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Abstract. Analysts reconstruct the data state of processes from an
event log that records the process execution trails. Efficient analysis of
these logs requires the storage of event data throughout the lifetime of a
process. Traditional trace-based logs store the traces generated by (iso-
lated) process instances. These call for reconstructing case variables after
each event in the trace. Object-centric process mining pushes this com-
plexity one level up, as each event can create, delete, or update multiple
artifacts like objects, relations, and attributes. Besides, object-centric
event data alone is not good enough to reconstruct such updates. In
this paper, we tackle this pressing problem by augmenting object-centric
event data with a lightweight form of domain knowledge, consisting of
condition-effect rules. These rules explicitly capture the semantics of
events contained in the logs. We then propose a method that takes an
object-centric event log and a set of condition-effect rules as input, and
produces a timeline accounting for the step-by-step evolution of the ar-
tifacts. Cypher queries can then be used to inspect the timeline and
retrieve which facts hold at a given time point, or the time intervals of
existence for the artifacts.
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1 Introduction

Process mining is concerned with the problem of extracting useful insights and
knowledge from the data about (business) processes, which are typically gener-
ated by information systems that record information about the processes running
inside an organization [1,3]. Traditional process mining techniques rely on the
implicit or explicit presence of a case notion. At the model level, this notion is
used to single out process instances, with the strong assumption that different
instances do not interact with each other. At the event data level, this notion
is essential to group recorded events into execution traces. Extensive literature
indicates that such a case notion is often too restrictive, since business and work
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processes not only focus on the co-evolution of multiple objects simultaneously,
but also depend on one-to-many and many-to-many relationships connecting
them [6]. In such cases, flattening process models and event data through the
lens of a single case notion can lead to severely underspecified models and mis-
leading process mining results [2,/6].

An alternative approach is that of object-centric process mining, in
which the intrinsic relational nature of events and objects is preserved.
This calls for lifting execution traces to relational representations, such as
event tables in OCEL 1.0 [16] and 2.0 [20], or event knowledge graphs
(EKGs) [13|. However, these approaches cannot conclusively infer which ob-
jects/relationships/attributes hold at a given time, since the connections between
events and entities recorded in such tables/graphs do not explicitly indicate how
such objects participate in the different events, nor which relationships are cre-
ated/removed by specific events.

To obtain a global timeline from the log, it is necessary to make use of domain
knowledge regarding the initial data state and, even more importantly, the effects
induced by the different (types of) events in the log. In [24], an EKG is enriched
with a semantic layer, which contains lightweight domain knowledge, formulated
using schema-level qualifiers on the event’s operations. Such qualifiers, paired
with assumptions about the EKG itself, indirectly enable the reconstruction of
a global timeline. Techniques from action learning in planning [21] could also
be used in this regard, but to the best of our knowledge there has been no
research so far in this direction. Domain knowledge has been used to derive
semantics from event logs in various process and data handling tasks, such as
for workflow management [26], as a language for the Semantic Web [23], and even
in user interface design |17]. Such formalisms are also customary in all modelling
approaches dealing with processes and relational data [§].

In this paper, we tackle this issue from a different angle: we enrich an object-
centric log with domain knowledge by indicating condition-effect rules that ex-
plicitly capture the semantics of events present in the log. Specifically, taking
inspiration from an extensive body of work at the intersection of process and
data management [8|, we define, for each rule, a relational condition that, if true,
triggers an effect adding or deleting a fact in the state (where a fact may relate
to an object, an attribute, or a relationship).

Specifically, we provide the following contributions, described in Section

1. We justify and describe two variants of timelines (namely, global and local)

that are generated with our approach, as discussed in Section [3.1

2. We provide methods that derive the step-by-step evolution of objects, rela-
tionships, and attributes using rules that consider the current state of these

artifacts, as well as the object-centric event log, as discussed in Section [3:2}

3. We define a formalism to specify event condition-effect rules for global and

local timeline reconstruction, as discussed in Section [3.3]

4. We define a set of queries that can inspect the timeline and retrieve which
facts hold at a given time point, or the time intervals of existence for objects,

attributes, and relationships, as discussed in Section [3.4]
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2 Preliminaries

We now provide the technical background for our work, and we illustrate the
notions we introduce on a running example.

