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Abstract

The idea of developing representation systems based on a structured representation of knowledge was first
pursued in Knowledge Representation with Semantic Networks and Frames. Later, Description Logics have
been introduced with the aim of providing a simple and well-established first-order semantics to capture
the meaning of the most popular features of the structured representations of knowledge. This research has
paralleled the one carried out in Databases, where first semantic and conceptual database models and more
recently object-oriented database models have been developed, which allow for an abstract and modular
representation of data relationships at the intensional level, overcoming some limitations of record-based
data models. However, while in Description Logics the emphasis has always been on reasoning on and about
structured descriptions, this has not been really the issue in database models, where emphasis was more on
accurately capturing the complex relations that occur between data in typical commercial applications.

In this thesis we try to integrate these two lines of research, by devising in an incremental manner a
set of abstract representation languages, called L-languages, and studying reasoning on them. Using L-
languages one can build (by means of certain constructors that characterize the language) complex class and
attribute expressions and use these to define schemata for the representation of knowledge at the intensional
level. The meaningful constructors we consider in this thesis are arbitrary boolean combinations of classes,
cardinality restrictions, which generalize functional and existence constraints in Databases, inverse attributes
and more complex traversal patterns, and finally well-foundedness constraints, which allow one to define
several recursive and inductive structures.

We first show that L-languages are indeed adequate for our purposes, since they subsume (in their more
expressive variants) the structural aspects of most of the representation formalisms used both in Knowledge
Representation and in Databases.

The main part of the thesis is concerned with the design of effective techniques for intensional reasoning
on L-schemata and the study of their computational properties. The reasoning tasks we consider are schema
consistency (“Is there a nonempty database that satisfies all constraints expressed in the schema?”), class
consistency, (“Can a class be populated in a database satisfying the schema?”), and class subsumption
(“Does a class denote a subset of another class in every database satisfying the schema?”).

We first characterize the intrinsic complexity of these reasoning tasks for a relevant class of languages and
different types of schemata. In particular, even for the least expressive L-language and the simplest form of
schemata, which are subsumed by most known representation formalisms, reasoning is already intractable.
Adding either the possibility to express disjunction or the possibility to use cycles in the schema, further
increases the computational complexity. We show also that the combination of these two features is already
sufficient to make reasoning EXPTIME-hard, i.e. as hard as reasoning on the most general type of schemata
using the most expressive language.

The interaction that occurs between some of the constructs in the more expressive L-languages when they
are used inside schemata causes the finite model property not to hold. This means that reasoning differs in
the case when we consider arbitrary models (i.e. databases of arbitrary, possibly infinite, size) from the case
when we restrict our attention to finite ones. The latter assumption is in fact the common one in databases,
while finiteness of the underlying domain has seldom been an issue in Knowledge Representation. For this
reason we analyze reasoning in both contexts separately.

In the case of unrestricted models the reasoning techniques developed in Knowledge Representation are
adequate. They are based on the similarity that exists between the interpretative structures of L-languages
and those of Propositional Dynamic Logics (PDLs), which are formalisms specifically designed for reasoning
about program schemes. Such similarity results in a well-known correspondence between both formalisms
which we extend in this work in order to cope with all the constructs present in L-languages. We show

vii
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decidability in deterministic exponential time for an extended version of PDL which corresponds to the
most expressive L-language we consider. The results are obtained by extending known techniques based on
automata on infinite trees, which exploit the existence of particular tree-like models for satisfiable formulae
of the PDL. The correspondence allows us to establish the same (tight) upper bound for reasoning with
respect to arbitrary models in schemata expressed in this language.

In the case of finite models, on the other hand, the known reasoning methods cannot be used, since the
existence of tree-like models is not guaranteed if the domain has to be finite. For this reason completely
new reasoning techniques are developed. They are based on the construction from a given schema of a
system of linear inequalities, and on the relationship that exists between particular solutions of this system
and finite models of the schema. The resulting algorithm works in worst case deterministic exponential
time for a relevant subset of L-schemata, and exhibits efficient behaviour in meaningful practical cases. A
deterministic double exponential upper bound is established for the most expressive form of L-schemata.



Chapter 1

Representing Structured Information

Current commercial applications require the manipulation of large amounts of data with complex interrela-
tionships. Therefore, the study and development of formalisms that allow for a structured representation of
knowledge is gaining an ever increasing importance.

Such representation formalisms have been developed separately in different fields, with different motiva-
tions and needs. On one side, in Databases, researchers have been looking for expressive data models with
which they could represent data that is manipulated by commercial applications. The aim was to use these
models in the analysis and design phase of complex information systems. This led to the development of
conceptual and semantic data models, in which the emphasis is exactly on the accurate representation of
complex data relationships. More recently, the need to create a tighter coupling between database manage-
ment systems and modern programming languages based on the object-oriented paradigm, has led to the
development of so called object-oriented data models.

Researchers working in Artificial Intelligence have recognized very early that any machine that should
exhibit an “intelligent behaviour”, needs to handle a great amount of information. One of the central
problems to solve is finding mechanisms for representing knowledge in such a way that a mechanized agent can
manipulate it and use it for performing deductions in an efficient way. Therefore Knowledge Representation
has become a research field itself [112], and has led to the development of a great variety of formalisms for
modeling knowledge in a structured way, and for manipulating it by using formal tools.

Research in Knowledge Representation is based on what Smith [148] calls the Knowledge Representation
Hypothesis:

“Any mechanically embodied intelligent process will be comprised of structural ingredients that
(a) we as external observers naturally take to represent a propositional account of the knowledge
that the overall process exhibits, and (b) independent of such external semantical attribution,
play a formal but causal and essential role in engendering the behaviour that manifests that
knowledge.”

Knowledge based systems can be considered as those systems that satisfy the Knowledge Representation
Hypothesis by definition. This means that they contain a distinct component, called the Knowledge Rep-
resentation (sub)system, which manipulates a knowledge base and exhibits to the outside a picture of the
world that corresponds to what is represented in the knowledge base. From the birth of the discipline to
now a great variety of formalisms for the definition and manipulation of knowledge bases have been studied
and developed.

In the rest of the chapter we introduce the most important formalisms for the representation of structured
knowledge used both in Artificial Intelligence and in Databases: In Section 1.1 we describe Semantic Networks
and Frame based systems, and in Section 1.2 we discuss Description Logics. Semantic and object-oriented
database models are briefly introduced in Sections 1.3 and 1.4, respectively. We conclude the chapter by
describing the goal of the thesis and giving an outlook on the main results.

1



2 CHAPTER 1

1.1 Semantic Networks and Frame Based Systems

Semantic Networks were one of the first attempts at structured knowledge representation. The concept of
Semantic Network was introduced in [130] by Quillian, who intended to give a formal representation of the
“objective” meaning of words by means of his Semantic Memory Model. Although the model he proposed
was very simple, if compared to the successive developments, it introduced a number of concepts that have
successively been recognized as fundamental for the whole field of Knowledge Representation.

A Semantic Network represents knowledge by means of a set of nodes that are connected to each other
by links of different types. Each node corresponds either to a concept or to a real world object, and the
connections between nodes represent the relationships that exist between concepts and/or objects.

As Woods in [167] and Brachman in [30] point out, despite their name Semantic Networks did not have
a precise semantics. This is partly due to the fact that in a Semantic Network both arcs and nodes can
carry different types of meaning: A node can represent either a concept, with an associated set of properties
that hold for all real world objects that are an instance of it. Or it can represent a single object with
specific properties. Similarly, a link between two nodes can either contribute to the definition of a concept,
or it can represent a relation that holds between two objects and is therefore a specific assertion about the
world. Nodes and links of the first type carry intensional knowledge, while those of the second type provide
extensional knowledge. This distinction is in fact fundamental and at the base of all recent knowledge
representation formalisms.

The lack of a clear semantics strongly limits the use of Semantic Networks as knowledge representation
component for applications in Artificial Intelligence. As pointed out by Hayes in [91], a knowledge repre-
sentation language can be characterized as a formal language which has a semantic theory, by which Hayes
means an account of how the expressions of the language relate to the real world objects about which the
language claims to express knowledge. This implies that a knowledge base, built out of expressions of a
knowledge representation language, is given a semantics a priori and “carries its meaning”.

Frames, introduced by Minsky in 1975 [118] represent another important development in Knowledge
Representation. A frame usually represents a concept (or class) with associated attributes, which represent
the properties shared by all instances of the class. An attribute is specified through the definition of a
slot, which contains all information relevant to the attribute: restrictions on the number of possible values
(called slot fillers), a default value, which is the one to take for the attribute if more specific information is
missing, procedures for calculating the value when it is requested but not yet available, or procedures that
are activated if the value is modified or deleted. Additionally, each slot has an associated domain for its
fillers. Such domain can either be a concrete domain, such as strings or integers, or another frame specified
through its identifier. Moreover it is possible to specify that a frame is a sub-frame of another one and
therefore should inherit all of its properties, i.e. all of its slots.

A frame can also represent a single object of the domain, in which case it has a special attribute that
relates it to the frame representing the class of which it is an instance. The slots of a frame representing
an object are inherited by the frame representing its class, and to each slot a concrete value taken from its
definition domain is associated. If not explicitly overridden, the value taken is the default value for the slot.

Reasoning in frame systems involves usually both the intensional and the extensional knowledge con-
tained in the frame knowledge base. At the intensional level, the deduction process leads to the construction
of a frame taxonomy, using both the explicit inclusion assertions in the knowledge base, and the structural
information associated to the frame by virtue of their slots. The taxonomy induces a modification of prop-
erties at the extensional level, by assigning values to slots and by propagating the effects caused by the
activation of the procedures associated to the slots.

Due to the lack of distinction between intensional and extensional knowledge and the presence of pro-
cedural attachments, however, the early frame based systems [27, 78] suffered from problems similar to
those of Semantic Networks. Additionally, the treatment of default values lacked a clear semantics and the
propagation of side effects made it difficult to predict the behaviour of the system, which in any case was
dependent on the implementation.

1.2 Description Logics

Already Hayes [91] notes, that many aspects of Semantic Networks and Frames admit a translation in
first order logic. Building on this correspondence, subsequent research in Knowledge Representation was



1.2 Description Logics 3

therefore aimed at overcoming the problems inherent in the early representation formalisms by formalizing
their principal characteristics.

The first system with precisely this objective was kl-one[35], developed from the Ph.D. thesis of Brach-
man. The high expressivity of the representation language used in this system makes it however impossible
to develop reasoning procedures that are sound and complete with respect to the formal semantics. It was in
fact show later [142] that it is already undecidable to check whether a class expressed in the kl-one language
contains an inconsistency that forces it to be necessarily empty. Successively, building on kl-one, a variety
of knowledge representation systems, called terminological (or concept based) systems have been developed.
These are all equipped with reasoning procedures that conform to the semantics. The most important of
these systems are kandor [125], krypton [34], nikl [101], loom [114], classic [29], back [129], and kris
[14].

Each terminological system is based on a specific Description Logic (this is the most popular denomina-
tion today, synonyms are Concept Language and Terminological Logic). The basic elements of a Description
Logic are concepts, which denote classes, and roles, which are used to specify the properties of classes. Each
concepts is interpreted as a subset of the interpretation domain (the set of instances of the concept), while
each role is interpreted as a binary relation on that domain. A Description Logic is characterized by the
set of constructors that can be used to build complex concept and role expressions starting from a set of
concept and role names. The most common concept constructors include constructors that correspond to the
boolean connectives and constructors that allow one to quantify over all domain elements connected through
a certain role. For example, the concept expression Courseu¬AdvCourseu∀followedby.GradStud denotes
the class of courses that are not advanced and that are followed only by graduate students. The symbol “u”
denotes conjunction and is interpreted as set intersection, while “¬” denotes negation and is interpreted as
complement with respect to the domain of interpretation. The expression ∀followedby.GradStud denotes
the set of objects that are connected through role followedby only to instances of GradStud. An expression
of the form ∀R.C, where R is a role and C is a concept is called universal quantification over roles, and is used
to specify the properties of all objects connected by means of a role. The expression ∃followedby.Student
denotes all objects that are connected by means of followedby to at least one instance of Student. Expres-
sions of the form ∃R.C are called existential quantifications, and can appear also in the unqualified form ∃R.
In the unqualified case it is only required that an object connected through role R exists, without specifying
further properties that this object must satisfy.

An additional constructor demonstrates particularly useful. It stems from the cardinality restrictions
originally present in frame bases systems, and is called number restrictions. In Description Logics, number
restrictions are denoted by (≥ nR) and (≤ nR), where n is a nonnegative integer (in the formalism we are
going to introduce, and which is in fact a variant of Description Logics, we use the notation ∃≥nR and ∃≤nR
instead). They allow one to pose restrictions on the number of times an object can appear as a component
in a role R. As an example, the courses followed by no more that 10 students can be represented by means
of Course u (≤ 10 followedby).

Many of the Description Logics studied so far have either no role constructors at all or consider only
the possibility to use role intersection (see [65] for a recent systematic presentation of all the constructors
mentioned so far). A notable increase in expressivity is achieved by allowing one to refer to the inverse of
a role. As an example, above, it would probably be more correct to use follows− in place of followedby.
The inverse constructor has been rarely considered till now (an exception is [52]), mainly because it is
problematic to handle it by the traditional reasoning methods developed for Description Logics, which are
based on tableau like calculi. This is especially true in combination with number restrictions and cyclic
assertions (see below).

Starting from a Description Logic one can then build terminological knowledge bases. These consist
usually of two separate components, an intensional and an extensional one. The extensional part contains
assertions about real world objects, specifying the concepts they are instances of and the other objects to
which they are connected through roles. The intensional part, instead, contains general assertions about
the concepts used in the extensional part, and specifies their properties and their mutual relations. It is
constituted by a set of assertions that are of two types: Primitive concept specifications, which have the form
C ¹̇ E, are used to specify by means of a concept expression E necessary conditions for an object of the
domain to be an instance of a concept C. Concept definitions, instead, which have the form C

.= E, allow
one to specify (by means of E) necessary and sufficient conditions for an object to be an instance of the
concept C to be defined. An assertion is satisfied in an interpretation, if the extensions of the concept and
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the concept expressions satisfy the set inclusion or equality. A model of (the intensional part) of a knowledge
base is an interpretation that satisfies all assertions in the knowledge base.

The basic inference tasks to be carried out on the intensional part of a knowledge base are:

1. Knowledge base consistency : Does the knowledge base admit a model? This is already meaningful if the
extensional part is empty, since the intensional part alone may already contain implicit contradictions.

2. Concept consistency : Given a knowledge base and a concept, is there a model of the knowledge base
in which the concept has a nonempty extension? This is important in the design phase of a knowledge
base, in order to eliminate meaningless parts.

3. Concept subsumption: Given a knowledge base and two concepts, is the extension of one concept a
subset of the extension of the other one in every model of the knowledge base? Subsumption allows
one to detect dependencies that are implicit in the knowledge base. It is at the basis of classification,
the typical form of reasoning performed in terminological systems, that consists in computing the
taxonomy of all concepts in the knowledge base. The taxonomy can then be used both to answer
queries at the intensional level [149], and to optimize the query answering process [24].

When considering the combination of both intensional and extensional part, several other reasoning tasks
arise, such as checking if the intensional and extensional part of a knowledge base are consistent with each
other, verifying if an object is necessarily an instance of a concept in all models of a knowledge base (instance
checking), or finding all instances of a concept in a knowledge base (retrieval). In this work we concentrate
on intensional reasoning only. A detailed treatment of the issues related to extensional reasoning can be
found in [12, 139, 69, 138].

Description Logics have been studied intensively, both with respect to expressivity and with respect to
the complexity of reasoning. These two aspects influence each other, and as pointed out in a seminal paper
by Brachman and Levesque [32], an even seemingly small change in expressivity can result in a big change in
computational complexity of reasoning. The issue consists therefore in finding the “right” balance between
these two aspects.

Initially, research concentrated on the restricted problem of pure subsumption, which is subsumption
between concept expressions assuming an empty knowledge base. The study of this problem was motivated
by the following observation: Under the assumption that the assertions in the knowledge base contain no
cyclic references between concepts, the problem of concept subsumption with respect to such a knowledge
base can be reduced to pure subsumption. This is achieved simply by unraveling all concept definitions
and specifications. The assumption of acyclicity is common to many terminological systems, and although
the unraveling of the definitions can in the worst case lead to an exponential increase in the size of the
concept expressions this seems not to happen in practical cases under reasonable assumptions [121]. The
computational complexity of pure subsumption has been exactly characterized for almost all interesting
combinations of constructs [119, 64, 143, 61, 65], and this problem can now be regarded as settled. The
computational complexity ranges from polynomially solvable for the simplest languages (containing only
conjunction, universal quantification and unqualified existential quantification) to NP-complete (e.g. if we
add qualified existential quantification), coNP-complete (e.g. if we add disjunction), or PSPACE-complete
(if we add both).

On the other hand, the problem of reasoning while taking into account the assertions of a knowledge base
is not so well studied and far from being completely characterized in all its sub-cases. This holds in particular
if cyclic assertions are allowed, although several results have already been obtained [9, 122, 11, 38, 36, 52]
(see also [70] for a recent survey covering also some of these aspects). First of all, while for acyclic knowledge
bases, only one semantics can be adopted, different possibilities arise, if we have a cyclic knowledge base
[122]. In fact, there is still no agreement, on which is the most appropriate semantic specification for cycles,
and there have also been proposals for an integration of the various types [55, 141]. In this thesis we
adopt descriptive semantics, which accepts as models all interpretations that satisfy the cyclic assertions
(as opposed to fixpoint semantics, which accept as models only particular interpretations satisfying the
assertions). Additionally, the presence of cyclic assertions greatly increases the complexity of reasoning
[10, 11, 122]. For these reasons, actual terminological systems (with the exception of k-rep [115]) rule out
the use of cycles in the knowledge base. Their importance in practice is however beyond dispute, since many
practical concepts can be expressed only by using cyclic assertions, and cyclic assertions are used anyway in
other representation formalisms.
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Cyclic assertions are especially problematic in the presence of constructors for number restrictions (a
restricted form called functionality is sufficient for causing problems) and inverse roles. In this case the
resulting knowledge base may be consistent, but only if we admit an infinite interpretation domain. This
phenomenon is new in terminological representation systems and has not been dealt with before. It requires
a distinction between reasoning in finite models and reasoning in unrestricted models. The development of
reasoning techniques for both cases and the characterization of their computational complexity constitutes
the most important contribution of this thesis.

1.3 Semantic Data Models

As already mentioned, in parallel to the work done in Knowledge Representation, also in Databases for-
malisms for the representation of complex data relationships have been studied. Together with the relational
model [47], in the ’70ies so called semantic data models have been introduced [45, 103, 98]. The relational
model, which allows the database designer to separate the logical design of a database from its implemen-
tation, is at the basis of all recent industrial database applications. Conceptual and semantic data models
were initially developed with a different objective: to be used in the design phase of database applications
as a tool for conceptual modeling. Indeed, they put their emphasis on the correct modeling of the relations
that exist between data, and offer sophisticated structuring primitives. This allows the designer to repre-
sent the data in a form that is conceptually similar to the way in which this data is effectively used in the
real world. Additionally, they favor a top-down development of the schema that increases modularity and
therefore simplifies the design and the successive interaction with the database. Recently there have also
been attempts at basing entire database management systems on conceptual models.

The first semantic data model was proposed by Abrial in 1974 [5]. Successive research has led to the
development of a great variety of semantic data models with different characteristics [98]. One of the best
known and widely used in industrial applications is the Entity-Relationship (ER) model introduced by Chen
in [45]. The basic concepts of the ER model are entities, relationships, and attributes. Entities denote classes
of objects with common properties. These are modeled by attributes, which represent atomic properties
and have an associated domain, and by the participation of the entity in relationships, via so called roles.
The relationships can be of arbitrary arity, and can also have associated attributes. The distinction between
entities and relationships, however, is strict, and “higher order” relations, i.e. relations over relationships,
are not allowed. By means of cardinality constraints between an entity and a relationship, associated to
the corresponding role that represents the participation, it is possible to limit (from below and from above)
the number of times that each instance of the entity can participate in the relationship. Finally, in the
ER model, one can assert so called ISA relations between entities, which are interpreted as set inclusions
between the respective classes. In such a way an entity inherits all properties of the entities to which it is
connected via ISA relations.

In restricted forms of the ER model, where the use of ISA relations is forbidden, it is commonly assumed
that the sets of instances of different entities are disjoint (see for example [111]). In the presence of ISA,
however, this assumption does not make sense. The basic ER model does not provide means for expressing
explicit disjointness of entities or the fact that an entity represents the union of other entities, although recent
papers stress the importance of such constructs in database specification [42, 48]. Therefore extensions have
been proposed in which inclusion between entities can be expressed not only by means of ISA relations
but also by so called generalization hierarchies (see for example [20]). They are used whenever an entity
represents the generalization of a set of other entities, and the set of its instances is the union of the sets of
instances of the entities it generalizes. Additionally, the most specific entities in the hierarchy are assumed
to be pairwise disjoint. Therefore generalization hierarchies combine disjointness and explicit disjunction.

Reasoning in the ER model includes verifying if an entity is satisfiable and reasoning on inheritance.
Satisfiability of an entity amounts to verifying whether the entity can be populated in a database that
satisfies all constraints imposed by the schema [7, 111]. Deducing inheritance amounts to verifying whether
the schema forces all instances of a certain entity to be also instances of another entity. This is clearly
the case if the two entities are connected by a chain of ISA relations or one entity is below the other in a
generalization hierarchy. It may arise, however, also due to the interaction of cardinality constraints along
a cycle in the schema, and the requirement that the database be finite.

