
Representing and Querying Norm States Using
Temporal Ontology-Based Data Access

Evellin Cardoso
KRDB Research Centre

Free University of Bozen-Bolzano
Bolzano, Italy

ecardoso@unibz.it

Marco Montali
KRDB Research Centre

Free University of Bozen-Bolzano
Bolzano, Italy

montali@inf.unibz.it

Diego Calvanese
KRDB Research Centre

Free University of Bozen-Bolzano
Bolzano, Italy

calvanese@inf.unibz.it

Abstract—The prominent role of normative primitives for
regulating interactions in enterprise systems makes their rep-
resentation and inspection a crucial task. In particular, querying
the states of norms is essential to assess the accountability and
compliance of interacting parties, as well as to reconstruct the
historical evolution of their mutual contractual relationships. The
main issue, however, is that the temporal data stored during the
operation of the enterprise system are typically at a low level of
abstraction, and do not directly refer to norms and their states.
To overcome this problem, we propose the QUEN framework
for querying norm states on top of legacy relational databases.
QUEN builds on the temporal extension of the well-established
framework of Ontology-Based Data Access (OBDA) to semanti-
cally represent normative primitives and their temporal states,
and to map them to the underlying legacy data. The distinctive
feature of QUEN is that mappings are not arbitrarily expressed
by the modeler, but are instead automatically synthesized starting
from a specification that explicitly indicates how the constitutive
components of a normative primitive, as well as its lifecycle, can
be reconstructed from the legacy data.

I. INTRODUCTION

Modern software systems are part of large enterprise sys-

tems, themselves part of even larger socio-technical systems

(STS) that involves social entities (e.g., autonomous humans or

organizations) together with technical components (e.g., IT re-

sources). In order to coordinate the interactions between mul-

tiple actors, STS rely on norms as the main design construct

to specify desired properties to govern such interactions [1].

For example, in a hospital environment, a norm could prohibit

a physician to disclose sensitive information from patients,

regulating the interactions among the principals involved.

As normative primitives provide a semantics for actors’

interactions, their representation becomes crucial for providing

guidance for accountability and compliance evaluation. Usu-

ally a propositional representation N(D,C, qp, qd) is adopted,
which captures a normative relationship N between an ex-

pectee D and an expector C. In this relationship, the expectee

D is accountable for the expector C that, whenever condition

qp holds in the system, it will bring about condition qd (i.e.,

the expectation). By checking the occurrence of events, one

can in turn check whether conditions hold, and track how

norms evolve through their constitutive states.

This poses a twofold challenge, which we tackle in this

paper. The first challenge is about the representation of nor-

mative primitives. When representing and tracking normative

primitives in an enterprise system, one has to consider the

presence of complex objects and their interrelationships also

when referring to normative primitives. For example, the

notion of disclosure authorization of patient data cannot be just

characterized propositionally, grounding upfront which are the

involved agents: it must be characterized relationally, and then

instantiated on actual individuals, tracking how such different

instances evolve over time. E.g., a patient may have decided

to authorize access to her own data to two different third

parties, but with different temporal conditions. This has to be

fully taken into account at the representation level. While most

works adopt a propositional representation for norms, recent

approaches have in fact brought forward a relational approach

to commitments and other types of normative primitives [2],

[3], [4], [5].

The second challenge is about the actual data reporting on

the evolution of normative primitives. The main issue here

is that the temporal data stored during the operation of the

enterprise system are typically at a low level of abstraction,

and do not directly refer to norms and their states. This

poses the question on how to access and query such low-

level data so as to obtain relevant information on normative

primitives and their evolution. Such a question is not peculiar

to normative aspects, but is in fact pervasive and relates, in

general, to the problem of accessing and querying legacy data

using conceptual, high-level abstractions that are in line with

the knowledge and vocabulary of human experts.

Such a problem has given rise to the well-established

paradigm of Ontology-Based Data Access (OBDA) [6], [7]

(also known as Virtual Knowledge Graphs), which has been

applied successfully within the Semantic Web community in

a number of scenarios where the access to data poses a

major challenge [8]. OBDA is based on the idea that end-

users are exposed to the data through a high-level, conceptual

representation of the domain of interest, given in the form of

an ontology, that abstracts away low-level details about the

organization and storage of the data itself. The ontology is

expressed in terms of a domain vocabulary (of concepts and

relations) that is familiar to the users, and moreover it is able

to capture complex interrelationships between the conceptual

elements of the domain by means of logical axioms. The

122

2019 IEEE 23rd International Enterprise Distributed Object Computing Conference (EDOC)

2325-6362/19/$31.00 ©2019 IEEE
DOI 10.1109/EDOC.2019.00024

ontology is linked to the underlying legacy data through a

declarative mapping [6], which intuitively describes, by means

of correspondences between queries, how the conceptual el-

ements of the ontology are populated from the data. The

mapping is exploited by an OBDA-system to automatically

translate user queries formulated over the ontology into SQL

queries over the relational data source(s), taking also into

account the domain semantics encoded by the ontology axioms

so as to enrich the set of provided answers [7].

In our work, we start from Custard [9], which is a frame-

work for the specification of normative primitives (i.e., com-

mitments, authorizations, prohibitions, and powers) equipped

with a lifecycle, capturing the states in which these norms may

be, and the transitions between states, triggered by punctual

events. In Custard, norm states are maintained in a relational

information store, and they can be manipulated through ex-

pressions that, on the one hand provide a declarative and very

compact specification, but on the other hand, present several

shortcomings. First, Custard adopts a relational representation

of norms, a long advocated feature [2], but still does not

represent the target of a norm, which would be needed to

distinguish between different instances of the norm. Second,

Custard supports only limited forms of joins based on equality,

and this represents a potentially serious drawback especially

when accessing legacy databases, where the structure of the

data is not tailored towards the manipulation of norms. Third,

the Custard event algebra does not support explicit expirations

or violations of norms, determined by the semantics of the

domain of interest.

