
Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

a

b

c

d

i
d
W
R
t
d
S

B

a
(

h
1

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents on the
WorldWideWeb

journal homepage: www.elsevier.com/locate/websem

Towards the next generation of the LinkedGeoData project using
virtual knowledge graphs
Linfang Ding a, Guohui Xiao a,b,∗, Albulen Pano a,b, Claus Stadler c, Diego Calvanese a,b,d

KRDB Research Centre, Free-University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
Ontopic s.r.l, via A. Volta 13/A, 39100 Bolzano, Italy
Institute for Applied Informatics, University of Leipzig, 04109 Leipzig, Germany
Department of Computing Science, Umeå University, 901 87 Umeå, Sweden

a r t i c l e i n f o

Article history:
Received 18 January 2021
Received in revised form 7 August 2021
Accepted 16 September 2021
Available online 6 October 2021

Keywords:
LinkedGeoData
Virtual knowledge graph
GeoSPARQL
Ontop
OpenStreetMap

a b s t r a c t

With the advancement of Semantic Technologies, large geospatial data sources have been increasingly
published as Linked data on the Web. The LinkedGeoData project is one of the most prominent such
projects to create a large knowledge graph from OpenStreetMap (OSM) with global coverage and
interlinking of other data sources. In this paper, we report on the ongoing effort of exposing the
relational database in LinkedGeoData as a SPARQL endpoint using Virtual Knowledge Graph (VKG)
technology. Specifically, we present two realizations of VKGs, using the two systems Sparqlify and
Ontop. In order to improve compliance with the OGC GeoSPARQL standard, we have implemented
GeoSPARQL support in Ontop v4. Moreover, we have evaluated the VKG-powered LinkedGeoData in
the test areas of Italy and Germany. Our experiments demonstrate that such system supports complex
GeoSPARQL queries, which confirms that query answering in the VKG approach is efficient.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the advancement of Semantic Technologies and emerg-
ng standards such as GeoSPARQL, large amounts of geospatial
ata have been increasingly published as Linked Data on the
eb. Such projects normally convert existing data sources to
DF graphs using a materialization-based approach [1]. One of
he most notable efforts is the LinkedGeoData project,1 which
erives a large and rich spatial semantic data source from Open-
treetMap (OSM). The OSM project2 is creating a free editable
map of the world. Since its inception in 2004, it has grown to
cover both points- and regions-of-interests comprising 6.5 billion
points on the earth3 and has become the most prominent ex-
ample of a Volunteered Geographic Information (VGI) ecosystem
with contributions from around seven million users.

The LinkedGeoData project complements OSM by converting
it to an RDF knowledge graph and linking it with other data
sources, e.g., DBPedia. LinkedGeoData began in 2009 [2] and

∗ Corresponding author at: KRDB Research Centre, Free-University of
ozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy.

E-mail addresses: ding@inf.unibz.it (L. Ding), xiao@inf.unibz.it (G. Xiao),
lbulen.pano@ontopic.biz (A. Pano), cstadler@informatik.uni-leipzig.de
C. Stadler), calvanese@inf.unibz.it (D. Calvanese).
1 http://linkedgeodata.org/
2 https://www.openstreetmap.org
3 https://wiki.openstreetmap.org/wiki/Stats as of 23 November 2020.
ttps://doi.org/10.1016/j.websem.2021.100662
570-8268/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
further broadened in 2012 [3]. Nowadays, LinkedGeoData has
become a valuable resource for spatial Semantic Web research. To
name a few, it has been used in the research fields of string-based
entity linking [4,5], spatial entity linking [6], entity alignment [7],
and topological relation discovery [8]. Moreover, the SPARQL
query logs over LinkedGeoData, as a separate resource, have been
used for various analysis tasks [9].

In the very beginning, the LinkedGeoData project was based
on an extract-transform-load (ETL) process paradigm using a
set of mapping rules, as described in [3]. However, the most
notable drawback of ETL over ∼7.5B OSM entities is the time
it takes to reprocess all data after any change in the mapping.
As an alternative approach, the Virtual Knowledge Graph (VKG)
paradigm [10], also called Ontology-based Data Access (OBDA) [11]
in the literature, can virtualize underlying data sources, typically
relational tables, through ontology and mapping, as a knowledge
graph. This virtual knowledge graph can be queried using the
SPARQL language.

Indeed, shortly after the publication of the main reference of
LinkedGeoData [3], the project shifted behind the scenes to a
VKG approach using Sparqlify,4 as first mentioned in [12]. Spar-
qlify makes it possible to create RDF dumps, generate the ontol-
ogy, and power the Linked Data interface using SPARQL queries
against the VKG. However, due to the functional and performance

4 https://github.com/SmartDataAnalytics/Sparqlify
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.websem.2021.100662
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2021.100662&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ding@inf.unibz.it
mailto:xiao@inf.unibz.it
mailto:albulen.pano@ontopic.biz
mailto:cstadler@informatik.uni-leipzig.de
mailto:calvanese@inf.unibz.it
http://linkedgeodata.org/
https://www.openstreetmap.org
https://wiki.openstreetmap.org/wiki/Stats
https://github.com/SmartDataAnalytics/Sparqlify
https://doi.org/10.1016/j.websem.2021.100662
http://creativecommons.org/licenses/by/4.0/

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

c
S
p
o
p
O
s
M
O
s
s
t
n
g
t

w
h
s
a
u
s
H
t
F

V
b
i
t
o
c
w
t

(
O

limitations of Sparqlify, the VKG is also materialized and served
via a Virtuoso Open Source5 triple store. A full dump generated
in 20136 amounted to ∼27B triples in 121GB of bz2 compressed
data. As this is unwieldy even today, a materialization of the
complete VKG is typically not feasible such that exporting only
the data related to certain classes of interest is more useful.

The use of Sparqlify in the LinkedGeoData project confirmed
that geospatial functions could be robustly defined and executed
in seconds using the VKG approach. However, the LinkedGeo-
Data project requires an open source VKG engine that is (1)
ompliant with all the relevant standards (namely OWL, R2RML,
PARQL, and GeoSPARQL), and (2) whose query execution ap-
roach scales to the number of involved mappings and the size
f OSM data, which contains billions of spatial entities. Sparqlify
artially supports the R2RML and SPARQL standards, but not
WL or GeoSPARQL, and the performance of query answering is
uboptimal. Other open source VKG engines, e.g., D2RQ [13] and
orph [14], are in a similar situation. The most promising one is
ntop-spatial [15,16], which is derived from Ontop v1.18 [17] and
upports a large fragment of GeoSPARQL. However, since Ontop-
patial is based on an old version of Ontop, it cannot take advan-
age of the features provided by the latest versions (v4.x) [18],
otably better compliance with relevant standards (e.g., aggre-
ation functions in SPARQL), improved performance, and new
ooling (e.g., built-in SPARQL endpoint and Docker infrastructure).

In order to build a suitable VKG engine for LinkedGeoData,
e have reimplemented GeoSPARQL support in Ontop v4.1. This
as significantly improved compliance with the OGC GeoSPARQL
tandard. All of the geospatial functions defined in GeoSPARQL
re implemented. In particular, it features improved handling of
nits (such as degrees and metres) and different spatial reference
ystems (SRIDs). We have tested it over PostgreSQL/PostGIS and
2/H2GIS, and it should work with all relational database systems
hat are compliant with the OGC Implementation Standard Simple
eature Access [19].
Using Sparqlify and Ontop, we can expose LinkedGeoData as

KGs through a suitable ontology and mappings over the OSM ta-
les (and some derived views). This new VKG-based architecture
s using the container technology Docker, which encapsulates all
he required software. Now users can easily deploy an instance
f LinkedGeoData and customize the area and the mappings ac-
ording to their needs. We have deployed an instance (currently
ith only data in the country of Monaco for demonstration) of
he new version of LinkedGeoData online7 using both Ontop and
Sparqlify.

We have conducted an evaluation of LinkedGeoData VKGs
with both Sparqlify and Ontop using the three areas of North-
East Italy, Italy, and Germany. The experiments demonstrate that
these systems support complex GeoSPARQL queries and con-
firm that the VKG approach is efficient in query answering. Fi-
nally, it shows a clear advantage of Ontop over Sparqlify in both
supported GeoSPARQL query features and performance of query
answering.

The remainder of this work is organized as follows: Section 2
reports the limitations and recent developments of the Linked-
GeoData project. Section 3 discusses the implementation of Spar-
qlify and Ontop-spatial for basic geospatial SPARQL functions.
Section 4 presents the new implementation of GeoSPARQL func-
tions in Ontop v4. Section 5 details the setup of LinkedGeoData
VKGs. Section 6 presents evaluations over LinkedGeoData. Finally,
Section 7 discusses future work and concludes the paper.

5 http://vos.openlinksw.com/
6 http://downloads.linkedgeodata.org/full-dumps/
7 https://linkedgeodata.org/monaco/
2

2. The LinkedGeoData project

In this section, we present the revised architecture of the
LinkedGeoData (LGD) project based on VKG technology and the
improvements over the prior ETL-based one.

LinkedGeoData is an effort to add a spatial dimension to the
Web of Data. LinkedGeoData uses the information collected by
the OpenStreetMap project and makes it available as an RDF
knowledge base according to the Linked Data principles. As such,
standard compliance w.r.t. data format and access (RDF and
SPARQL) as well as w.r.t. vocabularies (e.g., spatial vocabular-
ies) are an essential part of the project. All components of the
project are available as Open Source software and there now
exists a dockerized setup that enables custom deployments of
LinkedGeoData’s services with the desired subsets of OSM data.

The core of the project is the ‘‘RDFization’’ of OSM data. In the
very beginning, this was based on an ETL process. However, the
most notable drawback of ETL over roughly 7.5B OSM entities (of
which each is further described using a possibly empty set of tags)
is the time it takes to reprocess all data after any change in the
mapping. Regarding ETL, although Big Data technology brought
significant advancements by distributing workloads over clusters
together with massive parallelization of operations over large sets
of records, it is still rather heavy and not very flexible in handling
the changes of data and mapping rules.

VKG technology enables modified mappings to take effect
instantly w.r.t. SPARQL query execution. This is particularly useful
for checking whether a change in the mapping has the desired
effect and for running ‘‘unit tests’’ over the data with frameworks
such as RDFUnit [20] in order to, e.g., detect regressions.