In fact, unlike in terminological systems, the common assumption in Databases is that a database is
finite. Reasoning with respect to finite structures is different from reasoning with respect to unrestricted
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structures [50], and this holds already for the ER model [111].

1.4 Object-Oriented Data Models

Object-oriented data models have been proposed recently with the aim of integrating formalisms used in
the design of databases with the modern programming languages based on the object-oriented paradigm
[108, 21, 97, 104]. In contrast to traditional data models, that are value oriented, in object-oriented models
the emphasis is on the complex structure that objects of the domain to be modeled can have. Each object
is identified uniquely by an object identifier and has a possibly complex structure. This structure is deter-
mined by the classes the object belongs to, and these classes are specified through inheritance and typing
mechanisms.

A type is specified by applying inductively a set of type constructors starting from a set of basic types
and classes. All models considered in the literature have constructors for aggregation and grouping, to build
tuples and sets, respectively. An additional constructor that has been considered, is that of union [1]. The
complex types resulting from the repeated application of constructors are then used for the definition of
classes, and determine the structure of the objects that are instances of the classes. Usually, an object-
oriented schema is interpreted over a finite structured domain. Formally, this is achieved by assigning to
each object of the domain a value, whose structure is constructed in a way similar to that of the complex
types. Therefore, we have values that have the structure of a tuple or a set and are composed of values with
a simpler structure. By means of inclusion assertions between classes it is then possible that a class inherits
properties from its subclasses.

The semantics of an object-oriented schema is specified by assigning to each object of the interpretation
domain a structured value, and specifying the classes an object belongs to. In every database corresponding
to the schema, the set of objects that constitute the instances of the classes must satisfy the respective
inclusion assertion. Moreover, the value assigned to an instance of the class must be compatible with the
structure of the type associated to the class.

Reasoning in object-oriented model includes subtyping, which consists of verifying whether a type is a
subtype of another type in every database satisfying the constraints imposed by the schema, and in type
consistency, which consists in checking whether a type is consistent in a schema.

An important aspect of object-oriented models is the possibility to specify by means of so called methods
dynamic aspects of classes, i.e. aspects related to the evolution and manipulation of the database. A method
is a procedure associated to a class and which can operate on the instances of the class in the database, in
order to perform updates or deletions. Methods are an active area of research, but still resist to a satisfactory
formalization [105, 21, 22, 3]. In the present work we do not deal with methods and concentrate only of the
structural component of object-oriented schemata.

1.5 Goal of the Thesis and Main Results

The thesis is concerned with reasoning on formalisms for the representation of structured knowledge, by (1)
studying its intrinsic complexity, (2) designing effective techniques for performing deduction at the intensional
level, and (3) analyzing the computational properties of the developed methods. The study is performed in
the context of a formal framework that allows us to abstract with respect to the peculiarities of the different
contexts.

We first devise in an incremental manner a set of abstract representation languages, called L-languages.
In L-languages one can build (by means of certain constructors that characterize the language and similar
to what is done in Description Logics) complex class and attribute expressions. These can then be used
to define L-schemata which represent knowledge at the intensional level. The meaningful constructors we
consider in this thesis are the following: the propositional connectives on classes including union, number
restrictions, which generalize functional and existence constraints in Databases, inverse attributes and more
complex traversal patterns obtained by constructing arbitrary regular expressions of attributes. We intro-
duce also a new constructor, called “repeat”, not considered before in formalisms for structured knowledge
representation. By means of the repeat constructor together with cyclic definitions of classes, it becomes pos-
sible to define several inductive structures such as lists, trees, etc.. We consider different types of schemata,
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including the most general ones without any restriction on the form of the assertions that constitute the
schema.

We first show that L-languages and L-schemata are indeed adequate for our purposes, since they subsume
(in their more expressive variants) the structural aspects of the most common representation formalisms
used both in Knowledge Representation and in Databases, namely frame systems, and semantic and object-
oriented data models. This is done by providing translations that preserve the results of deductions from
all these formalism to L-schemata. These translations show that for this purpose we need the combination
of inverse attributes, disjunction, and number restrictions, together with cyclic class specifications, and that
this is also sufficient for our purposes (primitive LUNI-schemata).

The main part of the thesis is concerned with the design of effective techniques for intensional reasoning
on L-schemata and the study of their computational properties. The reasoning tasks we consider are the
ones we already mentioned in the context of Description Logics, namely schema consistency (“Is there a
nonempty database that satisfies all constraints expressed in the schema?”), class consistency (“Can a class
be populated in a database satisfying the schema?”), and class subsumption (“Does a class denote a subset
of another class in every database satisfying the schema?”).

As a first step we analyze the intrinsic complexity of these reasoning tasks, and show that even for
the least expressive L-language and the simplest form of schemata, which are subsumed by most known
representation formalisms, reasoning is already intractable, and more precisely coNP-complete. Adding
either the possibility to express disjunction or the possibility to use cycles in the schema, class consistency
becomes even PSPACE-hard. We then show that the combination of both features makes reasoning even
EXPTIME-hard, i.e. as hard as reasoning on the most general type of schemata using the most expressive
language. This is done by introducing a general technique for the elimination of qualified existential quan-
tification from a schema. This technique allows us to establish further complexity results and to characterize
completely the computational complexity of reasoning on (almost) all types of L-schemata.

The interaction that occurs between some of the constructs (namely inverse attributes and number
restrictions) when they are used inside cyclic schemata causes the finite model property to fail to hold. This
means that reasoning differs in the case where we consider arbitrary models (i.e. databases of arbitrary,
possibly infinite size) from the case where we restrict our attention to finite ones. The latter assumption is
in fact the common one in Databases, while finiteness of the underlying domain has seldom been an issue in
Knowledge Representation. For this reason we analyze reasoning in both contexts separately.

In the case of unrestricted models the reasoning techniques developed in Knowledge Representation are
adequate. They are based on the similarity that exists between the interpretative structures of L-languages
and those of Propositional Dynamic Logics (PDLs), which are formalisms specifically designed for reasoning
about program schemes. Such similarity results in a well-known correspondence between both formalisms
which we extend in this work in order to cope with all the constructs present in L-languages. Motivated
by the importance of primitive LUNI-schemata, we concentrate first on this case, and show that known
reasoning procedures can be applied after performing an easy transformation on the schema. This is not the
case anymore for the full featured language, where we first need to perform quite intricate transformations
on the schema to obtain a translation in PDL. In order to establish decidability of the resulting PDL we use
techniques based on automata on infinite objects, a tool extensively used for establishing upper bounds for
several modal logics of programs. These techniques are based on the fundamental tree model property shared
by all these formalism. It states that every satisfiable formula admits particular models that have the form
of an (infinite) tree of bounded degree in which the formula holds at the root. Satisfiability of a formula can
therefore be reduced to the problem of nonemptiness of the finite state tree automaton that accepts precisely
the tree-like models of the formula. We show that such a reduction can also be carried out for the PDL at
hand, thus extending recent results on the decidability of very expressive PDLs. By exploiting decidability
and complexity results for nonemptiness of particular types of tree automata, we obtain in fact a tight upper
bound for reasoning on the most general form of schemata expressed in an extremely rich language, showing
the optimality of the resulting method.

In the case of finite models, on the other hand, the known reasoning methods cannot be used, since the
existence of tree-like models is not guaranteed if the domain has to be finite. For this reason completely
new reasoning techniques are developed. They are based on the idea of separating the reasoning process in
two distinct phases. The first phase deals with all constructors except number restrictions and existential
quantifications (which in the unqualified form is just a particular case of number restriction), and builds
an expanded schema in which these constructors are embedded implicitly in the classes and attributes.
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In the second phase the assertions involving number restrictions are used to derive from this expanded
schema a system of linear inequalities. The system is defined in such a way that its solutions of a certain
type (acceptable solutions) are directly related to the finite models of the original schema. In particular,
from each acceptable solution one can directly deduce the cardinalities of the extensions of all classes and
attributes in a possible finite model. The proposed method allows us to establish decidability in worst case
deterministic double exponential time of finite model reasoning in free LCNI-schemata, and provides a tight
upper bound for the important case of primitive LUNI-schemata, which we again analyze separately. We
study also the complexity of the proposed method under specific assumptions, and it turns out that under
conditions that are very common in Databases the algorithm may exhibit an efficient behaviour.

1.6 Structure of the Thesis

The rest of the thesis is organized as follows:

• In Chapter 2 we provide a formal introduction to L-languages, their use in the construction of L-
schemata, and the reasoning services that are considered on L-schemata.

• In Chapter 3 we present the translations from frames, semantic data models, and object-oriented data
models to L-schemata, and of the associated reasoning services to reasoning services on L-schemata.

• In Chapter 4 we prove various lower bounds for reasoning on L-schemata. In particular, we show that
for the simplest language considered and the simplest form of schemata, verifying if a class is consistent
in a schema is already coNP-complete. The task becomes PSPACE-complete if the schema may
contain either union or cycles, and even EXPTIME-complete if we allow for both. We show also
that various constructs present in L-languages are problematic and that their unrestricted use leads
to undecidability.

• In Chapter 5 we analyze unrestricted model reasoning on L-schemata, considering first the simpler case
of primitive LUNI-schemata and then the general case of the most expressive L-language. The decid-
ability and complexity results are established by exploiting the correspondence between L-languages
and PDLs.

• In Chapter 6 we analyze finite model reasoning on L-schemata. We first present a technique that
solves class consistency in primitive LUNI-schemata in deterministic exponential time, which gives us
a tight complexity bound. An analysis of the proposed method shows that it behaves efficiently under
reasonable assumptions that are very common in Databases. We successively generalize the technique
to arbitrary schemata and general negation, obtaining a deterministic double exponential upper bound
for this case.

In order to make the thesis self-contained, we include also two appendixes containing additional notions that
are required for the comprehension of the material in Chapter 5.

• Appendix A contains the basic notions about finite automata on infinite strings and infinite trees, a
formal tool extensively used to establish decidability and lower bounds for various modal and program
logics, and in particular for PDLs.

• Appendix B gives a brief introduction to Propositional Dynamic Logics, their variants used in this
thesis, and describes the correspondence between L-languages and PDLs.



Chapter 2

Representing Intensional Knowledge
by L-Schemata

In this chapter we introduce L-languages which are an abstract formalism that allows for the representation
of intensional knowledge in the form of L-schemata. L-languages permit to build complex class and attribute
expressions by applying suitable constructors starting from a set of atomic symbols. Such expressions are
then used in assertions to construct L-schemata.

The syntax we use for L-languages is in the style of Description Logics (see for example [70]). In
Section 2.1 we present syntax and semantics of L-languages, and in Section 2.2 we describe how to build
L-schemata. In Section 2.3 we discuss the issues related to reasoning on schemata.

2.1 Syntax and Semantics of L-Languages

An L-language is composed by a set of symbols taken from the following disjoint countable alphabets:

• CN: the alphabet of class names,

• AN: the alphabet of attribute names.

A class name represents an atomic class expression, and an attribute represents an atomic link expression.
Starting from these atomic expressions more complex class expressions and link expressions are constructed
by applying suitable constructors. Each L-language is characterized by the set of constructors that can
be used. The constructors we consider in this thesis have been regarded as important in the context of
both Knowledge Representation and conceptual database modeling [35, 70, 25, 43]. We denote with L0

the core language containing only the basic constructors which are present in all L-languages. Each addi-
tional constructor is denoted by an identifying letter, and we use the convention of naming a language that
includes certain constructors (in addition to those of L0) by a string that starts with L and includes the
corresponding letters. Class and link expressions constructed using only constructors of a language L are
called L-expressions.

We denote class names with the letter C, and attribute names with A, possibly with subscripts. Arbitrary
class expressions are denoted with E and arbitrary link expression with L.

The semantics for L-languages is given through the notion of interpretation. An interpretation I :=
(∆I , ·I) consists of a nonempty set I, called the domain of the interpretation, and an interpretation function
·I , which maps each class expression E to a subset EI of ∆I , called the extension of E, and each link
expression L to a binary relation LI over ∆I , called the extension of L. The elements of EI and LI are
called instances of E and L respectively. Each constructor poses specific conditions that the interpretation
function must satisfy. We say that a class or link expression X is consistent if it admits an interpretation I
in which its extension XI is nonempty, and we say that X is inconsistent otherwise.

9
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2.1.1 The Core Language (L0, L−)
The core language we consider, called L0, allows one to build class expressions according to the following
syntax:

E −→ > | ⊥ | C | ¬C | E1 u E2 | ∀L.E | ∃L
L −→ A.

Intuitively, > represents the whole domain, and ⊥ the empty set. ¬C represents the negation of a class
name, and is interpreted as the complement with respect to the domain of interpretation. E1uE2 represents
the conjunction of two class expressions and is interpreted as set intersection. ∀L.E is called universal
quantification and is used to denote those objects of the interpretation domain that are connected through
link L only to instances of the class E. Similarly, ∃L is called (unqualified) existential quantification, and
is interpreted as those objects that are connected through link L to at least another object of the domain.
More formally, every interpretation I satisfies the following conditions:

CI ⊆ ∆I

AI ⊆ ∆I ×∆I

>I = ∆I

(¬C)I = ∆I \ CI
(E1 u E2)I = EI1 ∩ EI2

(∀L.E)I = {o ∈ ∆I | ∀o′ : (o, o′) ∈ LI → o′ ∈ EI}
(∃L)I = {o ∈ ∆I | ∃o′ : (o, o′) ∈ LI}.

Notice that L0 contains no rules for defining complex link expressions, and therefore the only allowed links
are attribute names. However, this language has already the basic features that allow for describing classes
with interesting properties: Universal quantification is used for assigning a type to an attribute, which is a
basic modeling feature present in all data models and knowledge representation systems [98, 108, 35, 29, 31].
Existential quantification permits to express totality of attributes and is also a means to express incomplete
information [110]. Additionally, through conjunction one can express multiple inheritance of properties,
while negation can be used in schemata to force disjointness of classes [7, 59].

Example 2.1.1 The following L0-class expression could be interpreted as a set of basic university courses:

¬AdvCourse u
∃taughtby u ∀taughtby.Teacher u
∃followedby u ∀followedby.Student.

Its instances are not instances of the class AdvCourse, are connected through the attributes taughtby and
followedby only to instances of the classes Teacher and Student, respectively, and at least to one such
instance for taughtby and followedby. This expresses that basic courses are disjoint from advanced ones,
that each course is taught and followed by someone, and that it is taught only by teachers and followed only
by students.

In this thesis we consider also the language L−, which is obtained from L0 by dropping “⊥” and the
constructor for negation. It is easy to see that this makes it impossible to express classes in L− that
necessarily have an empty extension in all interpretations.

Proposition 2.1.2 Every L−-class expression is consistent.

Proof. For an L−-class expression E we define the following interpretation I ′ := (∆I , ·I). We set ∆I := {o},
for any class name C appearing in E we set CI := {o}, and for any attribute name A appearing in E we
set AI := {(o, o)}. It is easy to verify by induction on the structure of E that EI = {o}.
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2.1.2 Disjunction (LU)

The language LU is obtained from L0 by adding the constructor U for expressing disjunction of classes. The
additional syntax rule is:

E −→ E1 t E2.

The class expression E1 t E2 is interpreted as the union of the extensions of the classes E1 and E2.
Formally, every interpretation I satisfies the condition:

(E1 t E2)I = EI1 ∪ EI2 .

Note that, since negation can be applied only to class names, disjunction cannot be expressed by De
Morgan’s laws using conjunction and negation. By means of disjunction, which has been considered both in
database models and Knowledge Representation, incomplete information can be represented [110]. It allows
one also to express covering constraints [109] and generalization ISA relationships [154].

Example 2.1.1 (cont.) Using disjunction we can refine our class expression denoting basic courses and
express that they are taught either by professors or graduate students:

¬AdvCourse u
∃taughtby u ∀taughtby.(Professor t GradStud) u
∃followedby u ∀followedby.Student.

When the language we consider includes disjunction and negation of class names, we may regard > as
an abbreviation of C t ¬C, where C is any class name.

2.1.3 Qualified Existential Quantification (LE)
The basic language L0 allows one to express only an unqualified form of existential quantification since using
the constructor ∃L does not permit to impose any conditions on the objects connected through link L. The
language LE is obtained by removing this limitation and allowing one to express the existence of an object
connected through a link and satisfying certain conditions. The constructor E , called qualified existential
quantification is described by the following syntax rule:

E −→ ∃L.E.

It has been studied mainly in the context of structured knowledge representation languages [34, 62].
The expression ∃L.E is interpreted as the set of objects that are connected through the link L to at least

one object that is an instance of E. Formally, every interpretation I satisfies the condition:

(∃L.E)I = {o ∈ ∆I | ∃o′ : (o, o′) ∈ LI ∧ o′ ∈ EI}.

Example 2.1.1 (cont.) Qualified existential quantification can be used to express the property of advanced
courses to be followed by at least one graduate student.

∃taughtby u ∀taughtby.Teacher u
∀followedby.Student u ∃followedby.GradStud.
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2.1.4 Number Restrictions (LN , LF , LQ)

The language LN is obtained from L0 by adding number restrictions, which are denoted by N . They allow
one to express bounds on the number of objects that are connected through an attribute to a certain object.
Syntactically a class expression in LN is obtained by adding to the syntax rules for L0 the following, where
m is a positive and n a nonnegative integer:

E −→ ∃≥mL | ∃≤nL.

An instance of ∃≥mL is connected through link L to at least m distinct objects, and similarly, an instance
of ∃≤nL is connected through link L to at most n distinct objects. Formally, every interpretation I satisfies
the condition:

(∃≥mL)I = {o ∈ ∆I | ]{o′ | (o, o′) ∈ LI} ≥ m}
(∃≤nL)I = {o ∈ ∆I | ]{o′ | (o, o′) ∈ LI} ≤ n},

where for a set S, ]S denotes the cardinality of S.

Example 2.1.1 (cont.) We can now pose restrictions on the number of students that should follow a basic
course and require that each course be taught by exactly one teacher, and followed by at least three and at
most 100 students:

¬AdvCourse u
∀taughtby.Teacher u ∃≥1taughtby u ∃≤1taughtby u
∀followedby.Student u ∃≥3followedby u ∃≤100followedby.

Although number restrictions appear in various forms in most conceptual and semantic database models
[5, 84, 155], they are rarely present in the object-oriented setting (an exception is [29]). It is worth noting that
the use of number restrictions allows us to represent several forms of existence and functional dependencies,
and is very common in structured knowledge representation systems, as pointed out, for example, in [78, 31].

We use the letter F to denote the limited form of number restriction in which the only number allowed
is 1. Observe that since a number restriction of the form ∃≥1L is equivalent to the existential quantification
∃L, the language LF is obtained from L0 by just adding the constructor ∃≤1L, which is called a functional
restriction. Such a constructor is often implicit in object-oriented data models, where attributes are required
to be single-valued.

Qualified number restriction [94], denoted by Q, are a generalization of number restrictions, which both
pose restrictions on the number of objects connected through a link and also allow to specify that only
objects that are instances of a certain class should be counted. They are introduced via the following syntax
rule:

E −→ ∃≥mL.E | ∃≤nL.E,

and are interpreted by requiring that every interpretation I satisfies the following conditions:

(∃≥mL.E)I = {o ∈ ∆I | ]{o′ | (o, o′) ∈ LI ∧ o′ ∈ EI} ≥ m}
(∃≤nL.E)I = {o ∈ ∆I | ]{o′ | (o, o′) ∈ LI ∧ o′ ∈ EI} ≤ n}.

Example 2.1.1 (cont.) With qualified number restrictions we can express that each advanced course is
followed by at least three graduate students, and at most five students that are not graduate.

∀taughtby.Teacher u ∃≥1taughtby u ∃≤1taughtby u
∀followedby.Student u
∃≥3followedby.GradStud u ∃≤5followedby.¬GradStud.
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We make use of the following abbreviations:

∃=mL := ∃≥mL u ∃≤mL

∃=mL.E := ∃≥mL.E u ∃≤mL.E.

2.1.5 Inverse Attributes (LI)
The language LI is obtained from L0 by adding the constructor I on attributes which allows one to refer
to the inverse of an attribute name. The additional syntax rule is:

L −→ A | A−.
By an atomic attribute we mean either an attribute name or an attribute name to which the converse
constructor is applied.

The inverse attribute A− is interpreted as the inverse of the binary relation that gives the extension of
A. Formally, every interpretation I satisfies the condition:

(A−)I = {(o, o′) ∈ ∆I ×∆I | (o′, o) ∈ AI}.
Inverses of attributes are considered in functional data models [146] and are implicitly present in seman-

tic data models where relations can be navigated in any direction. They have rarely been considered in
the object-oriented framework, although their importance has been mentioned in [43], a recently proposed
standard for object-oriented databases.

Example 2.1.1 (cont.) Using inverse attributes we can correctly model courses by using the attributes
follows and teaches.

¬AdvCourse u
∃teaches− u ∀teaches−.Teacher
∃follows− u ∀follows−.Student.

2.1.6 General Negation (LC)
We consider the possibility of referring to the negation of an arbitrary class expression, which we denote
by the letter C, and which is interpreted as complement with respect to the domain of interpretation.
This constructor does not increase expressivity for those languages that are closed under complement. For
example, since disjunction and existential quantification are complementary to conjunction and universal
quantification respectively, the language LUE is equivalent to LUEC which is equivalent to LC. A similar
consideration holds if we add (qualified) number restrictions to these languages, since the two operators
∃≥mL and ∃≤nL are complementary to each other.

We consider also a transformation of class expressions involving general negations into an equivalent form
in which negation is pushed inside the other constructors as much as possible.