To overcome the above mentioned problems, we propose the

QUEN framework for querying norm states on top of legacy

relational databases. QUEN builds on a temporal extension

of OBDA [10] to semantically represent normative primitives

and their temporal states, and to map them to the underlying

legacy data. The distinctive feature of QUEN is that mappings

are not arbitrarily expressed by the modeler, but are instead

automatically synthesized starting from a specification that

explicitly indicates how the constitutive components of a nor-

mative primitive, as well as its lifecycle, can be reconstructed

from the legacy data.

By specifying normative primitives in a fully semantic

framework that relies on the well established paradigm of

(temporal) OBDA, we lay the foundations for verification,

synthesis, monitoring, and query processing in normative

systems, although we leave the specifics for future work.

In particular, our long-term research goal is to monitor the

achievement of normative primitives along their lifecycles

in the presence of complex real-world data. As such, our

work gives a first step towards a framework for normative

and performance monitoring. More specifically, we provide

the following contributions: 1) a novel framework for the

representation of normative primitives that relies on temporal

OBDA; 2) a methodology for lifting generic temporal data

stored in a relational system to a fully semantic framework

for the representation and querying of norms; 3) a technique,

relying on query processing in (temporal) OBDA to automat-

ically transform (semantic) queries expressed over a QUEN

specification and execute them over the underlying legacy

information sources.

The rest of the paper is structured as follows: Section II

provides the research baseline for our work, which includes

the Custard language and the temporal OBDA paradigm.

Section III presents the QUEN framework through a sequence

of methodological steps that start from the low-level temporal

data and derive the fully semantic representation of norms.

Section IV presents a translation from a specification in QUEN

to a temporal OBDA system, in which it becomes possible to

express semantic queries over the states of norms. Finally, in

Section V we provide conclusions and outline future work.

II. BASELINE

This section introduces the two main preliminary frame-

works on which we rely, namely the QUEN normative primi-

tives from the Custard language and the Ontology-Based Data

Access (OBDA) paradigm.

A. Normative Primitives in Custard

Custard [9] is a framework for the specification of

information-based normative primitives (called simply norms
hereafter), and the retrieval of the states of such primitives

from a relational information store. A norm schema η contains

normative (norm) types that socially relate interacting parties

and implicitly regulate their interactions: commitments, autho-

rizations, prohibitions, and powers. Each norm instantiates its

schema creating a contractual relationship between two agents,

an expector and an expectee, where the expectee is accountable
to the expector for the satisfaction of the expectation implied

by the contractual relationship. More technically, each norm

type comes with a canonical lifecycle that captures the differ-

ent states in which a norm of that type can be in, as well as

the possible transitions from one state to the other, and the

conditions that induce those transitions. The lifecycles of the

different Custard norm types are depicted in Fig. 1. The idea

behind such lifecycles is borrowed from the well-established

notion of commitment machine [11]. Specifically, once a norm

is created, it corresponds to a conditional expectation that

comes into force (i.e., is detached to an actual expectation)

when the expectee brings about the antecedent condition

associated to the norm. If the course of execution is so

that such a condition cannot be realized, the norm expires.

A created or detached norm becomes discharged when its

associated consequent condition is made true by the expectee

agent. The achievement of the consequent indeed witnesses

that the expectation associated to the norm has been fulfilled.

In the case of prohibitions and commitments, a detached norm

may become violated if the course of execution is so that the

consequent can never be achieved.

In Custard, conditions are specified with an algebra that

employs punctual events as basic building blocks. Events that

may occur in the system (e.g, register, sign up, send creden-

tials) are stored in a relational information schema I , where
each event corresponds to a dedicated table equipped with

123

created

detachedexpired

dischargedviolated

create

when ante detach

when never ante
expire

when cons
discharge

when cons dischargewhen never cons violate

Figure 1: Lifecycle of norm types (from [9]). The violated state exists
only for prohibition and commitment.

a timestamp column, and whose tuples record the different

instances recorded in the system for that event.

Example 1 (Inspired from [9]). The following information

schema captures three event types related to the request and

access to patient data within a sanitary organization, where the

primary key of each relation schema is underlined:

• Allowed(pid , hid , discid , tpid , t) – at time t, patient pid
accepts to disclose her data to third party tpid through

health vault provider hid . The id value used for discid
hence constitutes a “disclosure token” for the patient data.

• SentCred(hid , tpid , discid , t) – at time t, health vault

provider hid sends access credentials to third party tpid
using the disclosure token discid . The field discid is a

foreign key referencing the Allowed relation. Since it is

also a primary key for SentCred , credentials can be sent

at most once for a given entry in Allowed .
• ReqData(tpid , hid , reqid , discid , t) – at time t the third

party entity tpid requests patient data to the health vault

provider hid , referring to the credentials obtained via

discid (which is in fact a foreign key referencing the

Allowed relation).

• Accessed(tpid , hid , reqid , discid , t) – at time t the third

party entity tpid accesses, via health vault provider hid,
the patient data related to the disclosure token discid
(which is a foreign key referencing the Allowed relation).

Similarly to the design pattern used for SentCred , here
the field reqid simultaneously acts as primary key for

the Accessed relation, and as a foreign key referencing

the ReqData relation. This guarantees that at most one

access per request is actually recorded.

The different event tables have to be understood as log tables

recording events triggered within the enterprise system. The

effect induced by each of such events depends on the actual

data. For example, credentials are effectively delivered only

if the ids of the health vault provider and of the third party

actually coincide with those obtained by inspecting the entry of

the Allowed relation with matching discid . Similarly, data are

actually accessed only if the access request is done consistently

with the parties involved in the corresponding request, and

with the right disclosure token. As we will see, these implicit

semantic constraints can be explicitly captured in QUEN when

relating the information system to the ontology. �

The event algebra uses the tables in I as atomic events, and

constructs complex event expressions using logical operators

(AND, OR, EXCEPT), aggregation operators (SUM), set

operators (COUNT, MIN, MAX, AVG), relative time intervals

within which events should occur ([startEvent, endEvent]),

and so on. In addition, an ad-hoc form of negation is used

to determine when an event expression never holds (e.g., the

negation of an event that should occur within a certain deadline

corresponds to checking that the event did not occur before

the deadline expiration time).