The ETL-based version of LinkedGeoData required a custom
(Java) software framework to ingest OSM data, process it into
RDF, and keep a triple store in sync. With the shift to VKG
technology, LinkedGeoData’s core is much more lightweight as
it is mainly formed only by a set of SQL scripts and RDB2RDF
mappings.8 LinkedGeoData’s SQL scripts extend the OSM schema
with RDF mapping tables, views and additional database indices
without modifying OSM’s schema on which other tool chains
depend upon. A small set of utility shell scripts, especially the
lgd-createdb command, take care of the setup.

The components of LinkedGeoData’s current architecture are
depicted in Fig. 1 and explained as follows:

• Data Sources. The downloads and changesets of OSM are
the enablers for subsequent data processing and replica-
tion. GeoFabrik9 is a well-known service which publishes
pre-partitioned OSM dumps and changesets organized into
hierarchical regions. For example, one path is Europe » Italy
» Nord-Est.

• Replication. Osmosis is a command line Java application for
processing OSM data.10 It features readers for OSM data
from different sources, filters, and converters, as well as
writers for different data sinks such as files and databases.
It also supports all common OSM serialization formats (xml,
pbf, csv). The most relevant feature for LinkedGeoData is
its capability to import and replicate a PostgreSQL/PostGIS
database system with OSM data.

• Physical Storage. The PostGIS database for LinkedGeoData
is extended with mapping tables, views, and functional in-
dexes (a limited form of incremental materialized views), as
detailed in Section 5.

8 We use ‘‘RDB2RDF mapping’’ as a generic term for the W3C standard R2RML
RDB to RDF Mapping Language), and other dialects supported by systems like
ntop and Sparqlify.
9 https://www.geofabrik.de/

10 https://wiki.openstreetmap.org/wiki/Osmosis

http://vos.openlinksw.com/
http://downloads.linkedgeodata.org/full-dumps/
https://linkedgeodata.org/monaco/
https://www.geofabrik.de/
https://wiki.openstreetmap.org/wiki/Osmosis

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662
Fig. 1. LinkedGeoData’s architecture. Boxes with dashed lines indicate dockerized components. Ontop is the novel addition to the project.
• SPARQL Services via Virtualization. Given a set of RDB2RDF
mappings, both Ontop and Sparqlify can expose the same
database as similar VKGs via a SPARQL endpoint. We kept
both systems because they originate from different capabil-
ities of the engines, and because hosting a VKG engine does
not require much resource thanks to the virtual nature of
such systems. Addition of future VKG engines with support
for PostGIS and R2RML to LinkedGeoData’s architecture only
requires to contribute an appropriately configured docker
file.

• Auxiliary Geo-Services. Nominatim11 is a search tool over
OSM data that supports geocoding and reverse-geocoding.
Its introduction to LinkedGeoData solves a long standing
issue: Although the Osmosis tool replicates ‘‘raw’’ OSM data,
it does not compute effective geometries. For example, large
line-strings, such as boundaries of countries, are split into
multiple segments, which are subsequently related to each
other using an OSM relation. Interpretation of whether an
OSM relation that forms a closed sequence of ways rep-
resents a line-string or a polygon depends on the tags.

11 https://wiki.openstreetmap.org/wiki/Nominatim
3

Nominatim supports computation of the effective geome-
tries for many relevant spatial features and also uses PostGIS
as a backend. Effective geometries are stored together with
the OSM entity identifier, which allows for joins with the
tables of OSM. Additional RDB2RDF mappings are employed
to expose these effective polygons. Nominatim also ships
with its own replication tool.

• Materialization. Downloadable RDF datasets are produced
from the VKG by means of materializing portions of it us-
ing SPARQL CONSTRUCT queries. In accordance with the
FAIR principles (findability, accessibility, interoperability, and
reuse) [21], the lgd-dumpdb tool not only exports data
partitions using SPARQL CONSTRUCT queries, but it also
generates a DCAT model that describes the exported RDF
files. On this basis, the data publishing process of a collection
of data partitions (such as by classes, e.g., Amenity and
Peak) can be automated. OpenLink’s Virtuoso Open Source
(VOS) RDF store is a high performance native triple store
that is traditionally used to serve the materialized datasets.
Virtuoso’s commercial version won the MOCHA2018 Triple
Store Challenge [22] with VOS also achieving high scores.
VOS 7.2.6 promises improved GeoSPARQL support, however

https://wiki.openstreetmap.org/wiki/Nominatim

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

D
D
O
O

w
S
o

r
f

G
O
t
s
a
q
w

at present only a development release12 was published that
has not yet been evaluated for LinkedGeoData. Note, that
the focus of this work is about realizing and evaluating
LinkedGeoData’s virtual knowledge graph with support for
GeoSPARQL queries, rather than evaluating native RDF store
performance.

• SPARQL-based Services. These services can wrap any of
the SPARQL endpoints, especially the VKG-based ones, in
order to deliver data access interfaces that some may con-
sider easier to use than SPARQL. Pubby13 is a very old
yet functional wrapper for publishing data according to the
Linked Data principles.14 The LinkedGeoData REST API is
essentially a set of REST methods backed by canned SPARQL
queries. For example, the /ontology method only executes
a SPARQL CONSTRUCT query that retrieves all triples of
resources typed with owl:Class or rdf:Property.

The LinkedGeoData docker architecture is aimed at making the
setup of all involved services as simple as possible. A ‘‘.env’’ file
contains all relevant options for performing initial data loading
and subsequent replication, and for running the services. The
main options are shown in Listing 1 and comprise the amount
of memory allowed for the database and two URLs that point to
the initial OSM dataset and the subsequent updates.

Listing 1: Excerpt of config options of a LinkedGeoData docker
stack
B_SHARED_BUFFERS=2GB
B_WORK_MEM=256MB
SM_DATA_BASE_URL=http://download.geofabrik.de/<dataset>.osm.pbf
SM_DATA_SYNC_URL=http://download.geofabrik.de/<dataset>-updates/

The OSM schema is non-typical for a relational database, and
for this reason LinkedGeoData also serves as a test-bed for eval-
uating corner cases of VKG engines. The conventional baseline
approach for mapping relational data to RDF is based on class-
per-table and predicate-per-column mappings. The R2RML W3C
recommendation includes a specification of how to perform this
approach in a standard way under the name Direct Mapping.15
However, in an OSM database nearly all data is represented as
tags that are stored in a generic schema with key–value columns.
As OSM contains billions of spatial entities, a VKG engine’s query
execution approach needs to scale to both the number of in-
volved RDB2RDF mappings and the size of the data. Furthermore,
GeoSPARQL has become the specification for spatial data access
in the Semantic Web. LinkedGeoData’s VKG approach to exposing
OSM data as RDF provides a test-bed for state-of-the-art VKG
engines to demonstrate their advances in GeoSPARQL compliance.
Conversely, VKG engines supporting this standard are a highly
relevant and welcome contribution to the LinkedGeoData project.

3. Basic spatial SPARQL support in VKGs

In this section, we first present the SPARQL-SQL rewriter Spar-
qlify used in LinkedGeoData, and discuss its limitation. Then we
present the basic spatial SPARQL support in Ontop-spatial v1.

3.1. Sparqlify

Sparqlify16 is a SPARQL-SQL rewriter that enables the defini-
tion of RDF views on relational databases and querying them with

12 https://sourceforge.net/projects/virtuoso/files/virtuoso/
13 https://github.com/cygri/pubby
14 https://www.w3.org/DesignIssues/LinkedData
15 https://www.w3.org/TR/rdb-direct-mapping/
16 http://aksw.org/Projects/Sparqlify.html
4

Fig. 2. Example SML mapping.

SPARQL. The LinkedGeoData project has used Sparqlify to provide
access to virtual triples from the OpenStreetMap database. Spar-
qlify supports two mapping languages, i.e., R2RML and its own
Sparqlification Mapping Language (SML), which was developed as
a more human friendly alternative to R2RML [23].

SML is inspired by SQL’s CREATE VIEW statement and SPARQL’s
CONSTRUCT query form. Both SPARQL and SQL result sets are
relational in nature,17 however SPARQL mandates ‘‘column types’’
to be uniformly RDF terms, whereas in SQL different types cannot
be mixed. The construction of RDF terms from column values can
be achieved by externally providing suitable meta data to perform
a mapping. An example of an SML specification is shown in Fig. 2.
The With clause is a set of term constructor expressions, where
the variable on the left hand side of ’=’ is the one being defined,
hereas the ones on the right hand side refer to column names.
pecial characters in column names can be handled with the use
f double quotes.
The recent work [24] reports its findings on using Sparqlify to

ewrite SPARQL queries to the SQL dialect of the Apache Spark18
ramework.

eospatial functions. In LinkedGeoData, the Virtuoso DBMS in its
pen Source edition (VOS) is traditionally used as the primary
riple store. While recent enterprise versions of Virtuoso feature
upport for GeoSPARQL, the Open Source version features only
limited set of spatial functions that predate GeoSPARQL. Spar-
lify’s geospatial support is aimed at interoperability with VOS,
hich comprises the following functions:

• bif:st_intersects. This function has two different im-
plementations depending on the respective PostGIS SQL
function used: (1) ST_INTERSECT, which checks whether
the geometries intersect; (2) ST_DWITHIN, which checks
whether the geometries are within a specified distance in
kilometres (km) from one-another.

• bif:st_point. This function is derived from the PostGIS
function ST_POINT, and it can retrieve geometry
ST_Point(float x, float y) with the respective lon-
gitude and latitude. An additional 3rd argument can be
provided as an SRID ST_SetSRID(ST_Point(float x,
float y), int srid) to set this point into a specific
spatial reference system.

• bif:st_geomFromPoint. This function is equivalent to
bif:st_point.

• bif:st_geomFromText. This function is derived from the
PostGIS function ST_GeomFromText. Similar to ST_POINT,
through ST_SetSRID a composite function is created
through which an SRID can be set.

