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ABSTRACT
CityGML is a widely adopted standard for representing and exchanging 3D city models. The 
representation of semantic and topological properties in CityGML makes it possible to query 
such 3D city data for analysis in various applications. Nevertheless, the potential of querying 
CityGML data has not been fully exploited. The official GML encoding of CityGML is mainly an 
information model used for data storage and exchange, but not suitable for performing 
complex queries. The most common way of dealing with CityGML data is to store them as 
tables in the 3DCityDB system. However, it remains a challenging task for end users to 
formulate SQL queries over 3DCityDB directly for their ad-hoc analytical tasks because of the 
gap between the semantics of CityGML and the relational schema adopted in 3DCityDB. The 
technology of Knowledge Graphs (KGs), where an ontology is at the core, is a good solution to 
bridge such a gap. Moreover, embracing KGs makes it easier to integrate with other spatial data 
sources, e.g. OpenStreetMap, and to perform queries combining information from multiple 
data sources. In this work, we describe a CityGML-KG framework to expose the CityGML data in 
3DCityDB as a KG. To evaluate our approach, we use CityGML data from the city of Munich as 
a test area and integrate OpenStreetMap data.
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1. Introduction

CityGML is a widely adopted standard by the Open 
Geospatial Consortium (OGC) for representing and 
exchanging 3D city models (Gröger et al. 2012; Kolbe 
et al. 2021). It defines the three-dimensional geometry, 
topology, semantics, and appearance of the most rele
vant topographic objects in urban or regional contexts. 
The representation of semantic and topological prop
erties in CityGML makes it possible query such 3D city 
data and often integrated with other data sources. For 
example, CityGML data sources have been used to 
integrate with Building Information Modeling (BIM) 
for visual detection of concealed facilities (Wang and 
Xie 2022), and with Oracle Spatial for implementing 
3D network analysis (Atila, Karas, and Abdul-Rahman  
2013).

At the implementation level, CityGML is defined as 
a GML application schema for the Geography Markup 
Language (GML) (Gröger et al. 2012). In its most 
common implementation, CityGML datasets consist 
of a set of XML files and possibly some accompanying 
image files that are used as textures. Each XML file 
represents a part of the dataset, such as a specific 
region, a specific type of object (such as a set of 
roads), or a predefined Level of Detail (LoD). The 

structure of a CityGML file is a hierarchy that ulti
mately reaches down to individual objects and their 
attributes. These objects have a geometry that is 
described using GML. Another important implemen
tation of CityGML is 3DCityDB (Yao et al. 2018), an 
open source and platform-independent software suite 
for the development and deployment of 3D city model 
applications. The 3DCityDB software package consists 
of a database schema for spatially enhanced relational 
database management systems (Oracle Spatial or 
PostgreSQL/PostGIS) with a set of database proce
dures and software tools allowing to import, manage, 
analyze, visualize, and export virtual 3D city models 
according to the CityGML standard.

However, the potential of querying CityGML data 
has not been fully exploited. The official GML/XML 
encoding of CityGML is mainly used as an exchange 
format but not suitable for complex queries, in parti
cular those with spatial analysis (Koch and Löwner  
2017). The most common way of dealing with 
CityGML data is to store them in the 3DCityDB sys
tem as relational tables and then query them with the 
standard SQL query language. Nevertheless, for end 
users, it remains a challenging task to formulate 
queries over 3DCityDB directly for their ad-hoc 
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analytical tasks, because there is the gap between the 
conceptual semantics of CityGML and the relational 
schema adopted in 3DCityDB.

One possibility to bridge this gap is to use semantic 
technology, which addresses the challenges of data with 
a complex structure and associated knowledge. At the 
core of solutions based on semantic technology, we 
typically have an ontology to provide semantics to the 
data. In computer science, the term “ontology” 
denotes a concrete artifact that conceptualizes 
a domain of interest and allows one to view the infor
mation and data relevant for that domain in a sharable 
and coherent way. In the CityGML standard, the 
semantics is defined as a collection of UML diagrams, 
which can be used as a basis to construct an ontology. 
The instances of an ontology are knowledge graphs 
(KGs) (Hogan et al. 2021), where data is structured 
in the form of a graph. Domain objects and data values 
are represented as nodes of such a graph, and proper
ties of objects as edges. For CityGML, the nodes in 
a KG could represent instances of buildings, streets, 
and surfaces, among others. Moreover, embracing 
KGs makes it possible to integrate with existing KGs, 
e.g. Wikidata (Vrandečić and Krötzsch 2014), 
DBPedia (Lehmann et al. 2015), GeoNames,1 and 
LinkedGeoData (Ding, Xiao, Pano, et al. 2021; 
Stadler et al. 2012). This allows us to express interest
ing queries that require a combination of information 
from multiple sources.

The aim of this work is to investigate how to inte
grate CityGML and other geospatial data sources into 
a KG, and exploit the resulting KG to support query 
answering for specific information needs. In the fol
lowing, we describe a CityGML-KG framework to 
expose CityGML data as a Knowledge Graph and to 
integrate it with other data (e.g. OSM data). The 
CityGML-KG or the integrated KG can be queried 
using the standard GeoSPARQL query language. To 
demonstrate the feasibility of this framework, we use 
the 3D CityGML building data at LoD2 of the munici
pality of Munich, Germany as test data. We adopt and 
extend the CityGML ontology created by the 
University of Geneva and develop a suitable R2RML 
mapping (Das, Sundara, and Cyganiak 2012) to 
3DCityDB. Moreover, as a demonstration of the cap
ability of this methodology for integrating CityGML 
data with other datasets, we collect OSM data in the 
same test area. The OSM data is one of the most 
popular crowdsourcing data worldwide and it con
tains complementary spatial and semantic informa
tion with available CityGML data that can be 
combined for interesting queries and applications. 
We stress that the flexibility of the information 
model in CityGML can support storing the same 
information in the OSM model as well, however, in 
reality such datasets are rare, so in practice an integra
tion with OSM or other datasets is of interest. To show 

the usefulness of the generated KG, we collect real- 
world geospatial analytical tasks and formulate them 
as intuitive GeoSPARQL queries, which show a high 
degree of expressiveness. Finally, we test three popular 
KG systems, i.e. Ontop, Apache Jena, and GraphDB, 
and confirm that the queries can be evaluated 
efficiently.