Specifically, the progression of a specific norm is defined in

Custard by qualifying the create, detach, and discharge transi-

tions with corresponding event expressions that instantiate the

expector and expectee agents, and the corresponding transition

timestamps. The expire and violate transitions are then implic-

itly qualified by negating the antecedent and consequent event

expressions respectively associated to the detach and discharge

transitions.

Example 2 (Inspired from [9]). Consider the information

schema of Example 1. The following Custard specification

defines an authorization norm regulating the possibility of

accessing sensible patient data:

authorization DisclosureAuth tpid by hid
create SentCred
detach ReqData
discharge Accessed [ReqData+ 1, ReqData+ 10]

In particular, the specification indicates that a disclosure

authorization is created by hid for tpid at time t whenever

there exists an entry in the SentCred relation relating hid,
tipd, and t. A consequent detach of the authorization occurs

at a consequent time t2 whenever an entry in ReqData exists

with time t2 and matching the common fields of ReqData and

SentCred . Finally, the authorization is discharged at time t3
if a consequent matching entry in Accessed exists at a time

t3, in such a way that t2 + 1 < t3 < t2 + 10, where 1 and 10

are time units.

As dictated by the notion of negation used in Custard event

patterns, the authorization is considered to be violated if, upon

detachment, no access entry exists between t2+1 and t2+10.�

The example shows that Custard is extremely compact and

declarative when specifying the lifecycle of norms, but also

highlights its main, three shortcomings:

• Lack of an explicit norm target. While Custard lifts

the representation of norms from a propositional to a

relational level, as long advocated in [2], [3], it still does

not explicitly tackle what is the target of the norm: that

is, the object—or combination of objects—that uniquely

identifies an instance of that norm, and makes it possible

to distinguish it from other instances of the same norm.

E.g., the authorization captured in Example 2 only refers

to the two involved actors, but does not capture that the

authorization is about a disclosure token, in turn related

to a patient. Consequently, it would not be possible

to distinguish two separate instances of DisclosureAuth

124

relating the same third party and vault provider, but for
different disclosure tokens.

• Lack of flexibility in querying relations. Custard assumes

that when relating relations to each other, joins are

implicitly done based on equality of field names. A more

general approach relying on the full SQL query language

is needed to handle the situation where the underlying

information schema is a legacy one, and consequently

require the power of complex queries so as to extract

the required information. Already in Example 1, one

would need more powerful queries than those supported

by Custard to retrieve the disclosure tokens that have been

potentially misused. For example, the SQL query

SELECT r .discid FROM ReqData r,SentCred c
WHERE r.discid = c.discid AND r.tpid �= c.tpid

can be used to retrieve potentially misused disclosure

tokens, i.e., tokens used to request data by a third party

that does not match the one to which the credentials for

that token have been sent.

• Lack of explicit expirations and violations. While the

Custard event algebra has the nice property of being able

to express implicit expiration/violation of a norm, the

specification of norms does not allow to complement such

implicit transitions with explicit expirations/violations

determined by the semantics of the domain under study,

with conditions that cannot be simply ascribed to the

“absence" of the norm antecedent or consequent. For

example, one could use a variant of the SQL query shown

in the previous bullet so as to induce a violation of an

authorization for which the disclosure token has been

potentially misused.

Given our final goal to create a framework for norm query-

ing on top of legacy information systems, we take inspiration

from Custard but lift it to a full, semantical setting where

the aforementioned key limitations are resolved. Since our

framework uses, as a technical basis, a temporal variant of

the OBDA paradigm, we next provide a gentle introduction to

temporal OBDA.

B. Temporal Ontology-Based Data Access

The Ontology-Based Data Access (OBDA) paradigm con-

sists of a novel philosophy of conceiving information systems

in which conceptual schemas (ontologies) are used as an

intermediate layer for accessing and querying the data stored

in legacy information systems [7]. The ultimate goal of the

OBDA paradigm is to provide a vocabulary for end-users

based on domain notions, thus allowing a transparent access

to legacy information systems, as it abstracts away from

implementation details on how data is concretely stored.

Ontologies have been extensively used to provide the con-

ceptualization of a domain of interest, and mechanisms for

reasoning about it. The formal foundations for ontologies are

provided by Description Logics (DLs) [12], which are logics

specifically designed to represent structured knowledge and to

reason upon it.

In DLs, the domain to represent is structured into classes

of objects of interest that have properties in common, and

these properties are explicitly represented through relevant

relationships that hold among the classes. Concepts denote

classes of objects, and roles denote (typically binary) relations
between objects. Both are constructed, starting from atomic

concepts and roles, by making use of various constructs, and

the set of allowed constructs characterize a specific DL. The

knowledge about the domain is then represented by means of

a DL ontology, where a separation is made between general

structural knowledge and specific extensional knowledge about

individual objects. The structural knowledge is provided in a

so-called TBox (for “Terminological Box”), which consists of a

set of universally quantified assertions that state general prop-

erties about concepts and roles. The extensional knowledge is

represented in an ABox (for “Assertional Box”), consisting of

assertions on individual objects that state the membership of

an individual in a concept, or the fact that two individuals are

related by a role.

Among the various DLs, lightweight description logics, such

as the OWL2QL profile of OWL 2, have been specifically

designed to query and reason about huge amounts of data,

trading off between expressiveness and tractability. Logics

within such a family are able to capture front-end ontology

design languages such as the core constructs of UML class

diagrams (with the exception of covering) [13]. Thus, in the

following we blur the distinction between UML ontologies and

their corresponding OWL2QL TBoxes.

In this paper, we consider the widespread setting where

data are not maintained in the form of an ontology ABox,

but are instead stored inside legacy information systems.

As storage mechanism, we consider in particular relational

database with constraints (such as keys and foreign keys).