17 Even though SPARQL result sets are formally defined a sets of partial
functions from variables to RDF terms, a relation is obtained by treating each
variable mentioned in the domains as a separate column.
18 https://spark.apache.org/

https://sourceforge.net/projects/virtuoso/files/virtuoso/
https://github.com/cygri/pubby
https://www.w3.org/DesignIssues/LinkedData
https://www.w3.org/TR/rdb-direct-mapping/
http://aksw.org/Projects/Sparqlify.html
https://spark.apache.org/

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

t
s

i
s

S
b
<

<

t
d
f
S
n
S
p
f
t
i

S
t
a
a
A
r
t
c
f
m
c
c
m

3

a
o
a
l
b

m
t
s

h
o

The distance and intersection functions provide useful func-
ionalities and can be written so as to replicate other functions,
uch as geof:sfWithin. However, the lack of OGC GeoSPARQL
compliance and even deviation in the case when
bif:st_intersects acts as ST_DWITHIN, limits the scenar-
os for which LinkedGeoData can be compared with other VKG
olutions.
Sparqlify uses an XML format to declare the mappings of

PARQL extension function IRIs to SQL expressions, as shown
elow:
simpleFunctions>
<simpleFunction>
<name>http://www.openlinksw.com/schemas/bif#st_geomFromPoint</name>
<mappings>
<mapping>
<signature>geometry ST_Point(float, float)</signature>
<pattern>ST_SetSRID($name$(1, 2), 4326)</pattern>

</mapping>
<mapping>
<signature>geometry ST_Point(float, float, int)</signature>
<pattern>ST_SetSRID($name$(1, 2), 3)</pattern>

</mapping>
</mappings>

</simpleFunction>
/simpleFunctions>

The signature element declares a specific SQL function name
ogether with the argument and return types. Note that as a
esign choice Java names such as float or double were used
or the declarations, however these names are not in the standard
QL (even though some RDBMSs support them). Internally, these
ames are then mapped to the appropriate RDF datatype IRIs and
QL datatype names. This allows for converting the RDF terms
rovided as function arguments to the appropriate SQL types, and
or converting back the SQL function’s return value to an RDF
erm. In accordance with the SPARQL 1.0 and 1.1 specifications,
ncompatible types result in a type error.

hortcomings. Although Sparqlify features a configurable and ex-
ensible framework and has proven that VKG technology can be
pplied to the OSM database, it does not support GeoSPARQL,
ggregate functions besides COUNT(*), or ontological reasoning.
lso, query answering performance can be suboptimal. The main
eason is that when translating a SPARQL query, Sparqlify simply
ranslates each triple pattern in the input SPARQL query to the
orresponding SQL queries from mappings as is, but does not per-
orm further optimizations. This often leads to SQL queries with
any redundant subqueries, which are expensive to evaluate by
urrent DB engines. As a consequence, the LinkedGeoData project
an be significantly improved by introducing a VKG engine that
itigates these issues.

.2. Ontop-spatial v1

Ontop [17,18], initiated at Free University of Bozen-Bolzano, is
state-of-the-art VKG system. It supports almost all the features
f the relevant W3C standards (R2RML, OWL2QL, SPARQL 1.1),
nd all major relational databases. It also has its own mapping
anguage. For example, the example SML mapping in Fig. 2 can
e equivalently written in Ontop as:

appingId people
arget eg:{id} foaf:firstName {first name} .
ource SELECT * FROM personTable

A spatial extension of Ontop, which we call Ontop-spatial v1,19
as been developed by National and Kapodistrian University
f Athens as a fork of Ontop v1.18 for supporting geospatial

19 http://ontop-spatial.di.uoa.gr/
5

data [16]. Ontop-spatial v1 implemented a large fragment of
the GeoSPARQL standard and has been successfully deployed
in a number of use cases in maritime security [25], oil explo-
ration [26], data quality assessment [27], and visual analytics [28].
It has also been used as a main technology in the H2020 projects
Copernicus App Lab [29] and DeepCube.20

However, since Ontop-spatial v1 is based on Ontop v1.18, it
cannot catch up with the latest Ontop version (v4.x) [18], which
comes with better compliance with relevant standards (e.g., ag-
gregation functions in SPARQL), improved performance, and new
tooling (e.g., built-in SPARQL endpoint and Docker infrastruc-
ture). Also, the simpler internal representation used in Ontop v1
(and also in Ontop-spatial v1) does not allow one to properly
take into account all the aspects of GeoSPARQL with respect to
projection systems, units, and type inference. An adoption of
Ontop-spatial v1 in the LinkedGeoData project would suffer from
the same limitations.

4. Improving GeoSPARQL support in VKGs

In this section, we describe how we improve GeoSPARQL
support in VKGs, which is crucial for the LinkedGeoData project.
Specifically, we first recall in Section 4.1 some GeoSPARQL fea-
tures and their challenges, and then explain in Section 4.2 how
we implement them in Ontop v4. We observe that in the follow-
ing we refer to the following three namespace prefixes: geo,21
geof,22 and uom.23

4.1. OGC GeoSPARQL and current implementations in VKGs

The OGC GeoSPARQL standard defines a vocabulary for repre-
senting geospatial data in RDF, and an extension to the SPARQL
query language for processing geospatial data [30]. This standard
defines a rich set of geospatial functions, which can be split into
two categories:

• Topological functions, which take two geometries as inputs
and return a boolean value with respect to a certain topo-
logical relation, e.g., geof:sfIntersects. There are three
families of topological relations: Simple Features, Egenhofer,
and Region Connection Calculus (RCC8). Simple Features and
Egenhofer apply to all geometries, including points, lines,
and polygons. In contrast, RCC8 functions only apply to 2-
dimensional geometries such as polygons, but not to lines
or points. The more general ternary geof:relate function
takes one more input for a pattern-matrix, which represents
a Dimensionally Extended 9-Intersection Model (DE-9IM) in-
tersection pattern consisting of T (true) and F (false) values,
and returns true if the spatial relationship between the two
geometries corresponds to the pattern-matrix.

• Non-topological functions, which take a geometry and pos-
sibly some other parameters as inputs and compute some
values (e.g., geof:distance) or geometries (e.g.,
geof:buffer).

A complete list of GeoSPARQL functions is provided in Table 1.
Below, we describe some important aspects of GeoSPARQL,

including measurement units, SRIDs, and Geometry Literal Serializa-
tion. To the best of our knowledge, no existing open source VKG
system is able to support all of them.

20 https://deepcube-h2020.eu/
21 http://www.opengis.net/ont/geosparql#
22 http://www.opengis.net/def/function/geosparql/
23 http://www.opengis.net/def/uom/OGC/1.0/

http://ontop-spatial.di.uoa.gr/
https://deepcube-h2020.eu/
http://www.opengis.net/ont/geosparql#
http://www.opengis.net/def/function/geosparql/
http://www.opengis.net/def/uom/OGC/1.0/

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

t
t
t
u
a
s
a
f

s
u

Table 1
GeoSPARQL functions.
Topological functions. (∗) indicates no direct SQL counterpart Non-topological function

Simple features Egenhofer RCC8 geof:distance
geof:sfEquals geof:ehEquals geof:rcc8eq geof:buffer
geof:sfDisjoint geof:ehDisjoint geof:rcc8dc (∗) geof:convexHull
geof:sfIntersects geof:ehMeet geof:rcc8ec (∗) geof:intersection
geof:sfTouches geof:ehOverlap (∗) geof:rcc8po (∗) geof:union
geof:sfCrosses geof:ehCovers geof:rcc8tppi (∗) geof:difference
geof:sfWithin geof:ehCoveredBy (∗) geof:rcc8tpp (∗) geof:symDifference
geof:sfContains geof:ehInside (∗) geof:rcc8ntpp (∗) geof:envelope
geof:sfOverlaps geof:ehContains (∗) geof:rcc8ntppi (∗) geof:boundary

geof:getSRID

geof:relate
a
G

4

g

i
a

i

Measurement units. Measurement units are of critical importance
o functions that deal with distance. Specifically, for the func-
ions geof:distance and geof:buffer, the last parameter is
he measurement unit. Currently, three widely used metrics are:
om:metre, uom:degree, and uom:radian. Standard distance
nd buffer functions implemented on popular geospatial RDBMSs,
uch as PostGIS and H2GIS, default to degrees. Therefore, special
ttention on units needs to be taken when translating GeoSPARQL
unctions to SQL functions in VKG systems.

We recall that Ontop-spatial v1 and Sparqlify ignore mea-
urement units, which in practice means that they only support
om:degree.

Spatial reference system identifier and geometry literal serialization.
The spatial reference system identifier (SRID) is the identifier for a
geographic coordinate system. In GeoSPARQL, an SRID is specified
as an IRI, e.g.,

• <http://www.opengis.net/def/crs/OGC/1.3/CRS84> de-
notes the WGS 84 geodetic longitude–latitude spatial ref-
erence system. This is the default SRID used in GeoSPARQL
if not specified explicitly.

• <http://www.opengis.net/def/crs/EPSG/0/4326>
denotes the WGS 84 geodetic latitude–longitude spatial
reference system. Note that this spatial reference system
defines a different axis order from the former SRID.

• <http://www.opengis.net/def/crs/EPSG/0/3044> is a
Cartesian 2D coordinate system used in Europe between
6◦E and 12◦E, with the metre as the unit.

The SRIDs are used for serializing geometry as literals.
GeoSPARQL adopts two serialization types of geometries: Well-
Known Text (WKT) and Geographic Markup Language (GML) as
two RDF datatypes: geo:wktLiteral and geo:gmlLiteral.
For example, the literal below encodes a point geometry in WKT
using the default WGS 84 SRID:

"POINT(-83.38 33.95)"^^geo:wktLiteral
and the one below encodes the same point using EPSG 4326 (note
the order of axes):

"<http://www.opengis.net/def/crs/EPSG/0/4326>
POINT(33.95 -83.38)"^^geo:wktLiteral
We recall that Ontop-spatial v1 and Sparqlify do not support

specifying SRIDs in geometry literals.

4.2. Implementation of Ontop-spatial v4

Ontop has been undergoing significant refactoring to be better
compliant with relevant standards [18]. The new internal data
structures in Ontop v4 provide a solid foundation to reimplement
GeoSPARQL support systematically and to address the challenges
mentioned above. To distinguish it from Ontop-spatial v1, in the
following, we call this new implementation Ontop-spatial v4. Be-
low we discuss in detail how to implement GeoSPARQL functions.
6

4.2.1. GeoSPARQL functions
Recall that, to support GeoSPARQL in VKGs, the SQL coun-

terpart we primarily rely on is the OGC standard Simple Fea-
ture Access Standard [19], which in turn depends on the geospa-
tial SQL functionalities that are standardized in ISO/IEC 13249
SQL/MM [31]. It defines geometries as the main data type on
which spatial operations are applied. The SQL/MM standard uses
the prefix ST_, which stands for spatial and temporal, for all
tables, views, types, methods, and function names.