2.1 Event Knowledge Graphs

An Event Knowledge Graph (EKG), storing the log of an event in the form of
a graph, is used to represent complex relationships between events and multiple
entities of different types [12]. A key advantage of this formalism over a tradi-
tional event log with a fixed case notion is that it does not require an entity type
to be marked as a case type before the log is created. This prevents problems
such as convergence and divergence following data flattening, which often occur
when a fixed case notion is used |[2].

An EKG is a form of Labeled Property Graph (LPG), defined over a set Label
of labels and a set V of values, and represented by a tuple G = (N, R, label, prop),
where N is a set of nodes, R a set of relationships, label : (N U R) — 2Fabel
the labeling function assigning to each graph element (i.e., node or relationship)
a set of labels in Label, and prop : (N U R) x K — V maps, for each graph
element, attribute keys in a set K to a value in V. In an EKG, nodes are
partitioned into event and entity nodes, respectively labeled with Event and
Entity, and corresponding to events and entities in the log. Events are assumed
to be atomic. Given an event node n, we assume that the time at which it occurs
is stored in a timestamp attribute, thus, prop(n,timestamp) = ¢ where t € Vie,
and Vime C V is a totally-ordered set of time values.

An event node is correlated to one or more entity nodes through the CORR
relationship. This relationship allows us to define the directly-follows relationship
DF, relating two event nodes e; and e for an entity a if and only if e is directly
followed by ey from the perspective of events observed by a. This implies that
both e; and ey are correlated to a, es occurs at a later time than ey, and there is
no other event correlated to a whose timestamp is between the ones of e; and es.

We assume that relationships between entity nodes are not stored in the EKG
itself. This is because such relationships are dynamic — their existence changes
over time. We also assume that initially, before, any event occurs, there does not
exist any relationship between entities.

Notice how inherently complex the semantics of events can be, and that it is
in general impossible to infer such knowledge by merely looking at the EKG.

2.2 Temporal Property Graphs and Condition-Effect Rules

A Temporal Property Graph (TPG) allows one to represent information that
changes over time in terms of an LPG, and such LPG can be stored in a
graph database [9]. The main benefit of doing so is that information stored in
such databases may be queried efficiently using graph query languages, such as
GQL [19] and Cypher [15], which are equipped with navigational features. Also,
graph databases have been shown to exhibit very good performance especially
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in those settings where queries involve both spatial and temporal constraints,
e.g., in the domain of Geographic Information System (GIS) data analysis [5].
In addition, given the flexibility of graph-based models, data in graph databases
is easier to visualize and thus to use [22].

Syntactically, both TPGs and EKGs are forms of LPGs. However, semanti-
cally, each node and relationship in a TPG has a time interval that indicates
when that element exists in the system [4]. This makes TPGs an ideal model
to store the timeline so that it can be readily queried by the user relying on
the expressive power and navigational features of graph query languages. We
observe that this model is semantically equivalent to Duration-labeled Temporal
Graphs defined in [9], where temporal information is associated to edges only, as
intervals defined on vertices in TPGs can be represented in the duration-labeled
model using self-loop edges on the vertices with the corresponding time intervals.

As mentioned, we use condition-effect rules to encode domain semantics,
and in the condition part of such rules we must be able to refer to and query
the data at hand, which in our case is available in graph form. Therefore we
have chosen to base our query language on Cypher [15], which, in addition to
being a declarative graph query language used by the widely adopted graph
database system Neo4lJ, is being developed towards Complianctﬂ with the new
GQL standard [10,[14]. Specifically, a rule can use the relevant entity (in case
of rules for entities), entity pairs (in case of rules for relationships), or entity-
attribute pairs (in case of rules for attributes), which are provided as parameters
in the rule condition.

2.3 Running Example

To demonstrate our proposal, we use a running example involving a system that
models a simple company with several departments. An employee of a specific
department can work on a project. Additionally, each project is managed by an
employee responsible for its overall success.