This is fully compatible with the notion of information schema

used in Custard (cf. Section II-A), without however posing any

expectation on the structure of the relation schemas forming

the database. Since our focus is on the evolution of norms

implicitly represented in the data, the only assumption we

do is that some of the relation schemas are equipped with

timestamp fields.

In such a setting, the (TBox of the) ontology is used not

only to capture relevant structural properties of the domain, but

also acts as a conceptual data schema providing a high-level

view over the underlying data.

With these premises, an OBDA specification is a tuple

〈S,Σ,O,M〉, where:
• S is a relational database schema with constraints;

• Σ is a vocabulary of concepts and relations;

• O is a lightweight ontology expressing constraints over

Σ;
• M is a set of mapping assertions that conceptually link

the concepts and relations in O to the underlying database

schemas R.

M serves two purposes. On the one hand, it declaratively

specifies how to extract data from a database conforming to

R, using the standard SQL query language. On the other hand,

125

it indicates how the answers extracted using SQL queries are

used to (virtually) populate the (ABox of) the ontology O.

Technically, a mapping assertion (or simply mapping) has

the form

Q(�x) � G(�t(�y))

where

• Q, called the source part of the mapping, is an SQL query

over the schema S with answer variables �x.
• G(�t(�y)), called the target part of the mapping, is a

conjunction of atoms whose predicate symbols are atomic

concepts and roles in O, and where �t(�y) represents the

arguments of the predicates in the atoms. The variables

�y are among the answer variables �x of the query in the

source part.�t(�y) are terms obtained by applying function

symbols �t to �y; such terms provide the basis to construct

semantic objects in the ontology starting from values

extracted from the underlying database, resolving the so-

called impedance mismatch.
The main feature of an OBDA system is at query time.

Here, users can submit conceptual queries over O (e.g., using

the SPARQL query language) to the system, which uses M
to automatically reformulate such queries into corresponding

SQL queries that can directly be processed by an off-the-shelf

relational database engine. For a survey of application domains

in which this approach has been successfully deployed, see [7].

Recently, the OBDA paradigm has been applied in settings

where the temporal dimension is predominant. In its standard

form, however, the resulting framework cannot be used to

describe temporal ontologies, formulate temporal queries, and

obtain answers together with their temporal validity intervals.

This is why the temporal OBDA (TOBDA) approach [10] has

been brought forward. The TOBDA approach is exemplified

in a use case from Siemens for monitoring steam and gas

turbines. Treating time as a first-class citizen is essential in

the context of this paper, to capture how norms evolve across

their possible states.

A temporal ontology contains structural and temporal con-

cepts and relations. As for the temporal part, the ABox assigns

to corresponding facts their validity intervals, describing when

those facts actually hold. A temporal fact is then represented

using notation F@I , where F is a fact and I its valid-

ity interval. Formally, a TOBDA system [10]1 is a tuple

〈S,Σs,Σt,Os, T ,Ms,Mt〉, where:
• 〈S,Σs,Os,Ms〉 is a classical OBDA system, where R
contains timestamped relation schemas;

• Σt is a vocabulary of temporal predicates;

• T is a set of temporal rules over Σt, defining the

occurrence conditions of complex events, together with

their temporal validity;

• Mt is a set of temporal mapping assertions linking R
to elements in Σt, also specifying their validity intervals

using timestamps retrieved from the database.

1For simplicity, we do not consider here static rules, but they can seamlessly
be added to QUEN.

Static
Ontology O

data

Stakeholder

Temporal
Rules T

OWL2QL axioms +
(Static) Datalog Rules R

DatalogNRMTL

query/answer

Temporal
mappings

Static
mappings

Figure 2: Schematic representation of TOBDA architecture [10]

The language used to formalize temporal rules is that of

datalognrMTL, a non-recursive datalog program extended

with metric temporal logic (MTL) operators interpreted over

the reals.

The form of each temporal mapping assertion is

Q(�x, ts, te)� G(�t(�y))@〈ts, te〉

where Q(�x) � G(�t(�y)) is a standard mapping assertion, ts
matches with a timestamp, te matches either with a timestamp

of the special constant ∞, and 〈/〉 are meta-symbols to be

instantiated with parenthesis or square brackets depending on

whether the extremes of the temporal interval going from ts
top te are included.

Fig. 2 schematically depicts the elements of the TOBDA

approach.
III. THE QUEN FRAMEWORK

This section presents the QUEN framework. The framework

starts from the main Custard ontological entities and norm

lifecycle specification as described in Section II-A. The main

difference is that while Custard assumes a high-level informa-

tion schema that explicitly describes events, QUEN starts from

a generic database schema that stores timestamped data, in the

style of TOBDA.

We introduce the main components of QUEN as method-

ological steps that lift the low-level temporal data to a fully

semantic framework for norm representation. The querying

functionality of the framework is then discussed in Section IV.

A. Step 1: Building the Static Ontology

The first step of the methodology consists in the conceptual

modeling of the domain knowledge capturing the main con-

cepts and relationships necessary to define norms and their

participants, as well as to understand the data contained in the

legacy database.

Differently from the case of a generic (T)OBDA setting,

QUEN is centered around normative primitives and their par-

ticipants. Consequently, we can define once and for all an

upper ontology containing those norm-related concepts and

126

- crt: timestamp
- ext: timestamp [0..1]
- det: timestamp [0..1]
- dit: timestamp [0..1]

Normative
Primitive

Authorization

Prohibition

Power

Third
Party

HealthVault
Provider

is expector for

Commitment

Disclosure
Auth

Agent

is expectee for

given by

used by attached to
Disclosure

Token

Thing
1

1

*

* * 1
targets

- vit: timestamp [0..1]

Violable Normative
Primitive

1

1

*

*
0..1 1

Patient
emits1

*

Figure 3: Static ontology in QUEN. The part above the dashed line is a fixed, upper ontology present in every QUEN system.

relationships that exist independently of the specific domain

at hand.