2. Related work

2.1. CityGML

CityGML is a data model and exchange format for 3D 
digital modeling of cities and landscapes (Kolbe 2009). 
The main advantage of CityGML in comparison to 
other data formats is that if offers the possibility to 
integrate semantic information within 3D city models. 
In 2008, CityGML 1.0 became the international stan
dard in the Open Geospatial Consortium (OGC) 
(Gröger et al. 2012). The next major version 
CityGML 2.0 has been approved in 2011. Since then, 
CityGML has attracted more and more attention from 
mapping authorities, industries and academic socie
ties. Nowadays, it is widely used for different applica
tions in many countries and regions. The latest version 
CityGML 3.0 is defined as several standards, most of 
which have been finalized recently, e.g. CityGML 3.0  
CM (conceptual model) and GML encoding.2 The 
most common way of dealing with CityGML data is 
to store them as relational tables in the 3DCityDB 
system (Yao et al. 2018) and then query them using 
the standard SQL query language. As the time of 
writing, the latest stable release of 3DCityDB v4.1 
supports only CityGML 2.0. A major reconstruction 
is undergoing to support CityGML 3.0 but no infor
mation on the expected release date is available. In the 
following, we still focus on CityGML 2.0 since its 
toolchain is more mature.

Aiming at modeling 3D cities in the digital world, 
CityGML covers almost all types of features that could 
appear in urban area, namely, Building, Water body, 
Terrain, Transportation, Bridge, City Furniture, Land 
Use, Tunnel, etc. These features are organized into 
modules in CityGML. Although CityGML defines 
levels of detail (LoDs) for all types of features, the 
LoD of building objects is the mostly agreed and 
recognized concept in the 3D city modeling 
community.

In total, there are 5 LoDs defined for building 
objects in CityGML, ranging from coarse model 
(LoD0) to very detailed models (LoD4) with geome
tries and semantic information. As denoted in 
Figure 1, an LoD0 building model in CityGML is 
actually a 2D footprint in a closed polygon which is 
semantically indicated as building object and can be 
added with various attributes. An LoD1 building in 
CityGML is a block model with height information, 
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while an LoD2 building model needs have detailed 
roof structure but with walls as extruded 3D objects 
from 2D footprint. In LoD3 building models, archi
tectural details on facades, such as windows, doors and 
other elements can be modeled in addition to LoD2 
models. For a further step, interior objects can be 
modeled in LoD4. To fulfill task-specific application 
requirements, Baig and Abdul-Rahman (2013) studied 
how to reduce data volume by generalizing CityGML 
data from higher LoDs to lower LoDs.

CityGML is very powerful for modeling 3D cities 
with rich semantic information. However, its complex 
and hierarchical structure as well as interoperability 
issues lead to difficulties and complexity in transfor
mation and decoding for visualization and application 
scenarios (Noardo et al. 2019). To overcome this pro
blem, CityJSON was developed (Ledoux et al. 2019) by 
combining the advantages of JSON and CityGML. In 
other words, CityJSON can be regarded as a JSON 
implementation of a subset of CityGML version 2.0. 
In 2023, CityJSON v2.0 was accepted as OGC 
Community standard. Work is currently underway 
to adapt CityJSON to the CityGML 3.0 conceptual 
model.

2.2. Knowledge graphs and geospatial 
knowledge graphs

The Semantic Web research area deals with the 
challenges that come with data with a complex struc
ture and associated knowledge. A prominent tech
nology within the Semantic Web is that of 
knowledge graphs (KGs) (Hogan et al. 2021), where 
data is structured in the form of a graph. At the core 
of solutions based on KGs we typically have an 
ontology to provide semantics to the data. In com
puter science, the term “ontology” denotes 
a concrete artifact that conceptualizes a domain of 
interest and allows one to view the information and 
data relevant for that domain in a sharable and 
coherent way. To simplify the sharing and reuse of 
ontologies, the World Wide Web Consortium 
(W3C)3 has defined standard languages. We refer 
here to the Resource Description Framework (RDF) 
(Manola and Miller 2004) that provides a simple 

mechanism to represent the data in a certain 
domain, and Web Ontology Language (OWL) 
(Hitzler et al. 2009) that provides a very rich lan
guage to encode complex knowledge in the domain 
of interest.

Geospatial KGs are KGs with geospatial objects, 
geometries, and their relations. GeoSPARQL is 
a standard by OGC for the representation and query
ing of Geospatial KGs (Open Geospatial Consortium  
2023). The GeoSPARQL ontology introduces classes 
likes features, geometries, and their representation 
using Geography Markup Language (GML) and Well- 
Known Text (WKT) literals, and includes topological 
relationship vocabularies. GeoSPARQL also provides 
an extension of the standard SPARQL query interface, 
supporting a set of topological functions for quantita
tive reasoning.

Geospatial KGs are often converted from geospatial 
data sources which are stored in spatial databases or 
other popular formats like Shapefiles. A systematic 
approach to such conversion is the ontology-based 
data access (OBDA) paradigm, which enables end 
users to access data sources through a domain ontology. 
Typically, the domain ontology imports the 
GeoSPARQL ontology, and is semantically linked to 
the data sources by means of a mapping, which is 
expressed in the R2RML language (Das, Sundara, and 
Cyganiak 2012) standardized by the W3C. OBDA can 
be realized in a materialized or virtual fashion:

● In the Materialized Knowledge Graph (MKG) 
approach, the original data sources are first mate
rialized as RDF Graphs using systems, e.g. 
GeoTriples (Kyzirakos et al. 2018) and Ontop 
(Xiao et al. 2020), and are then loaded into RDF 
stores that support geospatial KGs, e.g. Apache 
Jena,4 GraphDB,5 and Stardog.6

● In the Virtual Knowledge Graph (VKG) approach, 
the content of KG is not generated but can be 
kept virtual. The ontology and mapping together, 
called a VKG Specification, exposes the under
lying data source as a virtual RDF graph, and 
makes it accessible at query time. For example, 
Ontop (Ding, Xiao, Pano, et al. 2021) is a popular 
VKG system that supports GeoSPARQL.

Figure 1. Five LoDs in CityGML.
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One of the most famous Geospatial KG projects is 
LinkedGeoData (Ding, Xiao, Pano, et al. 2021; Stadler 
et al. 2012), which mostly relies on the VKG approach 
to expose the OSM data as Geospatial KGs. To evalu
ate the systems for Geospatial KGs, Jovanovik, 
Homburg, and Spasic (2021) proposed 
a GeoSPARQL Compliance Benchmark, and Li et al. 
(2022) carried out an extensive evaluation of several 
Geospatial RDF triple stores, showing that both MKG 
and VKG systems have their own advantages. 
Geospatial KGs have been applied for spatial data 
quality assessment (Ding, Xiao, Calvanese, et al.  
2021; Janowicz et al. 2016) and geodata integration 
(Ding et al. 2020; Schade and Smits 2012) with an 
emphasis on using 2D geospatial data collected from 
e.g. OSM, open data portals, and various sensors. 
However, research work employing knowledge graphs 
for 3D geodata integration is still limited.

