2020.eu/
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of simple polygons, ONTORASTER performs a direct transformation of the polygon’s
exterior ring coordinates, converting them from geographic to grid space. When deal-
ing with polygons containing holes, both the exterior ring and all interior rings (or
holes) are processed separately, and then merged in grid space. For multi-polygons, this
function employs a sophisticated approach that allows for processing each constituent
polygon individually, transforming its coordinates into grid space. The function then
attempts to merge these transformed polygons using Shapely’s unary_union oper-
ation. Shapely9 is a Python library for manipulating and analysing planar geometric
objects using the widely distributed open-source geometry library GEOS (the engine
of PostGIS), which conforms to OGC’s simple feature access specification [22]. Sup-
pose the merging operation fails for any reason, such as tiny constituent polygons (e.g.,
a tiny island). In that case, the function falls back to creating a new multi-polygon
by combining the remaining transformed polygons. Error handling and edge cases are
also implemented in geo2grid_coords(), including checks for invalid geometries
(e.g., those with zero area) or invalid WKT representations, and specific handling for
unsupported geometry types. It also manages potential failures in the transformation
process and polygon merging operations, ensuring robust operation even for complex
input geometries.

4.2 Extension to Additional Heterogeneous Data and Ontologies

The majority of GeoBI applications rely on relational data [10], and the inclusion of
raster data in their native data structure in GeoBI analytics is often neglected due to
its complex nature and the need for specialised knowledge. To mitigate this challenge,
we are extending the integration and query processing capabilities of ONTORASTER by
incorporating multiple types of raster data having arbitrary resolutions and dimensions,
along with large-scale public vector datasets essential for the business domain, such as
GeoNames, OpenStreetMap, and CityGML 3D building data, along with the relevant
ontologies encapsulating the pertinent concepts.

The area of interest (AOI) selected for this study is Munich, the capital of Bavaria,
Germany, and its surrounding functional urban area (approx. 311.20 km2), i.e., densely
populated city centres integrated with the surrounding labour market (commuting zone
through high travel-to-work flow, as defined by EU-OECD [12]). Fig. 1 displays dif-
ferent types of geospatial data about Munich (each small box in the upper right corner
provides a zoomed-in view, to show details about the actual data). Table 1 depicts all
the information about the data. We are considering 25 districts (Fig. 1a) and 105 sub-
districts (Fig. 1b) of Munich as our primary vector data. Additionally, OpenStreetMap
(OSM) data from Geofabrik Server10 for Oberbayern and clipped based on the spatial
extent of Munich. For the same AOI, Level of Detail 2 (LoD2) building data in OGC
CityGML [31] format is obtained from the Bavarian Surveying Administration Open
Data Portal11 shown in Fig 1c. Finally, we consider five different types of raster data
with various spatial and temporal resolutions, such as the SRTM Digital Elevation data

9 https://shapely.readthedocs.io/en/stable/index.html
10 https://download.geofabrik.de/europe/germany/bayern/oberbayern.html
11 https://geodaten.bayern.de/opengeodata/

https://shapely.readthedocs.io/en/stable/index.html
https://download.geofabrik.de/europe/germany/bayern/oberbayern.html
https://geodaten.bayern.de/opengeodata/
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(a) 25 Districts (b) 105 Subdistricts (c) CityGML 3D Buildings

(d) OSM 2D Buildings (e) SRTM Elevation (DEM) (f) MODIS Temperature

(g) MODIS NDVI (h) NDSI Snow Cover (i) ECO Soil Moisture

Fig. 1: Heterogeneous geospatial data over the area of interest – Munich

(Fig. 1e), MODIS Temperature data (Fig. 1f), MODIS Vegetation (NDVI) (Fig. 1g),
NDSI Snow Cover data (Fig. 1h) and ECOSTRESS Soil Moisture data (Fig. 1i).

ONTORASTER relies on the GeoSPARQL 1.1 ontology describing the semantics of
vector geometries and on the Raster Ontology, which represents n-dimensional generic
raster data or coverage based on the OGC CIS v1.1 Standard. In this paper, ON-
TORASTER adopted the GeoNames v3.3 ontology12, which exposes the semantics of
GeoNames13 data, containing over 12 million unique geographical features with names
including alternate and translated names, population, time-zone, geo coordinates, etc.,
gathered from various data sources.