The top part of Figure 3 shows such upper ontology, which

we call in the following On. This ontology is designed taking

inspiration from the Custard structural elements. We make use

of UML to graphically capture On. With a slight abuse of

notation, we use the same symbol to denote the UML class

diagram of an ontology, and its corresponding formalization

into lightweight DLs (cf. Section II-B).

Specifically, On captures the different types of normative

primitives used in Custard: authorization, prohibition, power
and commitment, all subclasses of the general notion of

normative primitive (norm for short). A norm comes with

various timestamp attributes, tracking their creation time (crt)
and, optionally, expiration time (ext), detachment time (det),
and discharge time (dit). Prohibitions and commitments also

get, optionally, the information about their violation time (vit).
While the creation timestamp is mandatory for the existence

of a norm instance, the other timestamps are optional (for this

reason we have the cardinality [0..1]), and get filled or not

depending on how the instance evolved. Additional constraints

(not shown in the UML diagram) can be imposed to ensure

mutual exclusion between ext and det, vit and dit, and ext
and dit. Such attributes, in fact, cannot coexist, as they are

associated to alternative evolutions of the norm. Recall that

this ontology is static, so such timestamp attributes are treated

as standard attributes, without attaching to them any temporal

semantics.

In addition, On introduces the general notion of agent,
as well as the two key relationships indicating that each

normative primitive has one expector agent, and one expectee

agent. Differently from Custard, we also include a further rela-

tionship to explicitly indicate what is the target of a normative

primitive. The target class, together with the expector and

expectee agent classes, provides an identification principle for

the normative primitive, so that each instance of the normative

primitive is uniquely identified by a corresponding triple of

instances defining the actual expector, expectee, and target

object.

When QUEN is used to capture norms and participants of a

domain of interest, On is complemented by a specific, more

concrete ontology, which refines the general upper notions

through specialization of classes and relationships. This allows

the modeler to conceptually capture the relevant, domain-

specific (sub)types of norms, agents, and target objects.

Example 3. The lower part of Figure 3 shows how the upper

ontology On is specialized to reflect the disclosure authoriza-

tion from Example 2. �

B. Step 2: Specifying the Lifecycle of Norms

This is the central step of the methodology. It is concerned

with the specification of how the domain-specific norms in-

troduced in the previous step evolve through their different

states, depending on the patterns of data stored in the legacy

database. To do so, we take again inspiration from Custard,

and lift the specification of a norm lifecycle dealing with full

SQL.

Let D be the timestamped legacy database of interest. A

QUEN lifecycle specification for norm N makes use of SQL

queries expressed over the schema ofD to retrieve data objects

and timestamps to then indicate which instances of N exist,

and when and how they evolve. Such queries may indirectly

make use of the answers produced by other queries (e.g., in

Example 2 the discharge timestamp depends on the detach

timestamp). When formulating such queries, we then employ

“parameters" that act as placeholders for constant objects, and

that will be bound to actual objects depending on the answers

obtained via other queries. This is similar to the notion of

prepared statement in SQL.

Notationally, we use Q�p(�x, t) to indicate a SQL query with

parameters �p and answer variables �x and t, where t is an

answer variable matching with timestamp values. This is a

compact notation for a SQL query of the form

127

SELECT �x, t FROM . . . WHERE ϕ(�x, t, �p)

where ϕ is a (possibly nested) SQL condition over �x, t, and
parameters in �p.
With this notation at hand, we are now ready to define our

lifecycle specification. Let N be a domain-specific norm class,

and:
• T ∈ {Authorization,Power ,Prohibition,Commitment}
be the norm type of N ;

• Rd be a domain-specific relations that is attached to N
and is a sub-relation of the expector relation in On (thus

qualifying the domain-specific expector for N);

• Rc be a domain-specific relation that is attached to N
and is a sub-relation of the expectee relation in On (thus

qualifying the domain-specific expectee for N);

• Rt be a domain-specific relationship that is attached to

N and is a sub-relation of the target relation in On (thus

qualifying the domain-specific target for N).

A QUEN lifecycle specification for this combination of ele-

ments has the following form:

T N Rd d Rc c Rt o
create Qcr(d, c, o, tcr)
expire Qex

d,c,o,tcr
(tex)

detach Qde
d,c,o,tcr

(tde)

discharge Qdi
d,c,o,tcr,tde

(tdi)

[violate Qvi
d,c,o,tcr,tde

(tvi)]

where the last line is only present if T ∈
{Prohibition,Commitment}. The first line declares the

norm N , by semantically identifying its expector, expectee,

and target object using the vocabulary of the corresponding

relations attached to N . These three data elements are

obtained through the SQL query associated to the norm

creation, and are used to identify instances of the norm. The

expiration and detach queries may use such data elements as

parameters, together also with the creation timestamp. The

discharge and violate queries may also use as parameter the

detach timestamp.

The similarities and differences with Custard should be

apparent from the definition. In QUEN:

• the norm declaration uses the vocabulary of the ontology,

and explicitly points to the target object on which the

norm operates.

• Queries are arbitrary SQL queries that can make use of

arbitrary SQL statements such as aggregations and the

like, but that do not come with the surface, event-based

interface syntax of Custard.

• Since transitions are defined via arbitrary SQL queries, it

is not possible to implicitly define expiration and viola-

tion as the impossibility of realizing the detach/discharge

queries; such transitions have to be explicitly defined.

Example 4. To clarify how QUEN lifecycle specifications

work, let us redefine the authorization introduced in Exam-

ple 2, considering as underlying database schema the one in

Example 1. In particular, we want to refine the specification

from Example 2 by:

• explicitly indicating that a disclosure authorization targets

a disclosure token, as captured by the Allowed relation

schema;

• each disclosure authorization is created from an entry in

the SentCred relation, provided that the involved agents

match those associated to the same disclosure token

within Allowed . �
The same matching conditions over the involved agents may

be applied also when detaching and discharging the disclosure

authorization, but we do not do this and keep the specification

compact.