A system monitoring the actions performed in such a company can have
entities of one of the entity types Employee, Department, or Project. Between
these entity types, we have the following relationship types:

1. EMPLOYMENT, relating Departments to the Employees therein;
2. WORKS _IN relating Employees to the Projects they work in;
3. MANAGES relating Employees to the Projects they manage.

We assume that this kind of schema-level information on the relevant rela-
tionship and entity types of the system is provided by domain experts.

In Figure [1] we show an EKG representing an event log generated by the
company system. We represent the type of a node by its shape, where event
nodes are square-shaped, while entity nodes are oval-shaped. The type of an
entity node is indicated by its color and by the letter in its label: Employee
nodes a; in blue, Department nodes d; in black, and Project nodes p; in green.
Dashed lines indicate CORR relationships between events and entities to which

! See https://neodj.com/docs/cypher-manual /current /appendix/gql-conformance,/.
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Fig. 1. Sample EKG of Company with Event IDs as timestamps
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they are correlated, while instances of the DF relationship type, shown as arrows
with a dotted line, have a qualifierattribute (indicated as arrow label) whose value
is the identifier of the entity used to derive them. This allows us to de-clutter
the diagram by omitting a CORR relationship from an event e to an entity a if
e has an incident DF relationship labeled with a.

The three activities observed in the events of Figure [I] are HIREPERSON,
CREATEPROJECT, and REBALANCE. When a project is created, the longest-
employed employee becomes the supervisor. In case of a tie, the employee with
the smallest employee ID in the tie is picked as supervisor. Activity REBALANCE
works as follows: Given a set P of projects that are correlated to it:

1. Identify the largest project p; € P and second-largest project ps € P, based
on the numbers n; and nq of employees respectively working in p; and ps.

2. If n; — ny <1, no changes are made (notice that n; > ng).

3. Otherwise, pick the | ™52 | employees with the smallest employee IDs in p;
that are not in py, and move them to po.

4. Adjust supervisors based on the new employees working in p; and ps.

3 Methodology

In this section, we present our approach for extracting timelines. We first focus
on the overall structure of two algorithms employed to reconstruct respectively
the global timeline of the entire process and the local timeline for one or more
entities controlled by a human actor. We then discuss the condition-effect rules
used to express the update semantics of events. Finally, we describe the timelines
themselves in more detail.
We start by stating some assumptions for our timeline generation process:

A1: An EKG, a formal system description, a specification of static entity types,

and a set of condition-effect rules are provided as input to our algorithm.

Entities having static types are not affected by events in the log, and are

assumed to be created at the same time as the first event in it.
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Fig. 2. Scenario of Example|[l] on the difference between global and local timelines

A2: Effects of events are instantaneous, i.e., they happen without a delay.

A3: Events that occur at the same time have mutually-independent effects.

A4: The users of a system may not have access to all of its components. For
example, in the context of Business Process Mining |11], where key stake-
holders in a process lifecycle are its participants, a process participant is a
human actor, responsible for the functioning of a part of a process. Such
an actor can only access the events associated with the entities under their
responsibility.

A5: The applicability of a condition-effect rule to an event is given by a condi-
tion that includes the name of the activity observed by it. Further, we also
assume that a rule takes as input the current entity/relationship/attribute
associated to the event whose creation/deletion is being considered.

3.1 Global and Local Timelines

We present two algorithms that produce different timelines from a given in-
put, assuming different log views, given Further, considering and
the reconstruction of how objects (entities and relations) and their properties
evolve can be done by incrementally considering events in ascending order of
timestamps, and events that happen at the same time can be processed in an
arbitrary order.

The first algorithm we propose considers events in the log chronologically
and finds a single, so-called global timeline that includes information, instant-
by-instant, about which entities, attributes, and relationships hold. Thus, we
assume that the effects obtained by applying the condition-effect rules on this
“sequence of all events” would yield timelines consistent with the true state of
the system at all intermediate moments, starting from the first event. Obtaining
such a timeline requires complete knowledge of all the events of a system. The
second algorithm uses the notion of process participants and the entities they
can access, as discussed in AM] It finds timelines relying on information that is
locally available to an actor, and we call such timelines local. Notice that if
does not hold, the local timeline cannot be reconstructed by merely looking at
directly connected events and may also be affected by indirect dependencies with
other objects and events.