Many GeoSPARQL functions, e.g., all the Simple Feature func-
tions, have direct SQL correspondences. For example, the
GeoSPARQL function geof:sfDisjoint can be translated to
the standard SQL function ST_DISJOINT. Such functions have
already been implemented in Ontop-spatial v1. Some GeoSPARQL
functions do not have direct SQL counterparts (marked with (∗)
in Table 1). These include half of the Egenhofer functions and
most of the RCC8 functions, and they are not fully supported
in Ontop-spatial v1. To support them, we rely on the DE-9IM
pattern-matrices of these functions (defined in Tables 1–3 in [30]).
For example, the matrix of geo:ehInside is TFF*FFT**. These
GeoSPARQL functions can be translated to the generic SQL func-
tion ST_RELATE,24 which allows for evaluating the topologi-
cal relationships between two geometries according to a DE-
9IM pattern-matrix. E.g., geo:ehInside(?x,?y) can be trans-
lated to ST_RELATE (x,y,"TFF*FFT**"). For more information
bout these three families and pattern-matrices, we refer to the
eoSPARQL specification [30] and the relevant references within.

.2.2. Handling SRIDs and units
SRIDs and units play an important role in the functions

eof:getSRID, geof:distance, and geof:buffer. Below we
detail the implementations of geof:getSRID and geof:
distance, but ignore geof:buffer since it works similarly to
geof:distance.

Implementation of geof:getSRID. The function geof:
getSRID(x) returns the SRID of the input literal x. The challenge
is that the SRID can be part of x as shown in the example in Sec-
tion 4.1. In this case, it requires analysing the string value of the
literal, which can be expensive. To guarantee good performance,
we limit our implementation to be database instance independent,
.e., we compute the SRID during the query translation process,
nd do not need to delegate it to query evaluation.
For example, we support the following templates for specify-

ng the WKT of a point in the mapping target:

– "{geom}"^^geo:wktLiteral
– "<http://www.opengis.net/def/crs/EPSG/0/3044>
{geom}"^^geo:wktLiteral

– "<http://www.opengis.net/def/crs/EPSG/0/3044>
POINT({x} {y})"^^geo:wktLiteral

24 https://postgis.net/docs/ST_Relate.html

https://postgis.net/docs/ST_Relate.html

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

s

t

s

F
E
i

d

S

}

W
S

S
F
W

f

B

S

F
W

t

s

S

}

S

W

f
t
t
a

f

When evaluating geof:getSRID over these points, we obtain the
default WGS 84 for the first one, and <http://www.opengis.
net/def/crs/EPSG/0/3044> for the last two. However, in the
first case, if the column geom stores string values with an SRID
inside, like

"<http://www.opengis.net/def/crs/EPSG/0/3044>
POINT(668682.853 5122639.964)",

our implementation is not able to extract the SRID in such
columns. Nevertheless, such values do not make sense in prac-
tical GIS systems, because the string is not a valid WKT for the
database, and spatial indexes cannot be applied.

Note that this complication is a consequence of the ‘‘fea-
ture’’ of mixing SRID and WKT in the serialization. There is
an ongoing discussion in the community to decouple them in
GeoSPARQL 2.0.25 Such a change would simplify our implemen-
tation.

Implementation of geof:distance. One of the most challenging
functions to implement is geof:distance, because both mea-
surement units (i.e., metres, degrees, or radians) and SRIDs need
to be considered when defining correct translations. To illustrate
the translation, we first present two examples and then introduce
the general algorithm.

Example 1 (Distance on a Cartesian 2D Coordinate). Consider the
following table cities with two columns name and geom, where
the geometries are in the EPSG 304426 projection:

Name Geom
Bolzano POINT(680690.38 5152087.65)
Merano POINT(665178.23 5170708.71)

We can use the following mapping (in the Ontop mapping
yntax) to construct a VKG:

arget :{name} geo:asWKT
"<http://www.opengis.net/def/crs/EPSG/0/3044>
{geom}"^^geo:wktLiteral .

ource SELECT name, geom FROM cities

rom the template of the WKT literal, we know that the SRID is
PSG 3044. By consulting a library like proj4j,27 we know that the
nput unit is metre.

Now, consider the following SPARQL query to compute the
istance between Bolzano and Merano in metres:

ELECT ?dist WHERE {
:bolzano geo:asWKT ?wkt1 .
:merano geo:asWKT ?wkt2 .
BIND(geof:distance(?wkt1, ?wkt2, uom:metre)

AS ?dist)

e can directly translate it to the following SQL query using the
T_DISTANCE function:

ELECT ST_DISTANCE(t1.geom, t2.geom) AS dist
ROM cities t1, cities t2
HERE t1.name = 'bolzano ' AND t2.name = 'merano '

If we change the unit to radian in the query, i.e., using the
ollowing BIND clause:

IND(geof:distance(?wkt1, ?wkt2, uom:radian)
AS ?dist)

25 https://github.com/opengeospatial/ogc-geosparql/issues/31
26 https://epsg.io/3044
27 https://github.com/locationtech/proj4j
7

we can convert the length to metre by dividing by the radius of
the earth (6,370,986 m), and obtain the following SQL query:

ELECT ST_DISTANCE(t1.geom, t2.geom)/6370986
AS dist

ROM cities t1, cities t2
HERE t1.name = 'bolzano ' AND

t2.name = 'merano ' ◁

Example 2 (Distance Between Geometries on a Sphere). Consider
the table with the same structure as above but the geometries
are in the WGS 84 longitude–latitude projection:

Name Geom
Paris POINT(2.3522 48.8566)
London POINT(-0.1278 51.5074)

and the mapping

arget :{name} geo:asWKT
"{geom}"^^geo:wktLiteral.

ource SELECT name, geom FROM cities

In this case, the WKT literal uses the default SRID
<http://www.opengis.net/def/crs/OGC/1.3/CRS84> and
the unit is degree.

To compute the distance between Paris and London, we can
use the following GeoSPARQL query:

ELECT ?dist WHERE {
:paris geo:asWKT ?wkt1 .
:london geo:asWKT ?wkt2 .
BIND(geof:distance(?wkt1, ?wkt2, uom:metre)

AS ?dist)

This query can be translated to the following SQL query using the
ST_DISTANCESPHERE function:

ELECT ST_DISTANCESPHERE(t1.geom, t2.geom)
AS dist FROM cities t1, cities t2

HERE t1.name = 'paris ' AND t2.name = 'london ' ◁

To summarize, for all the different cases we can use the SQL
unctions ST_DISTANCE and ST_DISTANCESPHERE in conjunc-
ion with some additional arithmetic functions. The more general
ranslation, which supports metre and degree as input units, and
lso radian as output unit, is provided below:

unction translate_distance(term1, term2,
outputUnit):

let Re = radius of the earth in metres
srid1, geom1 = extractSRIDandGeom(term1)
srid2, geom2 = extractSRIDandGeom(term2)
if (srid1 != srid2)
exit "unsupported: SRIDs do not match"

// using the proj4j library
inputUnit = getUnit(srid1)
if inputUnit == METRE:

dm = ST_DISTANCE(geom1, geom2)
else if inputUnit == DEGREE:

dm = ST_DISTANCESPHERE(geom1, geom2)

if outputUnit == METRE:
return dm

else if outputUnit == RADIAN:
return dm · 180/π

else if outputUnit == DEGREE:
return dm/Re · 180/π

https://github.com/opengeospatial/ogc-geosparql/issues/31
https://epsg.io/3044
https://github.com/locationtech/proj4j

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

4

u
l
(
(
g
h
O
a

f
p
d

5

a
S
a
t
i
e

5

e

E
l
t
A
F

M

t
d
m
v
f
H
w
l
r
r
n
o
a
d
e

Fig. 3. Example OSM XML data item.

.2.3. Summary
To summarize, Ontop-spatial v4 is a significant improvement

pon v1. Among the new features and functionalities, we high-
ight the following ones: (i) support for SRIDs beyond CRS 84,
ii) support for units of metre and radian, in addition to degree,
iii) support for all topological functions, and (iv) support for the
eof:relate function. The current version of Ontop-spatial v4
as been tested extensively on PostgreSQL/PostGIS and H2GIS.
ther DB systems should also work almost out of the box if they
re compliant with the standards.
We note that Ontop-spatial v4 has still not ported all the

eatures from Ontop-spatial v1. Among these, we mention in
articular the query rewrite extent of GeoSPARQL, and a raster
ata extension implemented in v1 [16,32].

. Exposing LinkedGeoData as a VKG

In this section, we describe how to expose LinkedGeoData as
VKG. We show the two realizations using Sparqlify and Ontop.
pecifically, we first introduce in Section 5.1 the database tables
nd views derived from OpenStreetMap for LinkedGeoData, and
hen the ontology in Section 5.2, and the mapping for VKGs
n Section 5.3. Finally, we illustrate in Section 5.4 the SPARQL
ndpoint with an example query.

.1. Database schema

Recall that OSM data consists of three fundamental geographic
ntities:

• Nodes are the most primitive entities and represent geo-
graphic points.

• Ways are entities that have a list of at least two node
references associated with them.

• Relations relate points, ways, and potentially other relations
to each other, thereby forming complex objects.

ach of these entities has a numeric identifier id, the geographic
ocation represented using lat and lon, and a set of generic at-
ributes described using a set of key–value pairs, known as tags.28
n example data item of the node type in OSM XML is shown in
ig. 3.