2.3. Semantic technologies for 3D city models

The OCG CityGML standard does not include 
a ontology, but the conceptual model in the standard 
can be used as a basis for creating an ontology. The 
most well-known CityGML ontology, developed by 
the Knowledge Engineering @ CUI group at the 
University of Geneva, is a direct translation of the 
CityGML XML Schema to OWL with some manual 
tuning.7 This ontology has some minor issues, as dis
cussed by Chadzynski et al. (2021), with respect to the 
OWL 2 standard but could be easily fixed.

There have been early attempts to convert 
CityGML to knowledge graphs. In the pioneer work 
of Chadzynski et al. (2021), they first refined an exist
ing CityGML ontology from the University of Geneva, 
and then extended a corresponding data transforma
tion tool that was originally designed to work along
side CityGML, which allowed for the transformation 
of the original data into a form of semantic triples. 
Various scalable technologies for this semantic data 
storage were compared and Blazegraph was chosen 
due to the required geospatial search functionality. 
Regarding the usage of the virtual approach, an earlier 
version of this work (Ding et al. 2023) described the 
CityGML VKG framework to expose the 3DCityDB as 
a VKG and tested with CityGML building data at 
LoD2 in the municipality of Tartu, Estonia. Many 
applications in the context of urban informatics 
require detailed information about the physical 
urban environment, which necessitates the integration 
of 3D city data with other data sources. Ahmadian and 
Pahlavani (2022) reported the integration of 
OpenStreetMap and CityGML using the formal con
cept analysis approach. Most work focuses on the 
integration of CityGML and BIM. Huang et al. 
(2020) proposed two approaches to integrate and 
reconcile city models and BIM in the context of solar 

energy simulations, where BIM data is stored in IFC 
and the city model in CityGML (LoD2). The first 
approach is to perform a schema matching in an 
ETL tool, so as to convert and import window infor
mation from the IFC file into the CityGML model to 
create a LoD2–3 building model. In the second 
approach, they adopted a semantic web approach, in 
which both the BIM and city models are transformed 
into knowledge graphs (linked data). City models and 
BIM utilize their respective but interlinked domain 
ontologies. Particularly, two ontologies are investi
gated for BIM data, i.e. the ifcOWL ontology8 and 
the building topology ontology (BOT).9

3. Methodology

In what follows we describe the approach we adopted 
to generate the target KG from CityGML data and to 
integrate other data sources. An overall view, denoted 
as a pipeline, is unveiled through the utilization of the 
Business Process Model and Notation (BPMN)10 dia
gram represented in Figure 2.

The scope of the whole process is twofold. Firstly, it 
allows for the generation of a KG to support query 
answering over CityGML data. Secondly, it allows for 
the evolution of the created KG by importing new data 
and knowledge, thus enabling the extension of ques
tion-answering services.

As shown in Figure 2, this methodology consists of 
four main phases: (i) Initialization with CityGML data 
(hereafter “Initialization”), (ii) KG construction, (iii) 
Integration of further resources (hereafter 
“Integration”), and (iv) Application. These phases are 
composed of sub-tasks or steps, which, in turn, may 
receive and/or produce different kinds of data. 
Differently, the KG group represents the final output 
to support the query-answering activities, which are 
represented in the Application phase group. The out
put KG can be either a VKG or an MKG. The VKG 
contains two sub-components, namely an ontology, 
and a mapping function which are used to generate 
the RDF triples from the physical storage on demand. 
Representing the KG as an MKG instead eliminates 
the need to maintain a virtualized pipeline for RDF 
data, with the trade-off of larger space requirements 
and the need to rematerialize the RDF triples every 
time the source data changes. All these components 
can then evolve through the steps of the Integration 
phase.

In this setting, the Initialization phase has the pri
mary goal of generating a reference data storage out of 
CityGML data and, also, searching for and providing 
a suitable CityGML ontology as a baseline version of 
the knowledge graph. For the creation of the reference 
data storage the input CityGML dataset is embedded 
into a relational database (See Generate SQL in 
Figure 2), mapping each row in the data into entities 
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and columns in specific information fields so that the 
data can be then queried, retrieved, stored, and possi
bly updated. Note that, to address this step, albeit the 
multiple automatic and comprehensive solutions are 
available, some ad hoc customization sub-steps may be 
involved. This is due to the fact that the output phy
sical storage of this phase must be compliant with the 
technology used to generate the knowledge graph in 
the following phase. For instance, if the solution for 
generating SQL databases from the input data uses 
XML attributes containing (semi-)structured informa
tion, a customization step would be needed to generate 
multiple fields out of each XML attribute.11

The second phase, KG construction, crafts a KG that 
can be used as a reference point for the query- 
answering activities. Note that this step can be iterated 
multiple times. The first time is after the initialization 
phase, and the inputs for KG construction will natu
rally be the CityGML ontology, the Physical Storage 
hosting the CityGML data, and the mapping that is 

necessary to connect the former to the latter. In the 
following times, the inputs of this phase are the result 
of the integration phase. Either way, the KG 
Construction phase is mainly concerned with the defi
nition of the ontology and the related mappings, with 
the main scope of (i) defining the set of concepts, 
relationships, and properties within the reference 
domain of knowledge; (ii) capturing the semantics of 
the stored information, by enabling extended reason
ing and inference capabilities; and (iii) fostering inter
operability among the data sources to be integrated. 
A key aspect here is also to find an already existing 
ontology that covers as much of the semantics of the 
selected data as possible. Once the ontology is selected 
a mapping step is performed. The database generated 
through the initialization phase is then aligned with 
the ontology concepts. If the information cannot be 
straightforwardly mapped, manual intervention is 
required. This mainly involves a modification of the 
selected ontology to properly account for the 

Figure 2. Overview of the CityGML-KG framework.
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information in the physical storage. For example, if 
a property in the input dataset is not present in the 
ontology, the ontology can be manually extended with 
the required property. Once the ontology is tuned 
according to the dataset requirements, the KG is cre
ated and ready to support the query-answering 
application.

After completing the phases of the initialization and 
KG construction, a reference KG is ready for query 
answering. However, at this point, our approach 
allows for the integration of more data sources and 
then for the creation of an extended KG, on top of the 
previous version. This evolution is addressed through 
the Integration phase. Here the main tasks are (i) the 
selection of new data by the user, (ii) the integration of 
the new data with the existing physical storage, and 
(iii) the selection of a new ontology or new ontological 
information by the user, in order to account for the 
newly integrated data. Task (ii) takes place with the 
support of an automatic component that involves two 
sub-steps, namely (ii.a) post-processing where hetero
geneous geo-object types, data formats, and coordi
nate reference systems (CRS) are harmonized and 
unified and (ii.b) spatial matching where the similarity 
between geo-entities from different datasets is 
calculated.

The final phase Application is dedicated to using 
the output KG. Here the user, via an ad hoc interface, 
is enabled to request information via SPARQL queries, 

which can potentially be returned in either textual or 
visual format.