Definition 2.1.3 The negation normal form of an expression ¬E, denoted ∼E, is defined as follows:

∼C := ¬C
∼(¬E) :=

{
C, if E is a class name C
∼(∼E), otherwise

∼(E1 u E2) := ∼E1 t ∼E2

∼(E1 t E2) := ∼E1 u ∼E2

∼∀L.E := ∃L.∼E
∼∃L.E := ∀L.∼E
∼∃≥mL := ∃≤m−1L

∼∃≤nL := ∃≥n+1L

∼∃≥mL.E := ∃≤m−1L.E

∼∃≤nL.E := ∃≥n+1L.E.
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It follows from the semantics of the constructors that for any interpretation I and for any class expression
E, (¬E)I = (∼E)I .

2.1.7 Arbitrary Links (LL, LD, L∆, LV)

We have introduced so far powerful constructors for the generation of complex class expressions, while the
expressivity of attributes is still somewhat limited. In fact, when using universal and existential quantification
and number restrictions to refer to instances of other classes we are constrained to refer only to the objects
that are directly connected via some attribute (or inverse attribute). To overcome this limitation we introduce
now constructors for building more complex links, and for using these in the definition of new types of class
expressions. The most intuitive approach in this direction is to use as links regular expressions over atomic
attributes.

The language LL is obtained from L0 by adding the following syntax rules:

L −→ L1 ∪ L2 | L1 ◦ L2 | L∗ | id(E).

The link constructors “∪”, “◦”, and “∗” have their intuitive meaning of union, concatenation, and reflexive
transitive closure of links, while id(E) denotes the set of links from every object in class E to itself. It is
used to test whether along a complex link a certain condition is satisfied.

To complete the constructors for complex links we consider also the difference of two links, which we
denote with the letter D, and which is obtained by adding the syntax rule:

L −→ L1 \ L2.

It can be used to refer to those objects that are connected via some link but not via another one. We use
the following abbreviations to increase readability:

∅ := A \A, for some attribute name A1

L1 ∩ L2 := L1 \ (L1 \ L2).

Formally, every interpretation I satisfies the following conditions2:

(L1 ∪ L2)I = LI1 ∪ LI2
(L1 ◦ L2)I = LI1 ◦ LI2

(L∗)I = (LI)∗

(id(E))I = {(o, o) ∈ ∆I ×∆I | o ∈ EI}
(L1 \ L2)I = LI1 \ LI2

The constructors for building complex links, in particular union and transitive closure of attributes, add
considerably to the expressivity of L-languages. As shown in Appendix B they allow us to establish a tight
correspondence between L-languages and Propositional Dynamic Logics [80], which are modal logics of pro-
grams developed for reasoning about program schemes. This correspondence is the basis for all decidability
and complexity results developed in Chapter 5. The constructor “∩”, called intersection of links has been
studied in [64, 39], but only when applied to attribute names. Its treatment is more problematic when it
is used together with the other link constructors we have considered, and especially in conjunction with
functionality on attributes, as shown in Section 4.4.

We introduce also two additional constructors for the definition of classes that allow to specify additional
conditions on the outgoing (complex) links.

The language L∆ is obtained by adding the syntax rule for the so called repeat constructor [151, 89]:

E −→ ∆(L).

1We could have chosen to define “∅” as an abbreviation for “id(⊥)”, which does not refer to a specific attribute name.
However, using this definition, “∅” would not be a basic link, as defined in Section 2.1.9.

2In the semantics, “◦” designates concatenation of binary relations, “∗” their reflexive and transitive closure, and “\” set
difference.
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Intuitively, each instance of ∆(L) is the initial object of an infinite sequence of objects, each one connected
through link L to the following one. More formally, the semantics is specified by requiring that every
interpretation I satisfies the condition:

(∆(L))I = {o ∈ ∆I | ∃ an infinite sequence o1, o2, . . . ∈ ∆I :
o = o1 ∧ (oi, oi+1) ∈ LI , i ≥ 1}.

The repeat constructor can be used in its negated form to define well-founded relations such a the part-of
relation [46, 136], and inductive structures, such as lists, trees, and directed acyclic graphs, as shown later.
It is worth noticing that the classes that represent these inductive structures can be treated like all other
classes and can be reasoned upon using the general techniques developed in Chapter 5.

The language LV is obtained by adding the syntax rule for the so called role value map constructor [35]:

E −→ (L1 ⊆ L2).

We use also the following abbreviation:

(L1 = L2) := (L1 ⊆ L2) u (L2 ⊆ L1).

The class expression (L1 ⊆ L2) is interpreted as the set of those objects for which all objects reached
through link L1 can also be reached through link L2. Formally, the semantics is specified by requiring that
every interpretation I satisfies the conditions:

(L1 ⊆ L2)I = {o ∈ OI | {o′ | (o, o′) ∈ LI1} ⊆ {o′ | (o, o′) ∈ LI2}}.

Some examples on the use of role value maps are given in the next section. We anticipate, however, that
similarly to intersection of links, role value maps need special attention in order to preserve decidability of
reasoning on class expressions.

2.1.8 Structured Objects (LO)

The languages introduced so far and their combinations allow one to specify classes with complex properties.
However, they suffer from the inherent limitation that the basic elements which are classes and links are
interpreted as unary and binary relations respectively. There are situations which can be modeled correctly
only by means of relations of arity greater that two. One possibility is to add explicitly n-ary relationships to
the language and include constructors that allow for referring to components of relationships (see [57, 144] for
such an approach in the context of Description Logics). Here we take a different approach which is more in
the spirit of object-oriented data models [108, 19, 97, 2], and which overcomes the limitations in expressivity
imposed by unary and binary relations, without losing uniformity. We regard the interpretation domain
as being constituted by a set of polymorphic objects, which can be viewed as having different structures
corresponding to the different roles they can play in the modeled reality. The language contains constructors
for classes that allow one to specify the structure that all instances of a class should have.

This is accomplished by the following syntax rules, where n ≥ 1:

E −→ {E} | [A1, . . . , An] | 〈E | A1, . . . , An〉
L −→ 3 .

In order to give the formal semantics of classes and links in LO we have to extend the notion of inter-
pretation. Differently from the previous languages, the domain of interpretation, which we now denote by
OI , is not a set of unstructured objects. Instead it is a set OI of polymorphic objects, that is entities having
simultaneously possibly more than one structure, i.e.:

1. The structure of individual : an object can always be considered as having this structure, and this
allows it to be referenced by other objects of the domain.

2. The structure of tuple: an object o having this structure can be considered as a property aggregation,
which is formally defined as a partial function from a finite subset A of AN to OI with the proviso
that o is uniquely determined by the set of attributes on which it is defined and by their values. In
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the sequel the term tuple is used to denote an element of OI that has the structure of tuple, and we
write [A1: o1, . . . , Ak: ok] to denote any tuple t such that, for each i ∈ {1, . . . , k}, t[Ai] is defined and
equal to oi (which is called the Ai-component of t). Note that the tuple t may have other components
as well, besides the Ai-components.

3. The structure of set : an object o having this structure can be considered as an instance aggregation,
which is formally defined as a finite collection of entities in OI , with the following provisos: (i) the
view of o as a set is unique (except for the empty set {}), in the sense that there is at most one finite
collection of entities of which o can be considered an aggregation, and (ii) no other object o′ is the
aggregation of the same collection. In the sequel the term set is used to denote an element of OI that
has the structure of set, and we write {|o1, . . . , oh|} to denote the collection whose members are exactly
o1, . . . , oh.

Intuitively, the meaning of the constructors of LO can be described as follows: {E} denotes objects that
have the structure of a set and for which the elements of the set are instances of E. [A1, . . . , Ak] denotes
objects which have the structure of a tuple with at least components A1, . . . , Ak. 〈E | A1, . . . , Ak〉 specifies
a set S of entities which are instances of E and for which components A1, . . . , Ak are defined and constitute
a key for S. This means that each element of S is uniquely determined by the set of objects to which it is
connected by means of attributes A1, . . . , Ak.

Formally, the interpretation function ·I is defined as follows:

• It assigns to 3 a subset ofOI×OI such that for each {|. . . , o, . . .|} ∈ OI , we have that ({|. . . , o, . . .|}, o) ∈3I .

• It assigns to every attribute A a subset of OI × OI such that, for each tuple [. . . , A: o, . . .] ∈ OI ,
([. . . , A: o, . . .], o) ∈ AI , and there is no o′ ∈ OI different from o such that ([. . . , A: o, . . .], o′) ∈ AI .
Note that this implies that every attribute in a tuple is functional for the tuple.

• It assigns to every class expression a subset of OI such that the following conditions are satisfied:

{E}I = {{|o1, . . . , oh|} ∈ OI | o1, . . . , oh ∈ EI}
[A1, . . . , Ak]I = {[A1: o1, . . . , Ak: ok] ∈ OI | o1, . . . , ok ∈ OI}

S = 〈E | A1, . . . , Ak〉I ⊆ [A1, . . . , Ak]I ∩ EI and no distinct o, o′ ∈ S
have the same A1, . . . , Ak-components.

• For the other class and link constructors it satisfies the same conditions as for the languages not
containing O, with OI replacing ∆I .

Note that the semantics of a keyed tuple gives only a sufficient condition for an object to be an instance
of the keyed tuple. In this sense declaring a key on a tuple acts as a kind of integrity constraint, and
every interpretation that satisfies the constraints is accepted. This corresponds to the intuitive meaning of
keys, which are regarded as constraints rather than having a definitional account. In fact, for a keyed class
〈E | A1, . . . , Ak〉, given the extension of class E and of attributes A1, . . . , Ak, there are several possible ways
to choose the extension of 〈E | A1, . . . , Ak〉 in such a way that the key constraint is satisfied, and it is not
clear how to select one a priori. For this reason, the kind of inferences that can be drawn from keyed tuples
are limited, and their use and utility will be explained in Section 2.2, where we introduce L-schemata.

Example 2.1.4 The class of books could for example be represented by the following class expression:

Thing u {BookChapter} u [booktitle, bookauthors, publisher] u
∀booktitle.String u ∀bookauthors.{Person} u ∀publisher.Publisher.

It expresses that each book can be regarded simultaneously as an object, which in this case is also an instance
of Thing, as a set of chapters (this may be the correct view for a student that has to study the book), and
finally as a tuple containing the attributes booktitle, bookauthors, and publisher (this might be the
correct view for a librarian).
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2.1.9 Achieving Maximum Expressivity (LT , LT −)

In the following we use LT (the letter T stands here for “total” and not for a new constructor) as an
abbreviation for the language LOCQILDV∆ obtained by introducing all constructors seen so far. In fact,
LT is a super-language of the language introduced in [58] and borrows from it the basic ideas.

We will see in Section 4.4 that the expressivity of LT makes reasoning about class expressions (and
therefore also about schemata as defined in Section 2.2) problematic. In particular, it is already undecidable
whether for a generic class expression E of LT there is an interpretation I in which EI is nonempty.
Therefore we define the language LT − in which syntactic restrictions are posed on the combination of
certain constructors. More precisely, the use of number restrictions, difference of links, and role value maps
has to be restricted. In LT − we distinguish between basic links, denoted with B, and arbitrarily complex
links. The syntax is specified by the following rules:

E −→ C | {E} | [A1, . . . , An] | 〈E | A1, . . . , An〉 |
E1 u E2 | ¬E | ∀L.E | ∃≤nB.E | ∃≤nB−.E |
(B1 ⊆ B2) | (B−1 ⊆ B−2 ) | ∆(L)

B −→ A | 3 | B1 ∪B2 | B1 \B2

L −→ B | L1 ∪ L2 | L1 ◦ L2 | L− | L∗ | id(E).

We have chosen here to introduce only a minimal set of constructors that achieve the desired expressivity,
and we adopt all abbreviations introduced so far to increase readability: Since general negation is available,
disjunction can be expressed by means of conjunction and qualified existential quantification by means of
universal quantification. > and ⊥ are regarded as abbreviations for C t¬C and C u¬C, respectively, where
C is an arbitrary class name. Also, number restrictions of the form ∃≥mL.E, with m a positive integer, are
expressed as ¬∃≤m−1L.E.

The semantics for LT − class and link expressions is defined exactly as for LT , considering that basic
links are just particular types of complex links.

One of the objectives of this thesis is to show that reasoning in LT − is decidable. We will see in Section 5.2
that the careful choice of constructors in LT − is sufficient to avoid all problems encountered in LT , and
that reasoning in LT − can be performed in deterministic exponential time. We argue also that in a certain
sense LT − offers the maximum expressivity that can be achieved without losing decidability of reasoning,
since all limitations we have imposed with respect to LT are indeed necessary to preserve decidability.

2.1.10 Summary

Tables 2.1 and 2.2 summarize syntax and semantics of all constructors on classes and attributes, respectively,
that are used in this thesis. In both tables we have separated those constructors that are applicable only
when considering a structured domain. Figure 2.1 shows a taxonomy of (most of the) L-languages that we
consider in this thesis. For each language we have included also a reference to the sections or chapters where
it is used or its properties are studied. The two languages LUF∩,◦ and LUF(◦,∪) are those referred to
in Theorems 4.4.2 and 4.4.3, respectively. LUF∩,◦ is the language obtained from LUF by adding also the
possiblity to use intersection and concatenation of attributes inside universal quantification (but not inside
functional restrictions). LUF(◦,∪) is obtained from LUF by adding the possiblity to express functionality
of link expressions constructed using concatenation and union of attributes. Since these languages do not
appear anywhere else in the thesis, they are named explicitly only in Figure 2.1.

L-languages are an object of interest on their own. In the last decade researchers have studied intensively
the problem of reasoning on class expressions of the various languages. It has turned out that the basic
problem to be studied in this context is that of subsumption, which is the task of deciding, given two class
expression E1 and E2, if the extension of E1 is a subset of the extension of E2 for all possible interpretations.
The other typical forms of reasoning that can be performed on class expressions, such as checking whether
an expression is consistent or whether two expressions are equivalent, can easily be reduced to subsumption.
The focus of research has been on analyzing the tradeoff between complexity of subsumption between class
expressions and expressivity of the underlying language. The research was initiated by the seminal paper
by Brachman and Levesque [32], which pointed out how even a seemingly small change in expressivity
possibly results in a big change in complexity of subsumption. Subsequent research was intended to exactly
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Constructor Name Syntax Semantics
class name C CI ⊆ ∆I

top > ∆I

bottom ⊥ ∅
atomic negation ¬C ∆I \ CI
conjunction E1 u E2 EI1 ∩ EI2
universal quantif. ∀L.E {o | ∀o′ : (o, o′) ∈ LI → o′ ∈ EI}
existential quantif. ∃L {o | ∃o′ : (o, o′) ∈ LI}
qualif. exist. quantif. E ∃L.E {o | ∃o′ : (o, o′) ∈ LI ∧ o′ ∈ EI}
disjunction U E1 t E2 EI1 ∪ EI2
general negation C ¬E ∆I \ EI
number restrictions N ∃≥mL {o | ]{o′ | (o, o′) ∈ LI} ≥ m}

∃≤nL {o | ]{o′ | (o, o′) ∈ LI} ≤ n}
qualified number Q ∃≥mL.E {o | ]{o′ | (o, o′) ∈ LI ∧ o′ ∈ EI} ≥ m}
restrictions ∃≤nL.E {o | ]{o′ | (o, o′) ∈ LI ∧ o′ ∈ EI} ≤ n}
repeat ∆ ∆(L) {o0 | ∃o1, o2, . . . : (oi, oi+1) ∈ LI , i ≥ 0}
role value map V (L1 ⊆ L2) {o | {o′ | (o, o′) ∈ LI1} ⊆ {o′ | (o, o′) ∈ LI2}}
set O {E} {{|o1, . . . , oh|} ∈ OI | o1, . . . , oh ∈ EI}
tuple O [A1, . . . , Ak] {[A1: o1, . . . , Ak: ok] ∈ OI | o1, . . . , ok ∈ OI}
tuple with key O 〈E | A1, . . . , Ak〉 ⊆ [A1, . . . , Ak]I ∩ EI and key condition

Table 2.1: Syntax and semantics of the class forming constructors

Constructor Name Syntax Semantics
attribute name A AI ⊆ ∆I ×∆I

inverse I L− {(o, o′) | (o′, o) ∈ LI}
union L L1 ∪ L2 LI1 ∪ LI2
concatenation L L1 ◦ L2 LI1 ◦ LI2
transitive closure L L∗ (LI)∗

identity L id(E) {(o, o) | o ∈ EI}
difference D L1 \ L2 LI1 \ LI2
intersection D L1 ∩ L2 LI1 ∩ LI2
empty link D ∅ ∅
member O 3 {({|. . . , o, . . .|}, o) ∈ OI ×OI}

Table 2.2: Syntax and semantics of the link forming constructors
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characterize the contributions that each constructor and the interaction of different constructors give to the
complexity of reasoning [120, 142, 95, 143, 63, 64, 62], and we now have a reasonably good and complete
understanding of the whole field [64, 65].

2.2 L-Schemata

Using class expressions of an L-language, intensional knowledge can be specified through L-schemata. We
follow the terminology introduced in [138] in the context of Description Logics.

Definition 2.2.1 Given a language L, an L-schema is a triple S := (C,A, T ), where

• C ⊆ CN is a finite set of class names.

• A ⊆ AN is a finite set of attribute names.

• T is a finite set of assertions in L. Each such assertion has one of the forms

C ¹̇ E (primitive class specification)
C

.= E (class definition),

where C ∈ C and E is a class expression of L involving only names of C ∪ A.

Primitive class specifications are used to specify necessary conditions for an object to be an instance of a
class, while class definitions specify both necessary and sufficient conditions. We call introduction of C an
assertion in which the class name C appears in the left-hand side.

When no confusion can arise, we may abuse terminology, by saying that a schema (C,A, T ) coincides
with its set T of assertions. In such a case we assume implicitly that the set N of names is constituted by
exactly those names that appear in the assertions in T . Also, when not specified otherwise we assume that
S := (C,A, T ).

Both in Knowledge Representation and in database models several different assumptions on the form of
a schema are made, either implicitly or explicitly.

A common assumption is that the following condition is satisfied (see for example [121, 9, 108, 25]):

I. Each class name has at most one introduction.

Under this assumption, a class name appearing in a schema on the left-hand side of a class definition is
called a defined class, a class name appearing on the left-hand side of a primitive class specification is called
a primitive class, and a class name not appearing on the left-hand side of any assertion is called an atomic
class.

2.2.1 Cycles in L-Schemata

We formally define a cycle in a schema S as follows [122]: A class name C directly uses a class name C ′ if
and only if C ′ appears in the right hand side of an introduction of C in S. A class name C0 uses Cn if there
is a chain C0, C1, . . . , Cn such that Ci directly uses Ci+1, i ∈ {1, . . . , n− 1}. Finally, we say that S contains
a cycle if some class name uses itself.

We say that a schema is acyclic if it satisfies both conditions I above and II below:

II. The schema contains no cycles.

For acyclic schemata the semantics is specified as follows: An interpretation I satisfies an assertion
C ¹̇ E if and only if CI ⊆ EI , and it satisfies an assertion C .= E if and only if CI = EI . An interpretation
that satisfies all assertions in a schema S is called a model of S.

In most existing concept-based knowledge representation systems, the usual assumption is that the
schema defining the intensional part of a knowledge base is acyclic [121]. Imposing this condition, however,
strongly limits the expressive power of the system, since many real world concepts can be expressed naturally
only in a recursive way and thus through cycles. Take as an example the class Person, which can be defined
by the assertion

Person
.= Mammal u ∃=2parent u ∀parent.Person.
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Schemata possibly containing cycles (but still satisfying condition I) are called general. General schemata
have been studied intensively by researchers working in Knowledge Representation [122, 9, 8, 141, 60].

Different semantics for the interpretation of cycles have been proposed. The one obtained by the same
specification as above for acyclic schemata is called descriptive semantics. It interprets each assertion in a
schema as a constraint that the interpretation must satisfy, and each interpretation satisfying all constraints
imposed by the assertions is a model of the schema. By considering each class introduction as an equation,
the descriptive semantics is the one that accepts as a model any interpretation that is a fixpoint of the
equations.

Fixpoint semantics are obtained by regarding only particular fixpoints of the equations as models. Two
kinds of fixpoint semantics have been considered: the least and greatest fixpoint semantics, obtained by
allowing only interpretations that are respectively the least and greatest fixpoint. There has been an intense
debate among researchers in knowledge representation on which is the most appropriate semantics to be
adopted [122, 9], and there have also been recent proposals for an integration of the different types of
semantics [55, 141].

A more detailed discussion on the different types of semantics is outside the scope of this thesis, and in
the following we assume to adopt the descriptive semantics. This semantics has been advocated to be the
most natural one (see for example [37, 39]) and it is also the only one that can be extended in a natural way
to free schemata defined below. Notice again that in the absence of cycles this problem does not arise at all
since all three semantics coincide.

2.2.2 Primitive L-Schemata

Another restriction which is sometimes made in concept-based knowledge representation systems (see for
example [36]) and which is usually implicit in database models, is the following:

III. The schema contains only primitive class specifications and no class definitions.

Schemata satisfying condition III are called primitive. For such types of schemata, condition I may be with-
drawn without influencing expressivity (assuming that the language contains the constructor for expressing
conjunction of class expressions, which is the case for all languages studied in this thesis). In fact, if the
schema contains two assertions A ¹̇ E1 and A ¹̇ E2, we may substitute them with the equivalent assertion
A ¹̇ E1 u E2.

2.2.3 Free L-Schemata

If none of the above three conditions is required to hold, we obtain the so called free schemata. For free
schemata the distinction between defined, primitive, and atomic classes makes no sense. It is easy to see that
the expressivity of free schemata (that allow also for class definitions) is equivalent to the one of schemata
constituted by free inclusion assertions, which have the form

E1 ¹̇ E2,

where both E1 and E2 are arbitrary class expressions with no restriction at all. In fact, an inclusion
assertion of the form E1 ¹̇ E2 can be simulated by introducing an additional class name C and using the
pair of assertions

C
.= E1

C ¹̇ E2.