We illustrate the difference between the two approaches using an example.
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Example 1. Consider the events ej, ez, and e3 in Figure 2] and assume that
the relationship Rj(asg,as) already exists before any of the events occur. We
note that, differently from the company EKG in Figure[I} we have specified here
the CORR relationships from an event e to an entity « even when e has a DF
relationship labeled by x that is incident on it. Suppose that a set of condition-
effect rules are formulated such that event e; always creates the entity a1, and
eo always creates the relationship R(as, a4). Additionally, the rule for event eg is
such that it destroys any entity correlated to it if there exists a path from some
entity correlated to es through an R;-relationship to some entity m, and then
from m through an R-relationship to some other entity.

When generating the global timeline, e; causes a1 to be created, and then
es creates relationship R(as,a4). Thus, the rule for event ez deletes all of aq,
asz, and az. Conversely, when generating the local timeline for an actor with
only access to ap, the algorithm skips over es, which is not correlated to a;.
Therefore R(as,aq) is not created, so the deletion condition fails to hold when
e3 gets processed and specifically a; is not deleted. Thus, in this timeline, none
of the entities are deleted. <

3.2 General Structure of the Algorithms

For the local algorithm involving entities in the set £, we can find a timeline
starting from the events Ey+ that do not have a DF-relation qualified by any
a € & ending on them. Then, following DF relationships qualified by such entities
a using breadth-first search (BFS) starting from nodes in Fgtqrt, we find the
relevant event ordering for processing. The global algorithm, conversely, simply
orders all events by their timestamps, and then follows this chronological order
during processing.

If an entity a having a non-static type is found to be correlated to an event
e associated with it, but has not been created by a prior event, then a relation
can be created with that entity.

1. When creating a global timeline, we assume that a exists. This is because
when creating such a timeline, no event in the log is skipped. Thus, the cor-
relation of a to e provides a strong positive basis for assuming that the event
that created it was either not correctly recorded into the log or happened
before the log started recording. The time at which a is created is assumed
to be as old as the earliest event in the log.

2. When creating a local timeline for entity set £, we assume that a is created
only if a € £. This is because if this is not so, entity a could be created
at some unknown time before e by an event that the actor responsible for
entities £ does not have acces to. Thus, to maintain consistency, we assume
that neither a, nor the relation involving a, is created. If a € £, we assume
that a is created at the same time as the earliest event(s) in Eszqpt-

When generating the timeline, we store the interim data states using a simple
structure that creates/deletes entities/relations as they are created/deleted by
the effects of rules, separately from the final timeline. When considering the
effect of an individual event e, both algorithms proceed as follows:
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1. We get the list of rules for the activity observed by e.

2. For each rule involving entities, we iterate over the entities correlated to e.
If a rule holds, its effects are applied to the current system state.

3. Rules involving relationship creation may either only be applied between the
entities correlated to e, or between the entities correlated to e and entities
that are not correlated to it. Pairs of entities that may be affected by the rule
are filtered so that their types match the expected relationship type of the
rule. Subsequently, these filtered entity pairs are applied as parameters to
evaluate if the effect holds in each case. When the rule creates a relationship,
the relationship automatically obtains an identifier whose value orders the
relationships in the same way as they were created.

4. For rules involving relationship deletion, the identifiers of existing relation-
ships are used as parameters.

5. When a creation or deletion effect applies to an entity, we add a correspond-
ing temporal attribute, respectively tcreate OF tdelete, t0 the copy of the node
corresponding to that entity.

6. Similarly, when a creation effect applies to a relationship of type R between
two entities, we create a relationship of type R between their copies, and
add to this relationship the attribute ¢ eate With the current timestamp. For
relationship deletion, we add the attribute tgejete to the relationship whose
identifier matches the given value.

3.3 Condition-Effect Rules

We use condition-effect rules to determine when an entity, relationship, or entity
attribute is created or deleted by an event observing some activity, and a given
data state of the system. This state is stored as a graph that must conform to
the relationship and entity types prescribed in the input. These rules are used
to store domain knowledge about the semantics of relevant activities implicitly.