The OpenStreetMap (OSM) dataset represents semantic concepts of map objects
or physical ground features (e.g., roads or buildings) using key/value pairs tags. Tags
are attached with additional properties, which are encoded as nodes (points of interest
or centroids), ways (lines and polygons) and relations (groups of objects). The world
data set currently contains approximately 9.9 billion nodes, 1.1 billion ways and 13
million relations to date14. For instance, "Hospital is a building" is implied as tag:
key="building" value="hospital" in OSM terminology. But this may be
not reflect building’s current usage such as, a hospital that is abandoned or repurposed
to be a something else is still a building=hospital, and to mark active hospitals

12 https://www.geonames.org/ontology/documentation.html
13 https://www.geonames.org/
14 https://planet.openstreetmap.org/statistics/data_stats.html

https://www.geonames.org/ontology/documentation.html
https://www.geonames.org/
https://planet.openstreetmap.org/statistics/data_stats.html
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Table 1: Information about the data in Fig. 1
Data Data Source Feature Feature Spatial Temporal
Type Field and Sensors Unit Count Resolution Resolution

(a) Relational 25 Districts - point 4820 - -
(b) Relational 105 Sub-districts - point 6692 - -
(c) Relational Building Footprints OpenStreetMap point 3285853 - -
(d) Relational 3D Buildings CityGML 3D point 5513088 - -
(e) Raster Elevation SRTM pixel 873010 30m x 30m -
(f) Raster Land Temperature MODIS pixel 1012 1km x 1km daily
(g) Raster NDVI Vegetation MODIS pixel 15925 250m x 250m 16 days
(h) Raster Snow Cover NDSI pixel 4048 500m x 500m daily
(i) Raster Soil Moisture ECOSTRESS pixel 3513088 70m x 70m seconds

Table 2: List of prefixes used for RasSPARQL queries
Prefix IRI Namespace
: https://github.com/aghoshpro/OntoRaster/
gn https://www.geonames.org/ontology#
geo http://www.opengis.net/ont/geosparql#
geof http://www.opengis.net/def/function/geosparql/
rdfs http://www.w3.org/2000/01/rdf-schema#
bldg http://www.opengis.net/citygml/building/2.0/
lgdo http://www.linkedgeodata.org/ontology/
rasdb https://github.com/aghoshpro/RasterDataCube/

amenity=hospital is used. Munich is identified by OSM ID 6242815. The seman-
tics of this vast collection of OSM data are conceptualised using the LinkedGeoData
(LGD) ontology under the LinkedGeoData project [32]. Employing this ontology and
corresponding mappings, the ONTORASTER framework integrates different types of
raster data with various OSM data, including building data.

Let us start with some example RasSPARQL queries to demonstrate the workflow
with newly added data. Queries are executed in the SPARQL endpoint provided by
the VKG system Ontop under the ONTORASTER framework. The namespace prefixes
listed in Table 2 refer to the vocabularies utilised by ONTORASTER.

Q1 is a simple query that demonstrates integration of vector data (district geome-
tries) with raster data (elevation). By changing the :Region_District_Munich
class name to :Region_SubDistrict_Munich one obtains results over sub-
districts of Munich. Q2 amalgamates OSM data with elevation raster data by utilis-
ing the OSM building class or tag for residential properties, i.e., residential. This
query determines the number of residential buildings within those sub-districts of Mu-
nich where the spatial average elevation exceeds 520 meters, as calculated by ON-
TORASTER’s raster function rasSpatialAverage. The user can modify OSM tags
in the query for various building categories, such as School, Hospital, including
over 100+ classes. Q3 depicts school buildings within the districts of Munich with high

15 https://www.openstreetmap.org/relation/62428#map=11/48.1397/11.5380

https://www.openstreetmap.org/relation/62428#map=11/48.1397/11.5380
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vegetation (using raster data NDVI). The spatial query Q4 utilises RSTN (means “rail-
road station“), one of 680+ GeoNames features16 (e.g., S.UNIV, S.MTRO, etc.) as
an additional input to integrate GeoNames with raster data w.r.t. respective ontologies.