28 A list of all the tags can be found in https://wiki.openstreetmap.org/wiki/
ap_Features.
8

Table 2
Example tables and views.
node_id k v

6865960209 addr:country MC
6865960209 amenity university
6865960209 email admissions@monaco.edu
6865960209 name International University of Monaco
6865960209 name:it Università Internazionale di Monaco
6865960209 phone +377 97 986 996
6865960209 website https://www.monaco.edu/
6865960209 wikidata Q2504327
6865960209 wikipedia fr:Université internationale de Monaco

(a) node_tags

id version user_id tstamp geom

6865960209 4 0 2021-03-07 19:22:05 01...DE4540

(b) nodes

node_id property object

6865960209 rdf:type lgdo:Amenity

(c) lgd_node_tags_resource_k

node_id property object

6865960209 rdf:type lgdo:University

(d) lgd_node_tags_resource_kv

node_id property v

6865960209 foaf:homepage https://www.monaco.edu/

(e) lgd_node_tags_url

node_id property v language

6865960209 rdfs:label International University of Monaco
6865960209 rdfs:label Università Internazionale di Monaco it
6865960209 foaf:phone +377 97 986 996

(f) lgd_node_tags_text

k object

highway lgdo:HighwayThing
amenity lgdo:Amenity
tourism lgdo:TourismThing
historic lgdo:HistoricThing
landuse lgdo:Landuse

(g) lgd_map_resource_k

k v object

building university lgdo:BuildingUniversity
amenity university lgdo:University
amenity airplane lgdo:Airplane
amenity drinking_water lgdo:DrinkingWater
amenity school lgdo:School

(h) lgd_map_resource_kv

We first import the OSM files using osm2pgsql29 into the
ables node_tags, way_tags, and relation_tags in a PostGIS
atabase. However, these tables are not suitable for creating
appings because their structure reflecting directly the key–
alue pairs is too generic, and it even stores values of all dif-
erent types, e.g., integer and string, into the same columns.
ence we create additional tables and views for LinkedGeoData,
hose names start with ‘‘lgd_’’. For example, the views
gd_node_tags_resource_k and lgd_node_tags_
esource_kv store the top-level and second-level classes de-
ived from the node_tags table, respectively. In a similar man-
er, data properties are respectively loaded into views depending
n their datatypes. These operations apply to ways and relations
s well. In Table 2, we provide some tables and views with sample
ata, which we will also use in the next two subsections while
xplaining the ontology and mappings.

29 https://osm2pgsql.org/

https://wiki.openstreetmap.org/wiki/Map_Features
https://wiki.openstreetmap.org/wiki/Map_Features
https://www.monaco.edu/
https://www.monaco.edu/
https://osm2pgsql.org/

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

T
S

I
p

i

p
f
f

t
i

Fig. 4. Screenshot of ontology and mapping management in Protégé with the Ontop plugin.
C

]

o
u
b
o
e

5

t
A

w

able 3
tatistics of the OSM datasets and DB size used for the evaluation.
Area #nodes #ways #relations DB size

North-East Italy 59.6M 6.7M 0.1M 28 GB
Italy 193.3M 21.1M 0.3M 85 GB
Germany 319.4M 52M 0.6M 179 GB

5.2. Ontology

The ontology is derived from the OSM tags as described in [3].
n total, the ontology includes around 1,200 classes, 250 data
roperties, and 80 object properties.
For Sparqlify, the ontology information is stored in the follow-

ng 6 tables:

• lgd_map_resource_k stores top-level classes;
• lgd_map_resource_kv stores second-level classes;
• lgd_map_property stores data properties;
• lgd_map_literal stores data properties that also include

language tags (e.g., Italian, German);
• lgd_map_datatype stores the data properties and their

associated types (e.g., boolean, integer, float);
• lgd_map_resource_prefix stores some additional ob-

ject properties, in particular the wikipedia language web-
site corresponding to a class.

Sparqlify dynamically populates the ontology using the map-
ings. For example, the SML mapping below (slightly simplified
or readability) populates the rdfs:subClassOf object property
rom the tables lgd_map_resource_k and lgd_map_resource
_kv. Note that the SML mapping includes a ‘‘Constrain’’ sec-
ion, which can declare, e.g., additional prefix constraints. Such
nformation can be used as a hint for query optimization.
9

reate View sub_classes As
Construct {

?child rdfs:subClassOf ?parent .
}
With

?child = uri(?child)
?parent = uri(?parent)

Constrain
?child prefix "http://linkedgeodata.org/ontology/"
?parent prefix "http://linkedgeodata.org/ontology/"

From
[[SELECT a.object AS parent, b.object AS child
FROM lgd_map_resource_k a JOIN

lgd_map_resource_kv b ON (b.k = a.k)
];

As Ontop does not support dynamically populating the ontol-
gy from the mapping, for Ontop, we first extract the ontology
sing the mappings and store it as a standard OWL file. To
e compliant with GeoSPARQL, we also import the GeoSPARQL
ntology.30 A screenshot of the ontology in the Protégé ontology
ditor31 is provided in Fig. 4.

.3. Mapping

Next we show how to develop mappings for Sparqlify and On-
op to populate the instances of the RDF graphs in LinkedGeoData.
screenshot of the Ontop mappings is provided also in Fig. 4.
The following tables and views are used for nodes. Those for

ays and relations are similar:

• nodes stores the OSM id and geometry of the nodes;

30 http://www.opengis.net/ont/geosparql
31 https://protege.stanford.edu/

http://www.opengis.net/ont/geosparql
https://protege.stanford.edu/

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

<

m
t
s

C

C

m
t
s

t
f

• lgd_node_tags_resource_k stores object properties of
the nodes (including the property rdf:type) and top-level
classes;

• lgd_node_tags_resource_kv stores object properties
of the nodes (including the property rdf:type) and
second-level classes;

• lgd_node_tags_string, lgd_node_tags_int, lgd_
node_tags_float, lgd_node_tags_boolean, and
lgd_node_tags_url store data properties of the nodes
of different types (string, integer, float, boolean, and url,
respectively);

• lgd_node_tags_text stores data properties of the nodes
of type text as well as the language tag (e.g., en, fr, it);

• lgd_node_interlinks stores the DBpedia and GeoKnow
links for nodes (used for creating owl:sameAs relations
between OSM and other sources).

We show some example mappings for nodes. Consider the
mapping for the table lgd_node_tags_resource_kv storing
information on object properties for nodes. First, we show the
mapping in R2RML, which is supported by both Sparqlify and
Ontop:

lgd_node_tags_resource_kv> a rr:TriplesMap;
rr:logicalTable [
rr:sqlQuery "SELECT * FROM lgd_node_tags_resource_kv"

];
rr:subjectMap [
rr:template

"http://linkedgeodata.org/triplify/node{node_id}";
rr:termType rr:IRI

];
rr:predicateObjectMap [
rr:predicateMap [rr:column "property";

rr:termType rr:IRI];
rr:objectMap [rr:column "object";

rr:termType rr:IRI];
].

This mapping can be written in the Ontop syntax as follows:

appingId lgd_node_tags_resource_kv
arget lgd:node{node_id} <{property}> <{object}> .
ource SELECT * FROM lgd_node_tags_resource_kv

Below is the same mapping in the SML syntax:

reate View lgd_node_tags_resource_kv As
Construct {

?s ?p ?o .
}
With

?s = uri(concat(lgd:node, ?node_id))
?p = uri(?property)
?o = uri(?object)

Constrain
?p prefix "http://linkedgeodata.org/ontology/" "http:...
?o prefix "http://linkedgeodata.org/ontology/"

From
lgd_node_tags_resource_kv

Next we discuss how to map text to xsd:langString, i.e.,
strings with language tags. The example SML mapping below
shows that it is possible to construct a literal with language from
the database using plainLiteral(?v,?language):

reate View lgd_node_tags_text As
Construct {

?s ?p ?o .
}
With

?s = uri(concat(lgd:node, ?node_id))
?p = uri(?property)
?o = plainLiteral(?v, ?language)

From

lgd_node_tags_text a

10
This is, however, not supported by R2RML and Ontop. In an
Ontop (and R2RML) mapping, one has to explicitly enumerate all
possible languages in LinkedGeoData. For instance, below is the
mapping for the Italian language:

appingId lgd_node_tags_text_lang_it
arget lgd:node{node_id} <{property}> {v}@it .
ource SELECT * FROM lgd_node_tags_text

WHERE language = 'it '

This means that 3 such mappings (for nodes, ways, and relations)
in SML need to be translated to a large number of mappings in
Ontop and R2RML. This blowup makes the management of the
mappings more difficult and can also cause performance issues.

We list in Fig. 5 the triples of the (Virtual) Knowledge Graph
generated by the example mappings and ontology from the ex-
ample OSM XML in Fig. 3.

5.4. SPARQL endpoint

Using the infrastructure described in Section 2, one can deploy
easily an instance of LinkedGeoData with the developed ontology
and mappings, and expose the SPARQL endpoints powered by
Ontop and Sparqlify. The geographic area in the deployment is
easily configurable by adjusting the download link of OSM as in
Listing 1. The default area is the country of Monaco. We have
deployed an instance (currently with only Monaco data) of the
new version of LinkedGeoData online for demonstration.32 Fig. 6
shows a screenshot of this deployment using Ontop, with an
example query asking for a university and the restaurants around
it.

6. Evaluation

In this section, we evaluate the performance of query answer-
ing over the LinkedGeoData VKGs created by both Sparqlify and
Ontop-spatial v4. All the evaluation results are easily reproducible
following the detailed online appendix.33

Hardware. The evaluation has been done on a machine with
4 cores (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00 GHz), 16GB RAM,
and 350GB SSD hard disk, running the operating system Ubuntu
18.04 and the DBMS PostgreSQL 12.3.

Datasets. We use three test geographical areas of North-East
Italy, Italy, and Germany from OSM, which fit in our testing
hard disk. The datasets were downloaded from Geofabrik34 on
1 August 2020. The datasets are loaded to a PostgreSQL database
as described in Section 5. The statistics on each OSM dataset, and
the size of tables and views in the PostgreSQL database are shown
in Table 3.

Queries. We have defined 7 GeoSPARQL query templates, as
shown in Table 4, following common patterns of usage of Linked-
GeoData. Each template has some parameters, which are either
classes or spatial filters. The detailed queries and the parameters
used for evaluation are provided in Appendix. For example,
as shown in Table A.6, Q1 can be instantiated into 25 queries
on each dataset (5 classes of ‘‘Amenities’’ × 5 locations). For
Q1 to Q4, we also provide the SPARQL queries of the Sparqlify
version that uses the corresponding bif: functions. For Q5 to Q7,
his is not possible because there are no Sparqlify counterparts
or the standard functions geof:sfWithin, geof:sfContains,

nd geof:buffer.

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

o
o
d
s
m
m

l

Fig. 5. Example triples in the LinkedGeoData (Virtual) Knowledge Graph.
Fig. 6. SPARQL endpoint of LinkedGeoData powered by Ontop. This query retrieves universities and nearby restaurants in a 200 m radius.
Table 4
GeoSPARQL queries.