We define a set A of relationship types used to model attributes of enti-
ties. Relationships in A are directed from an entity to an attribute-type node,
which is assumed to always exist as an endpoint for the attribute relationship.
Given an entity a of type A and an attribute attr, such a node has the unique
identifier a__ attr, which is used when constructing a relationship to model the
creation of the attribute in question. The relationship connecting a to a__ attr
has type A attr. For example, if an activity creates an attribute called name
for entities john and mary of type Employee, we create relationships of type
Employee  name from john to john  name and from mary to mary  name.
Rules for these relationships can thus be specified using the same condition-effect
rule formalism as rules involving relationships between entities.

Rules have the form

Aot (@) ~ B(@),

where:
1. AcTt is the name of the activity that must be observed by any event e for
which the rule is applied.
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2. £ € {E} UR U A, where R is the set of relationship types used for rules
involving relationships, A is the set of attribute types, as discussed above,
and E is used to indicate rules involving entities.

3. ZENUNXNUNXNAUNRUN4, where N, Ni, and N4 are respectively
the sets of entity, relationships, and attribute identifiers.

4. o(Z) is a Cypher query with parameters Z, of the following specific form:

MATCH (...) WHERE condition RETURN COUNT(*) > O
These queries always yield boolean values as their result.

— The condition is a Cypher WHERE clause specified by the user. The MATCH
clause selects the entities/relationships that are used in condition, and it
is subsequently added as a prefix of the query. The RETURN clause, added
as a suffix of the query, ensures that the query returns true if and only if
the entities/relationships selected by the MATCH clause satisfy condition.
This is necessary since Cypher does not allow for a formula with only a
condition in its syntax.

— (&) may contain special terms entity(x) and relation(z), where z in &,
which are substituted with the entities/relationships obtained from the
added MATCH clause.

— (%) may also contain the special term CORR, which is substituted by
the list of entities that are correlated to event e.

5. E(Z) represents the effect of the rule, and it can be one of CEnt, DEnt,
CIntRel, CExtRel, DIntRel, DExtRel, CAtt, DAtt, representing respectively
the creation/deletion of entities/internal relationships/external relation-
ships/attributes. Internal relationships are between entities in CORR, while
external relationships are between entities in CORR and outside CORR.
Notice that, when a rule is applied to an entity a € N, the effect is the
creation or deletion of a; when it is applied to a pair (a1,a2) € N x N, the
effect is the creation of a relationship from a; to as; when it is applied to
a pair (aj,az) € N x Ny, the effect is the creation of a node a— and of
an attribute relationship from a; to as; when it is applied to a relationship
r € Npg, the effect is the deletion of r. and when it is applied to an attribute
attr € N4, the effect is the deletion of attr.

Example 2 (Example in Section cont.’d). To create a MANAGES re-
lationship, relating an employee with identifier z to a project with identifier v,
we can use the following condition-effect rule for the CREATEPROJECT activity:

MANAGES

CREATEPROJECT ,¢(z,v) ~ CIntRel(z,v)

where the condition part in ¢(z,v) is:

NOT EXISTS (
MATCH (y:Employee) < [e1:EMPLOYMENT] — (),
(entity(z)) < [e2: EMPLOYMENT] — ()
WHERE y € CORR
AND (e;.start _emp < eg.start _emp
OR (ej.start _emp = es.start _emp
AND y.employee nr < entity(z).employee_nr)))



10 R. Chaki et al.

EMPLOYS,1

Fig. 3. Global timeline of all entities

The MATCH clause in this rule searches for two paths that both begin with
an Employee-type entity node, followed by an incoming relationship of type
EMPLOYMENT. The first of these Employee nodes, matched by identifier y,
must be a node in CORRcgrpareProsror, While the second is entity(z), the entity
associated with identifier z, i.e., the employee being considered for the manager
role. This can be inferred from the labels, and the directions of the arrows between
the nodes and the edges in the path specification. In Cypher, a label is specified
using the variable: label notation. Thus, e.g., the EMPLOYMENT relationships
for the employees y and entity(z) are respectively assigned to e; and es.