Q1 Find all districts in Munich whose average terrain elevation is above 515 meters.

1 SELECT ?distName ?elevation {
2 ?region a :Region_District_Munich ; rdfs:label ?distName ;
3 geo:asWKT ?distWkt .
4 ?gridCoverage a :Raster ; rasdb:rasterName ?rasterName .
5 FILTER (CONTAINS(?rasterName, ’Elevation’))
6 BIND (’2000-02-11T00:00:00+00:00’^^xsd:dateTime AS ?timeStamp)
7 BIND (rasdb:rasSpatialAverage(?timeStamp, ?distWkt, ?rasterName)
8 AS ?elevation)
9 FILTER(?elevation > 515)

10 }

Q2 Find all residential buildings within those sub-districts in Munich whose average
terrain elevation is above 520 meters.

1 SELECT ?bldgName ?subdistName ?elevation {
2 ?region a :Region_SubDistrict_Munich ;
3 rdfs:label ?subdistName ; geo:asWKT ?subdistWkt .
4 ?bldg a lgdo:Residential ; rdfs:label ?bldgName ; geo:asWKT ?bldgWkt .
5 ?gridCoverage a :Raster ; rasdb:rasterName ?rasterName .
6 FILTER (geof:sfWithin(?bldgWkt, ?subdistWkt))
7 FILTER (CONTAINS(?rasterName, ’Elevation’))
8 BIND (’2000-02-11T00:00:00+00:00’^^xsd:dateTime AS ?timeStamp)
9 BIND (rasdb:rasSpatialAverage(?timeStamp, ?subdistWkt, ?rasterName)

10 AS ?elevation)
11 FILTER(?elevation > 520)
12 }

Q3 Find all schools and respective districts in Munich where the average vegetation is
high (ndvi > 0.35) on 1st January 2022.

1 SELECT ?bldgName ?distName ?ndvi {
2 ?region a :Region_District_Munich ; rdfs:label ?distName ;
3 geo:asWKT ?distWkt .
4 ?building a lgdo:School ; rdfs:label ?bldgName ; geo:asWKT ?bldgWkt .
5 ?gridCoverage a :Raster ; rasdb:rasterName ?rasterName .
6 FILTER (geof:sfWithin(?bldgWkt, ?distWkt))
7 FILTER (CONTAINS(?rasterName, ’NDVI’))
8 BIND(’’red’’AS ?bldgWktColor)
9 BIND (’2022-01-01T00:00:00+00:00’^^xsd:dateTime AS ?timeStamp)

10 BIND (rasdb:rasSpatialAverage(?timeStamp, ?distWkt, ?rasterName) AS ?ndvi)
11 FILTER(?ndvi > 0.35)
12 }

Q4 Find the spatial average temperature for a custom region in Munich and all railroad
stations (gn:S.RSTN) lying within it.

1 SELECT ?featureName ?clipped {
2 ?gname a gn:S.RSTN ; # or S.UNIV, H.LKS, S.MTRO etc., 680+ GeoNames classes
3 rdfs:label ?featureName ; geo:asWKT ?featureWkt .
4 ?gridCoverage a :Raster ; rasdb:rasterName ?rasterName .
5 FILTER (geof:sfWithin(?featureWkt,?customRegionWkt))
6 FILTER (CONTAINS(?rasterName, ’Munich_MODIS_Temperature_1km’))
7 BIND (’POLYGON((11.548455354852285 48.14904359943597,
8 11.627292392870094 48.147177113486606,
9 11.58380485801181 48.11696471831948,

16 https://www.geonames.org/export/codes.html
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10 11.546675164347198 48.119171832113835,
11 11.548455354852285 48.14904359943597))’ AS ?customRegionWkt)
12 BIND (’2022-01-01T00:00:00+00:00’^^xsd:dateTime AS ?timeStamp)
13 BIND (rasdb:rasSpatialAverage(?timeStamp, ?customRegionWkt, ?rasterName)
14 AS ?clipped)
15 }