Operators Query description

Q1 Distance Find OSM entities of a given class within a predefined distance
Q2 Distance Find OSM entities of a given class within a predefined distance from a given DBpedia location
Q3 Intersection Find OSM entities of a given class that intersect with a given polygon
Q4 Intersection Find OSM entities of two given linestring classes that intersect
Q5 Within Find OSM entities of a given class within a given polygon
Q6 Contains Find OSM entities of a given class that are contained in a given polygon
Q7 Buffer+Within Find OSM entities of a given class within a 500 metre buffer of a given location
Results. The evaluation results are reported in Table 5 and Fig. 7.
In Table 5, ‘‘OM’’ and ‘‘UF’’ refer to ‘‘out of memory’’ and ‘‘un-
supported functions’’ respectively. Note that each number is an
average of the running times with all possible parameters. We
provide all the SQL queries rewritten by Ontop and Sparqlify from
SPARQL queries in the online appendix.

For queries Q1 to Q4, Ontop performs better thanks to its
ptimization techniques. In particular, it can be seen from the
nline appendix that Sparqlify uses SQL queries from the mapping
irectly as subqueries and joins them, while Ontop performs
ophisticated SQL translations using structural and semantic opti-
ization techniques, which leads to queries that can be evaluated
ore efficiently by the database. Query Q4, which computes a

32 https://linkedgeodata.org/monaco/
33 https://github.com/ontop/ontop-examples/tree/master/jows-2021-
inkedgeodata
34 http://download.geofabrik.de/
11
huge number of intersections, can still be handled by Ontop (in
between 20mins and 3 h), but Sparqlify runs out of memory.
Ontop can also handle efficiently queries Q5, Q6, and Q7. Overall,
the results indicate that the VKG approach in LinkedGeoData is
able to support GeoSPARQL queries that combine topological and
non-topological operations on the database.

7. Discussion & future work

This paper presents the latest development of the LinkedGeo-
Data project using the virtual knowledge graph (VKG) technology.
It confirms that VKG is an efficient and lightweight approach to
expose large geodatasets as a unified Knowledge Graph. Below
we discuss some issues we have encountered and present some
future research directions.

Language tags. Through Sparqlify, all label mappings in a specific
language can be performed with a single line ?o = plainLiteral

https://linkedgeodata.org/monaco/
https://github.com/ontop/ontop-examples/tree/master/jows-2021-linkedgeodata
https://github.com/ontop/ontop-examples/tree/master/jows-2021-linkedgeodata
http://download.geofabrik.de/

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

T
A

(
t
r
r
o
s
n
O
a
T
t
t

C
c
i
d
(
m
f
f
t
t
l
i

Fig. 7. Evaluation results. NEI = Northeast Italy, I = Italy, G = Germany.
able 5
verage query response time (s).
Dataset Query Sparqlify Ontop

North-East Italy Q1 3.616 0.311
Q2 59.329 0.846
Q3 3.944 0.301
Q4 OM 1320.733
Q5 UF 0.199
Q6 UF 0.18
Q7 UF 0.179

Italy Q1 4.131 0.54
Q2 77.873 1.536
Q3 8.807 0.691
Q4 OM 11312.905
Q5 UF 0.742
Q6 UF 0.74
Q7 UF 0.735

Germany Q1 4.564 1.485
Q2 88.553 2.117
Q3 4.677 2.141
Q4 OM 1632.594
Q5 UF 1.496
Q6 UF 1.461
Q7 UF 1.496

‘‘OM’’ = ‘‘out of memory’’; ‘‘UF’’ = ‘‘unsupported functions’’.

?label,?language) to assign a label, i.e., data property and
he respective language annotation at once. This feature is cur-
ently supported neither by R2RML nor by Ontop. R2RML would
equire the introduction of an attribute like rr:languageColumn
n term maps in order to mitigate this issue. With Ontop a
eparate mapping for every language is required. Hence a large
umber of SQL unions has to be performed to accommodate all
SM languages. In LinkedGeoData, 89 mappings were needed for
ll the supported languages (including the case with no language).
his issue has been discussed in the community35 and we expect
hat the next version of the R2RML standard will include a feature
o simplify the mapping of language annotations.

onstraints over RDF terms. A further feature of Sparqlify that
urrently has no counterpart neither in R2RML nor in Ontop
s the declaration of IRI prefixes that term mappings can pro-
uce. For example, if a database column already contains IRIs
such as interlinks to DBpedia) and a triple mapping uses a term
apping of the form ?o = uri(?linkTarget), then without

urther metadata such a triple mapping qualifies as a candidate
or answering any query’s triple pattern that allows for an IRI in
he respective component. However, if we inferred that a query’s
riple pattern can only match IRIs in one set of prefixes (such as
gd), and we also knew that the triple mapping produces IRIs
n a different set of prefixes (such as dbr), then we can use this

35 https://github.com/kg-construct/mapping-challenges/issues/18
12
information to optimize the pruning of candidate triple mappings
in the query rewriting phase.

Faceted search. A long-envisioned goal of LinkedGeoData is to
facilitate live exploration of reasonably sized subsets of Linked-
GeoData’s Virtual Knowledge Graph, e.g., by means of client-side
SPARQL-based faceted search, as demonstrated in [33]. Client-
side SPARQL-based data exploration means that clients can be
independent of LinkedGeoData and still enable exploration of
its data in an ad-hoc fashion using only a single open standard
protocol and query language, i.e., SPARQL. Due to the lack of
support for aggregation functions in Sparqlify, this was so far not
possible. Preliminary experiments with Ontop and our faceted
search benchmark generator framework [34] showed that queries
were already answered correctly, however the performance was
not yet sufficient for interactive purposes. Hence, further analysis
of the bottlenecks across LinkedGeoData’s VKG stack together
with the corresponding optimizations are worthwhile.

Data quality. A noteworthy issue with OSM is data quality, which
is a result of the volunteered nature of the data collected. OSM
reports that data quality is constantly improving also due to
greater usage of open government data.36 ,37 Still, the classes
in the LinkedGeoData ontology derived from OSM data con-
tain for example the following pairs of differentiated classes,
which are obviously identical: ‘‘Vending+machine’’ vs ‘‘Vend-
ingMachine’’, ‘‘Wlan’’ vs ‘‘WLAN’’, and ‘‘Clothes%3A+women’’ vs
‘‘Clothes%3Awomen’’. We are going to tackle such data quality
issues in the future.

Improving interlinking. A relevant point for future work is im-
proving the interlinking. In [3], thousands of interlinks to DBpedia
and GeoNames were first generated using an interlinking en-
gine and subsequently manually verified, which is not a scalable
model. Fortunately, nowadays the Wikidata38 community main-
tains links from Wikipedia to OSM. Hence, in the near future,
we will provide an extra docker container capable of perform-
ing continuous integration of LinkedGeoData-to-DBpedia links by
regularly retrieving Wikidata-to-OSM links, storing them into the
LinkedGeoData database, and exposing them through the VKG as
well.

Integration of the SANSA project. SANSA (Semantic Analytics
Stack)39 is an open-source software project aimed at enabling
analytics based on the RDF data model with open source Big Data
frameworks (primarily Apache Spark40). Its architecture features

36 https://welcome.openstreetmap.org/working-with-osm-data/how-good-is-
osm/
37 https://www.missingmaps.org/osmstats/
38 https://wikidata.org/
39 http://sansa-stack.net/
40 https://spark.apache.org/

https://github.com/kg-construct/mapping-challenges/issues/18
https://welcome.openstreetmap.org/working-with-osm-data/how-good-is-osm/
https://welcome.openstreetmap.org/working-with-osm-data/how-good-is-osm/
https://www.missingmaps.org/osmstats/
https://wikidata.org/
http://sansa-stack.net/
https://spark.apache.org/

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

c
t

A

p
(
(
t
b
K
p
A
S
A

A

e
f
P
A
p

Q
d

S

}

F

S

}

F

S

}

F
F

Q
i
S

}

F
F

Q
g
S

}

Q
a
S

}

S

}

layers ranging from RDF import/export over SPARQL querying
to machine learning. For querying, there are several partitioning
strategies, some of which partition RDF data into Spark SQL
tables, which are then mapped using R2RML. Previously, only
Sparqlify was supported [24]. Ontop in SANSA is currently under
evaluation, and it can be expected that its support for aggregation
functions as well as the GeoSPARQL support in combination with
the performance improvements will advance the state of the art
in Big Data RDF processing. As it is easy to materialize compressed
datasets from LinkedGeoData whose size exceeds hundreds of
GB, SANSA may be a viable choice for performing analytics on
LinkedGeoData datasets efficiently.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This research has been partially supported by the EU H2020
roject INODE (863410), by the Italian PRIN project HOPE
2017MMJJRE), by the European Regional Development Fund
ERDF) Investment for Growth and Jobs Programme 2014–2020
hrough the projects IDEE (FESR1133) and GEOBIMM (FESR1151),
y the Free University of Bozen-Bolzano through the projects
GID (RTD 2019 Computer Science project), GeoVKG (CRC 2019
roject), and STyLoLa (ID 2017 project) and through the Open
ccess Publishing Fund, and by the Wallenberg AI, Autonomous
ystems and Software Program (WASP) funded by the Knut and
lice Wallenberg Foundation.

ppendix. GeoSPARQL queries for evaluation

We provide the seven GeoSPARQL query templates used for
valuation. Some templates use parameters $class and $geo
or filtering based on OWL classes and locations, respectively.
ossible values used in the experiments are given in Table A.6.
ll these queries are supported by Ontop. For Q1 to Q4, we also
rovide the Sparqlify variant.

uery 1. Find OSM entities of a given class within a predefined
istance.

ELECT * WHERE {
?a a $class ; geo:hasGeometry/geo:asWKT ?ag ;

rdfs:label ?name .
FILTER(lang(?name) = "" || lang(?name) = "it")
BIND (geof:distance(

'$geo'^^geo:wktLiteral, ?ag, uom:degree)
AS ?distance)

FILTER (?distance <= 0.1)

For Sparqlify, the filter is

ILTER(bif:st_intersects('$geo'^^geo:wktLiteral,
?ag, 0.1)) .

Query 2. Find OSM entities of a given class within a predefined
distance from a given DBpedia location.