The resulting QUEN lifecycle specification is shown in

Figure 4. Notice the usage of the disclosure token as a

correlation id to inspect all the different relation schemas of

interest.

It is important to stress that a QUEN lifecycle specification

may not be well-formed. This happens if, e.g., the detach

query returns more than one answer, creating ambiguity on

when the transition actually happened. This depends on how

the specification has been modeled, not only considering the

queries used therein, but also the actual data stored in the

underling database. In our running example, the specification

of the disclosure authorization would not be well-formed in

case multiple data requests are issued for the same disclosure

token: it would not be clear anymore when the authorization

has been detached, becoming in place. We will come back to

this important aspect in Section IV-C.

C. Step 3: Devising Static Mappings

While QUEN lifecycle specifications focus on domain-

specific norm classes and their surrounding relations, other

elements present in the ontology may not be directly men-

tioned. Those elements consequently miss a linkage to the

underlying data. This can be restored by introducing additional

static mappings, in the style of OBDA. This can be done only

if the underlying database actually contains data that could

indeed provide the basis to describe the extension of some

elements. If not, no explicit linkage between such elements

in the ontology and the underlying data is established, which

is perfectly fine given that ontologies work under incomplete

information.

Example 5. Consider again the domain-specific part of the

ontology shown in Figure 3. The lifecycle specification in

Figure 4 focuses on the DisclosureAuth class and surrounding

relations (which implicitly includes also the endpoint classes

attached to those relations, given that UML univocally assigns

the endpoint classes to each binary relation). However, it does

not mention directly the Patient class, nor the corresponding

emits relation. The underlying database schema introduced in

Example 1 actually provides us the raw data to characterize

the extension of such elements: it is enough to inspect the

Allowed relation and filter it by retaining the pid and discid
fields. We can then construct the following mapping,

SELECT pid,discid FROM Allowed
� emits(pat(pid), dtoken(discid))

128

authorization DisclosureAuth used by tp given by h attached to d
create SELECT c.tpid AS tp, c.hid AS h, c.discid AS d, c.t AS tcr

FROM SentCred c,Allowed a WHERE c.discid = a.discid AND c.tpid = a.tpid AND c.hid = a.hid
detach SELECT r.t AS tde FROM ReqData r WHERE r.discid = d AND r.t > tcr
discharge SELECT a.t AS tdi FROM Accessed a WHERE a.discid = d AND a.t ≥ tde + 1 AND a.t ≤ tde + 10

Figure 4: QUEN lifecycle specification of the disclosure authorization on top of the database schema of Example 1.

where object constructors simply use (abbreviations of) the

names of the corresponding endpoint classes. Notice that

this mapping also implicitly populate the Patient class with

pat(pid), given that the domain of emits is Patient as dictated
by the ontology. �

D. Putting Everything Together

We are now ready to define a QUEN system, putting together

the various elements introduced in Sections III-A, III-B, and

III-C. A QUEN system is a tuple 〈S,Σ,O,L,M〉, where:
• S is a relational database schema;

• Σ is a vocabulary,

• O = On 	Ods is an ontology over Σ constituted by the

upper ontology On, and its domain-specific specialization

Ods;

• L is a set of QUEN lifecycle specifications with queries

over S, and containing at least one specification per class

N in Ods that specializes a norm class;

• M is a set of static mappings linking S to O.

A QUEN system semantically represents norms and their

lifecycle by suitably inspecting a database schema. However,

it cannot be directly used to formulate queries over norms and

their states, and obtain answers computed starting from the

raw data contained in the database. This is what we tackle

next.

IV. FROM QUEN TO TOBDA

To use QUEN for querying legacy data and reconstruct

the state of modeled norms, we provide a translation mech-

anism that, given a QUEN system Q = 〈S,Σ,O,L,M〉,
produces a corresponding TOBDA system tobda(Q) =
〈S ′,Σs,Σt,Os, T ,Ms,Mt〉 using the following approach:

• S ′ = S, Σs = Σ, Os = O.

• Σt contains unary temporal predicates created, expired,
detached, discharged, and violated, whose single argu-

ment is a norm instance; these are the core temporal

predicates that capture which norm instances are in which

states, and when.

• T = ∅;
• Ms contains M and additional static mappings extracted

by processing the lifecycle specifications in L, as de-

scribed next;

• Mt contains temporal mappings extracted by processing

the lifecycle specifications in L, as described next.

The interesting part of the translation is how each specification

in L is encoded into a set of static and temporal mappings.

This is what we tackle next.

A. From Lifecycle Specifications to Mappings

As a preliminary step for the translation, we need to define

how a query with parameters can be suitably merge with a

query providing those parameters, so as to obtain a standard,

SQL query as result. This is done by simply computing their

join (in the standard SQL sense).

Specifically, let Q1(�x, t1) be a query without parameters of

the form

SELECT �x, t1 FROM ψ1 WHERE ϕ1(�x, t1)

and Q2
�x,t1

(�y, t2) be a query using as parameters the answer

variables of Q1, and of the form

SELECT �y, t2 FROM ψ2 WHERE ϕ2(�y, t2, �x, t1)

Then, the join of Q1 into Q2, written Q1
�� Q2, is the query

SELECT �x, t1, �y, t2 FROM ψ1, ψ2 WHERE ϕ1(�x, t1)
AND ϕ2(�y, t2, �x, t1)

Example 6. Consider the create and detach queries from the

specification in Figure 4. Their join gives raise to the query:

SELECT c.tpid AS tp, c.hid AS h, c.discid AS d,
c.t AS tcr, r.t AS tde

FROM SentCred c,Allowed a,ReqData r
WHERE c.discid = a.discid AND c.tpid = a.tpid

AND c.hid = a.hid AND r.discid = d AND r.t > tcr

�

Consider a lifecycle specification for norm class N and

related relations, of the form:

T N Rd d Rc c Rt o
create Qcr(d, c, o, tcr)
expire Qex

d,c,o,tcr
(tex)

detach Qde
d,c,o,tcr

(tde)

discharge Qdi
d,c,o,tcr,tde

(tdi)

[violate Qvi
d,c,o,tcr,tde

(tvi)]

In addition, assume that the endpoint classes related to N via

Rd, Rc, and Rt are respectively Ad, Ac, and C. Consistently
with the static mappings in M, defined as of Section III-C,

we always use the very same name (or, consistently, an

abbreviated version) of the class name to obtain the function

symbol used to construct objects of such class in a mapping

specification. We also use the abbreviated function symbol t
for the timestamp class.