CityGML datasets comprise a collection of XML files, where each delineates a seg-
ment of the building information at a designated Level of Detail (LoD). But standard
GML/XML encoding of CityGML is inadequate for intricate queries, especially those
involving spatial-temporal analysis [13]. The primary approach for handling CityGML
data is to store it as relational tables in the 3DCityDB17 system, and thereafter access-
ing it using regular SQL. However, end users face challenges in constructing queries for
their ad-hoc analytical tasks due to the incongruity between the conceptual semantics of
CityGML and the relational schema utilised in 3DCityDB. ONTORASTER adopted the
most well-known CityGML ontology18, which is a direct translation of the CityGML
XML Schema to OWL for describing the semantics of CityGML 3D building data, de-
veloped by the Knowledge Engineering @ CUI group at the University of Geneva. We
use the 3DCityDB importer-exporter tool to import CityGML files into the relational
database (PostgreSQL) for Munich. We created mappings to connect the data with the
ontology mentioned above, thereby populating the RDF graph of CityGML. Here, we
noticed that several columns in the CityGML building table are empty, and there is
no column describing the buildings’ locations, making it difficult to use this data to
compose queries using raster data and additional spatial analysis.

OSM contains complementary spatial and semantic information related to CityGML
data that can be utilised for spatial queries and applications [13]. But heterogeneity be-
tween the CityGML and OSM datasets makes it difficult to link them together. The
building information in OSM data primarily comprises the building footprint layers
(2D polygons) and the point of interest layer (points). In contrast, the CityGML dataset
provides three-dimensional building models ranging from coarse models (LoD0) to
very detailed ones (LoD4) with semantic information. The LoD0 building model in
CityGML is essentially a 2D footprint represented as a closed polygon. LoD1 is a
building model with height information, while the LoD2 building model features de-
tailed roof structures and walls as extruded 3D objects derived from the 2D footprint.
We observe that 2D footprints (polygons) are standard features shared between OSM
and CityGML data, which can be geometrically matched to link the two datasets. We
relied on a geometrical matching technique [15,29] to spatially align the CityGML data
based on OSM building footprints. This provides geo-location information to CityGML
data, which initially only contained building information. The majority of CityGML
ground surfaces are successfully matched with OSM polygons. Since OSM building
footprint data can already be integrated with raster data for spatial query processing, we
can argue that CityGML building data (LoD0, LoD2) associated with OSM data can
also be queried with raster data, provided that the ontologies are linked. More details
on linking CityGML with OSM data are discussed in [13], while we concentrate here
on combining CityGML with raster data.
17 https://www.3dcitydb.org/3dcitydb
18 https://cui.unige.ch/isi/ke/ontologies
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(a) Q1 (b) Q2 (c) Q3

Fig. 2: Visualisation of results of queries Q1–Q3 under ONTORASTER

(a) Q1 (b) Q2

Fig. 3: Dashboard reports for Q1–Q2 in Ms Power BI

4.3 Visualisation of Query Result

Fig. 2 illustrates the visualisation of the previously mentioned queries at the SPARQL
endpoint. Fig. 2a (for query Q1) displays the districts of Munich with an average ele-
vation of more than 515 meters, using a colour map (where blue indicates low and red
indicates high). Fig. 2b (for query Q2) depicts all residential buildings, i.e., red dots,
over those sub-districts of Munich where the average elevation is more than 520 meters.
Similarly, Fig. 2c (for query Q3) shows all schools in those selected districts of Munich
where the average vegetation (raster) is high. Note that, in the map, some regions (e.g.,
districts or sub-districts) exhibit a deeper blue hue than others due to a higher concentra-
tion of OSM objects, such as schools, residential buildings, or hospitals. By analysing
these at-a-glance visuals, users can obtain location-based information to support urban
planning efforts or other use cases, depending on business demands.