ELECT ?ag ?name WHERE {
?a a $class ; geo:hasGeometry/geo:asWKT ?ag ;

rdfs:label ?name .
FILTER(lang(?name) = "" || lang(?name) = "it")
?b owl:sameAs

<http://dbpedia.org/resource/$geo> ;
13
geo:hasGeometry/geo:asWKT ?bg .
BIND (geof:distance(?bg, ?ag, uom:degree)

AS ?distance)
FILTER (?distance <= 0.1)

For Sparqlify, the filter is
ILTER(bif:st_intersects(?bg, ?ag, 0.1)) .

Query 3. Find OSM entities of a given class that intersect with a
given polygon.
ELECT * WHERE {
?a a $class ; geo:hasGeometry/geo:asWKT ?ag ;

rdfs:label ?name .
FILTER(lang(?name) = "" || lang(?name) = "it")
FILTER(geof:sfIntersects(?ag,

'$geo'^^geo:wktLiteral))

or Sparqlify, the filter is
ILTER(bif:st_intersects(?g,

bif:st_geomFromText("$geo")))

uery 4. Find OSM entities of two given linestring classes that
ntersect.
ELECT * WHERE {
?a a lgdo:Motorway ;

geo:hasGeometry/geo:asWKT ?ag ;
rdfs:label ?aname .

FILTER(lang(?aname) = "" || lang(?aname) = "it")
?b a lgdo:Canal ;

geo:hasGeometry/geo:asWKT ?bg ;
rdfs:label ?bname .

FILTER(lang(?bname) = "" || lang(?bname) = "it")
FILTER(geof:sfIntersects(?ag, ?bg))

or Sparqlify, the filter is
ILTER(bif:st_intersects(?ag, ?bg))

uery 5. Find OSM entities of a given class within a given poly-
on.
ELECT * WHERE {
?a a $class ; geo:hasGeometry/geo:asWKT ?ag ;

rdfs:label ?name .
FILTER(lang(?name) = "" || lang(?name) = "de")
FILTER(geof:sfWithin(?ag, '$geo'^^geo:wktLiteral))

uery 6. Find OSM entities of a given class that are contained in
given polygon.
ELECT * WHERE {
?a a $class ; geo:hasGeometry/geo:asWKT ?ag ;

rdfs:label ?name .
FILTER(lang(?name) = "" || lang(?name) = "de")
FILTER(geof:sfContains('$geo'^^geo:wktLiteral,?ag))

Query 7. Find OSM entities of a given class within a 500 m buffer
of a given location.
ELECT * WHERE {
?a a $class ; geo:hasGeometry/geo:asWKT ?ag ;

rdfs:label ?name .
FILTER(lang(?aname) = "" || lang(?aname) = "it")
BIND (geof:buffer('$geo'^^geo:wktLiteral, 500,

uom:metre) AS ?cg)
FILTER (geof:sfWithin(?ag, ?cg))

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662
Table A.6
Parameters for the testing queries. ‘‘Amenities’’ = {lgdo:Restaurant, lgdo:Bar, lgdo:Bank, lgdo:Pharmacy, lgdo:Library}. The column ‘‘#’’ is the number
of combinations of possible values.
Dataset Query $geo $class #

North-East
Italy

Q1 POINT(11.0452369 45.886548) POINT(11.1257601 46.0664228)
POINT(11.1594185 46.6695547) POINT(11.3547801 46.4981125)
POINT(13.2358377 46.0634632)

Amenities 25

Q2 Rovereto, Trento, Bolzano, Udine, Merano Amenities 25
Q3 POLYGON(11 46.45, 11.6 46.45, 11.6 46.64, 11 46.64, 11 46.45) Amenities 5
Q4 1
Q5 POLYGON((11 46.45, 11.6 46.45, 11.6 46.64, 11 46.64, 11 46.45)) Amenities 5
Q6 POLYGON((11 46.45, 11.6 46.45, 11.6 46.64, 11 46.64, 11 46.45)) Amenities 5
Q7 POINT(13.2358377 46.0634632) Amenities 5

Italy Q1 POINT(15.08738 37.5022355) POINT(11.0452369 45.886548)
POINT(7.7748827 43.8198253) POINT(9.1128513 39.2169525)
POINT(18.1718482 40.3570373)

Amenities 25

Q2 Cagliari, Catania, Lecce, Rovereto, Sanremo Amenities 25
Q3 POLYGON((7.3 44.5, 8.5 44.5, 8.5 45.5, 7.3 45.5, 7.3 44.5)) 5
Q4 1
Q5 POLYGON((7.3 44.5, 8.5 44.5, 8.5 45.5, 7.3 45.5, 7.3 44.5)) Amenities 5
Q6 POLYGON((7.3 44.5, 8.5 44.5, 8.5 45.5, 7.3 45.5, 7.3 44.5)) Amenities 5
Q7 POINT(18.1718482 40.3570373) Amenities 5

Germany Q1 POINT(6.6441878 49.7596208) POINT(9.4333264 54.7833021)
POINT(8.651177 49.872775) POINT(10.3166999 50.9833)
POINT(11.3290855 50.9802813)

Amenities 25

Q2 Darmstadt, Eisenach, Flensburg, Trier, Weimar Amenities 25
Q3 POLYGON((11.6 53.4, 13.65 53.4, 13.65 54.25, 11.6 54.25, 11.6

53.4))
5

Q4 1
Q5 POLYGON((11.6 53.4, 13.65 53.4, 13.65 54.25, 11.6 54.25, 11.6

53.4))
Amenities 5

Q6 POLYGON((11.6 53.4, 13.65 53.4, 13.65 54.25, 11.6 54.25, 11.6
53.4))

Amenities 5

Q7 POINT(11.3290855 50.9802813) Amenities 5
References

[1] Jeremy Tandy, Linda van den Brink, Payam Barnaghi, Spatial Data on
the Web Best Practices, W3C Working Group Note, W3C & OGC, World
Wide Web Consortium & Open Geodata Consortium, 2017, URL https:
//www.w3.org/TR/sdw-bp/.

[2] Sören Auer, Jens Lehmann, Sebastian Hellmann, LinkedGeoData: Adding a
spatial dimension to the web of data, in: Proc. of the 8th Int. Semantic Web
Conf. (ISWC), in: Lecture Notes in Computer Science, vol. 5823, Springer,
2009, pp. 731–746, http://dx.doi.org/10.1007/978-3-642-04930-9_46.

[3] Claus Stadler, Jens Lehmann, Konrad Höffner, Sören Auer, LinkedGeoData:
A core for a web of spatial open data, Semant. Web J. 3 (4) (2012) 333–354,
http://dx.doi.org/10.3233/SW-2011-0052.

[4] Nicolas Tempelmeier, Elena Demidova, Linking OpenStreetMap with
knowledge graphs—link discovery for schema-agnostic volunteered
geographic information, Future Gener. Comput. Syst. 116 (2021) 349–364.

[5] Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo, Erhard
Rahm, A survey of current link discovery frameworks, Semant. Web J. 8
(3) (2017) 419–436, http://dx.doi.org/10.3233/SW-150210.

[6] Kevin Dreß ler, Axel-Cyrille Ngonga Ngomo, On the efficient execution of
bounded Jaro-Winkler distances, Semant. Web J. 8 (2) (2017) 185–196,
http://dx.doi.org/10.3233/SW-150209.

[7] Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang, Entity alignment be-
tween knowledge graphs using attribute embeddings, in: Proc. of the 33rd
AAAI Conf. on Artificial Intelligence (AAAI), vol. 33, 2019, pp. 297–304.

[8] Mohamed Sherif, Kevin Dreß ler, Panayiotis Smeros, Axel-Cyrille Ngonga
Ngomo, Radon – Rapid discovery of topological relations, in: Proc. of the
31st AAAI Conf. on Artificial Intelligence (AAAI), 2017, pp. 175–181.

[9] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser
Mehmood, Axel-Cyrille Ngonga Ngomo, LSQ: the linked SPARQL queries
dataset, in: Proc. of the 14th Int. Semantic Web Conf. (ISWC), in: Lecture
Notes in Computer Science, vol. 9367, Springer, 2015, pp. 261–269, http:
//dx.doi.org/10.1007/978-3-319-25010-6_15.

[10] Guohui Xiao, Linfang Ding, Benjamin Cogrel, Diego Calvanese, Virtual
knowledge graphs: An overview of systems and use cases, Data Intell. 1
(3) (2019) 201–223, http://dx.doi.org/10.1162/dint_a_00011.

[11] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo,
Antonella Poggi, Riccardo Rosati, Michael Zakharyaschev, Ontology-based
data access: A survey, in: Proc. of the 27th Int. Joint Conf. on Artificial
Intelligence (IJCAI), IJCAI Org., 2018, pp. 5511–5519, http://dx.doi.org/10.
24963/ijcai.2018/777.
14
[12] Ivan Ermilov, Michael Martin, Jens Lehmann, Sören Auer, Linked Open Data
statistics: Collection and exploitation, in: Proc. of the 4th Int. Conf. on
Knowledge Engineering and the Semantic Web (KESW), in: Communica-
tions in Computer and Information Science, vol. 394, Springer, 2013, pp.
242–249, http://dx.doi.org/10.1007/978-3-642-41360-5_19.

[13] Christian Bizer, Richard Cyganiak, D2RQ – Lessons learned, in: Proc. of the
W3C Workshop on RDF Access To Relational Databases, 2007, Available at
https://www.w3.org/2007/03/RdfRDB/papers/d2rq-positionpaper/.

[14] Freddy Priyatna, Oscar Corcho, Juan F. Sequeda, Formalisation and experi-
ences of R2RML-based SPARQL to SQL query translation using morph, in:
Proc. of the 23rd Int. World Wide Web Conf. (WWW), 2014, pp. 479–490,
http://dx.doi.org/10.1145/2566486.2567981.

[15] Konstantina Bereta, Manolis Koubarakis, Ontop of geospatial databases, in:
Proc. of the 15th Int. Semantic Web Conf. (ISWC), in: Lecture Notes in
Computer Science, vol. 9981, Springer, 2016, pp. 37–52, http://dx.doi.org/
10.1007/978-3-319-46523-4_3.

[16] Konstantina Bereta, Guohui Xiao, Manolis Koubarakis, Ontop-spatial: Ontop
of geospatial databases, J. Web Semant. 58 (2019) http://dx.doi.org/10.
1016/j.websem.2019.100514.

[17] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov,
Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao, Ontop:
Answering SPARQL queries over relational databases, Semant. Web J. 8 (3)
(2017) 471–487, http://dx.doi.org/10.3233/SW-160217.