4. System architecture

In this section, we describe how the conceptual meth
odology framework in Section 3 can be realized in 
a concrete system. As shown in Figure 3, in the context 
of our particular application scenario, we examine two 
typical 3D and 2D geospatial data sources, namely 
CityGML and OpenStreetMap (OSM). CityGML data 
is used throughout the whole phases, while OSM data, 
one of the most comprehensive and widely used geos
patial data sources, is adopted to illustrate the 
Integration phase. More specifically, we use LoD2 
CityGML building data retrieved from the Bavarian 
Open Data portal12 in the central area of Munich, 
Germany and OSM data in the same area as 
a demonstration. Please refer to Section 5.1 for further 
details on the test area and datasets.

4.1. Initialization with CityGML data

The initialization phase generates a reference data 
storage out of CityGML data. We selected the 
3DCityDB schema as the preferred solution to import 
CityGML data into an SQL database. 3DCityDB as 
a software solution provides both a predefined SQL 
schema13 and importer-exporter14 tool which can 

Figure 3. VKG over CityGML: Architecture.
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process the cumulative addition of an arbitrary num
ber of CityGML files into the database. The software 
provides the option to use PostgreSQL or Oracle as the 
backend for the relational data storage. In this work, 
we chose PostgreSQL in particular because it is open 
source and its geospatial extension PostGIS is 
renowned for its high adoption and maturity in the 
geospatial domain.

An excerpt of the table building with three records 
is presented in Table 1 (omitting any attributes with 
missing data). Every building is uniquely identified by 
the attribute id and has a corresponding LoD2 solid 
identifier lod2_solid_id. The latter is mapped onto its 
respective polyhedral surface serialization in the sur
face_geometry table. Further sample data is provided 
in Figure 5.

Finally, we note that despite the comprehensive 
default SQL schema provided by 3DCityDB, 
a further step is needed to tune DB and add con
straints. For example, the attribute address in the 
default database schema is encoded as XML strings 
and has to be decomposed into more specific attri
butes, e.g. administrative area, thoroughfare, etc. 
Relevant constraints like primary and foreign keys 
are added to enhance the efficiency.

4.2. Knowledge graph construction

Our architecture supports the construction of KGs in 
both VKG and MKG variants. We first construct the 
VKG utilizing the Ontop system. The main activity is 

to develop/refine the ontology and create mappings to 
link the terms (classes and properties) in the ontology 
to the data sources. We will also use Ontop to materi
alize the RDF triples into an MKG, and load it into 
a triple store system like Jena or GraphDB.

4.2.1. Ontology
We adopt the most prominent and well-known 
CityGML ontology version 2.015 developed by the 
University of Geneva for the ontology component of 
the KG construction phase. We first load and tune 
ontologies from the ontology provided. Following vali
dation of the ontology, there were 92 declarations of 
object and data properties using the same IRIs, which 
makes the ontology invalid. The same inconsistencies 
have been diagnosed in previous research (Chadzynski 
et al. 2021). We tackled the issue in a similar fashion 
resolving any inconsistencies manually depending on 
the most intuitive definition of each property. In order 
to review and resolve these inconsistencies and get an 
overview of the collection of ontologies we utilized the 
open-source tool Protégé version 5.6.1. Figure 4 shows 
part of the top-level classes of the selected ontology 
and the sub-tree starting from Feature and Building, 
which are of primary interest in this study.

We also note that in addition to the primary 
CityGML ontology, auxiliary ontologies were also 
employed with the following prefixes: geosparql, gml, 
sf, sosa, core, Dublin_core_elements. The 
GeoSPARQL ontology (Open Geospatial Consortium  
2023), for instance, allows the differentiation of 

Table 1. Excerpt from the CityGML building table.
Id Objectclass_id Building_root_id Roof_type Measured_height Lod2_solid_id

10 26 10 1000 13.363 117
54 26 54 3100 13.99 315
248 26 248 1000 17.362 1258

Figure 4. A subset of the concepts in the CityGML ontology with the subtree of the class feature highlighted.

786 L. DING ET AL.



geometric classes such as polyhedral surfaces from 
standard surfaces while complying with the standard 
OGC recommendations. For other ontologies, gml16 

encodes the transport and storage of geographic infor
mation, sf defines simple feature geometries,17 sosa18 

broadly defines sensors and their observations, core 
(or rather skos core)19 provides a standard way to 
represent knowledge organization systems and finally 
Dublin_core_elements20 describes physical and virtual 
resources (e.g. books, video, artworks etc.).

4.2.2. Mappings
Mapping design is the most crucial user-centric step in 
generating a VKG. Individual RDB2RDF mappings 
exploit attributes from the PostGIS database to popu
late the RDF graph of CityGML. Consequently, SQL 
queries have to be formulated to map individual 

3DCityDB attributes to their respective ontological 
concepts. Due to the limitation of LoD2 Bavarian 
data (and any open CityGML data we can find), 
which contains exclusively buildings, and the lack of 
any complementary real-world LoD3 files, many 
3DCityDB tables are empty. Therefore, while for com
pleteness purposes any column from the 3DCityDB 
schema that could be mapped has been mapped to an 
ontological concept, in practice no triples can be gen
erated from many of these mappings.

A mapping consists of three components: 
a mapping ID, a source, and a target. The mapping 
ID is an arbitrary but unique mapping identifier. 
The source refers to an SQL query expressed over 
a relational database to retrieve data. The target is 
RDF triple pattern(s) that uses the answer variables 
from the preceding SQL query as placeholders. 

Figure 5. Three example mappings shown in the Ontop Protégé Plugin.
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Figure 5 illustrates three example mappings written 
in the Ontop Protégé plugin editor – define 
a building, link a building with the corresponding 
solid geometry, and define the serialization of that 
geometry. More specifically, in the first mapping in 
Figure 5(a), the class Building is mapped with its 
respective data properties such as building height, 
storeys above and below ground, function, year of 
construction, etc. The second mapping in 
Figure 5(b) shows that object property bldg:lod2so
lid links any building with its respective solid geo
metry identifier. We distinguish between a solid 
geometry class and its respective serializations 
which are properties of the class. In the third map
ping in Figure 5(c), class sf:PolyhedralSurface 
defines objects of type polyhedral surface and their 
respective Well-Known Text (WKT) geometry 
serialization.

4.2.3. KG materialization
With the completion of all the ontology and map
pings, the CityGML VKG has been successfully cre
ated. This VKG can be queried already by Ontop, or be 
materialized to use native MKG systems. The MKG is 
constructed by utilizing the functionality of Ontop to 
generate RDF triples or data assertions based on the 
ontology, mappings, and physical storage, which were 
discussed in detail in the previous section. The result
ing triples can be in turn loaded into RDF triple stores 
like GraphDB, Apache Jena, RDF4J, and similar tools 
to facilitate query answering via SPARQL. Further 
details on how these triple stores can exploit the mate
rialized MKG are provided in Section 5. Figure 6 
shows a sub-graph from the example mappings repre
senting a building and its LoD2 geometry and address.