5 Extending VKGs to Geospatial Business Intelligence (GeoBI)

Formulating SPARQL queries over a KG can be challenging, especially for business
professionals who are not familiar with its syntax and semantics, and semantic web no-
tions in general [26]. We have therefore experimented with different methods to support
the use of BI tools in the VKG setting.
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Method 1: OntoRaster + Power BI Tools. The ONTORASTER framework yields two
different outputs, namely spatial-temporal aggregated values and filtered raster arrays.
The first method is simple and essentially restricted to aggregated values, since handling
filtered raster arrays (which are retrieved as RDF strings) requires further processing,
depending on the use case, since RDF does not yet support the array data type. Hence,
processing large arrays simply as strings would negatively impact performance. ON-
TORASTER provides users with the option to export query results in two file formats:
.csv and .json, which are widely used in the business domain. The exported .csv
file containing the query results can be loaded into Power BI using the native built-in
CSV connector. Similarly, if the output is in .json format, it can be loaded into Power
BI using a JSON connector. Fig. 3 illustrates the interactive dashboards based on the
results of queries Q1–Q2, created with Power BI’s supported map visualisations: shape
map, filled map, and world map. Business professionals can interact with these dash-
boards to evaluate the RasSPARQL query results based on the VKGs generated from
combined relational+raster data via mappings.

Method 2: Ontopic Suite’s Semantic SQL Interface and BI Tools. Ontopic Suite19

is an intuitive, no-code environment that connects to cloud or on-premises data and
provides a user-friendly interface for designing the declarative mappings of a VKG,
through which the underlying legacy data is exposed. In general, (V)KGs cannot be
queried directly from BI tools, since such tools expect a traditional relational interface
and issue SQL queries directly (e.g., via JDBC). To overcome this restriction, while still
leveraging the semantic abstraction layer provided by the KG, Ontopic Suite can expose
the KG via its Semantic SQL Interface component as a set of relational tables that can
be queried using traditional SQL code, as written within BI tools. Such tables are or-
ganised to support efficient query evaluation, with a reduced number of relational joins.
E.g., when data properties are relevant for the instances of a class C, they are grouped
as attributes in a single table, whose primary key is given by an attribute containing
the IRIs of C. In this way, one can avoid numerous costly joins whenever the query
needs to return instances of the class, along with (some or all of) their data properties,
which is a common form of request in a BI scenario. A SQL query issued via Ontopic
Suite’s Semantic SQL Interface is translated into ONTOP’s internal intermediate query
(IQ) representation, which is a uniform format adopted for processing queries issued
over the KG. From that moment onwards, queries are processed by ONTOP in the same
manner as SPARQL queries issued directly over the VKG. We are currently extending
the SQL Interface component to support raster query functionalities, allowing the corre-
sponding requests to be issued directly from BI tools. Such extended function calls are
recognised internally by ONTORASTER and processed analogously to those appearing
in RasSPARQL queries. We observe that the Semantic SQL Interface is a proprietary
software component commercialised by Ontopic, and therefore, its extension towards
raster functionalities cannot be released as open source.

19 https://docs.ontopic.ai/suite/
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6 Conclusions

In our work, we have developed an enhanced version of the ONTORASTER frame-
work capable of handling more complex vector geometries such as polygons with
holes, multi-polygons and their combinations, and multiple raster data with different
dimensions (spatial, temporal, and spectral), which are common in real-world GeoBI
use cases. We have also outlined approaches to utilise semantic query results from
ONTORASTER within BI tools to produce semantically enriched business informa-
tion through map-based visualisations, contributing to Geospatial Business Intelligence
(GeoBI). Furthermore, we have presented Ontopic Suite’s Semantic SQL interface to
enable direct querying of KGs from BI tools, and we have proposed enhancing the SQL
interface with raster functions to query integrated raster and relational data under ON-
TORASTER. We are extending ONTORASTER’s ability to export clipped raster data in
OGC formats like GeoTIFF20 and CovJSON21, for better visualisation of raster data
over OSM. We also intend to provide a more intuitive dashboard to facilitate direct and
robust query formulation and result visualisation. As an additional feature, we are de-
veloping an LLM-based RAG approach to generate RasSPARQL queries from natural
language queries.
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