[18] Guohui Xiao, Davide Lanti, Roman Kontchakov, Sarah Komla-Ebri, Elem
Güzel-Kalayci, Linfang Ding, Julien Corman, Benjamin Cogrel, Diego Cal-
vanese, Elena Botoeva, The virtual knowledge graph system Ontop, in:
Proc. of the 19th Int. Semantic Web Conf. (ISWC), in: Lecture Notes in
Computer Science, vol. 12507, Springer, 2020, pp. 259–277, http://dx.doi.
org/10.1007/978-3-030-62466-8_17.

[19] John Herring, Simple Feature Access - Part 2: SQL Option, OGC Implemen-
tation Standard OGC 06-104r4, Open Geospatial Consortium, Open Geodata
Consortium, 2010, URL https://www.ogc.org/standards/sfs.

[20] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian Hellmann,
Jens Lehmann, Roland Cornelissen, Amrapali Zaveri, Test-driven evaluation
of linked data quality, in: Proc. of the 23rd Int. World Wide Web Conf.
(WWW), 2014, pp. 747–758, http://dx.doi.org/10.1145/2566486.2568002.

[21] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle
Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten,
Luiz Bonino da Silva Santos, Philip E. Bourne, et al., The FAIR guiding
principles for scientific data management and stewardship, Sci. Data 3 (1)
(2016) 1–9.

https://www.w3.org/TR/sdw-bp/
https://www.w3.org/TR/sdw-bp/
https://www.w3.org/TR/sdw-bp/
http://dx.doi.org/10.1007/978-3-642-04930-9_46
http://dx.doi.org/10.3233/SW-2011-0052
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb4
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb4
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb4
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb4
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb4
http://dx.doi.org/10.3233/SW-150210
http://dx.doi.org/10.3233/SW-150209
http://dx.doi.org/10.1007/978-3-319-25010-6_15
http://dx.doi.org/10.1007/978-3-319-25010-6_15
http://dx.doi.org/10.1007/978-3-319-25010-6_15
http://dx.doi.org/10.1162/dint_a_00011
http://dx.doi.org/10.24963/ijcai.2018/777
http://dx.doi.org/10.24963/ijcai.2018/777
http://dx.doi.org/10.24963/ijcai.2018/777
http://dx.doi.org/10.1007/978-3-642-41360-5_19
https://www.w3.org/2007/03/RdfRDB/papers/d2rq-positionpaper/
http://dx.doi.org/10.1145/2566486.2567981
http://dx.doi.org/10.1007/978-3-319-46523-4_3
http://dx.doi.org/10.1007/978-3-319-46523-4_3
http://dx.doi.org/10.1007/978-3-319-46523-4_3
http://dx.doi.org/10.1016/j.websem.2019.100514
http://dx.doi.org/10.1016/j.websem.2019.100514
http://dx.doi.org/10.1016/j.websem.2019.100514
http://dx.doi.org/10.3233/SW-160217
http://dx.doi.org/10.1007/978-3-030-62466-8_17
http://dx.doi.org/10.1007/978-3-030-62466-8_17
http://dx.doi.org/10.1007/978-3-030-62466-8_17
https://www.ogc.org/standards/sfs
http://dx.doi.org/10.1145/2566486.2568002
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb21
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb21
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb21
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb21
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb21
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb21
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb21
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb21
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb21

L. Ding, G. Xiao, A. Pano et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662
[22] Kleanthi Georgala, Mirko Spasic, Milos Jovanovik, Vassilis Papakon-
stantinou, Claus Stadler, Michael Röder, Axel-Cyrille Ngonga Ngomo,
MOCHA2018: The mighty storage challenge at ESWC 2018, in: Revised
Selected Papers of the 5th Semantic Web Challenges, in: Communications
in Computer and Information Science, vol. 927, Springer, 2018, pp. 3–16,
http://dx.doi.org/10.1007/978-3-030-00072-1_1.

[23] Claus Stadler, Jörg Unbehauen, Patrick Westphal, Mohamed Ahmed Sherif,
Jens Lehmann, Simplified RDB2RDF mapping, in: Proc. of the Workshop
on Linked Data on the Web (LDOW), in: CEUR Workshop Proceedings, vol.
1409, CEUR-WS.org, 2015, URL http://ceur-ws.org/Vol-1409/paper-09.pdf.

[24] Claus Stadler, Gezim Sejdiu, Damien Graux, Jens Lehmann, Sparklify: A
scalable software component for efficient evaluation of SPARQL queries
over distributed RDF datasets, in: Proc. of the 18th Int. Semantic Web
Conf. (ISWC), in: Lecture Notes in Computer Science, vol. 11779, Springer,
2019, pp. 293–308, http://dx.doi.org/10.1007/978-3-030-30796-7_19.

[25] Stefan Brüggemann, Konstantina Bereta, Guohui Xiao, Manolis Koubarakis,
Ontology-based data access for maritime security, in: Proc. of the 13th
Extended Semantic Web Conf. (ESWC), in: LNCS, vol. 9678, Springer, 2016,
pp. 741–757, http://dx.doi.org/10.1007/978-3-319-34129-3_45.

[26] Evgeny Kharlamov, Dag Hovland, Martin G. Skjæ veland, Dimitris Bilidas,
Ernesto Jiménez-Ruiz, Guohui Xiao, Ahmet Soylu, Davide Lanti, Martin
Rezk, Dmitriy Zheleznyakov, Martin Giese, Hallstein Lie, Yannis E. Ioan-
nidis, Yannis Kotidis, Manolis Koubarakis, Arild Waaler, Ontology based
data access in Statoil, J. Web Semant. 44 (2017) 3–36, http://dx.doi.org/10.
1016/j.websem.2017.05.005.

[27] Linfang Ding, Guohui Xiao, Diego Calvanese, Liqiu Meng, Consistency
assessment for open geodata integration: An ontology-based approach,
GeoInformatica (2019) 1–26, http://dx.doi.org/10.1007/s10707-019-00384-
9.
15
[28] Linfang Ding, Guohui Xiao, Diego Calvanese, Liqiu Meng, A framework
uniting ontology-based geodata integration and geovisual analytics, Int. J.
Geo-Inform. 9 (8) (2020) http://dx.doi.org/10.3390/ijgi9080474.

[29] Konstantina Bereta, Hervé Caumont, Ulrike Daniels, Erwin Goor, Mano-
lis Koubarakis, Despina-Athanasia Pantazi, George Stamoulis, Sam Ubels,
Valentijn Venus, Firman Wahyudi, The Copernicus App Lab project: Easy
access to Copernicus data, in: Proc. of the 22nd Int. Conf. on Extending
Database Technology (EDBT), OpenProceedings.org, 2019, pp. 501–511,
http://dx.doi.org/10.5441/002/edbt.2019.46.

[30] Matthew Perry, John Herring, GeoSPARQL - A Geographic Query Lan-
guage for RDF Data, OGC Implementation Standard OGC 11-052r4, Open
Geospatial Consortium, Open Geodata Consortium, 2012, URL http://www.
opengeospatial.org/standards/geosparql.

[31] Knut Stolze, SQL/MM Spatial - The standard to manage spatial data in a
relational database system, in: Datenbanksysteme Für Business, Technolo-
gie Und Web, Tagungsband Der 10. BTW-Konferenz (BTW), in: LNI, vol.
P-26, GI, 2003, pp. 247–264, URL https://dl.gi.de/20.500.12116/30056.

[32] Konstantina Bereta, George Stamoulis, Manolis Koubarakis, Ontology-based
data access and visualization of big vector and raster data, in: Proc.
of the 2018 IEEE International Geoscience and Remote Sensing Sympo-
sium (IGARSS), 2018, pp. 407–410, http://dx.doi.org/10.1109/IGARSS.2018.
8518255.

[33] Claus Stadler, Michael Martin, Sören Auer, Exploring the web of spatial
data with Facete, in: Proc. of the 23rd Int. World Wide Web Conf. (WWW),
2014, pp. 175–178, http://dx.doi.org/10.1145/2567948.2577022.

[34] Claus Stadler, Simon Bin, Lisa Wenige, Lorenz Bühmann, Jens Lehmann,
Schema-agnostic SPARQL-driven faceted search benchmark generation, J.
Web Semant. 65 (2020) 100614.

http://dx.doi.org/10.1007/978-3-030-00072-1_1
http://ceur-ws.org/Vol-1409/paper-09.pdf
http://dx.doi.org/10.1007/978-3-030-30796-7_19
http://dx.doi.org/10.1007/978-3-319-34129-3_45
http://dx.doi.org/10.1016/j.websem.2017.05.005
http://dx.doi.org/10.1016/j.websem.2017.05.005
http://dx.doi.org/10.1016/j.websem.2017.05.005
http://dx.doi.org/10.1007/s10707-019-00384-9
http://dx.doi.org/10.1007/s10707-019-00384-9
http://dx.doi.org/10.1007/s10707-019-00384-9
http://dx.doi.org/10.3390/ijgi9080474
http://dx.doi.org/10.5441/002/edbt.2019.46
http://www.opengeospatial.org/standards/geosparql
http://www.opengeospatial.org/standards/geosparql
http://www.opengeospatial.org/standards/geosparql
https://dl.gi.de/20.500.12116/30056
http://dx.doi.org/10.1109/IGARSS.2018.8518255
http://dx.doi.org/10.1109/IGARSS.2018.8518255
http://dx.doi.org/10.1109/IGARSS.2018.8518255
http://dx.doi.org/10.1145/2567948.2577022
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb34
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb34
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb34
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb34
http://refhub.elsevier.com/S1570-8268(21)00037-8/sb34

	Towards the next generation of the LinkedGeoData project using virtual knowledge graphs
	Introduction
	The LinkedGeoData project
	Basic spatial SPARQL support in VKGs
	Sparqlify
	Ontop-spatial v1

	Improving GeoSPARQL support in VKGs
	OGC GeoSPARQL and current implementations in VKGs
	Implementation of Ontop-spatial v4
	GeoSPARQL functions
	Handling SRIDs and units
	Summary

	Exposing LinkedGeoData as a VKG
	Database schema
	Ontology
	Mapping
	SPARQL endpoint

	Evaluation
	Discussion & future work
	Declaration of competing interest
	Acknowledgements
	Appendix. GeoSPARQL Queries for Evaluation
	References