This initial MATCH and WHERE condition are followed by a disjunction of the
following clauses:

1. ej.start _emp < eg.start emp checks if ej.start emp is an earlier date than
eg.start _emp. Thus, this condition holds if and only if y joined the company
earlier than entity(z).

2. The second condition is a conjunction that first restricts the focus to
cases where y joined the company on the same date as entity(z), via
ej.start _emp = eg.start_emp, and then checks if the employee number of y
is smaller than that of entity(z).

Since the whole clause is inside a NOT EXISTS (...) clause, this second clause
holds for entity(z) if and only if (i) no employee joined the company earlier than
entity(z), and (i) for all employees that joined the company at the same time as
entity(z), their employee numbers are larger than or equal to that of entity(z).

These conditions, together with the condition that entity(z) is employed are
therefore used to determine if entity(z) is to manage a newly-created project. <

3.4 Timeline Extraction and Querying

We illustrate how the global and a local timelines can be extracted from an
EKG by applying rules like the ones mentioned above for the running example
introduced in Section [2.3] with the entity type Department being specified as a
static entity.

Example 3 (Example [2| cont.’”d — Global Timeline Extraction).
Applying the global timeline algorithm to the EKG in Figure [1] yields the
timeline represented by the TPG in Figure [8] The node colors and identifiers
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MANAGES,5
EMPLOYS, 1

Fig. 4. Local Timeline for entities a1, az

that indicate the entity type are the same as those in Figure[I] For visualization
purposes, nodes are labeled with the node identifier, followed by its tcreate value,
and if set, its fqelete value. Relationships are labeled by their type, followed by
similar time values. We assume that the timestamp of event e; is i.

Thus, for example, we can observe that employee a; was created at time 2.
This makes sense, since from Figure [1, we note that e;, the event that occurs at
time 2, is a HIREPERSON event involving as.

We describe how the MANAGES relationship from employee a; to project p;
evolves. Event e; (at time 5) created project p;. Since it contained employee aj,
who is strictly the oldest employee in this sample, it is assigned as the manager
of p1. Then, in the REBALANCE activity of event e7, since p; had a size of 4,
and pso of 2, one employee is moved from the former to the latter. This chosen
employee, that is, a1, has the lowest employee number in p; that was not already
in ps. Since a; no longer belonged to p;, the MANAGES relationship between
them was destroyed at time 7. We can observe this in Figure [3| considering the
label MANAGES, 5,7 between the nodes for p; and a;. <

Example 4 (Example [2| cont.’d — Local Timeline Extraction).

Figure [ is the local timeline extracted from the EKG of Figure [I] when
considering an actor that has access to entities £ = {aj,as}, following the
algorithm described in Section In comparison to the global timeline, we
note that despite all four employees being correlated to the CREATEPROJECT
event es, only a; and a; have WORKS _IN relations created for them at time 5.
This is because entities az and a4 are of a non-static type Employee, they were
not created at any time before e5 in the context of this local timeline, and they
are also not a part of the set £. The WORKS IN relationship from a4 to ps is
also not created for a similar reason. Finally, there is no effect of REBALANCE
in this timeline, since at time 7, p; contains only one employee more than ps. <

Once a timeline is generated and stored as a TPG, it can be queried using a
graph query language such as Cypher. Below, we list some example queries:

(i) Is an entity with ID n present at time ¢?

MATCH (2)
WHERE z.id = n
AND (2.tereate <=t AND (2.tgeiete IS NULL OR t < 2.tgeiere))
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(ii) Is a relationship present with type R from an entity with ID n4 to one with
ID ny at time ¢?7

MATCH (21) — [:R] — (22)
WHERE z7.id = nq AND 29.id = ng AND 7.toregte <=1
AND (r~tdelete IS NULL OR t < T~tdelete)

(i4i) Is an attribute attr present for an entity type with ID n of type A at time ¢?

MATCH (2:A) — [r] — (a)
WHERE z.¢d = n AND a.id =n____attr
AND 7r.tereqte <=1 AND (T~tdelete IS NULL OR t < T~tdelete)

Alternative formulations of these queries can also be constructed to find the
identifiers of data elements present at a certain timestamp in the absence of
the non-temporal conditions. An example of the former kind of query is that of
finding all relations that are present at time ¢.