Conversely, a class definition C .= E is equivalent to the pair of free assertions

C ¹̇ E

E ¹̇ C.

2.2.4 Summary and Examples

Table 2.3 summarizes the different types of assertions that we have considered, and Table 2.4 shows the
conditions satisfied by the various types of L-schemata.
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Assertion Syntax Semantics
primitive class specification C ¹̇ E CI ⊆ EI

class definition C
.= E CI = EI

free assertion E1 ¹̇ E2 EI1 ⊆ EI2

Table 2.3: Syntax and semantics of the assertions in schemata

Assertion acyclic cycles allowed
primitive specifications acyclic primitive (II, III) general primitive (III)

class definitions acyclic (I, II) general (I)
free assertions free (no condition)

(I) each class has at most one introduction (II) no cycles (III) no class definitions

Table 2.4: Conditions satisfied by the different types of schemata

We give now a few examples to illustrate the expressivity of L-schemata, using the different constructors
that were introduced in Section 2.1. In particular, all schemata defined below use only constructors of LT −.

Example 2.2.2 The following L-schema S := (C,A, T ), which models some facts about a condominium,
gives an example of the use of polymorphism:

C := {Apartment, Condominium, Manager, CondMan,
Address, String, Integer},

A := {location, budget, manages, ssn, city, street, num},
and the set T of assertions consists of:

Apartment ¹̇ · · ·
Condominium ¹̇ {Apartment} u [location, budget] u

∀location.Address u ∀budget.Integer u
〈Condominium | location〉 u
∀manages−.Manager u ∃=1manages−

Manager ¹̇ [ssn, location] u ∀ssn.String u ∀location.Address u
[Manager]ssn u
∃manages

CondMan
.= Manager u ∃manages.Condominium

Address ¹̇ 〈Address | city, street, num〉 u
∀city ∪ street.String u ∀num.Integer

The class Condominium is specified using a conjunction of the set structure {Apartment} and the record
structure [location, budget]. Therefore, the designer of such a schema is anticipating that each instance of
Condominium will be used both as a set (in this case the set of apartments forming the condominium) and as
a record structure collecting the relevant attributes of the condominium (in this case where the condominium
is located and its budget). The location is a key for the condominium, implying that there cannot be two
different condominia located at the same address. Moreover, each instance of condominium can also be
regarded as an individual that can be referred to by other objects through links (in this case manages).

We illustrate how L-schemata can be used to define inductive structures on the examples of lists and
graphs. We argue that the ability to define inductive structures in an L-schema is an important enhancement
with respect to traditional data models, where such structures, if present at all, are ad hoc additions requiring
a special treatment by procedures that perform inferences on a schema [43, 18].

Example 2.2.3 Typically, the class of lists is defined inductively as the smallest set List such that:

• Nil is a List, and
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• every pair whose first element is any object, and whose second element is a List, is a List.

This inductive definition is captured by the class List in the L-schema S := (C,A, T ), where

C := {Nil, List},
A := {first, rest},
and the set T of assertions consists of:

List
.= Nil t ([first, rest] u ∀rest.List) u ¬∆(rest) u

∃≤1rest−

Nil ¹̇ ∀first ∪ rest.⊥.
Notice that List appears on the left-hand side of a class definition, and is defined recursively, in the sense
that the term List we are defining occurs in the body of the definition. In general, a recursive definition
should not be confused with an inductive one: an inductive definition selects the smallest set satisfying a
certain condition, while a recursive one simply states the condition without specifying any selection criteria
to choose among all possible sets satisfying it. In fact, the negated repeat constructor accomplishes this
selection, making our recursive definition of List inductive. Observe also the use of a number restriction
which forbids that two lists share a common sublist.

Once lists are defined they can be easily specialized by selecting for example the kind of information
contained in an element or additional structural constraints, such as a specific length:

ListOfPers ¹̇ List u ∀rest∗ ◦ first.Person
ListOf2Pers ¹̇ ListOfPers u ∃rest ◦ rest u ∀rest ◦ rest ◦ rest.⊥.

Example 2.2.4 The following L-schema S := (C,A, T ) models several variants of rooted graphs, including
finite directed acyclic graphs (DAG) and finite trees (Tree).

C := {Graph, DAG, Tree, BinaryGraph, BinaryTree},
A := {label, edge, left, right},
and the set T of assertions consists of:

Graph ¹̇ ∃=1label u ∀edge.Graph
DAG

.= Graph u ¬∆(edge)
Tree

.= Graph u ∀edge.Tree u ¬∆(edge) u ∃≤1edge−

BinaryGraph
.= Graph u ∀edge.BinaryGraph u ∃≤2edge

BinaryTree
.= Graph u ∀edge.BinaryTree u ¬∆(edge) u

∃≤1edge− u ∃≤1left u ∃≤1right u
(left ∪ right = edge) u (left ⊆ edge \ right)

Each graph is identified by its root, which has a label (that can be an arbitrary object) and is connected
through attribute edge only to instances of Graph. A DAG is a graph for which the edge relation is well-
founded, which is expressed as in Example 2.2.3 by means of a negated repeat constructor. A Tree satisfies
the additional constraint that each node has at most one incoming edge, expressed through a functional
restriction on the inverse of the attribute edge. A BinaryGraph is a Graph for which each node has at most
two outgoing edges. Finally, a BinaryTree has at most one left and one right successor, which are distinct
instances of BinaryTree. The left and right successors are exactly the objects that can be reached through
the attribute edge, which is well-founded, and whose inverse is functional.

2.3 Schema Level Reasoning

As we already mentioned in Chapter 1, several forms of reasoning at the schema level may be considered of
interest. We now formally define the most important ones , which are those dealt with in this work.
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2.3.1 Reasoning Services

Definition 2.3.1 Given an L-language L, an L-schema S and two class expressions E,E′ of L, we call3:

• Schema consistency the problem of establishing whether S is consistent (written as S 6|=u), i.e. whether
it admits a model.

• Class consistency the problem of establishing whether E is consistent in S (written as S 6|=u E ≡ ⊥),
i.e. whether there is a model I of S such that EI 6= ∅.

• Class subsumption the problem of establishing whether E is subsumed by E′ in S (written as S |=u

E ¹ E′), i.e. whether EI ⊆ E′I for every model I of S. E is called the subsumee, and E′ is called the
subsumer.

• Class equivalence the problem of establishing whether E is equivalent to E′ in S (written as S |=u

E ≡ E′), i.e. whether EI = E′I for every model I of S.

The negated forms of these problems are denoted in the obvious way by replacing |=u with 6|=u or vice versa.
For the latter three problems, we may also consider restricted forms obtained by requiring that one or both
of the classes for which we have to check consistency, subsumption, or equivalence are class names or some
restricted form of class expression.

Example 2.2.3 (cont.) We define now NestedList as the smallest set such that:

• Nil is a NestedList, and

• every pair whose first element is either an Atom or a NestedList, and whose second element is a
NestedList, is a NestedList.

Such structure is captured by the following set T ′′ of assertions:

NestedList
.= Nil t ([first, rest] u ¬∆(first ∪ rest) u

∀first.(Atom t NestedList) u ∀rest.NestedList) u
∃≤1rest−

Atom ¹̇ ¬Nil u ∀first ∪ rest.⊥.

Let now S ′ := (C′,A, T ′), where C′ := C ∪ {Atom, NestedList} and T ′ := T ∪ T ′′. Then it is possible to
show that

S ′ |=u Atom u List ≡ ⊥
S ′ |=u NestedList ¹ List.

While the first inference is rather trivial, the second one requires to take into account that the definitions
of List and NestedList are inductive. It would not hold any more, if we had just used recursive assertions
without making use of the negated repeat constructor.

Example 2.2.4 (cont.) By using class subsumption we can compute the lattice of graphs shown in Fig-
ure 2.2, where an arrow from class C to C ′ means that S |=u C ¹ C ′. Notice again, that while most of the
inferences are trivial, in order to deduce that S |=u BinaryTree ¹ BinaryGraph the inductive nature of the
definitions must be exploited. Moreover, to infer that every instance of BinaryTree satisfies ∃≤2edge, one
needs to reason on the number restrictions and role value maps together.

3The subscript “u” in the symbol |= stands for “unrestricted”, to distinguish this case from the finite one which is defined
later.
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Figure 2.2: A lattice of graphs

These reasoning services in connection with an expressive formalism for the definition of schemata can be
profitably exploited in several contexts. Indeed, a rich formalism permits capturing more semantics at the
schema level, thus allowing the designer to declaratively represent relevant knowledge about the classes of
the application. It follows that sophisticated types of constraints can be asserted in the schema, rather than
being embedded in procedures that manipulate the database, with the advantage of devising general integrity
checking methods to be included in future database systems. In addition, expressing more knowledge at the
schema level implies more possibilities to reason about the intension of the database:

• Automated methods for checking schema and class consistency can support the designer of the database,
allowing her to eliminate inconsistencies whose detection may involve complicated inferences. Classes
that are equivalent constitute a redundancy that should not be present in the schema, and such a task
can be performed via class subsumption and class equivalence.

• In using the database, for example in type checking, a compiler may exploit class subsumption to
decide if method invocations are well-typed.

• Schema level reasoning may be used in the process of query answering for performing semantic query
optimization [25, 40] or for providing intensional answers [24].

• New problems posed by cooperative and distributed information systems, such as schema comparison
and integration [42], may take advantage of all the reasoning services described above.

The reasoning services introduced in Definition 2.3.1 are not independent from each other, since the
following relations hold (We state them here in form of a proposition for future reference).

Proposition 2.3.2 Let L be an L-language, S be an L-schema, and E, E′ two L-class expressions. Then
the following holds:

1. (S 6|=u) ⇐⇒ (S 6|=u > ≡ ⊥).

2. (S |=u E ¹ E′) ⇐⇒ (S |=u E u ¬E′ ≡ ⊥).

3. (S |=u E ≡ E′) ⇐⇒ (S |=u E ¹ E′ ∧ S |=u E
′ ¹ E).

Proof. Straightforward from the semantics of L-languages and L-schemata.

Proposition 2.3.2 shows that schema consistency can always be reduced to class consistency, and that in
those languages closed under negation also subsumption and equivalence can be reduced to class consistency.
This leads us to regard class consistency as the main reasoning task when performing intensional reasoning
on a schema.

Additionally, depending on the form of the schema, and on the allowed constructors some of the prob-
lems we have considered may be trivial to decide. Two examples of this are given by the following easy
propositions.

Proposition 2.3.3 For every L−-schema S, every class expression is consistent in S.

Proof. As in the proof of Proposition 2.1.2 we define an interpretation I := (∆I , ·I), where ∆I := {o},
CI := {o} for any class name C ∈ C, and AI := {(o, o)} for any attribute name A ∈ A. Then for any
L−-class expression E constructed using class names in C and attribute names in A we have that EI = {o}.
Therefore I is a model of S in which every class expression has a nonempty extension.
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Proposition 2.3.4 Every primitive L-schema is consistent.

Proof. Consider a primitive L-schema S and any interpretation I that assigns to every class name the
empty set as extension. Then I satisfies any primitive class specification in S, independently of the class
expression on the right-hand side, since the class name on the left hand side is interpreted as the empty set.
Therefore I is a model of S.

The next proposition shows that without loss of generality it is sufficient to consider restricted forms of
class consistency and class subsumption.

Proposition 2.3.5 Let S be a primitive L-schema, E1, E2 be two class expressions using only names in S,
C 6∈ C be an additional class name, and S ′ := (C′,A, T ′), with C′ := C ∪{C} and T ′ := T ∪{C ¹̇ E1}. Then
the following holds:

1. S 6|=u E1 ≡ ⊥ ⇐⇒ S ′ 6|=u C ≡ ⊥.

2. S |=u E1 ¹ E2 ⇐⇒ S ′ |=u C ¹ E2.

Proof. (1) “⇐” Let I be a model of S such that EI1 6= ∅. We extend I to an interpretation of S ′ by setting
CI := EI1 . Since C appears in no assertion of T , and since I satisfies also the additional assertion in T ′, I
is also a model of S ′ in which CI 6= ∅. “⇒” Let I be a model of S ′ such that CI 6= ∅. Then I is also a
model of S, and since EI1 ⊇ CI and CI 6= ∅, we have also that EI1 6= ∅.

(2) “⇐” Let I be a model of S such that EI1 6⊆ EI2 . We extend I to an interpretation of S ′ by setting
CI := EI1 . Then I is also a model of S ′ in which CI 6⊆ EI2 . “⇒” Let I be a model of S ′ such that CI 6⊆ EI2 .
Then I is also a model of S, and since EI1 ⊇ CI and CI 6⊆ EI2 , we have also that EI1 6⊆ EI2 .

Part 1 of Proposition 2.3.5 shows that when verifying class consistency we can restrict our attention to
the case where the class expression to be verified for consistency is constituted just by a single class name.
Similarly, by part 2 it is sufficient to consider the restricted form of class subsumption where the subsumed
class expression is just a class name.

2.3.2 Equivalence of Schemata

The reasoning procedures presented in the following chapters will be applicable only to schemata that are
in special forms. In order to show that this is indeed no limitation, we first formally define equivalence
of schemata and then show that the result of applying the reasoning tasks are invariant with respect to
equivalent schemata.

Definition 2.3.6 Two schemata S = (C,A, T ) and S ′ = (C′,A′, T ′), where C ⊆ C′ and A ⊆ A′ are said to
be equivalent if the following holds:

• Every model I := (∆I , ·I) of S can be extended to a model I ′ := (∆I , ·I′) of S ′ by interpreting the
class names in C′ \ C and the attribute names in A′ \ A in an appropriate way.

• Every model I ′ of S ′ is also a model of S if restricted to the class names in C and the attribute names
in A.

Lemma 2.3.7 Let S = (C,A, T ) and S ′ = (C′,A′, T ′), where C ⊆ C′ and A ⊆ A′, be equivalent schemata,
and C1, C2 ∈ C. Then the following holds:

1. (S 6|=u) ⇐⇒ (S ′ 6|=u).

2. (S 6|=u C1 ≡ ⊥) ⇐⇒ (S ′ 6|=u C1 ≡ ⊥).

3. (S |=u C1 ¹ C2) ⇐⇒ (S ′ |=u C1 ¹ C2).

4. (S |=u C1 ≡ C2) ⇐⇒ (S ′ |=u C1 ≡ C2).

Proof. Straightforward.
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2.4 Finite versus Unrestricted Models

When defining the semantics of L-languages and schemata we did not make any assumption on the domain
of the interpretation, except that it be nonempty. Also, the reasoning services were defined in terms of
arbitrary interpretations, possibly with an infinite domain.

The question of finiteness of the interpretation domain has very rarely been a matter of debate among
researchers working on formalisms for structured knowledge representation. This is mainly for two reasons:
First, since Description Logics are just particular kinds of logic (in many cases subsets of First Order Logic)
infinite models and classes with an infinite extension are perfectly admissible. Second, and probably more
relevant, the expressivity of most of the formalisms studied in the literature is such that the assumption of
finiteness of the interpretation domain does not influence reasoning at all. This can be restated by saying
that these formalisms have the finite model property, which means that if a schema admits a model at all,
then it also admits one in which the interpretation domain is finite.

In Databases, on the other hand, the usual assumption is that the interpretation domain, which cor-
responds to a database state, is finite. The problem of distinguishing between reasoning in finite and
unrestricted domains has for example been considered in the context of dependency theory, where the in-
teraction of functional and inclusion dependencies may cause the implication of some dependencies to hold
only if the database is assumed to be finite [50].

Since we are dealing with formalisms for the representation of knowledge, it is often necessary to make
the assumption that the underlying interpretation is finite. Such an assumption may have important con-
sequences on inference and completely change the set of facts that can be deduced from a given schema.
Indeed, a whole branch of logic, namely finite model theory, is concerned with the study and characterization
of properties of logics that hold only in finite structures, and is therefore of particular relevance to Computer
Science [86]. Recent work has shown that there is a tight connection between the expressivity of logics
when interpreted over finite structures, and complexity classes studied in computational complexity theory.
Fagin gave the first characterization of a complexity class in terms of logic (i.e. independent of any notion
of computation of a machine and of time), by charactering NP in terms of existential second order logic
(see [75] for a recent presentation of these results). Successively, a great variety of similar characterizations
has been discovered, and Descriptive Complexity Theory, as the area is called now, is a very active field of
research. These issues are also of fundamental importance for the study and development of query languages
in databases, where researchers are concerned with the tradeoff between the expressivity of a database query
languages and the complexity of actually computing a query expressed in that language [44, 160, 99, 100, 4].

In this thesis we are also concerned with the study of properties of logics when interpreted over finite
structures. We follow, however, a different line of research than the one just mentioned, and have concen-
trated on analyzing decidability and complexity of inference at the intensional level, with respect to both
finite and unrestricted models. The following definition captures this distinction between reasoning in the
two contexts.

Definition 2.4.1 Given an L-language L, an L-schema S and two class expressions E,E′ of L, we call:

• Finite schema consistency the problem of establishing whether S is finitely consistent (written as
S 6|=f ), i.e. whether it admits a finite model.

• Finite class consistency the problem of establishing whether E is finitely consistent in S (written as
S 6|=f E ≡ ⊥), i.e. whether there is a finite model I of S such that EI 6= ∅.

• Finite class subsumption the problem of establishing whether E is finitely subsumed by E′ in S (written
as S |=f E ¹ E′), i.e. whether EI ⊆ E′I for every finite model I of S.

• Finite class equivalence the problem of establishing whether E is finitely equivalent to E′ in S (written
as S |=f E ≡ E′), i.e. whether EI = E′I for every finite model I of S.
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The distinction between finite and unrestricted reasoning is indeed necessary, since the expressivity of
some L-languages causes the finite model property to fail to hold. More precisely, the interaction of functional
restrictions, inverse attributes and cycles that occurs already in primitive LFI-schemata is sufficient to
specify a class in a schema which can be populated only in an infinite model. Similarly, we can construct
a primitive LFI-schema in which one class is subsumed by another one only if we restrict the attention to
finite models. This is illustrated in the following two examples.

Example 2.4.2 Let S := (C,A, T ) be the LFI-schema where

C := {FirstGuard, Guard},
A := {shields},
and the set T of assertions consists of:

FirstGuard ¹̇ Guard u ∀shields−.⊥
Guard ¹̇ ∃shields u ∀shields.Guard u ∃≤1shields−.

The schema S states that a first guard is a guard whom nobody shields. A guard is somone who shields
something and all it shields are guards. Moreover, a guard is shielded by at most one individual. It is
easy to see, that the existence of a first guard implies the existence of an infinite sequence of guards, each
one shielding the following one4. More formally, if I is a model of S and there is an instance o0 ∈ ∆I of
FirstGuard, then there must be an infinite sequence o1, o2, . . . ∈ ∆I of distinct instances of Guard, such
that (oi, oi+1) ∈ shieldsI , for i ≥ 0. In fact, if we try to populate the class Guard with the least number
of instances, starting with o0, for each instance oi introduced in GuardI , we are forced to introduce a new
instance oi+1. This is because any oj with 0 < j ≤ i appears already as second component in the instance
(oj−1, oj) of shields, and therefore cannot be reused as a shields-successor for oi, and because also o0
cannot appear as second component since it is an instance of FirstGuard. Summing up, we can say that
S 6|=u FirstGuard ≡ ⊥, while S |=f FirstGuard ≡ ⊥.

Example 2.4.3 Let S := (C,A, T ) be the LFI-schema where

C := {Number, Even},
A := {doubles},
and the set T of assertions consists of:

Number ¹̇ ∃doubles− u ∀doubles−.Even

Even ¹̇ Number u ∃≤1doubles u ∀doubles.Number.

Intuitively, the schema S states that for each number there is an even number which doubles it, and that all
numbers which double it are even. Each even number is a number, doubles at most one number, and doubles
only numbers. Observe that for any model I of S the universal quantifications together with the functionality
of doubles in the assertions imply that ]EvenI ≥ ]NumberI , while the direct inclusion assertion between
Even and Number implies that ]EvenI ≤ ]NumberI . Therefore, the two classes have the same cardinality, and
since one is a subclass of the other, if the domain is finite, the two classes coincide. This does not necessarily
hold for infinite domains. In fact, the names chosen for the classes and the attribute suggest already an
infinite model of the schema in which Number and Even are interpreted differently. The model is obtained
by taking the natural numbers as domain, and interpreting Number as the whole domain, Even as the even
numbers, and doubles as the set {(2n, n) | n ≥ 0}. Summarizing, we can say that S |=f Number ≡ Even
while S 6|=u Number ≡ Even.

Notice that Propositions 2.3.2, 2.3.3, 2.3.4, and 2.3.5 and Lemma 2.3.7 extend easily to the case where
reasoning is performed with respect to finite models only.

4This situation resembles the one described in Franz Kafka’s novel “The Trial”.
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Modeling Known Formalisms

In this chapter we show that L-languages (in particular LUNI used with primitive schemata) and the
associated reasoning capabilities represent the essential core of the class-based representation formalisms.
This is done by providing translations from frames, semantic data models, and object oriented data models
to L-schemata. The expressivity of L-languages allows us to devise these translation in such a way that
the typical problems concerning reasoning in all these formalisms have a direct correspondence in reasoning
on L-schemata. The translations also show that the combination of constructs necessary to capture all
structural aspects in the different contexts is exactly that of primitive LUNI-schemata. Therefore, in order
to perform intensional deductions on frames, semantic data models, and object-oriented data models we can
resort to the methods developed in Chapters 5 and 6 for reasoning on primitive LUNI-schemata.