4.3. Integration of OSM data

Below we describe the steps of integrating further 
geospatial data sources in our architecture by using 
OSM data as an example. For any other generic geos
patial data, the integration task depends on the type of 
data we wish to integrate and on the existing popular 
ontologies. With regard to OSM data, as mentioned in 
Section 2, the LinkedGeoData project has already 
leveraged the loading of OSM data into PostgreSQL 
and developed an ontology and mapping that can be 
reused in this work. What’s missing is the linking 
between CityGML and OSM data at both the data 
level and the ontology level. This requires computing 
the correspondence between the data items, i.e. build
ings, between these two data sets, and creating addi
tional suitable mappings and ontological axioms to 
capture these correspondences. To handle this hetero
geneity issue we leverage an entity resolution step that 
produces a reference linkage table for the generation 
of the output physical storage as PostgreSQL DB. 
Below we present a geometry-based method for link
ing entities in CityGML and OSM data sources and 
incorporating the results in the KG.

4.3.1. OSM and CityGML data linking
Due to the heterogeneity between the CityGML and 
OSM datasets, we cannot expect that the resulting data 
linking is always 1:1. The building information of 
OSM data mainly consists of the building footprint 
layer (polygons) and the point of interest (POI) layer 
(points). In contrast, the CityGML data is three- 
dimensional, hence we primarily rely on the ground 
surfaces of the CityGML buildings. The CityGML 
dataset normally has more detailed information 
about the buildings. In particular, CityGML buildings 

Figure 6. Triples for CityGML.
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frequently encompass minor ancillary features like 
stairs and garages, which are often absent in OSM 
building footprints, and may lead to a n:1 matching 
result.

We propose a three-step method of data linking:

(1) Computing direct spatial correspondence using 
CityGML ground surfaces and OSM polygons,

(2) Exploiting the adjacent ground surfaces in 
CityGML to enrich the results of step (1), and

(3) Matching OSM POI points with CityGML 
buildings.

Note that more sophisticated approaches, e.g. formal 
concept analysis (Ahmadian and Pahlavani 2022), can 
be adopted in this architecture as well, but to simplify 
the presentation, we only use the geometry-based 
approach in this work.

In the first step of spatial matching, since the 
CityGML data in this study only contains building 
information, we refer to the linking of CityGML and 
OSM polygons as the linking of building information 
between them. Given any CityGML building (bldg) 
and OSM polygon (osm), their direct spatial corre
spondences are identified based on Equation (1) (Fan 
et al. 2014; Liu et al. 2023), derived from individual 

areas of any CityGML and OSM polygons 
(Area bldgið Þ, Area osmj

� �
). 

where Area osmi \ bldgj
� �

represents the overlapping 
area between the i-th OSM polygon and the j-th 
CityGML polygon; t is an empirical hyperparameter, 
which can be adjusted based on the spatial consistency 
between the two datasets. Following Fan et al. (2014), 
there are four possible matching results based on the 
ratio: 1:1, 1:n, m:1, m:n (examples illustrated in 
Figure 7). Relation 1:1 indicates that an OSM building 
and a CityGML building are uniquely matched with 
each other (Figure 7(a)). Relation m:1 represents mul
tiple OSM buildings matching with one CityGML 
building (Figure 7(b) and relation 1:n the opposite 
case (Figure 7(c)). Relation m:n represents at least 
two OSM buildings matched together with at least 
two CityGML buildings (Figure 7(d)).

The second step specifically endeavors to include 
adjacent ground surfaces as secondary matched (adja
cent) relations, guaranteeing the inclusion of all ame
nities. In the examples illustrated in Figure 8, bldg2 
and osm1 are matched as adjacent if the following 

Figure 7. Schematic diagram of the four spatial matching relations.

Figure 8. Schematic diagram of the two adjacent identification situations in the OSM building osm1 perspective: (a) 1:1 relation 
with adjacency, and (b) 1:n relation with adjacency.
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three conditions are met: (a) bldg1 directly matches 
osm1, (b) bldg1 and bldg2 are adjacent, and (c) there is 
no other match for bldg2.

The third step aims to match the CityGML data 
with OSM POIs to enhance the semantic information 
of CityGML. The OSM POIs contain the place infor
mation in the buildings, e.g. various shops on different 
floors. The spatial locations of building-related POIs 
are based on the building footprints. Thus, we applied 
OSM’s building footprints as a mediator to determine 
the spatial relationship between OSM POIs and 
CityGML buildings. As shown in Figure 9, given any 
POI, if the OSM building footprint where it is located 
matches a CityGML ground surface, the POI also 
matches the corresponding CityGML ground surface.

Empirical matching results As for the selected 
study area in Munich, the input OSM data contain 
3839 building footprints while the input CityGML 

data contain 5728 ground surfaces. Previous studies 
have considered a minimum threshold t of 30% is 
necessary to determine the matching relationship 
(Fan et al. 2014; Liu et al. 2023). Empirically, we 
tried several settings and chose to set the tolerance 
threshold t to 50% in this case study according to the 
performance on both OSM and CityGML data. In 
order to evaluate the correctness of spatial linking 
workflow, 50 randomly selected building polygons 
were manually examined, where all of them were 
correctly identified as matched or adjacent.

Figure 10(a) shows the results of Step 1 (spatial 
matching) between CityGML and OSM polygons in 
the study area. The majority of CityGML ground sur
faces are successfully matched with OSM polygons. 
The 1:1 relations account for 42.92% (2090 buildings). 
The 1:n relations (shown in Figure 10(c,d)) make up 
16.20% (789 buildings) while the m:1 relations only 

Figure 9. Schematic diagram of the spatial match between OSM POIs and CityGML ground surfaces.

Figure 10. Distribution of (a) the spatial integration result in the case study and the cases of four common spatial relations, i.e., (b) 
1:1, (c) 1:n, (d) m:1, and (e) adjacent relations.
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account for 5.87% (286 buildings) of the total in Step 1. 
This indicates that CityGML provides more detailed 
information, representing individual building acces
sories (e.g. staircases) as separate ground surfaces. 0:1 
relations account for 21.17% (1031 buildings) in Step 1 
for the same reason. For instance, in Figure 11(a,b), 
the CityGML polygons pointed by the arrows should 
be included in their main buildings and linked with 
the corresponding OSM polygons.