Example 5 (Example [3| cont.’d). Consider the global timeline generated in
Figure [3]in the company scenario. One can perform the following query:

At times 6 and 7, what are the WORKS IN relationships connected to
project po?

This query yields the result that at time 6, there are WORKS IN relationships
from ao and a4 to pg, while at time 7, the WORKS IN relationships incident
on po are from aq and ay. N

4 Experimental Evaluation

We have implementecﬂ our algorithm. In this section, we describe how we ob-
tained timelines from the BPI-2017 event log. All tests were performed on a
platform with the following software and hardware specifications:

1. Software: Python 3.12 interpreter running in PyCharm version 2024.1.2 on
Windows 11 Pro.
2. Hardware: Intel i7-1165G7 Processor, 16 GB DDR4-SDRAM, 512 GB SSD.

We have used Neo4J |18] to store both the Event Knowledge Graph and the
generated Temporal Property Graph in the same database. To reproduce the
results obtained, please follow the steps below

1. Install Neo4J on your system, noting down the username and password.

2. Run the initialize.py file to configure the implementation with the au-
thentication details for your Neo4J installation.

3. Run main.py and follow the instructions. Enter the absolute path to the

BPI17 dataset when this is requested.

2 See https://gitlab.inf.unibz.it /Rikayan.Chaki/timeline- generation


https://gitlab.inf.unibz.it/Rikayan.Chaki/timeline-generation

Generation of Timelines from Event Knowledge Graphs 13

Table 1. Temporal statistics for queries (in milliseconds)

Entity Rel. Attr. All Entities All Rels All Attrs

mean 14.55 14.13 13.28 1550.54 614.48 300.89

std 10.00 5.87 6.13 95.60 95.55 49.67

99% 49.47 49.24 49.49 1818.07 806.20 403.81
4.1 Input

Below, we list some basic features of BPI-2017, and some basic assumptions we
use when attempting to model its underlying domain:

1. Number of entities and events: 74504 and 1202267 respectively.

2. Entity types: Application, Offer. We consider the resourceld attribute of the
Offer type in our rules as well. We also assume that there is a relationship
type Against from entities of type Offer to those of type Application.

3. Events have a lifecycle attribute, in addition to the standard activity one,
that helps to determine the tasks being performed during them. Thus, we
assume that activities for events of this log can be defined by a combination
of the activity and lifecycle attributes, of the form activity lifecycle.

4.2 Timeline

We perform 1000 trials for each of the query types discussed in Section [3.4] on
the global timeline generated from the BPI17 log. For queries requiring entity
IDs and relationship types, we chose them randomly from those present in the
event log.

Table [1| contains the mean, standard deviation, and 99th percentile times
for executing these queries. The first three columns are queries that request
to see if a particular entity, a relationship (specified by a pair of entities and
relationship type), or an attribute, given by its parent entity and attribute key,
is present at a specific timestamp. The remaining three columns query to find
all entities/relationships/attributes that are present at a given timestamp. We
observe that the 99th percentile times are below 2 seconds on a graph containing
over 100000 entities for all the queries. This shows that for these queries, our
approach works efficiently for graphs of this size. We also note that the use of
range indexes on entity IDs causes such to be about 100 times faster than the
queries that do not have such restrictions.

5 Conclusions

We have developed a framework to derive timelines from object-centric event logs
that pinpoint, moment by moment, which objects, attributes, and relationships
are present. To facilitate this, we enhanced the object-centric event data with
domain knowledge, using condition-action rules that reflect the update semantics
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of events. We are considering different directions along which to extend our work:
(i) Enriching the formalism used to represent domain knowledge by adopting
domain ontologies. These allow one to specify condition-action rules at a higher
level of abstraction, and could can rely on query-reformulation techniques |7}25]
to compile those high-level rule specifications into concrete executable rules.
(i1) Considering not only atomic events but also non-atomic events that may
overlap in time and have timestamps that are time intervals. This requires a
treatment of possible interactions between different events.
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