In this sense, L-schemata not only provide a common powerful representation tool, but may also con-
tribute to significant developments for the languages belonging to all the three families

The chapter is organized as follows. In Section 3.1 we compare L-languages with Description Logics,
pointing out some of the aspects that are currently not dealt with in L-languages. In Section 3.2 we show
how to reduce reasoning in frame based systems to reasoning on L-schemata. In Sections 3.3 and 3.4 we
provide similar transformations for semantic and object-oriented models, thus showing also that reasoning
in these formalisms is decidable.

3.1 Comparison with Description Logics

In the last decade, the research on structured Knowledge Representation concentrated on the definition of
Description Logics (also called Concept Languages), which are subsets of first-order logics, introduced for
the formalization of the kl-one system and its successors (see [168]). Most of the constructors of the family
of L-languages correspond in fact (both in syntax and semantics) to well known constructors considered and
studied in Description Logics [120, 65, 64, 11]. A notable exception is the repeat constructor, which has not
been considered before in knowledge representation formalisms as a means to define well founded structures.
We should mention, that the same effect can be achieved by including fixpoint definitions in class expressions
[141, 57]. In this case, however, decidability remains open if we add number restrictions and inverse roles,
while in Chapter 5 we show decidability of reasoning in unrestricted models for the combination of these
constructors with repeat.

Some combinations of constructors present in L-languages have not been considered before (in particular,
the combination of inverse roles and number restrictions in cyclic assertions, and repeat) and in fact result
in a family of formalism that subsumes most known Description Logics. Therefore, instead of showing a
correspondence we mention briefly those aspects that have been considered in Description Logics and that
have no correspondence in L-languages. The most important restriction stems from the fact that we deal
only with reasoning at the intensional level, while the development of reasoning procedures that can deal
with the integration of intensional and extensional reasoning constitutes an important aspect of research in
Knowledge Representation [93, 14, 39, 137, 69, 139, 138, 37]. Other aspects and constructors that are not
present in L-languages and that have been subject of study include the following:

• Constructors for specifying classes by an enumeration of single objects [138, 139].

29
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• The use of epistemic operators in class and link expressions, which allow for the formalization of certain
procedural and non-monotonic mechanisms [66, 67].

• Constructors for expressing cardinality constraints on the number of instances of a certain class (as
opposed to the number of instances connected through a link) [15].

• The integration of concrete domains (such as numbers) and of specialized algorithms for reasoning on
these domains [13].

• Nonmonotonic extensions of Description Logics by means of default rules [17, 16].

An integration of some (or all) of these aspects with the combination of constructors that is peculiar of
L-languages, and the development of adequate procedures for reasoning on both intensional and extensional
knowledge represents an interesting challenge.

3.2 Modeling Frame Based Systems

Frame languages are based on the idea of expressing knowledge by means of frames, which are structures
representing classes of objects in terms of the properties that their instances must satisfy. Such properties
are defined by the frame slots, that constitute the items of a frame definition. Since the 70s a large number
of frame systems have been developed, with different goals and different features. Description Logics and
consequently L-languages bear a close relationship with the kl-one family of frame systems (see [168]).
However, here we would like to consider frame systems from a more general perspective, as discussed for
example in [102, 126], and establish the correspondence with L-languages in this context.

Note that we are restricting our attention to those aspects that are related to the taxonomic structure.
For this reason we do not consider those features that cannot be captured in a first-order framework, such
as default values in the slots, attached procedures, and the specification of overriding inheritance policies.
Some of the issues concerning the modeling of these aspects in Description Logics are addressed in [68, 71],
within a modal nonmonotonic extension of Description Logics.

3.2.1 Syntax of Frame Based Systems

To make the correspondence precise, we need to fix syntax and semantics for the frame systems we consider.
Since there is no accepted standard, we have chosen to use the notation adopted in [78], which is used also
in the KEE1 system.

Definition 3.2.1 A frame knowledge base, denoted by K, is formed by a set of frame names and slot names,
and is constituted by a set of frame definitions of the following form:

Frame : H in KB K F,

where F is a frame expression, i.e. an expression formed according to the following syntax:

F −→ SuperClasses : H1, . . . , Hh

MemberSlot : S1

ValueClass : E1

Cardinality.Min : m1

Cardinality.Max : n1

· · ·
MemberSlot : Sk

ValueClass : Ek

Cardinality.Min : mk

Cardinality.Max : nk

1KEE is a trademark of Intellicorp. Note that a KEE user does not directly specify her knowledge base in this notation, but
is allowed to define frames interactively via the system interface.
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Frame: Course in KB University

MemberSlot: enrolls
ValueClass: Student
Cardinality.Min: 2
Cardinality.Max: 30

MemberSlot: taughtby
ValueClass: (UNION GradStud Professor)
Cardinality.Min: 1
Cardinality.Max: 1

Frame: AdvCourse in KB University

SuperClasses: Course
MemberSlot: enrolls

ValueClass: (INTERSECTION GradStud (NOT Undergrad))
Cardinality.Max: 20

Frame: BasCourse in KB University

SuperClasses: Course
MemberSlot: taughtby

ValueClass: (INTERSECTION Professor (NOT GradStud))

Frame: Professor in KB University

Frame: Student in KB University

Frame: GradStud in KB University

SuperClasses: Student
MemberSlot: degree

ValueClass: String
Cardinality.Min: 1
Cardinality.Max: 1

Frame: Undergrad in KB University

SuperClasses: Student

Figure 3.1: A KEE knowledge base

H and S denote frame and slot names, respectively, m and n denote positive integers, and E denotes slot
constraint, which are specified according to:

E −→ H |
(INTERSECTION E1 E2) |
(UNION E1 E2) |
(NOT E)

Note that we omit the specification of the sub-classes for a frame present in KEE, since it can be directly
derived from the specification of the super-classes.

Example 3.2.2 Figure 3.1 shows a simple example of knowledge base expressed in the frame language we
have presented.

3.2.2 Semantics of Frame Based Systems

To give semantics to a set of frame definitions we resort to their interpretation in terms of first-order predicate
calculus (see [91]). According to such interpretation, frame names are treated as unary predicates, while
slots are considered binary predicates.

A frame expression F is interpreted as a predicate logic formula F (x), which has one free variable, and is
constituted by the conjunction of sentences, obtained from the super-class specification and from each slot
specification. In particular, for the super-classes H1, . . . , Hh we have:

H1(x) ∧ . . . ∧Hh(x)
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and for a slot specification
MemberSlot : S

ValueClass : E
Cardinality.Min : m
Cardinality.Max : n

we have
∀y. (S(x, y) → E(y)) ∧
∃y1, . . . , ym. ((

∧
i 6=j yi 6= yj) ∧ S(x, y1) ∧ · · · ∧ S(x, ym)) ∧

∀y1, . . . , yn+1. ((S(x, y1) ∧ · · · ∧ S(x, yn+1)) →
∨

i 6=j yi = yj),

under the assumption that within one frame definition the occurrences of x refer to the same free variable.
Finally the constraints on the slots are interpreted as conjunction, disjunction and negation, respectively,
i.e.:

(INTERSECTION E1 E2) is interpreted as E1(x) ∧ E2(x)
(UNION E1 E2) is interpreted as E1(x) ∨ E2(x)
(NOT E) is interpreted as ¬E(x)

A frame definition
Frame : H in KB K F

is then considered as the universally quantified sentence of the form

∀x.(H(x) → F (x)).

The whole frame knowledge base K is considered as the conjunction of all first-order sentences corresponding
to the frame definitions in K.

Here we regard frame definitions as necessary conditions, which is commonplace in the frame systems
known as assertional frame systems, as opposed to definitional systems, such as those of the kl-one family,
where frame definitions are interpreted as necessary and sufficient conditions.

In order to enable the comparison with our formalisms for representing structured knowledge we restrict
our attention to the reasoning tasks that involve the frame knowledge base, independently on the assertional
knowledge, i.e. the frames instances. In [78], several reasoning services associated with frames are mentioned,
such as:

• Consistency checking, which amounts to verifying whether a frame H is satisfiable in a knowledge base.
In particular, this involves both reasoning on cardinalities and checking whether the filler of a given
slot belongs to a certain frame.

• Inheritance, which, in our case, amounts to the ability of identifying which of the frames are more
general than a given frame, sometimes called all-super-of (see [126]). All the properties of the more
general frames are then inherited by the more specific one. Such a reasoning is therefore based on the
more general ability to check the mutual relationships between frame descriptions in the knowledge
base.

These reasoning services are formalized in the first-order semantics as follows.

Definition 3.2.3 Let K be an frame knowledge base and H a frame in K. We say that H is consistent in
K if the first-order sentence K∧∃x.H(x) is satisfiable. Moreover, we say that a frame description F is more
general than H in K if K |= ∀x.(H(x) → F (x)).

3.2.3 Relationship between Frame Based Systems and L-Schemata

The first-order semantics given above allows us to establish a straightforward relationship between frame
languages and L-languages, and we can define a translation from frame knowledge bases to primitive LUN -
schemata.

We first define the function θ that maps each frame expression into an LUN -class expression as follows:

• Every frame name H is mapped into a class name θ(H).

• Every slot name S is mapped into an attribute name θ(S).
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• Every slot constraint is mapped as follows

(UNION E1 E2) is mapped into θ(E1) t θ(E2).
(INTERSECTION E1 E2) is mapped into θ(E1) u θ(E2).
(NOT E) is mapped into ¬θ(E).

• Every frame expression of the form

SuperClasses : H1, . . . ,Hh

MemberSlot : S1

ValueClass : E1

Cardinality.Min : m1

Cardinality.Max : n1

· · ·
MemberSlot : Sk

ValueClass : Ek

Cardinality.Min : mk

Cardinality.Max : nk

is mapped into the class expression

θ(H1) u · · · u θ(Hh) u
∀θ(S1).θ(E1) u ∃≥m1θ(S1) u ∃≤n1θ(S1) u
· · ·
∀θ(Sk).θ(Ek) u ∃≥mkθ(Sk) u ∃≤nkθ(Sk).

This mapping allows us to translate a frame knowledge base into an LUN -schema.

Definition 3.2.4 The LUN -schema θ(K) := (C,A, T ) corresponding to the frame knowledge base K is
obtained as follows:

• C consists of one class name θ(H) for each frame name H in K.

• A consists of one attribute name θ(S) for each slot name S in K.

• T consists of a primitive class specification

θ(H) ¹̇ θ(F )

for each frame definition
Frame : H in KB K F

in K.

We illustrate the translation on a simple example.

Example 3.2.2 (cont.) The primitive LUN -schema corresponding to the knowledge base of Figure 3.1 is
S := (C,A, T ), where

C := {Course, AdvCourse, BasCourse, Professor, Student, GradStud,
Undergrad, String},

A := {enrolls, taughtby, degree},
and the set T of assertions consists of:

Course ¹̇ ∀enrolls.Student u ∃≥2enrolls u ∃≤30enrolls u
∀taughtby.(Professor t GradStud) u ∃=1taughtby

AdvCourse ¹̇ Course u ∀enrolls.(GradStud u ¬Undergrad) u ∃≤20enrolls

BasCourse ¹̇ Course u ∀taughtby.(Professor u ¬GradStud)
GradStud ¹̇ Student u ∀degree.String u ∃=1degree

Undergrad ¹̇ Student.
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The correctness of the translation follows from the correspondence between the set-theoretic semantics
of L-languages and the first-order interpretation of frames (see for example [70, 28]). We can observe that
inverse attributes and other link forming constructors are in fact not necessary for the formalization of
frames. Indeed, the possibility of referring to the inverse of a slot has been rarely considered in frame
knowledge representation systems (Some exceptions are reported in [102]). Due to the absence of inverse
roles, LUN -schemata have the finite model property, and the distinction between reasoning in finite and
unrestricted models is not necessary. Consequently, all the above mentioned forms of reasoning are captured
by unrestricted class consistency and class subsumption in primitive LUN -schemata. This is summarized in
the following theorem.

Theorem 3.2.5 Let K be a frame knowledge-base, H be a frame in K, F be a frame description, and θ(K)
be the translation of K. Then the following holds:

• H is consistent in K if and only if θ(K) 6|=u θ(H) ≡ ⊥.

• F is more general than H in K if and only if θ(K) |=u θ(H) ¹ θ(F ).

Proof. The claim trivially follows from the semantics of frame knowledge bases and the translation into
L-schemata that we have adopted.

3.3 Modeling Semantic Data Models

Semantic data models were introduced primarily as formalisms for database schema design. They provide
a means to model databases in a much richer way than traditional data models supported by Database
Management Systems, and are becoming more and more important because they are adopted in most of the
recent database design methodologies and Computer Aided Software Engineering tools.

The most widespread semantic data model is the Entity-Relationship (ER) model introduced in [45].
It has by now become a standard, extensively used in the design phase of commercial applications. In
the commonly accepted ER notation, classes are called entities and are represented as boxes, whereas
relationships between entities are represented as diamonds. Arrows between entities, called ISA relationships,
represent inclusion assertions. The links between entities and relationships represent the ER-roles, to which
number restrictions are associated. Dashed links are used whenever such restrictions are refined for more
specific entities. Finally, elementary properties of entities are modeled by attributes, whose values belong to
one of several predefined domains, such as Integer, String, or Boolean.

As already mentioned, the ER model does not provide constructs for expressing explicit disjointness or
disjunction, but extensions of the model allow for the use of generalization hierarchies which represent a com-
bination of these two constructs. In order to keep the presentation simple, we do not consider generalization
hierarchies in the formalization we provide, although their addition would be straightforward. Similarly, we
omit attributes of relations.

We show now that ER-schemata can be modeled by L-schemata, and thus that reasoning on an ER-
schema can be reduced to reasoning on the corresponding L-schema. More precisely, we show that the
language LNI and just primitive schemata are already sufficient to capture all relevant aspects of the ER-
model. This is particularly significant, since in Chapters 5 and 6 we will provide procedures for reasoning
on these types of schemata both with respect to finite and unrestricted models, thus showing that reasoning
on the ER-model, and more generally on semantic data models, is decidable. We remark that if we also
take generalization hierarchies into account, an ER-schema can be modeled by a primitive LUNI-schema,
for which the reasoning procedures developed in this thesis can still be applied.

In order to establish the correspondence between the two formalisms, we first need formal definitions of
syntax and semantics of ER-schemata.

3.3.1 Syntax of the Entity-Relationship Model

Although the ER-model has by now become an industrial standard, several variants and extensions have been
introduced, which differ in minor aspects in expressivity and in notation [45, 153, 20, 155, 156]. Also, ER-
schemata are usually defined using a graphical notation which is particularly useful for an easy visualization of
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the data dependencies, but which is not well suited for our purposes. Therefore we have chosen a formalization
of the ER-model which abstracts with respect to the most important characteristics and allows us to show
easily the correspondence to L-schemata.

In the following, for two finite sets X and Y we call a function from a subset of X to Y an X-labeled tuple
over Y . The labeled tuple T that maps xi ∈ X to yi ∈ Y , for i ∈ {1, . . . , k}, is denoted [x1: y1, . . . , xk: yk].
We also write T [xi] to denote yi.

Definition 3.3.1 An ER-schema is a tuple S := (LS ,¹S , attS , relS , cardS), where

• LS is a finite alphabet partitioned into a set ES of entity symbols, a set AS of attribute symbols, a set
US of role symbols, a set RS of relationship symbols, and a set DS of domain symbols; each domain
symbol D has an associated predefined basic domain DBD , and we assume the various basic domains
to be pairwise disjoint.

• ¹S⊆ ES × ES is a binary relation over ES .

• attS is a function that maps each entity symbol in AS to an AS -labeled tuple over DS .

• relS is a function that maps each relationship symbol in RS to an US -labeled tuple over ES . We assume
without loss of generality that:

– Each role is specific to exactly one relationship, i.e. for two relationships R,R′ ∈ RS with R 6= R′,
if relS(R) := [U1:E1, . . . , Uk:Ek] and relS(R′) := [U ′1:E

′
1, . . . , U

′
k′ :E

′
k′ ], then {U1, . . . , Uk} and

{U ′1, . . . , U ′k′} are disjoint.

– For each role U ∈ US there is a relationship R and an entity E such that relS(R) := 〈. . . , U :E, . . .〉.
• cardS is a function from ES × RS × US to IN0 × (IN0 ∪ {∞}) that satisfies the following condition:

for a relationship R ∈ RS such that relS(R) := [U1:E1, . . . , Uk:Ek], cardS(E,R,U) is defined only
if U = Ui for some i ∈ {1, . . . , k}, and if E ¹∗S Ei

2. The first component of cardS(E,R,U) is
denoted with cminS(E,R,U) and the second component with cmaxS(E,R,U). If not stated otherwise,
cminS(E,R,U) is assumed to be 0 and cmaxS(E,R,U) is assumed to be ∞.

Before specifying the formal semantics of ER-schemata we give an intuitive description of the components
of a schema. The relation ¹S models the ISA-relationship between entities. We do not need to make any
special assumption on the form of ¹S such as acyclicity or injectivity. The function attS is used to model
attributes of entities. If for example attS associates the AS -labeled tuple [A1: Integer, A2: String] to an
entity E, then E has two attributes A1, A2 whose values are integers and strings respectively. For simplicity
we assume attributes to be single-valued and mandatory, but we could easily handle also multi-valued
attributes with associated cardinalities. The function relS associates to each relationship symbol R a set of
roles, determining implicitly also the arity of the relationship, and for each role U in such set a distinguished
entity, called the primary entity for U in R. In a database satisfying the schema only instances of the
primary entity are allowed to participate in the relationship via the role U . The function cardS specifies
cardinality constraints, i.e. constraints on the minimum and maximum number of times an instance of an
entity may participate in a relationship via some role. Since such constraints are meaningful only if the
entity can effectively participate in the relationship, the function is defined only for the sub-classes of the
primary class. The special value ∞ is used when no restriction is posed on the maximum cardinality. Such
constraints can be used to specify both existence dependencies and functionality of relations [49]. They
are often used only in a restricted form, where the minimum cardinality is either 0 or 1 and the maximum
cardinality is either 1 or∞. Cardinality constraints in the form considered here have been introduced already
in [5] and successively studied in [83, 111, 77, 169]. In [155] a very general form of cardinality constraints
for the ER-model is formalized and deduction is studied for restricted cases.

Example 3.3.2 Figure 3.2 shows a simple ER-schema modeling a similar state of affairs as the KEE knowl-
edge base in Figure 3.1. We have used the standard graphic notation for ER-schemata, except for the dashed
link, which represents the refinement of a cardinality constraint for the participation of a sub-class (in our
case AdvCourse) in a relationship (ENROLLING).

2¹∗S denotes the reflexive transitive closure of ¹S .
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AdvCourse

Course

Teacher

Student

GradStuddegree/String

ENROLLING
(2,30)

Ein

(4,6)

Eof

TEACHING
(1,1)

Tof

(0,∞)

Tby

(2,20)

6 6

Figure 3.2: An ER-schema

3.3.2 Semantics of the Entity-Relationship Model

The semantics of an ER-schema can be given by specifying which database states conform to the information
structure represented by the schema. Formally, a database state B corresponding to an ER-schema S :=
(LS ,¹S , attS , relS , cardS) is constituted by a nonempty finite set ∆B, assumed to be disjoint from all basic
domains, and a function ·B that maps

• every domain symbol D ∈ DS to the corresponding basic domain DBD ,

• every entity E ∈ ES to a subset EB of ∆B,

• every attribute A ∈ AS to a set AB ⊆ ∆B ×⋃
D∈DS D

BD , and

• every relationship R ∈ RS to a set RB of US-labeled tuples over ∆B.

The elements of EB, AB, and RB are called instances of E, A, and R respectively.
A database state is considered acceptable if it satisfies all integrity constraints that are part of the schema.

This is captured by the definition of legal database state.

Definition 3.3.3 A database state B is said to be legal for an ER-schema S := (LS ,¹S , attS , relS , cardS),
if it satisfies the following conditions:

• For each pair of entities E1, E2 ∈ ES such that E1 ¹S E2, it holds that EB1 ⊆ EB2 .

• For each entity E ∈ ES , if attS(E) := [A1:D1, . . . , Ah:Dh], then for each instance e ∈ EB and for each
i ∈ {1, . . . , h} the following holds:

– there is exactly one element ai ∈ ABi whose first component is e, and

– the second component of ai is an element of DBD .

• For each relationship R ∈ RS such that relS(R) := [U1:E1, . . . , Uk:Ek], all instances of R are of the
form [U1: e1, . . . , Uk: ek], where ei ∈ EBi , i ∈ {1, . . . , k}.

• For each relationship R ∈ RS such that relS(R) := [U1:E1, . . . , Uk:Ek], for each i ∈ {1, . . . , k}, for
each entity E ∈ ES such that E ¹∗S Ei and for each instance e of E in I, it holds that

cminS(E,R,Ui) ≤ ]{r ∈ RB | r[Ui] = e} ≤ cmaxS(E,R,Ui).
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Even

Number

DOUBLES

(1,∞)

(0,1)

6

Figure 3.3: The ER-schema corresponding to Example 2.4.3

Notice that the definition of database state reflects the usual assumption in the whole database area that
database states are finite structures (see also [50]). In fact, the basic domains are not required to be finite,
but for each legal database state for a schema, only a finite set of values from the basic domains are actually
of interest. We define the active domain ∆B

act of a database state B as the set of all elements of the basic
domains DBD , D ∈ DS , that effectively appear as values of attributes in B. More formally:

∆B
act := {d ∈ DBD | D ∈ DS ∧ ∃A ∈ AS , e ∈ ∆B : (e, d) ∈ AB}.