After Step 2, these unmatched CityGML polygons 
are defined as matched by their adjacent OSM poly
gons. As a result, the 0:1 relations decrease from 
21.17% (1031 cases) to 5.54% (270 cases), which 
demonstrates the necessity of including the adjacent 
structures as Step 2. Additionally, there is a 12.83% 
(625 cases) occurrence of 1:0 relations, where certain 
OSM buildings are absent in the CityGML data. This is 
mainly due to the slightly larger coverage of the down
loaded OSM data compared to the CityGML data (as 
demonstrated in Figure 10), ensuring that no 
CityGML buildings on the tile edges are missing in 
OSM. Ideally, overlapping polygons within a dataset’s 
ground layer should be avoided. For instance, loca
tions marked by arrows in Figure 11(c,d) should not 
serve as two buildings’ foundations. The integration 
step is intentionally designed to account for such 
specialized relations. In this study area, only 49 cases 
of m:n relation (1%) were identified.

As for Step 3, within the specified study area, we 
have successfully matched 2718 OSM POIs with 
CityGML buildings.

4.3.2. Modeling the linking results into the KG
Integration at the relational database level needs to be 
further upstreamed to the ontology and knowledge 
graph level. First, in order to query OSM concepts, 
a supplementary ontology, namely the LinkedGeoData 
(LGD) ontology, originally defined by Stadler et al. 
(2012), was adopted. LGD defines over 1200 classes 
and 700 properties by leveraging the most ubiquitous 
tags present in OSM data. LGD enriches the CityGML 

KG with classes that represent OSM points of interest 
like hotels, residential buildings, and primary high
ways, as well as properties such as business opening 
hours and websites.

Second, there is a task to model at the KG level the 
connections between the still disjoint CityGML and 
OSM sub-KGs. Utilizing existing owl terms like owl: 
sameAs is insufficient since we do not model identity 
or matches between individual buildings but other 
properties like adjacency, and potential associations 
between buildings could be enriched beyond that.

Modeling the spatial matching results from the data
base to the KG necessitates the reification of the associa
tion between a CityGML building and OSM building. In 
practice this requires creating an additional class to repre
sent this relationship which we define as 
Association_CityGML_OSM. This relationship allows 
the addition of further properties for 
Association_CityGML_OSM, e.g. it can now model 
both matched buildings and adjacent buildings. An 
example of how an association would be expressed in 
the KG is shown in Figure 12. The upper part illustrates 
the schema (i.e. classes, properties, and their relations), 
and the lower part concrete instances corresponding to 
the example from Figure 8(a) where e.g. an OSM building 
lgdo:way/osm1 is linked to both a matching and adjacent 
CityGML building surface as defined respectively by 
gmlid/bldg1 and gmlid/bldg2. Both the match and adja
cency relations are modeled as subproperties of linkage.

5. Experiments

In this section, we conduct a series of experiments in 
order to evaluate the following aspects:

(1) the expressiveness capabilities of the KG. We 
determine whether a KG constructed over 
CityGML data and further integrated with 
additional ad hoc data sources suffices in 
answering legitimate semantic queries designed 
by domain experts;

Figure 11. Cases of 0:1 relation converted into adjacent relation (a,b) and cases of m:n relation (c,d).
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(2) the performance of the query evaluation with 
representative KG systems, including both 
VKG and MKG systems. This will serve to 
determine whether results can be retrieved 
within a reasonable time frame from domain 
experts.

The experiments are reproducible by running the 
respective queries and setup described in the online 
appendix21 as well as Appendix A.

5.1. Experimental setup

The experiments are conducted on a normal laptop 
machine running 4 cores (Intel(R) Xeon(R) Gold 6154 
CPU @ 3.00 GHz), 16GB RAM, and 350GB SSD hard 
disk, running Ubuntu operating system. The whole 
experiment environment has been setup as Docker 
containers to encapsulate all necessary software, 
which means experiments can be conducted under 
any operating system. For storing and querying 

CityGML data, we use the Docker image of 
3DCityDB v4.1.0 that comes with PostgreSQL v15 
and PostGIS v3.3, corresponding to the latest versions 
available at the time.

Three KG systems that support GeoSPARQL have 
been selected for the experiments: one VKG system 
Ontop and two MKG systems (a.k.a triple stores) 
Apache Jena and GraphDB. For GraphDB and Jena, 
a preparatory step of materializing all the triples is 
necessary. We carry out this using Ontop, and then 
load the file into Apache Jena and GraphDB as an 
input. Further descriptions of the evaluated systems 
are provided below:

– Ontop22 is an open-source software project that 
focuses on providing a platform for efficient 
querying of relational databases using Semantic 
Web technologies, specifically the RDF data 
model, SPARQL query language, OWL 2 QL 
ontology, and R2RML mapping language. 
Ontop also supports the GeoSPARQL query 

Figure 12. Modelling CityGML and OSM association in the KG.
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language over PostgreSQL/PostGIS database. We 
use the latest Ontop v5.0.2 in this experiment.

– Apache Jena23 is an open-source framework for 
Java that allows for reading, writing, and querying 
RDF graphs. Apache Jena Fuseki24 is a sub-project 
of Jena which is a SPARQL server, combined with 
a UI for admin and query. TDB is a component of 
Jena for RDF storage and query which can be used 
as a high-performance RDF store. Unlike Ontop, 
Apache Jena Fuseki does not handle any 
SPARQL-to-SQL translation or virtualization but 
rather utilizes RDF triples as input. GeoSPARQL 
and spatial index support are available via the 
Jena-fuseki-geosparql extension. Note that an 
RDF dataset needs to be “wrapped” as 
a GeoSPARQL dataset since the default Apache 
Jena Fuseki installation does not support 
GeoSPARQL query functionalities. We use the 
latest Apache Jena v4.8.0 in this experiment.

– GraphDB25 is an RDF store developed by 
Ontotext, which supports SPARQL 1.1. OWL 
reasoning and is compliant with W3C 
Standards. It is a materialization-based system 
in a similar sense to Apache Jena, but although 
commercial, it does offer a free limited version. 
For the purpose of our experiments, we use the 
latest GraphDB 10.2.2, which supports all 
SPARQL 1.1 and GeoSPARQL functionalities.

Study area and data. The experiments are carried 
out in the central area of Munich, Germany (Figure 13 
(a,b)). Munich serves as both the capital and the lar
gest city of the German state of Bavaria. Ranking as the 
third largest city in Germany, following Berlin and 
Hamburg, Munich spans an approximate area of 
310.43 km2. Our selected study area covers an area 
around 2 km × 2 km, and is a construction-dense 
area and can provide an adequate gauge of query 
performance. Figure 13(c,d) depict the test datasets 
in the area of interest from CityGML and OSM respec
tively. The applied CityGML data is obtained from the 
official 3D building models from the Bavarian 
Surveying Administration.26 It is a Level of Detail 2 
(LoD2) data with ALKIS27-compliant standard roof 
shapes and descriptive attributes. The specific tile of 
our study area is with ID 690_5336. The 
OpenStreetMap (OSM) data is an well-known open 
source crowdsourcing data (Haklay and Weber 2008). 
We spatially clipped the building footprint data of our 
study area based on the spatial extent of the selected 
CityGML tile.