With this basis, the create entry provides the basis for ex-

tracting an instance ofN and its main constitutive components,

129

namely expector, expectee, and target object. In particular, we

construct the static mapping

Qcr(d, c, o, tcr)� Rt(n(d, c, o),C(o)),
crt(n(d, c, o), t(tcr))
Rd(n(d, c, o), ad(d)),
Rc(n(d, c, o), ac(c)),

(1)

Recall that, also in this case, the mapping has the indirect

effect of populating the endpoint classes of the relations

involved in the mapping, that is, N , Ad, Ac, and C.

Example 7. By compactly indicating the create query of

Figure 4 asQcr(tp, h, d, tcr), the corresponding static mapping

is:

Qcr(tp, h, d, tcr)� crt(da(tp, h, d), t(tcr)),
attachedTo(da(tp, h, d), dtoken(d)),
usedBy(da(tp, h, d), thParty(tp)),
givenBy(da(tp, h, d), hvProv(h))

The other entries in the specification give rise to two types

of mappings: a static mapping populating the corresponding

timestamp attribute, and a temporal mapping describing if and

when the norm has been in a specific state of its lifecycle

(cf. Figure 1). The left part of the mapping is formed by

suitably joining the query used in the entry, with those in the

other entries that provide parameters.

Let us specifically consider the detach entry (the expire

entry works analogously). The static mapping is generated,

as follows:

Qde
d,c,o,tcr

(tde) �� Qcr(d, c, o, tcr)

� det(n(d, c, o), t(tde))
(2)

Notice that this mapping is applied only if the left-hand side

returns an answer (i.e., if the norm instance n(d, c, o) has been
actually subject to a detach, expressed according to Qde).

As for the temporal part, we need instead two mappings.

The first mapping accounts for the situation where the norm

instance n(d, c, o) has been created, and eventually detached.

This means that n(d, c, o) was in state created for the definite

time interval going from the creation to the detachment time.

In particular, we get:

Qde
d,c,o,tcr

(tde) �� Qcr(d, c, o, tcr)

� created(n(d, c, o))@[tcr, tde)
(3)

The second mapping accounts instead for the situation

where the norm instance has been created, but consequently

never detached. The absence of the detachment can be cap-

tured by conjoining the WHERE part of Qcr (which extracts

the norm instance and its creation time) with a SQL statement

wrapping the join of Qde and Qcr inside the NOT EXISTS

SQL statement (which witnesses that no detachment time

can be extracted). If this is the case, then the norm instance

indefinitely stays in the created state. Technically, we get:

Qcr(d, c, o, tcr)
AND NOT EXISTS(
Qde

d,c,o,tcr
(tde) �� Qcr(d, c, o, tcr)

)

� created(n(d, c, o))@[tcr,∞)

(4)

A similar approach is followed to create static and temporal

mappings from the discharge and violate entries. We consider

only the case of discharge (that of violation is equivalent). The

static mapping extracts the discharge timestamp as follows:

Qdi
d,c,o,tcr,tde

(tdi) ��
(
Qde

d,c,o,tcr
(tde) �� Qcr(d, c, o, tcr)

)

� dit(n(d, c, o), t(tdi))
(5)

The two temporal mappings focus on the detached state

and the discharged one. If a discharge time can be retrieved,

it means that the norm instance stayed detached for a while,

eventually being discharged. Thus, we get:

Qdi
d,c,o,tcr,tde

(tdi) ��
(
Qde

d,c,o,tcr
(tde) �� Qcr(d, c, o, tcr)

)

� detached(n(d, c, o))@[tde, tdi),
discharged(n(d, c, o))@[tdi,∞).

(6)

The other situation that has to be handled is the one in

which the norm instance was detached, but never consequently

discharged. This means that we can retrieve the detachment

timestamp, but not the discharge one. Technically:

(
Qde

d,c,o,tcr
(tde) �� Qcr(d, c, o, tcr)

)

AND NOT EXISTS(
Qdi

d,c,o,tcr,tde
(tdi) ��

(
Qde

d,c,o,tcr
(tde)��Q

cr(d, c, o, tcr)
))

� detached(n(d, c, o))@[tde,∞)

(7)

We close by noticing that the temporal mappings are chained

in such a way that from the moment where a norm instance

is created, it is always associated, in each time point, to a

normative state.

B. Querying Norms

Now that we know how to translate a QUEN system Q into a

corresponding TOBDA system tobda(Q), we can leverage the

full power of temporal TOBDA semantic queries to express

complex queries on the states of norms over a legacy database

(conforming to the database schema in Q). Examples of

queries are:

• Retrieve all norm instances that are violated at a given

timestamp.

• Obtain all the detached commitments whose expectee is

an agent of interest.

• Check if there is a detached authorization of a specific

type, for a given pair of agents and a given target object.

If so, retrieve the corresponding time interval.

The answers returned by such queries can be used by an

auditor or business analyst to ascertain the normative state

of a company starting from the actual data stored inside its

information system(s). This, in turn, can be used to ascertain

conformance and compliance.

C. Debugging a QUEN System

As argued in Section III-B, a modeler may write queries

that, once embedded into a QUEN specifications and applied

on top of a specific database, lead to “wrong answers".

Specifically, two errors may arise:

130

• timestamp ambiguity: a normative primitive gets associ-

ated to multiple timestamps for the same transition;

• state superposition: a normative primitive belongs to two

states at the same time.

The first error may arise if the query associated to the

corresponding transition in the lifecycle specification returns

more than one answer. The second may arise if the queries

associated to two transitions return the same timestamp.