Since ∆B is finite and AS contains only a finite number of attributes which are functional by definition, also
∆B

act is finite.
Reasoning in the ER-model includes verifying entity satisfiability and deducing inheritance. Entity sat-

isfiability amounts to checking whether a given entity can be populated in some legal database state (see
[7, 111, 59]), and corresponds to the notion of class consistency in L-schemata. Deducing inheritance amounts
to verifying whether in all databases that are legal for the schema, every instance of an entity is also an
instance of another entity. Such implied ISA relationships can arise for different reasons. Either trivially,
from the transitive closure of the explicit ISA relationships present in the schema, or in more subtle ways,
through specific patterns of cardinality restrictions along cycles in the schema and the requirement of the
database state to be finite [111, 50].

Example 3.3.4 Figure 3.3 shows an ER-schema modeling the same situation as the L-schema of Exam-
ple 2.4.3. Arguing exactly as in that example we can conclude that the two entities Number and Even denote
the same set of objects in every finite database legal for the schema, although the ISA relation from Number
to Even is not stated explicitly. It is implied, however, due to the cycle involving the relationship and the
two classes and due to the particular form of cardinality constraints.

3.3.3 Relationship between ER-Schemata and L-Schemata

We show now that the different forms of reasoning on ER-schemata are captured by finite class consistency
and finite class subsumption in primitive LNI-schemata. The correspondence between the ER-model and
our class based formalism is established again by defining a translation φ from ER-schemata to L-schemata,
and then proving that there is a correspondence between legal database states and finite models of the
derived schema.

Definition 3.3.5 Let S := (LS ,¹S , attS , relS , cardS) be an ER-schema. The primitive LNI-schema
φ(S) := (C,A, T ) is defined as follows:
The set C of classes of φ(S) contains the following elements:

• For each domain symbol D ∈ DS , a class name φ(D).

• For each entity E ∈ ES , a class name φ(E).

• For each relationship R ∈ RS , a class name φ(R).

The set A of attributes of φ(S) contains the following elements:

• For each attribute A ∈ AS , an attribute name φ(A).

• For each relationshipR ∈ RS such that relS(R) := [U1:E1, . . . , Uk:Ek], k attribute names φ(U1), . . . , φ(Uk).

The set T of assertions of φ(S) contains the following elements:
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• For each pair of entities E1, E2 ∈ ES such that E1 ¹S E2, the assertion

φ(E1) ¹̇ φ(E2). (3.1)

• For each entity E ∈ ES such that attS(E) := [A1:D1, . . . , Ah:Dh], the assertion

φ(E) ¹̇ ∀φ(A1).φ(D1) u · · · u ∀φ(Ah).φ(Dh) u
∃=1φ(A1) u · · · u ∃=1φ(Ah).

(3.2)

• For each relationship R ∈ RS such that relS(R) := [U1:E1, . . . , Uk:Ek], the assertions

φ(R) ¹̇ ∀φ(U1).φ(E1) u · · · u ∀φ(Uk).φ(Ek) u
∃=1φ(U1) u · · · u ∃=1φ(Uk)

(3.3)

φ(Ei) ¹̇ ∀(φ(Ui))−1.φ(R), i ∈ {1, . . . , k}. (3.4)

• For each relationship R ∈ RS such that relS(R) := [U1:E1, . . . , Uk:Ek], for i ∈ {1, . . . , k}, and for each
entity E ∈ ES such that E ¹∗S Ei,

– if m := cminS(E,R,Ui) 6= 0, the assertion

φ(E) ¹̇ ∃≥m(φ(Ui))−1. (3.5)

– if n := cmaxS(E,R,Ui) 6= ∞, the assertion

φ(E) ¹̇ ∃≤n(φ(Ui))−1. (3.6)

• For each pair of symbols X1, X2 ∈ ES ∪RS ∪DS such that X1 6= X2 and X1 ∈ RS ∪DS , the assertion

φ(X1) ¹̇ ¬φ(X2). (3.7)

We observe that, by means of the inverse constructor, a binary relationship could be treated in a simpler
way by choosing a traversal direction and mapping the relationship directly to an LNI-attribute. Also, the
constructors for building tuples and tuples with keys introduced in Section 2.1.8 could have been adopted
to represent arbitrary relations. These constructors, together with the constructor for sets can be used to
capture also more complex semantic data models, as all those discussed in [98]. Our objective here was,
however, to illustrate the minimal requirements on L-schemata needed for establishing the correspondence,
and for the ER-model primitive LNI-schemata have already the required expressivity, as shown below.

Again, we illustrate the translation on an example.

Example 3.3.2 (cont.) The primitive LNI-schema that captures exactly the semantics of the ER-schema
of Figure 3.2 is S := (C,A, T ), where

C := {Course, AdvCourse, Teacher, Student, GradStud,
TEACHING, ENROLLING, String},

A := {Tof, Tby, Ein, Eof, degree},
and the set T of assertions consists of:

TEACHING ¹̇ ∀Tof.Course u ∃=1Tof u
∀Tby.Teacher u ∃=1Tby

ENROLLING ¹̇ ∀Ein.Course u ∃=1Ein u
∀Eof.Student u ∃=1Eof

Course ¹̇ ∀Tof−.TEACHING u ∃=1Tof− u
∀Ein−.ENROLLING u ∃≥2Ein− u ∃≤30Ein−

AdvCourse ¹̇ Course u ∃≤20Ein−

Teacher ¹̇ ∀Tby−.TEACHING

Student ¹̇ ∀Eof−.ENROLLING u ∃≥4Eof− u ∃≤6Eof−

GradStud ¹̇ Student u ∀degree.String u ∃=1degree.
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The translation demonstrates that both inverse attributes and number restrictions are necessary in order
to capture the semantics of ER-schemata. Notice also that the assumption of acyclicity of the resulting L-
schema is unrealistic in this case, and in order to exploit the correspondence for reasoning in the ER-model,
we need techniques that can deal with inverse attributes, number restrictions, and cyclic schemata together.
As shown in Examples 2.4.2 and 2.4.3, the combination of these factors causes the finite model property to
fail to hold, and we need to resort to reasoning methods for finite models.

In fact, we can reduce reasoning in the ER-model to finite class consistency and finite class subsumption
in primitive LNI-schemata. For this purpose we define a mapping between database states corresponding
to an ER-schema and finite interpretations of the L-schema derived from it. Due to the possible presence of
relations with arity greater than 2, this mapping is however not one-to-one and we first need to characterize
those interpretations of the L-schema that directly correspond to database states.

Definition 3.3.6 Let S := (LS ,¹S , attS , relS , cardS) be an ER-schema and φ(S) be defined as above.
An interpretation I of φ(S) is relation-descriptive, if for every relationship R ∈ RS , with relS(R) :=
[U1:E1, . . . , Uk:Ek], for every o, o′ ∈ (φ(R))I , we have that

(∀o′′ ∈ ∆I :
∧

1≤i≤k

((o, o′′) ∈ (φ(Ui))I ↔ (o′, o′′) ∈ (φ(Ui))I)) → o = o′.

Intuitively, the extension of a relationship in a database state is a set of labeled tuples, and such set
does not contain the same element twice. Therefore it is implicit in the semantics that there cannot be two
labeled tuples connected through all roles of the relationship to exactly the same elements of the domain.
In a model of the L-schema corresponding to the ER-schema, on the other hand, each tuple is represented
by a new object, and the above condition is not implicit anymore. It is easy to see that it also cannot be
imposed by suitable assertions, except in the case when the relationship is binary. The following lemma,
however, shows that we do not need such an explicit condition, when we are interested in reasoning on an
L-schema corresponding to an ER-schema. This is due to the fact that we can always restrict ourselves to
considering only relation-descriptive models.

Lemma 3.3.7 Let S be an ER-schema and φ(S) be the LNI-schema obtained from S according to Defini-
tion 3.3.5. Let further E be a class expression of φ(S). If E is finitely consistent in φ(S), then there is a
finite relation-descriptive model I of φ(S) such that EI 6= ∅.

Proof. The claim follows from Lemma 5.2.4, by observing that the construction in the proof preserves
finiteness of the model and class consistency.

Using this result it is possible to establish a correspondence between database states legal for an ER-
schema and relation-descriptive models of the resulting LNI-schema.

Proposition 3.3.8 For every ER-schema S := (LS ,¹S , attS , relS , cardS) there exist two mappings αS ,
from database states corresponding to S to finite interpretations of its translation φ(S), and βS , from finite
relation-descriptive interpretations of φ(S) to database states corresponding to S, such that:

1. For each database state B legal for S, αS(B) is a finite model of φ(S), and for each symbol X ∈
ES ∪ AS ∪RS ∪ DS , XB = (φ(X))αS(B).

2. For each finite relation-descriptive model I of φ(S), βS(I) is a database state legal for S, for each
entity E ∈ ES , (φ(E))I = EβS(I), and for each symbol X ∈ AS ∪ RS ∪ DS , ]φ(X)I = ]XβS(I), and
βS((φ(X))I) = XβS(I).

Proof. (1) Given a database state B we define the interpretation I := αS(B) of φ(S) as follows:

• ∆I := ∆B ∪∆B
act ∪

⋃
R∈RS R

B.

• For each symbol X ∈ ES ∪ AS ∪RS ∪ DS ,

(φ(X))I := XB. (3.8)
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• For each relationship R ∈ RS such that relS(R) := [U1:E1, . . . , Uk:Ek],

(φ(Ui))I := {(r, e) ∈ ∆I ×∆I | r ∈ RB, and r[Ui] = e}, i ∈ {1, . . . , k}. (3.9)

Let B be a legal database state. To prove claim (1) it is sufficient to show that I satisfies every assertion in
φ(S). Assertions 3.1 are satisfied since B satisfies the set inclusion between the extensions of the correspond-
ing entities. With respect to assertions 3.2, let E ∈ ES be an entity such that attS(E) := [A1:D1, . . . , Ah:Dh],
and consider an instance e ∈ (φ(E))I . We have to show that for each i ∈ {1, . . . , h}, there is exactly one
element ei ∈ ∆I such that (e, ei) ∈ (φ(Ai))I , and moreover that ei ∈ (φ(Di))I . By 3.8, e ∈ EB, and
by definition of legal database state there is exactly one element ai ∈ ABi = (φ(Ai))I whose first com-
ponent is e. Moreover, the second component ei of ai is an element of DBDi = (φ(Di))I . With respect
to assertions 3.3, let R ∈ RS be a relationship such that relS(R) := [U1:E1, . . . , Uk:Ek], and consider an
instance r ∈ (φ(R))I . We have to show that for each i ∈ {1, . . . , k} there is exactly one element ei ∈ ∆I

such that (r, ei) ∈ (φ(Ui))I , and that moreover ei ∈ (φ(Ei))I . By 3.8, r ∈ RB, and by definition of legal
database state, r is a labeled tuple of the form [U1: e′1, . . . , Uk: e′k], where e′i ∈ EBi , i ∈ {1, . . . , k}. Therefore
r is a function defined on {U1, . . . , Uk}, and by 3.9, ei is unique and equal to e′i. Moreover, again by 3.8,
ei ∈ (φ(Ei))I = EBi . Assertions 3.4 are satisfied, since by 3.9 the first component of each element of (φ(Ui))I

is always an element of RB = (φ(R))I . With respect to assertions 3.5, let R ∈ RS be a relationship such
that relS(R) := [U1:E1, . . . , Uk:Ek], let E ∈ ES be an entity such that E ¹S Ei, for some i ∈ {1, . . . , k}, and
such that m := cminS(E,R,Ui) 6= 0. Consider an instance e ∈ (φ(E))I . We have to show that there are at
least m pairs in (φ(Ui))I that have e as their second component. Since assertions 3.4 are satisfied we know
that the first component of all such pairs is an instance of φ(R). By 3.8 and by definition of legal database
state, there are at least m labeled tuples in RB whose Ui component is equal to e. By 3.9, (φ(Ui))I contains
at least m pairs whose second component is equal to e. With respect to assertions 3.6 we can proceed in
a similar way. Finally, assertions 3.7 are satisfied since first, by definition the basic domains are pairwise
disjoint and disjoint from ∆B and from the set of labeled tuples, second, no element of ∆B is a labeled tuple,
and third, labeled tuples corresponding to different relationships cannot be equal since they are defined over
different sets of roles.

(2) Let I be a finite relation-descriptive interpretation of φ(S). For each basic domain D ∈ DS , let βD
S be

an injective total function from ∆I to DBD . Since ∆I is finite and each basic domain contains a countable
number of elements, such a function always exists. In order to define βS we first specify how it is applied to
an element o ∈ ∆I :

• If o ∈ (φ(E))I for some entity E ∈ ES , then βS(o) := o.

• If o ∈ (φ(R))I for some relationship R ∈ RS with relS(R) := [U1:E1, . . . , Uk:Ek], and there are ele-
ments e1, . . . , ek ∈ ∆I such that (o, ei) ∈ (φ(Ui))I , for i ∈ {1, . . . , k}, then βS(o) := [U1: e1, . . . , Uk: ek].

• If o ∈ (φ(D))I for some basic domain D ∈ DS , then βS(o) := βD
S (o).

• Otherwise βS(o) := o.

For a pair of elements (o1, o2) ∈ ∆I × ∆I , βS((o1, o2)) := (βS(o1), βS(o2)), and for a set X, βS(X) :=
{βS(x) | x ∈ X}.

If I is a model of φ(S) the above rules define βS(o) for every o ∈ ∆I . Indeed, by the assertions 3.7, each
o ∈ ∆I can be an instance of at most one class name corresponding to a relationship or basic domain, and if
this is the case it is not an instance of any class name corresponding to an entity. Moreover, if o ∈ (φ(R))I for
some relationship R ∈ RS with relS(R) := [U1:E1, . . . , Uk:Ek], then by assertions 3.3, for each i ∈ {1, . . . , k}
there is exactly one element ei ∈ ∆I such that (o, ei) ∈ (φ(Ui))I . If I is not a model of φ(S) and for some
o ∈ ∆I , βS(o) is not uniquely determined, then we choose nondeterministically one possible value.

We can now define the database state B := βS(I) corresponding to I:

• ∆B := ∆I \ (⋃
R∈RS (φ(R))I ∪⋃

D∈DS (φ(D))I
)
.

• For each symbol X ∈ ES ∪ AS ∪RS ∪ DS , XB := βS((φ(X))I).

It is not difficult to see, that if I is a model of φ(S), then B defined in such a way is a legal database state
for S with active domain

⋃
D∈DS (φ(D))I .
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The following theorem allows us to reduce reasoning on ER-schemata to finite model reasoning on LNI-
schemata.

Theorem 3.3.9 Let S be an ER-schema, E,E′ be two entities in S, and φ(S) be the translation of S. Then
the following holds:

1. E is satisfiable in S if and only if φ(S) 6|=f φ(E) ≡ ⊥.

2. E inherits from E′ in S if and only if φ(S) |=f φ(E) ¹ φ(E′).

Proof. (1) “⇒” Let B be a legal database state with EB 6= ∅. By part 1 of Proposition 3.3.8, αS(B) is a
finite model of φ(S) in which (φ(E))αS(B) 6= ∅.

“⇐” Let φ(E) be finitely consistent in φ(S). By Lemma 3.3.7 there is a finite relation-descriptive model
I of φ(S) with φ(E)I 6= ∅. By part 2 of Proposition 3.3.8, βS(I) is a database state legal for S in which
EB 6= ∅.

(2) “⇒” Let φ(S) 6|=f φ(E) ¹ φ(E′). By Proposition 2.3.2, φ(E)u¬φ(E′) is finitely consistent in φ(S).
By Lemma 3.3.7 there is a finite relation-descriptive model I of φ(S) with o ∈ (φ(E))I and o 6∈ (φ(E′))I ,
for some o ∈ ∆I . By part 2 of Proposition 3.3.8, βS(I) is a database state legal for S in which o ∈ EB and
o 6∈ E′B. It follows that E does not inherit from E′.

“⇐” Assume E does not inherit from E′. Then there is a database state B legal for S where for an
instance e ∈ EB we have e 6∈ E′B. By part 1 of Proposition 3.3.8, αS(B) is a finite model of φ(S) in which
(φ(E) u ¬φ(E′))αS(B) 6= ∅. By Proposition 2.3.2, φ(S) 6|=f φ(E) ¹ φ(E′).

3.4 Modeling Object-Oriented Data Models

Object-oriented data models have been proposed with the goal of devising database formalisms that could
be integrated with object-oriented programming systems (see [104]). They are the subject of an active area
of research in the Database field, and are based on the following features: (a) In contrast to traditional data
models which are value-oriented, they rely on the notion of object identifiers at the extensional level, and on
the notion of class at the intensional level. (b) The structure of the classes is specified by means of typing
and inheritance.

3.4.1 Syntax of an Object-Oriented Model

Again, for the purpose of illustrating the correspondence with L-schemata, we define a simple object-oriented
language in the style of most popular models featuring complex objects and object identity. Although we
do not refer to any specific formalism, our model is inspired by the one presented in [2]. Again, we remind
that we restrict our attention to the structural component of object-oriented models and do not consider
those aspects related to the definition of methods associated to the classes. Nevertheless, we argue that
general techniques for schema level reasoning, as those developed in this thesis for type consistency and type
inference, could be profitably exploited also for restricted forms of reasoning on methods [3].

Definition 3.4.1 An object-oriented schema is a tuple S := (CS ,AS ,DS), where:

• CS is a finite set of class names, denoted by the letter C.
• AS is a finite set of attribute names, denoted by the letter A.
• DS is a finite set of class declarations of the form

Class C is-a C1, . . . , Ck type-is T,

in which T denotes a type expression built according to the following syntax:

T −→ C |
Union T1, . . . , Tk End |
Set-of T |
Record A1:T1, . . . , Ak:Tk End.

DS contains at most one such declaration for each class C ∈ CS .
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Class Course type-is
Record

enrolls: Set-of Student,
taughtby: Teacher

End

Class Teacher type-is
Union Professor, GradStud
End

Class GradStud is-a Student type-is
Record

degree: String
End

Figure 3.4: An object-oriented schema

To avoid confusion we will refer to the classes and attributes in the object-oriented model as “oo-classes”
and “oo-attributes” respectively, while we use the terms “class” and “attribute” with the usual meaning.

Example 3.4.2 Figure 3.4 shows the object-oriented schema corresponding to a fragment of the KEE
knowledge base of Figure 3.1.

Each class declarations imposes constraints on the instances of the class it refers to. The is-a part of a
class declaration allows to specify inclusion between the sets of instances of the involved oo-classes, while
the type-is part specifies through a type expression the structure assigned to the objects that are instances
of the oo-class.

3.4.2 Semantics of an Object-Oriented Model

The meaning of an object-oriented schema is given by specifying the characteristics of an instance of the
schema. The definition of instance makes use of the notions of object identifiers and values. Given an
object-oriented schema S and a finite set Oid of object identifiers denoting real world objects, the set V of
values over S and Oid is inductively defined as follows:

• Oid ⊆ V .

• If v1, . . . , vk ∈ V then {v1, . . . , vk} ∈ V.

• If v1, . . . , vk ∈ V then [[A1: v1, . . . , Ak: vk]] ∈ V.

• Nothing else is in V.

A database instance I of a schema S is constituted by a finite set OIid of object identifiers3, a mapping
πI assigning to each oo-class a subset of OIid , and a mapping ρI assigning a value in V to each object in OIid .
The interpretation of type expressions in I is defined through an interpretation function ·I that assigns to
each type expression a subset of V such that the following conditions are satisfied:

CI = πI(C)
(Union T1, . . . , Tk End)I = T I1 ∪ · · · ∪ T Ik

(Set-of T )I = {{v1, . . . , vk} | k ≥ 0,
vi ∈ T I , for i ∈ {1, . . . , k}}

(Record A1:T1, . . . , Ak:Tk End)I = {[[A1: v1, . . . , Ah: vh]] | h ≥ k,
vi ∈ T Ii , for i ∈ {1, . . . , k},
vj ∈ V, for j ∈ {k + 1, . . . , h}}.

3The object identifiers in OIid are unstructured and therefore different from polymorphic objects as defined in Section 2.1.8.
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Definition 3.4.3 Let S := (CS ,AS ,DS) be an object-oriented schema. A database instance I is said to be
legal with respect to S if for each declaration

Class C is-a C1, . . . , Cn type-is T

in D, it holds that CI ⊆ CIi for each i ∈ {1, . . . , n}, and that ρI(CI) ⊆ T I .

3.4.3 Relationship between Object-Oriented Schemata and L-Schemata

We establish now a relationship between LUF and the object-oriented language presented above. This
is done by providing a mapping from object-oriented schemata into primitive LUF-schemata. Since the
interpretation domain for LUF-schemata consists of atomic objects, whereas each instance of an object-
oriented schema is assigned a possibly structured value (see the definition of V), we need to explicitly
represent some of the notions that underlie the object-oriented language. In particular, while there is a
correspondence between classes (in LUF) and oo-classes, one must explicitly account for the type structure
of each oo-class. This can be accomplished by introducing in LUF classes AbstractClass, to represent
the oo-classes, and RecType and SetType to represent the corresponding types. The associations between
oo-classes and types induced by the oo-class declarations, as well as the basic characteristics of types, are
modeled by means of LUF-attributes: the (functional) attribute value models the association between
oo-classes and types, and the attribute member is used for specifying the type of the elements of a set.
Moreover, the LUF-classes representing types are assumed to be mutually disjoint, and disjoint from the
classes representing oo-classes. These constraints are expressed by adequate inclusion assertions that will be
part of the LUF-schema we are going to define.

We first define the function ψ that maps each type expression into an LUF-class expression as follows:

• Every oo-class C is mapped into a class name ψ(C).

• Every type expression Union T1, . . . , Tk End is mapped into ψ(T1) t · · · t ψ(Tk).

• Every type expression Set-of T is mapped into SetType u ∀member.ψ(T ).