5.2. Expressiveness test

Geospatial queries are used in many application sce
narios, e.g. urban planning or management, disaster 
management, tourism, and energy (solar panels). In 

Figure 13. Study area.
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order to test the expressiveness of GeoSPARQL 
queries that can be formulated over the KGs con
structed from CityGML and OSM data in this work, 
we have collected 10 queries from domain experts and 
formalized them as GeoSPARQL queries. These 
queries encompass not only conventional question 
types about 3D buildings but also those designed to 
address pragmatic real-world demands.

5.2.1. Queries
Queries Q1–Q5 represent basic information needs for 
3D buildings:

– Q1: Find the addresses of buildings with height 
above 30 m

– Q2: Find buildings with the address “Stephansplatz”
– Q3: Find 10 buildings that have the maximum 

number of roof surfaces
– Q4: Find roof surfaces of buildings over 30 m
– Q5: Find 3D geometries of buildings over 30 m

Queries 6–10 make use of both CityGML data and 
OSM data. Each case would encompass the possibi
lity of being applied to a practical task involving the 
retrieval or analysis of real-world geospatial data. 
A summary of these queries are listed in Table 2.

If a researcher aims to perform a geometric analysis 
across OSM and CityGML data for different height 
ranges or building usage types, they might potentially 
have the following query:

– Q6: Find CityGML ground surfaces and OSM 
building polygons for all residential buildings.

For tourists who are seeking a hotel with a superior 
city view, they might inquire:

– Q7: Find hotels over 30 m high

In the context of emergency evacuation during 
a hurricane disaster, the inquiry might be posed as:

– Q8: Find residential buildings over 30 m high.

Various roof types such as gabled roofs and hip 
roofs possess the potential for installing 

photovoltaic panels. In the studied dataset, the 
roof type codes in CityGML follow the German 
cadastre information ALKIS codelists for CityGML 
2.0 (see Appendix B for the details). This query is 
framed as:

– Q9: Find residential buildings with non-flat roofs.

In the context of urban renewal, individuals could 
inquire about the structures that could be affected 
and the conceivable expense or workload that might 
be earmarked for demolition:

– Q10: Find buildings along a certain road within 
20 m and calculate the total affected area in m2.

5.2.2. Results
All of the ten queries are successfully formulated 
via the SPARQL query language. Below we pro
vide the respective scripts for queries 9 and 10, 
while the remaining queries for our experiments 
can be found in Appendix A. The prefixes uti
lized are listed in Table 3 and refer to the base 
namespaces of the CityGML and LGD ontologies, 
where the remaining prefixes reference authori
tative vocabularies such as RDFS and 
GeoSPARQL.

Query 9 uses CityGML roof type codes in con
junction with their respective labels derived from 
ALKIS definitions and translated into English (see 
Table S1).

Query 10 utilizes two GeoSPARQL functions geof: 
buffer and geof:sfIntersects to both buffer and inter
sect geometries. It provides an example of how power
ful geospatial functions can also be applied to linked 
data.

5.3. Performance test

In some application scenarios, e.g. disaster manage
ment, expressiveness is not the sole aspect that mat
ters, query execution time is also critical. Given our 
dual virtual and materialized KG setup, we assess 
whether our queries can be executed within 
a reasonable time as well as how the KG setting 
might impact these results. The quantitative mea
sures we analyze are database storage and query 
response time.

Table 2. Summary of the features used in Q6–Q10.
CityGML OSM Filter

Q6 Building Geometry Residential 
Building

Building Height

Q7 Building, Building 
Height

Hotel Building Height

Q8 Building, Building 
Height

Residential 
Building

Building Height

Q9 Building, Roof Type Residential 
Building

ALKIS RoofType

Q10 Building Highway Buffer and 
Intersection

Table 3. List of prefixes used for SPARQL queries.
Prefix IRI Namespace

: https://github.com/yuzzfeng/D2G2/citygml#
bldg: http://www.opengis.net/citygml/building/2.0/
geo: http://www.opengis.net/ont/geosparql#
rdfs: http://www.w3.org/2000/01/rdf-schema#
lgdo: http://linkedgeodata.org/ontology/
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5.3.1. Database size
Although evaluating the storage requirements of each 
MKG and VKG solution was not a primary goal of our 
analysis, it can provide a useful indicator of scalability. 
The CityGML and OSM data took up 501 M of storage 
in PostgreSQL, which includes not only the data but 
also geospatial indices. Ontop acting as a lightweight 
layer does not require additional storage, whereas 
Apache Jena and GraphDB store materialized triples 
generated by Ontop. Both Apache Jena and GraphDB 
use a 1.1 G Turtle file of RDF triples to store the 
materialized triples. Moreover, for both these MKG 
solutions, we cannot create a geospatial index because 
an index cannot be added to a polyhedral surface or 
geometry collection respectively, rendering this figure 
a lower bound.

5.3.2. Query response time
The results in terms of query response time in seconds 
are provided in Table 4 and visualized in Figure 14. 
Each query is run three times and the average result is 
recorded. Most of the queries can be evaluated by all 
the systems. All of the queries can be executed in 
under 10 seconds, with only one query exceeding 3  
seconds. Given the relatively quick response time we 

deem overall performance satisfactory for a subjective 
domain practitioner for all queries.

Due to the limitation of supporting non-simple fea
tures such as polyhedral surfaces (by Apache Jena) and 
geometry collections (by GraphDB), only Ontop is able 
to handle all the queries, including Q10, thanks to its 
more mature backend PostGIS. While there are varia
tions across individual queries (Q1–Q9), performance 
is relatively similar for both the VKG and MKG solu
tions, no system outperforms across most queries. RDF 
stores tend to outperform Ontop for integrated queries 
(Q6–Q9) mostly due to the large number of UNION 
clauses needed to assemble potential matching OSM 
data for multiple tag types i.e. node, way, relation and 
points of interest (e.g. ResidentialBuilding and House). 
For these large integrated scenarios, GraphDB normally 
performs better compared to Apache Jena.

5.4. Qualitative comparison with pure relational 
databases

In this section, we provide a qualitative comparison 
between SPARQL queries over the KGs, and equiva
lent SQL queries over relational database storing the 
original data. We first observe that the query reformu
lation time by Ontop is typically less than 10 ms, and it 
is negligible in the total query response time. 
Therefore, the performance of Ontop vs other materi
alized KG systems (as in Table 4) can be regarded as 
the performance of plain relational database systems 
vs conventional KG systems. In general, since KGs 
represent a higher level of abstraction with the termi
nology used in the domain, it is easier to formulate 
queries in SPARQL, and the resulting SPARQL 
queries are more understandable. Generating simple 
queries which rely solely on CityGML would be 

Figure 14. Query response time.