To detect, and debug, such issues, we can again take

advantage from the translation of QUEN into TOBDA. In the

case of timestamp ambiguity, one of the mappings (1), (2),

(5) would produce two facts for the corresponding timestamp

role. However, this would lead to an inconsistent ontology:

as shown in Figure 3, timestamps are in fact functional.

Such an inconsistency can be checked using standard TOBDA

reasoning services, but does not give any hint on the root

cause for inconsistency. However, we can again leverage the

TOBDA framework to have a fine-grained understanding of

such a root cause, using standard techniques [13]. Specifically,

it is possible to automatically construct a SQL query that,

once submitted to the underlying database, returns those norm

instances that have at least two creation times (and similarly

for the other time attributes).

The case of state superposition can instead be simply

handled by formulating suitable semantic queries that retrieve

those norm instances that are simultaneously present in two

states. By inspecting the temporal mappings, a case of state

superposition can only arise if the norm instance simultane-
ously undergoes a transition to two different states. Hence, to

retrieve all norm instances that experienced a superposition

of state violated and discharged (and when this undesired

superposition arose), we can issue the following query:

Qdv(n, t) = violated(n)@[t, t1) ∧ discharged(n)@[t, t2)

A similar approach can be adopted to check different forms

of superposition.

V. CONCLUSION

We have presented QUEN, a framework for normative prim-

itives, which starts from the norm lifecycle specification of

Custard, and exploits temporal OBDA to lift generic temporal

data to represent and query norms at a fully semantic level.

We have relied on temporal OBDA mainly to represent

norms, agents, and target objects, and the elements correspond-

ing to the different components of a QUEN system. We observe,

however, that we can leverage the full power of the OBDA

paradigm to encode additional knowledge about the domain

of interest, and take it into account when querying norms

and understanding their lifecycle. Also, one can rely on the

inference services of ontology-based systems to support the

debugging of a specification. In that respect, it is important to

observe that we have presented a conceptual framework, but

we can leverage existing implementations of (temporal) OBDA

systems to immediately make this framework operational [14],

[10]. As further future work, we plan to investigate how the

framework and methodological approach presented here can

be extended towards the problem of monitoring the lifecycle

of normative states in a dynamic environment. This is a

challenging problem that will have to rely on extending the

(temporal) OBDA approach towards a setting of streaming

data, a currently active area of research [15].

ACKNOWLEDGEMENT

This research has been supported by the unibz CRC Projects

REKAP and PWORM.

REFERENCES

[1] M. Singh, “Norms as a basis for governing sociotechnical systems,”
ACM Trans. on Intelligent Systems Technology, vol. 5, no. 1, 2014.

[2] R. Ferrario and N. Guarino, “Commitment-based modeling of service
systems,” in Proc. of the 3rd Int. Conf. on Exploring Services Science
(IESS). Springer, 2012, pp. 170–185.

[3] M. Montali, D. Calvanese, and G. De Giacomo, “Verification of data-
aware commitment-based multiagent systems,” in Proc. of the 13th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS), 2014,
pp. 157–164.

[4] F. Chesani, P. Mello, M. Montali, and P. Torroni, “Representing and
monitoring social commitments using the event calculus,” J. of Au-
tonomous Agents and Multi-Agent Systems, vol. 27, no. 1, pp. 85–130,
2013.

[5] A. K. Chopra and M. P. Singh, “Cupid: Commitments in relational
algebra,” in Proc. of the 29th AAAI Conf. on Artificial Intelligence
(AAAI). AAAI Press, 2015, pp. 2052–2059.

[6] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini,
and R. Rosati, “Linking data to ontologies,” in J. on Data Semantics.
Springer, 2008, vol. 10, pp. 133–173.

[7] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati,
and M. Zakharyaschev, “Ontology-based data access: A survey,” in Proc.
of the 27th Int. Joint Conf. on Artificial Intelligence (IJCAI). Int. Joint
Conf. on Artificial Intelligence Org., 2018, pp. 5511–5519.

[8] G. Xiao, L. Ding, B. Cogrel, and D. Calvanese, “Virtual Knowledge
Graphs: An overview of systems and use cases,” Data Intelligence,
vol. 1, no. 3, pp. 201–223, 2019.

[9] A. Chopra and M. Singh, “Custard: Computing norm states over
information stores,” in Proc. of the 15th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS), 2016, pp. 1096–1105.

[10] E. Güzel Kalayci, S. Brandt, D. Calvanese, V. Ryzhikov, G. Xiao, and
M. Zakharyaschev, “Ontology-based access to temporal data with Ontop:
A framework proposal,” Applied Mathematics and Computer Science,
vol. 29, no. 1, pp. 17–30, 2019.

[11] M. P. Singh, “Formalizing communication protocols for multiagent
systems,” in Proc. of the 20th Int. Joint Conf. on Artificial Intelligence
(IJCAI), 2007, pp. 1519–1524.

[12] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, Eds., The Description Logic Handbook: Theory, Implemen-
tation and Applications. Cambridge University Press, 2003.

[13] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodriguez-Muro, and R. Rosati, “Ontologies and databases: The
DL-Lite approach,” in Reasoning Web: Semantic Technologies for Infor-
mations Systems – 5th Int. Summer School Tutorial Lectures (RW), ser.
Lecture Notes in Computer Science, vol. 5689. Springer, 2009, pp.
255–356.

[14] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti,
M. Rezk, M. Rodriguez-Muro, and G. Xiao, “Ontop: Answering
SPARQL queries over relational databases,” Semantic Web J., vol. 8,
no. 3, pp. 471–487, 2017.

[15] R. Tommasini, P. Bonte, E. Della Valle, F. Ongenae, and F. De Turck, “A
query model for ontology-based event processing over RDF streams,” in
Proc. of the 21st Int. Conf. on Knowledge Engineering and Knowledge
Management (EKAW), ser. Lecture Notes in Computer Science, vol.
11313. Springer, 2018, pp. 439–453.

131