• Every oo-attributeA is mapped into an attribute name ψ(A), and every type expression RecordA1:T1, . . . , Ak:Tk End
is mapped into

RecType u ∀ψ(A1).ψ(T1) u ∃=1ψ(A1) u · · · u
∀ψ(Ak).ψ(Tk) u ∃=1ψ(Ak).

Using ψ we define the LUF-schema corresponding to a schema in the object-oriented model we have
defined.

Definition 3.4.4 The primitive LUF-schema ψ(S) := (C,A, T ) corresponding to the object-oriented schema
S := (CS ,AS ,DS) is obtained as follows:

• C := {AbstractClass, RecType, SetType} ∪ {ψ(C) | C ∈ CS}.
• A := {value, member} ∪ {ψ(A) | A ∈ AS}.
• T consists of the following assertions:

SetType ¹̇ ¬AbstractClass u ¬RecType
RecType ¹̇ ¬AbstractClass

and for each class declaration
Class C is-a C1, . . . , Cn type-is T

in S, an inclusion assertion

ψ(C) ¹̇ AbstractClass u
ψ(C1) u · · · u ψ(Cn) u
∀value.ψ(T ) u ∃=1value.
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From the above translation we can observe that inverse attributes are not necessary for the formalization
of object-oriented data models. Indeed, the possibility of referring to the inverse of an attribute is generally
ruled out in such models. However, recent papers (see for example [6, 43]) point out that this strongly limits
the expressive power of the data model. Note also that the use of number restrictions is limited to the value
1, which corresponds to existence constraints and functionality, whereas union is used in a more general form
than for example in the KEE system.

We illustrate the translation on an example.

Example 3.4.2 (cont.) The primitive LUF-schema that corresponds to the object-oriented schema of
Figure 3.4 is S := (C,A, T ), where

C := {AbstractClass, RecType, SetType, String,
Course, Teacher, Professor, Student, GradStud},

A := {value, member, enrolls, taughtby, degree},
and the set T of assertions consists of:

Course ¹̇ AbstractClass u ∃=1value u
∀value.(RecType u ∃=1enrolls u ∃=1taughtby u

∀enrolls.(SetType u ∀member.Student) u
∀taughtby.Teacher)

Teacher ¹̇ AbstractClass u ∃=1value u ∀value.(GradStud t Professor)
GradStud ¹̇ AbstractClass u Student u ∃=1value u

∀value.(RecType u ∃=1degree u ∀degree.String)
SetType ¹̇ ¬AbstractClass u ¬RecType
RecType ¹̇ ¬AbstractClass

The effectiveness of the translation ψ is sanctioned by the following proposition.

Proposition 3.4.5 For every object-oriented schema S, there exist two mappings αS and βS between in-
stances of S and finite interpretations of its translation ψ(S), such that:

1. For each legal instance I of S, αS(I) is a finite model of ψ(S), and for each type T , T I 6= ∅ if and
only if (ψ(T ))αS(I) 6= ∅.

2. For each finite model M of ψ(S), βS(M) is a legal instance of S, and for each oo-class C, (ψ(C))M 6= ∅
if and only if CβS(M) 6= ∅.

Proof. The proof can be carried out following the lines of the proof of Proposition 3.3.8.

The basic reasoning services considered in object-oriented databases are subtyping (check whether a type
denotes a subset of another type in every legal instance) and type consistency (check whether a type is
consistent in a legal instance). Based on Proposition 3.4.5, we can show that these forms of reasoning are
fully captured by finite class consistency and finite class subsumption in primitive LUF-schemata.

Theorem 3.4.6 Let S be an object-oriented schema, T, T ′ two type expressions in S, and ψ(S) the trans-
lation of S. Then the following holds:

1. T is consistent in S if and only if ψ(S) 6|=f ψ(T ) ≡ ⊥.

2. T is a subtype of T ′ in S if and only if ψ(S) |=f ψ(T ) ¹ ψ(T ′).

Proof. The proof is analogous to the proof of Theorem 3.3.9, but it makes use of Proposition 3.4.5 instead
of Proposition 3.3.8.
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Intrinsic Complexity of Reasoning

While the complexity of reasoning on class expressions has been thoroughly investigated in the literature,
deduction on schemata is not so well understood and far from being settled in all relevant cases. In this
chapter we discuss the intrinsic complexity of reasoning on L-schemata, and we concentrate on the case
of primitive schemata. In particular, Section 4.2 gives lower bounds for the complexity of reasoning on
both acyclic and general schemata in restricted languages, and the results are proved by exploiting direct
reductions from well-known problems that are complete for the complexity classes coNPand PSPACE,
respectively. We show that already reasoning on acyclic primitive L0-schemata is coNP-hard by exploiting
a reduction from validity of propositional formulae in disjunctive normal form. It is interesting to notice
that when we add either the possibility to express disjunction or the possibility to use cycles in the schema,
class consistency becomes even PSPACE-hard. These results are established by exploiting two different
reductions from validity of quantified boolean formulae. In Section 4.3 we introduce a general technique by
which we can eliminate the constructor for qualified existential quantification from a schema expressed in
LC or one of its sub-languages without influencing class consistency. This technique is a fruitful source of
complexity results, the most relevant being EXPTIME-hardness of class consistency in general primitive
LU-schemata. In fact, it is surprising to notice that even when restricting the attention to primitive schemata,
in which only sufficient conditions can be stated, the use of disjunctions together with cyclic assertions is
sufficient to make reasoning as hard as in the most expressive decidable schema definition languages we
consider in this thesis. Finally, Section 4.4 shows that there are different ways the constructors of LT
may interact and lead to undecidability of class consistency. Section 4.1 some introductory notions about
complexity classes.

4.1 Complexity Classes

We use standard notions from complexity theory as presented for example in [82, 124]. In particular, we
will speak about the complexity classes PTIME, NP, PSPACE, and EXPTIME, whose definitions we
briefly recall here.

The classes PTIME, PSPACE, and EXPTIME are defined in terms of the resources needed by a
deterministic Turing Machine (TM) to solve a specific decision problem. A decision problem is characterized
by the set of its positive instances, for which we assume some standard encoding as strings of symbols of the
alphabet of the TM. The size of an instance X of a problem, denoted with |X|, is the length of its encoding.
In this setting “time” is the number of transitions performed by the TM, and “space” is the number of
tape positions effectively used by the TM. The TM solves the decision problem if, given as input a string
encoding an instance of the problem, it decides whether such instance is positive. The class PTIME (resp.
PSPACE, EXPTIME) contains the problems that can be solved by a deterministic TM in polynomial
time (resp. polynomial space, exponential time) in the size of the input. NP contains the problems that can
be solved by a nondeterministic TM in polynomial time.

The complement of a problem P is the set of instances that are not positive instances of P . Given a class
C, the class coC is the set of problems that are the complement of a problem in C.

45
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4.1.1 Complete Problems for Complexity Classes

Given a class C, a problem P1 is said to be C-hard (w.r.t. the polynomial reduction) if for every problem P2

in C, there is a polynomial reduction from P2 to P1. If a C-hard problem P1 is in C then P1 is said to be
C-complete.

A typical NP-complete problem is deciding the satisfiability of propositional formulae in conjunctive
normal form. A typical coNP-complete problem is deciding the validity of propositional formulae in dis-
junctive normal form (DNF for short) [82, page 261]. We briefly recall the definition of the latter problem,
which is the one we are going to use.

Definition 4.1.1 A literal is a nonzero integer. A clause is a nonempty finite set c of literals such that
l ∈ c implies −l 6∈ c. A clause c is over a set of positive integers P if for each l ∈ c, |l| ∈ P . A formula in
DNF (over P ) is a finite set of clauses (over P ). A P -assignment is a mapping

P → {t, f}.
A P -assignment α satisfies a literal l if α(l) = t if l is positive and α(−l) = f if l is negative. It satisfies
a clause if it satisfies all literals in the clause1, and it satisfies a formula in DNF if it satisfies at least one
clause in the formula.2. A DNF formula over P is valid if all P -assignments satisfy it.

A typical PSPACE-complete problem is deciding the validity of quantified boolean formulae [82, page
172], which generalizes validity of DNF formulae and which we briefly recall here.

Definition 4.1.2 A prefix from m to n, where m and n are positive integers such that m ≤ n, is a sequence

(Qnn)(Qn−1n− 1) · · · (Qmm),

where each Qi is either “∀” or “∃”. A quantified boolean formula is a pair Q.f , where, for some n, Q is a
prefix from 1 to n and f is a formula in DNF over {1, . . . , n}. Let Q be a prefix from m to n. A Q-assignment
is an {m,m + 1, . . . , n}-assignment in the sense of Definition 4.1.1. A set A of Q-assignments is canonical
for Q if it satisfies the following conditions:

1. A is nonempty.

2. If Q = (∃n)Q′, then all assignments of A agree on n and, if Q′ is nonempty, {α|{m,..,n−1} | α ∈ A} is
canonical for Q′.

3. If Q = (∀n)Q′, then

(a) A contains an assignment that satisfies n and, if Q′ is nonempty, then {α|{m,..,n−1} | α ∈
A and α(n) = t} is canonical for Q′.

(b) A contains an assignment that satisfies −n and, if Q′ is nonempty, then {α|{m,..,n−1} | α ∈
A and α(n) = f} is canonical for Q′.

A quantified boolean formula Q.f is valid if there exists a set A of Q-assignments that is canonical for Q
and such that every assignment in A satisfies at least one clause of f .

4.2 Lower Bounds by Direct Reductions

In this section we provide direct reductions that allow us to establish various hardness results for reasoning
on primitive schemata. In particular, we show that even for the simplest schema language we consider in this
thesis, namely L0, reasoning is already computationally hard. We prove a coNP-hardness result for class
consistency in acyclic primitive schemata and sketch how the proof can be extended to show PSPACE-
hardness of class consistency in acyclic LU-schemata. In order to show that the same lower bound holds
also if we admit cycles in primitive L0-schemata we exploit the capability of a cyclic L0-schema to simulate
an m-bit binary counter.

1This means that we view the clause as a conjunction of literals.
2This means that we view a formula as a disjunction of clauses.
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4.2.1 Preliminaries

We first discuss some simple properties of L0-schemata that will be used in the rest of the section. Let
S := (C,A, T ) be a primitive L0-schema, {A1, . . . , An} ⊆ A a set of attributes, and {C0, . . . , Cn} ⊆ C a set
of classes of S. We say that a sequence K := C0C1 · · ·Cn of classes is an (A1 · · ·An)-chain in S (of length
n), if T contains the following assertions:

Cj−1 ¹̇ ∀Aj.Cj , for j ∈ {1, . . . , n}.

An (A1 · · ·An)-chain where A1 = A2 = · · · = An =: A is simply an A-chain.
Let {Cij | i ∈ {1, . . . ,m}, j ∈ {0, . . . , n}} ⊆ C, and Ki := Ci0Ci1 · · ·Cin, i ∈ {1, . . . ,m}. We say that

a set H := {K1, . . . ,Km} of (A1 · · ·An)-chains in S is active in S, if for each j ∈ {1, . . . , n} there is an
i ∈ {1, . . . ,m} such that T contains the assertion Ci(j−1) ¹̇ ∃Aj .

Intuitively, if a schema contains an active set H of chains, then in every model of the schema each object
that is an instance of all initial classes of the chains in H requires the existence of a sequence of objects
that are connected through the attributes of the chains and are instances of successive classes in the chains.
This is formalized in the following lemma which establishes properties of classes involved in a set of active
(A1 · · ·An)-chains.

Lemma 4.2.1 Let Ki := Ci0Ci1 · · ·Cin, for i ∈ {1, . . . ,m}, and let H := {K1, . . . ,Km} be an active set of
(A1 · · ·An)-chains in S. Let further I be a model of S. If there is an object o ∈ ∆I such that o ∈ CIi0, for
i ∈ {1, . . . ,m}, then for each j ∈ {1, . . . , n} there is an object oj ∈ ∆I such that oj ∈ CIij, for i ∈ {1, . . . ,m}.

Proof. The proof is by induction on n. The base case for n = 0 is trivial. For the induction step, assume that
H is an active set of (A1 · · ·An+1)-chains in S and that we have already shown that for each j ∈ {0, . . . , n}
there is an object oj ∈ ∆I such that oj ∈ CIij , for i ∈ {1, . . . ,m}. Since H is active there is an i0, 1 ≤ i0 ≤ m

such that T contains the assertion Ci0n ¹̇ ∃An+1. I is a model of S, and since on ∈ CIi0n, there is an
object on+1 such that (on, on+1) ∈ AIn+1. Since H is a set of (A1 · · ·An+1)-chains, T contains assertions
Cin ¹̇ ∀An+1.Ci(n+1), for i ∈ {1, . . . ,m}. Therefore, for all i ∈ {1, . . . ,m}, since on ∈ CIin we have that
on+1 ∈ CIi(n+1).

The next lemma can be seen as the converse of the one above. It states that if a set of chains is not active
then there is a model in which an object populates all initial classes, but all final classes have an empty
extension. Intuitively we can say that the generation of objects along the set of chains can be blocked at
some point.

Lemma 4.2.2 Let n ≥ 1, Ki := Ci0Ci1 · · ·Cin, for i ∈ {1, . . . ,m}, and let S be a schema consisting precisely
of the set H := {K1, . . . ,Km} of (A1 · · ·An)-chains. If H is not active in S then there is a model I of S
such that the following holds:

• There is an object o ∈ ∆I such that o ∈ CIi0 for i ∈ {1, . . . ,m}.

• CIin = ∅ for i ∈ {1, . . . ,m}.

Proof. Since H is not active in S, there is a j0 ∈ {1, . . . , n} such that for no i ∈ {1, . . . ,m}, T contains the
assertion Ci(j0−1) ¹̇ ∃Aj0 . It is easy to see that we obtain a model I of S by setting:

• ∆I := o0, . . . , oj0−1.

• CIij := {oj}, for i ∈ {1, . . . , n}, j ∈ {0, . . . , j0 − 1},
CIij := ∅, for i ∈ {1, . . . , n}, j ∈ {j0, . . . ,m}.

• AIj := {(oj−1, oj)}, for j ∈ {1, . . . , j0 − 1},
AIj := ∅, for j ∈ {j0, . . . , n}.
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In the rest of the section we are going to reduce decision problems that are hard for a certain complexity
class to class consistency in suitable schemata. An instance of the decision problem is encoded by means of
a set of chains whose activation depends on whether the given instance represents a positive instance of the
problem. Lemmata 4.2.1 and 4.2.2 are used to relate the activation of a set of chains to the inconsistency of
a class in the schema. In fact, the reductions we give show that the complexity of reasoning on L0-schemata
lies precisely in the detection of sets of active chains.

4.2.2 Acyclic Primitive L0-Schemata

L0 is the simplest language we have considered and it is subsumed by almost all representation formalisms
used both in Knowledge Representation and in Databases. Nevertheless reasoning on L0-schemata is already
hard, as we are going to show, even when we consider their simplest variant containing only primitive class
specifications and no cycles.

We show coNP-hardness of class consistency in acyclic primitive L0-schemata by reducing to it the
problem of verifying the validity of a propositional formula f in DNF. To this end we exploit the encoding
of f in a set of A-chains. The following construction is directly derived from a construction in [92], where
coNP-hardness for class consistency in general primitive LI-schemata is shown.

In the following, let f := {c1, . . . , cn} be a formula in DNF over P := {1, . . . ,m}. We construct an
acyclic primitive L0-schema Sf such that a distinguished class of Sf is consistent if and only if f is valid. Sf

consists of two parts SP (which depends only on P ) and Sc (which encodes the the clauses of f). We first
define separately the two parts and then integrate them in a single schema.

Construction 4.2.3 The schema SP := (CP ,AP , TP ) is defined as follows:
The set CP of classes of SP contains the following elements:

• m+ 1 classes D0, . . . , Dm.

• m·(m+ 1) classes E+
ij , E

−
ij , for i ∈ {1, . . . ,m}, j ∈ {0, . . . , i− 1}.

The set of attributes of SP is given by AP := {A+, A−}.
The set TP of assertions of SP contains the following elements:

• For each i ∈ {1, . . . ,m}, the assertion

Di ¹̇ ∀A+.Di−1 u ∃A+ u ∀A−.Di−1 u ∃A−. (4.1)

• For each i ∈ {1, . . . ,m}, the assertion

Di ¹̇ ∀A+.E+
i(i−1) u ∀A−.E−i(i−1). (4.2)

• For each i ∈ {2, . . . ,m}, j ∈ {1, . . . , i− 1}, the assertions

E+
ij ¹̇ ∀A+.E+

i(j−1) u ∀A−.E+
i(j−1)

E−ij ¹̇ ∀A+.E−i(j−1) u ∀A−.E−i(j−1).
(4.3)

• For each i ∈ {1, . . . ,m}, j ∈ {0, . . . , i− 1}, the assertion

E+
ij ¹̇ ¬E−ij . (4.4)
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The interesting property of this schema is that in every model I of SP with DIm 6= ∅, for every possible
P -assignment α there is an object oα ∈ DI0 corresponding to α, as specified by the following lemma.

Lemma 4.2.4 Let I be a model of the schema SP obtained from P as specified in Construction 4.2.3, and
let DIm 6= ∅. Then for each P -assignment α there is an object oα ∈ ∆I such that for i ∈ {1, . . . ,m} the
following holds:

• oα ∈ DI0 .

• oα ∈ E+I
i0 , if and only if α(i) = t.

• oα ∈ E−Ii0 , if and only if α(i) = f.

Proof. Let α be an arbitrary P -assignment and let SeqP := (Am · · ·A1) be the sequence of attributes such
that Ai = A+ if α(i) = t and Ai = A− if α(i) = f. Consider the set HP := {K0, . . . ,Km} of SeqP -chains in
SP , where

K0 := DmDm−1 · · ·D0.

Ki :=

{
Dm · · ·DiE

+
i(i−1) · · ·E+

i0, if α(i) = t,
Dm · · ·DiE

−
i(i−1) · · ·E−i0, if α(i) = f,

for i ∈ {1, . . . ,m}.

By construction of SP , HP is indeed a set of SeqP -chains in SP and moreover it is active. By Lemma 4.2.1
the claim holds for α.

This property can be exploited for the reduction of validity as follows. The schema Sc, which encodes
the clauses of f , consists of a set of chains, which are attached to the final classes of schema SP . There is
one chain for each literal, and the chains corresponding to literals i and −i have E+

i0 and E−i0, respectively,
as their initial classes. These chains are such that if there is a P -assignment α that does not satisfy f (i.e. in
every clause there is at least one literal not satisfied by α) then a certain subset Hα of these chains becomes
active. Additionally, we enforce a contradiction in the schema if we try to populate the final classes of these
chains with a common instance. The assertions in SP ensure that if we try to populate the initial class Dm

we are indeed forced to generate for each α a common instance of all initial classes in the chains of Hα, and
therefore generate a contradiction if α does not satisfy f . On the other hand, if f is valid, then there is no
set of active chains that forces a contradiction and Dm is consistent in Sf .

Construction 4.2.5 The schema Sc := (Cc,Ac, Tc) is defined as follows:
The set Cc of classes of Sc contains the following elements:

• m·(n+ 1) classes C+
ij , for i ∈ {1, . . . ,m}, j ∈ {0, . . . , n}.

• m·(n+ 1) classes C−ij , for i ∈ {1, . . . ,m}, j ∈ {0, . . . , n}.
The set of attributes of Sc is given by Ac := {Ac}.
The set Tc of assertions of Sc contains the following elements:

• For each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} the assertions

C+
i(j−1) ¹̇ ∀Ac.C+

ij

C−i(j−1) ¹̇ ∀Ac.C−ij .
(4.5)

• For each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},
– if −i ∈ cj , the assertion

C+
i(j−1) ¹̇ ∃Ac. (4.6)

– if i ∈ cj , the assertion
C−i(j−1) ¹̇ ∃Ac. (4.7)
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We can now specify the set Hα of chains corresponding to a P -assignment α, as the set of m Ac-chains
that start at C∗i

i0 , where “∗i” stands for “+” if α(i) = t, and for “−” if α(i) = f.

Definition 4.2.6 Let Sc be the schema obtained from a formula f in DNF as specified in Construction 4.2.5,
and let the Ac-chains K+

i and K−
i be given by K+

i := C+
i0 · · ·C+

in and K−
i := C−i0 · · ·C−in. Then we say that

K+
i encodes the clauses of f for literal i, and that K−

i encodes the clauses of f for literal −i.
The set of Ac-chains corresponding to a P -assignment α is Hα := {K1, . . . ,Km}, where for i ∈ {1, . . . ,m}.

Ki :=
{
K+

i , if α(i) = t.
K−

i , if α(i) = f.

Lemma 4.2.7 Let Sc be the schema obtained from f as specified in Construction 4.2.5, and let α be a
P -assignment. Then the set Hα of A-chains corresponding to α is active in Sc if and only if α does not
satisfy f .

Proof. “⇐” If α does not satisfy f , then for each clause cj , j ∈ {1, . . . , n}, there is a literal lj ∈ cj that is
not satisfied by α. If lj = i, then α(i) = f and by Definition 4.2.6 K−

i ∈ Hα, where K−
i := C−i0 · · ·C−in. Since

i ∈ cj , by Construction 4.2.5 Tc contains the assertion C−i(j−1) ¹̇ ∃Ac. Similarly, if lj = −i, then α(i) = t and
K+

i ∈ Hα, where K+
i := C+

i0 · · ·C+
in, and since −i ∈ cj , Tc contains the assertion C+

i(j−1) ¹̇ ∃Ac. Therefore
Hα is active in Sc.