Table 4. Query response time.
Query Ontop Jena GraphDB

Q1 0.411 0.235 0.3
Q2 0.109 0.085 0.2
Q3 0.178 1.285 0.5
Q4 0.375 0.259 0.2
Q5 0.209 0.278 0.4
Q6 0.521 0.943 0.3
Q7 0.592 0.441 0.1
Q8 2.125 1.533 0.1
Q9 2.259 2.007 0.6
Q10 9.886 NA NA
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comparable in both SQL and SPARQL. For example, 
a user can run a query retrieving building addresses by 
simply joining two tables from the SQL schema. 
However, the task becomes considerably more diffi
cult when an additional data source such as OSM is 
integrated. For example, we provide the SQL transla
tion of Q10 formulated previously in Figure 15. We 
note that this SQL query is automatically generated by 
Ontop (slightly simplified for readability), but this 
would be rather close to what a human expert could 
produce. It would be extremely difficult and laborious 
for a human user to construct such a complex query.

6. Conclusions and future work

6.1. Conclusions

This paper presents a comprehensive framework to ana
lyze 3D City data via KGs. It provides a methodology to 
integrate CityGML data with other geospatial data 
sources and utilize the resulting KG to answer user 
queries. The experiments confirm that the expressive 
queries can be formulated over the KGs, and can be 
efficiently evaluated with state-of-the-art KG systems.

6.2. Future work

Although the obtained results are promising, some 
limitations encountered while running the experi
ments, and possible future improvements are dis
cussed below.

(1) Support for Complex Geometries. Many KG sys
tems have limitations with respect to the hand
ling of more complex geometries such as 

polyhedral surfaces and geometry collections, 
which could not be parsed correctly and missed 
support of respective geospatial index. 
Specifically, this meant that our MKG approach 
(GraphDB and Apache Jena) suffered with 
respect to the execution of Q10 that involves 
computation with complex geometries. Instead, 
the VKG system Ontop can leverage mature 
and well-established relational spatial databases 
such as PostGIS, and thus avoided such issues.

(2) CityGML 3.0. The CityGML ontology in this 
work supports only the CityGML specification 
up to version 2. The latest version of CityGML, 
version 3, not only introduces new concepts 
such as time-dependent features but also revises 
the existing specification, e.g. dropping LoD4 
(Kutzner, Chaturvedi, and Kolbe 2020). There 
is a community effort to build an ontology for 
CityGML 3.0 by LIRIS, CNRS. However, the 
version of 3DCityDB system for CityGML 3.0 
is still under development at the time of writing. 
It is expected that the number of relational tables 
in the new 3DCityDB schema will be substan
tially reduced. In order to support CityGML 3.0 
in our framework, the VKG mapping also need 
to be revised with respect to the new ontology 
and 3DCityDB schema.

(3) CityGML heterogeneity. The CityGML data 
produced by and with the specifications of 
the government of Bavaria, Germany was 
used for this analysis. However, during the 
study, we found that different countries 
might have different standards for encoding 
their CityGML data which gives rise to issues 
such as SRID differences. For example, Estonia 

Figure 15. SQL translation of Q10.
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provides a geometry element with its address, 
and it links each building not to the corre
sponding 3D solid but to individual surface 
geometries (failing to provide any solid geo
metries). Hence, designing VKG mappings to 
link the ontology with the same 3DCityDB 
physical storage for analyzes across countries 
is not necessarily robust. The mapping should 
be tested for robustness by repeating these 
experiments with datasets from as many coun
tries as possible to strive to reach a unified 
design.

(4) CityGML data paucity. Although a significant 
degree of expressiveness was successfully tested 
by leveraging the data on CityGML version 2 
buildings, there is data paucity for both higher 
levels of detail such as LoD3, and other non- 
building items such as vegetation, waterbodies, 
bridges, etc. The lack of this data makes 
a significant portion of the 3DCityDB SQL 
schema redundant for almost all publicly avail
able CityGML datasets. Moreover, CityGML 
data at LoD3 includes building parts, which 
could make the integration with OSM more 
challenging, but we are not able to assess this 
situation in this work due to the lack of real 
LoD3 CityGML data.

(5) Integrating further data sources. Our paradigm 
and evaluation sought to measure CityGML 
and OSM data integration. While OSM is 
a popular source of geospatial data, our analysis 
might not be generalized to other geospatial 
domains. Expressiveness and the respective 
overall performance might diminish with the 
introduction of additional types and combina
tions of geospatial data. Tasks such as the com
plexity of matching objects might 
correspondingly become more complex and 
have an impact on both ontology integration 
and query design. These possible risks can only 
be addressed through further experimental 
research.

Notes

1. http://geonames.org/.
2. https://www.ogc.org/standard/citygml/.
3. https://www.w3.org/.
4. https://jena.apache.org/.
5. https://graphdb.ontotext.com/.
6. https://www.stardog.com/.
7. https://cui.unige.ch/isi/ke/ontologies.
8. https://technical.buildingsmart.org/standards/ifc/ifc- 

schema-specifications/.
9. https://w3c-lbd-cg.github.io/bot/.

10. Note that BPMN is a conceptual modeling language 
adopted to represent tasks and procedures within 
a system. To get more information about BPMN, 
the authors refer the readers to White (2004).

11. For more information about implementation issues 
please refer to Section 4.

12. https://geodaten.bayern.de/opengeodata/ 
OpenDataDetail.html?pn=lod2.

13. https://github.com/3dcitydb/3dcitydb.
14. https://github.com/3dcitydb/importer-exporter.
15. https://cui.unige.ch/isi/ke/ontologies.
16. https://www.ogc.org/standard/gml/.
17. https://opengeospatial.github.io/ogc-geosparql/geos 

parql11/sf_geometries.html.
18. https://www.w3.org/TR/vocab-ssn/.
19. https://www.w3.org/2004/02/skos/intro.
20. https://www.dublincore.org/specifications/dublin- 

core/.
21. https://doi.org/10.5281/zenodo.10276433.
22. https://ontop-vkg.org/.
23. https://jena.apache.org/index.html.
24. https://jena.apache.org/documentation/fuseki2/ 

index.html.
25. https://graphdb.ontotext.com/.
26. https://geodaten.bayern.de/opengeodata/ 

OpenDataDetail.html?pn=lod2.
27. ALKIS stands for the Authoritative Real Estate 

Cadastre Information System in Germany. https:// 
www.adv-online.de/Products/Real-Estate-Cadastre 
/ALKIS/.
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