“⇒” If α satisfies f , then there is a clause cj such that for each literal l ∈ cj , α satisfies l. If l = i then
α(i) = t and K+

i ∈ Hα. However Tc does not contain the assertion C+
i(j−1) ¹̇ ∃Ac. Similarly, if l = −i, then

α(i) = f, K−
i ∈ Hα, but Tc does not contain the assertion C−i(j−1) ¹̇ ∃Ac. Therefore Tc does not contain any

assertion of the form C∗i

i(j−1) ¹̇ ∃Ac for any i ∈ {1, . . . ,m}, ∗i ∈ {+,−}, and Hα is not active in Sc.

By connecting the chains in Sc to the end of the chains in SP and adding an assertion that forces a
contradiction if a certain class is forced to be populated, we obtain the schema Sf that realizes the desired
reduction.

Construction 4.2.8 The schema Sf := (Cf ,Af , Tf ) corresponding to formula f is defined as follows:

• Cf := CP ∪ Cc ∪ {F}.

• Af := AP ∪ Ac.

• Tf := TP ∪ Tc ∪ T ′, where T ′ contains the following assertions:
For each i ∈ {1, . . . ,m}, the assertions

E+
i0 ¹̇ ∀Ac.C+

i0

E−i0 ¹̇ ∀Ac.C−i0
(4.8)

C+
in ¹̇ ∀Ac.F

C−in ¹̇ ∀Ac.F.
(4.9)

Finally, the assertions
E+

10 ¹̇ ∃Ac

E−10 ¹̇ ∃Ac

C+
1n ¹̇ ∃Ac

C−1n ¹̇ ∃Ac

(4.10)

and
F ¹̇ ¬F. (4.11)
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Clearly, Sf is an acyclic primitive L0-schema, and moreover it is easy to see that |Sf | is quadratic in |f |.
The presence of assertion 4.11 forces a contradiction in the schema in the case where class F is forced

to be populated. In the following theorem we show that this is the case if and only if the formula f is not
valid.

Theorem 4.2.9 Let f := {c1, . . . , cn} be a formula in DNF over P := {l1, . . . , lm} and Sf be the acyclic
primitive L0-schema obtained from f as specified in Construction 4.2.8. Then Dm is consistent in Sf if and
only if f is valid.

Proof. “⇒” Let α be a P -assignment that does not satisfy f , and assume that there is a model I of Sf

such that DIm 6= ∅. By Lemma 4.2.4 there is an object oα ∈ ∆I such that oα ∈ DI0 and for i ∈ {1, . . . ,m}
oα ∈ EIi , where

Ei :=
{
E+

im, if α(i) = t.
E−im, if α(i) = f.

By Lemma 4.2.7 the set Hα := {K1, . . . ,Km} of A-chains corresponding to α is active in Sc and therefore
also in Sf . It follows by assertions 4.8, 4.9, and 4.10 in Sf , that also

H ′
α := {EiKiF | i ∈ {1, . . . ,m}}

is an active set of A-chains in Sf . By Lemma 4.2.1 there is an object o′ ∈ ∆I such that o′ ∈ F . But by
assertion 4.11 this contradicts the fact that I is a model of Sf .

“⇐” Let f be valid. We show how to construct a model of Sf . By Lemma 4.2.4 we can obtain a model
IP of SP where for each P -assignment α, ∆IP contains a distinct object oα ∈ DIP

0 , such that oα ∈ E+IP
i0 ,

if and only if α(i) = t, and oα ∈ E−IP
i0 , if and only if α(i) = f, for i ∈ {1, . . . ,m}. By Lemma 4.2.7 each

set Hα of A-chains corresponding to a P -assignment α is not active, and by Lemma 4.2.2, there is a model
Iα of Hα in which the final classes of the chains of Hα all have an empty extension and in which there is a
single object o′α that is an instance of all initial classes of the chains in Hα. We construct an interpretation
I of Sf as follows: As domain of I we take the union of ∆Ip and all dom[Iα]. As extensions of classes and
attributes we take the union of the extensions in the separate models and add to the extension of Ac all
pairs (oα, o

′
α). It is not difficult to see that I is a model of Sf .

As an immediate consequence of Theorem 4.2.9 we get the following lower bound for class consistency in
acyclic primitive L0-schemata.

Corollary 4.2.10 Class consistency in acyclic primitive L0-schemata is coNP-hard.

We observe that the schema Sf as given by Construction 4.2.8 contains some redundancy that was added
for simplifying the proofs. In particular, the disjointness assertions 4.4 between each class E+

ij and the
corresponding class E−ij can be omitted. The resulting schema then contains only one assertion in which the
symbol “¬” appears, namely 4.11, and coNP-hardness of class consistency holds already for this special case.
In fact, negation is needed only to introduce a single inconsistent class in the schema. The proof shows that
the complexity of reasoning on primitive L0-schemata lies in the interaction that occurs between different
chains of attributes and in the detection of sets of chains that are active. The number of different sets of
chains is in general exponential, and their activation may be spread over the whole schema. Therefore, in
order to detect if there is such a set that is active and forces one to populate an inconsistent class, in the
worst case all sets of chains have to be tested.

We would like to notice that the coNP-hardness result for class consistency in acyclic primitive L0-
schemata has been independently proven in [37]. This paper contains also a nondeterministic algorithm that
decides in polynomial time whether a class in an acyclic primitive L0-schema is inconsistent. This shows
that the problem is coNP-complete.

Corollary 4.2.11 Class consistency in acyclic primitive L0-schemata is coNP-complete.

The hardness proof in [37], however, exploits a coNP-hardness result for verifying consistency of LE-
expressions, while the reduction we propose is more direct. It gives also a better insight on the structure of
the problem and on the reasons that lead to intractability. Moreover, as shown below, the reduction can be
generalized to show that class consistency becomes PSPACE-hard if we add the possibility of expressing
disjunction.
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4.2.3 Acyclic Primitive LU-Schemata

We adapt now the coNP-hardness proof for acyclic primitive L0-schemata to prove PSPACE-hardness for
class consistency in acyclic primitive LU-schemata.

We start by observing that validity of formulae in DNF is just a particular case of validity of quantified
boolean formulae. If f is a formula in DNF over P := {1, . . . ,m}, then f is valid if and only if the quantified
boolean formula qf := (∀m)(∀m − 1) · · · (∀1).f is valid. The schema SP defined in Construction 4.2.3 is
such that in any model I of SP in which DIm 6= ∅, for each P -assignment α there is an object oα ∈ ∆I

corresponding to α. The fact that this holds for all P -assignments takes into account that in the prefix of qf
all quantifiers are equal to “∀”. In a generic quantified boolean formula Q.f not all assignments have to be
considered but only those that together constitute some set A of Q-assignments canonical for Q. Therefore,
in order to reduce validity of Q.f to class consistency, it is sufficient to use a schema SQ which forces for
each of its models only the existence of exactly those objects that correspond to the assignments in some A.
This can in fact be achieved through the introduction of disjunction.

Construction 4.2.12 Let Q := (Qmm) · · · (Q11) be a prefix from 1 to m. The schema SQ := (CQ,AQ, TQ)
is defined as follows:
The set CQ of classes of SQ contains the following elements:

• m+ 1 classes D0, . . . , Dm.

• For each i ∈ {1, . . . ,m} such that Qi = ∃, two classes D+
i−1 and D−i−1.

• m·(m+ 1) classes E+
ij , E

−
ij , for i ∈ {1, . . . ,m}, j ∈ {0, . . . , i− 1}.

The set of attributes of SP is given by AP := {A+, A−}.
The set TP of assertions of SP contains the following elements:

• For each i ∈ {1, . . . ,m}, the assertion

Di ¹̇ ∀A+.Di−1 u ∀A−.Di−1. (4.12)

• For each i ∈ {1, . . . ,m},

– if Qi = ∀, the assertion

Di ¹̇ ∀A+.E+
ii−1 u ∃A+ u ∀A−.E−ii−1 u ∃A−. (4.13)

– if Qi = ∃, the assertions

Di ¹̇ D+
i tD−i

D+
i ¹̇ Di u ∀A+.E+

ii−1 u ∃A+

D−i ¹̇ Di u ∀A−.E−ii−1 u ∃A−
D+

i ¹̇ ¬D−i .
(4.14)

• For each i ∈ {2, . . . ,m}, j ∈ {1, . . . , i− 1}, the assertions

E+
ij ¹̇ ∀A+.E+

i(j−1) u ∀A−.E+
i(j−1)

E−ij ¹̇ ∀A+.E−i(j−1) u ∀A−.E−i(j−1).
(4.15)

• For each i ∈ {1, . . . ,m}, j ∈ {0, . . . , i− 1}, the assertion

E+
ij ¹̇ ¬E−ij . (4.16)
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Lemma 4.2.4 generalizes to this case as follows.

Lemma 4.2.13 Let SQ be the schema obtained from Q as specified in Construction 4.2.12. Then for every
model I of SQ with DIm 6= ∅ there is a set A of Q-assignments canonical for Q, and for every set A of
Q-assignments canonical for Q there is a model I of SQ with DIm 6= ∅ such that the following holds: For
every Q-assignment α ∈ A there is an object oα ∈ ∆I such that for i ∈ {1, . . . ,m}

• oα ∈ DI0 .

• oα ∈ E+I
i0 , if and only if α(i) = t.

• oα ∈ E−Ii0 , if and only if α(i) = f.

Proof. The proof is by induction on the length of the prefix Q. In fact, for carrying on the induction we
need to show that there is a distinct object oα ∈ DI0 for each object o ∈ DIm.

For the base case, if Q = ∀1, then there is only one set A of Q-assignments canonical for Q. A consists
of the two Q-assignments αt and αf, with αt(1) = t and αf(1) = f. SQ admits a model I with DI1 6= ∅,
and by assertion 4.13 every such model contains two objects o+, o−, with o+ ∈ E+I

10 and o− ∈ E−I10 , i.e. o+

corresponds to αt and o− corresponds to αf.
If Q = ∃1, then there are two sets of Q-assignments canonical for Q, At := {αt} and Af := {αf}. SQ

admits two types of models I with DI1 6= ∅, those with D+I
1 6= ∅ and those with D−I1 6= ∅. By assertions 4.14,

every such model I of the first type contains an object o+, with o+ ∈ E+I
10 and every such model I of the

second type contains an object o−, with o− ∈ E−I10 .
For the induction step, assume that the claim holds for a prefix Q of length m. If Q′ := ∀(m + 1)Q,

let I be a model of SQ′ and o′ ∈ DIm+1. By assertions 4.13 there are two objects o+ ∈ E+I
(m+1)m and

o− ∈ E−I(m+1)m, and by assertions 4.12, o+, o− ∈ DIm. By induction hypothesis, there are two sets A+

and A− of Q-assignments canonical for Q such that for each α ∈ A+ there is an object o+α and for each
α ∈ A− there is an object o−α satisfying the conditions of the claim. By assertions 4.15 (with i = m + 1),
o+α ∈ E+I

(m+1)0 and o−α ∈ E−I(m+1)0. The first direction of the claim follows by observing that we obtain a
set A′ of Q′-assignments canonical for Q′ by taking the union of the assignments α in A+ extended by
α(m+ 1) = t and the assignments α in A− extended by α(m+ 1) = f.

Conversely, let A′ be a set of Q′-assignments canonical for Q′. By definition the sets of Q-assignments
A+ := {α|{0,...,m} | α ∈ A′ and α(m + 1) = t} and A− := {α|{0,...,m} | α ∈ A′ and α(m + 1) = f} are
canonical for Q. By induction hypothesis there are two models I1 and I2 of SQ for which the following
holds:

• I1 contains an object o+ ∈ DI1
m and for each Q-assignment α ∈ A+ an object oα satisfying the

conditions of the lemma.

• I2 contains an object o− ∈ DI2
m and for each Q-assignment α ∈ A− an object oα satisfying the

conditions of the lemma.

We assume without loss of generality that ∆I1 and ∆I2 are disjoint and do not contain o′. It is easy to see
that we obtain a model I of SQ′ satisfying the required conditions as follows:

• ∆I := ∆I1 ∪∆I2 ∪ {o}.
• DIm+1 := {o′},
DIi := DI1

i ∪DI1
i , for i ∈ {1, . . . ,m},

E∗Iij := E∗I1
ij ∪ E∗I1

ij , for i ∈ {1, . . . ,m}, j ∈ {0, . . . , i− 1}, ∗ ∈ {+,−},
E+I

(m+1)j := DI1
j , E−I(m+1)j := DI1

j , for j ∈ {0, . . . ,m− 1}.

• A+I := A+I1 ∪A+I2 ∪ {(o′, o+)},
A−I := A−I1 ∪A−I2 ∪ {(o′, o−)}.

If Q′ := ∃(m + 1)Q, let I be a model of SQ′ and o′ ∈ DIm+1. By assertions 4.14, either o′ ∈ D+I
m+1

or o′ ∈ D−Im+1. We discuss the case where o′ ∈ D+I
m+1, the other case being symmetric. Then there is an

object o with o ∈ E+I
(m+1)m, and by assertions 4.12, o ∈ DIm. By induction hypothesis, there is a set A of
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Q-assignments canonical for Q such that for each α ∈ A there is an object oα satisfying the conditions of
the claim. By assertions 4.15 (with i = m + 1), oα ∈ E+I

(m+1)0. The first direction of the claim follows by
observing that we obtain a set A′ of Q′-assignments canonical for Q′ by extending each assignment α in A+

by α(m+ 1) = t.
Conversely, let A′ be a set of Q′-assignments canonical for Q′. By definition, all Q′-assignments agree on

m+ 1. We discuss the case where for each Q′-assignment α, α(m+ 1) = t, the other case being symmetric.
Then the set of Q-assignments A := {α|{0,...,m} | α ∈ A′ and α(m+1) = t} is canonical for Q. By induction
hypothesis there is a model I of SQ containing an object o ∈ DIm and for each Q-assignment α ∈ A an
object oα satisfying the conditions of the lemma. We assume without loss of generality that o′ 6∈ ∆I . It is
easy to see that we obtain a model I ′ of SQ′ satisfying the required conditions as follows:

• ∆I′ := ∆I ∪ {o}.

• DI
′

m+1 := {o},
DI

′
i := DIi , for i ∈ {1, . . . ,m},

E∗I
′

ij := E∗Iij , for i ∈ {1, . . . ,m}, j ∈ {0, . . . , i− 1}, ∗ ∈ {+,−},
E+I′

(m+1)j := DIj , E−I
′

(m+1)j := ∅, for j ∈ {0, . . . ,m− 1}.

• A+I′ := A+I ∪ {(o′, o)},
A−I

′
:= A−I .

We can then construct a schema Sq corresponding to a quantified boolean formula q := Q.f , by composing
the schema SQ obtained using Construction 4.2.12 with the schema Sf obtained using Construction 4.2.5 as
specified in Construction 4.2.8 where we use SQ instead of SP . Applying Lemma 4.2.13 we can prove the
following generalization of Theorem 4.2.9 to quantified boolean formulae.

Theorem 4.2.14 Let q := Q.f be a quantified boolean formula and Sq be the acyclic primitive LU-schema
obtained from f as specified above. Then Dm is consistent in Sq if and only if q is valid.

Proof. The proof is similar to the proof of Theorem 4.2.9, using Lemma 4.2.13 instead of Lemma 4.2.4.

As an immediate consequence of Theorem 4.2.14 we get the following lower bound for class consistency
in acyclic primitive LU-schemata.

Corollary 4.2.15 Class consistency in acyclic primitive LU-schemata is PSPACE-hard.

4.2.4 General Primitive L0-Schemata

We show now that if we admit cycles in a primitive L0-schema we obtain the same lower bound for class
consistency as for acyclic LU -schemata, namely PSPACE-hardness. The problem of deciding class consis-
tency in primitive L0-schema is studied also in [37], where an algorithm to solve it is given that requires
polynomial space in the size of the schema. The reduction we provide closes the complexity gap between
the lower bound that holds already for acyclic schemata and the PSPACE-algorithm.

We propose again a reduction from validity of quantified boolean formulae. However, different from
the case of class consistency in LU -schemata, we do not make use of the technique developed for acyclic
L0-schemata and based on the generation of objects that correspond to truth assignments. In fact, there
seems to be no easy way to cope with the presence of existential quantifiers in the prefix without making use
of disjunction. For this reason, for the current reduction we exploit the capability of general L0-schemata to
simulate a binary counter, as shown by the following construction.

Construction 4.2.16 The schema Sm := (Cm,Am, Tm) that simulates an m-bit counter is defined as fol-
lows:
The set Cm of classes of Sm is given by 2m classes B−1 , . . . , B

−
m, B

+
1 , . . . , B

+
m.

The set of attributes of Sm is given by Am := {A1, . . . , Am}.
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The set Tm of assertions of Sm contains for each i ∈ {1, . . . ,m} the following assertions:

B−i ¹̇ ∀A1.B−i u ∀A2.B−i u · · · u ∀Ai−1.B−i
B−i ¹̇ ∀Ai.B+

i u ∃Ai

B+
i ¹̇ ∀A1.B+

i u ∀A2.B+
i u · · · u ∀Ai−1.B+

i

B+
i ¹̇ ∀Ai+1.B−i u ∀Ai+2.B−i u · · · u ∀Am.B−i

B−i ¹̇ ¬B+
i .

(4.17)

We have chosen assertions 4.17 in such a way that B−1 and B+
1 represent the least significant bit of the

counter. When we are going to embed the encoding of a quantified boolean formula in the counter the least
significant bit will correspond to the innermost quantifier in the prefix, which quantifies over the letter “1”.

If in a model of this schema the classes B−1 , . . . , B
−
m contain a common instance, then for each number u

between 0 and 2m − 1 there is an object ou which is a common instance of the classes that give the binary
representation of u. This is formalized in the following lemma. We express the fact that the existence of an
object corresponding to a certain number is enforced by saying that the count proceeds till that number.

Lemma 4.2.17 Let Sm be the schema obtained as specified in Construction 4.2.16 and I a model of Sm

containing an object o with o ∈ B−Ii , for i ∈ {1, . . . ,m}. Then there is a sequence of (not necessarily distinct)
objects o0, o1, . . . , o2m−1 ∈ ∆I such that o = o0 and for u ∈ {0, . . . , 2m − 1}, if the binary representation of
u is bmbm−1 · · · b1, i.e. u =

∑m
i=1 2i−1·bi, then:

• ou ∈ B−Ii if bi = 0.

• ou ∈ B+I
i if bi = 1.

• if u 6= 2m − 1, (ou, ou+1) ∈ AIiu
, where iu is the least i such that bi = 0.

Proof. The proof is by induction on u.
For u = 0, by assumption o0 ∈ B−Ii , for i ∈ {1, . . . ,m}, and by assertion B−1 ¹̇ ∀A1.B+

1 u ∃A1, there is
an object o1 ∈ B+I

1 such that (o0, o1) ∈ AI1 . For i ∈ {2, . . . ,m}, by assertions B−i ¹̇ ∀A1.B−i we have that
o1 ∈ B−Ii .

For the induction step, assume that the claim holds for all oi with i ∈ {0, . . . , u}. Let the binary
representation of u be bmbm−1 · · · b1. By induction hypothesis, if bi = 0 then ou ∈ B−Ii and if bi = 1 then
ou ∈ B+I

i . If b1 = b2 = · · · = bm = 1 the we are done. So let iu be the least i such that bi = 0. By assertion
B−iu

¹̇ ∀Aiu .B+
iu
u∃Aiu , there is an object ou+1 ∈ B+I

iu
such that (ou, ou+1) ∈ AIiu

. For i ∈ {1, . . . , iu−1}, by
assertions B+

i ¹̇ ∀Aiu .B−i we have that ou+1 ∈ B−Ii . For i ∈ {iu+1, . . . ,m}, by assertions B−i ¹̇ ∀Aiu .B−i
and B+

i ¹̇ ∀Aiu .B+
i we have that if ou ∈ B−Ii then also ou+1 ∈ B−Ii , and if ou ∈ B+I

i then also ou+1 ∈ B+I
i .

The objects mentioned in Lemma 4.2.17 are particular, since for each i ∈ {1, . . . ,m} they are instances
either of B+

i or of B−i . Observe, however, that each model I of Sm will contain also other objects that do
not satisfy this condition. In particular, let ou be an object in ∆I . Then, for each i ∈ {1, . . . ,m} such that
ou ∈ B−Ii , by assertion B−i ¹̇ ∀Ai.B+

i u ∃Ai there is an object oi
u ∈ B+I

i connected to ou via role Ai. If i0
is the least i, such that ou ∈ B−Ii , the object oi0

u is precisely ou+1. For different values of i, however, the
assertions neither force oi

u to be an instance of B−i0 nor to be an instance of B+
i0

. Therefore we can construct
a model of Sm in which o2m−1 is the only common instance of all classes B+

i . Moreover, all objects ou can be
pairwise distinct. We call a model satisfying these conditions canonical for Sm. We state these observations
as a lemma without proof for future reference.

Lemma 4.2.18 Let Sm be the schema obtained as specified in Construction 4.2.16. Then Sm admits a
particular model, in which the objects o0, o1, . . . , o2m−1 are pairwise distinct, and in which o2m−1 is the only
object in ∆I that is a common instance of all classes B+

i , for i ∈ {1, . . . ,m}.
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We give now an intuitive description of the way we extend the schema Sm in order to obtain the reduction
from validity of a quantified boolean formula Q.f to class consistency in general primitive L0-schemata.

First of all we introduce additional classes and assertions that are used for “initializing the counter”, i.e.
forcing the existence of a common instance of all classes B−i , and for “checking termination”, i.e. forcing
a distinguished class to be populated if and only if the count proceeds till the end and there is a common
instance of all classes B+

i . We sketch the required additions referring to schema Sm, although their final
form in the schema that encodes the formula will be slightly different: The schema contains additionally an
attribute A0, the classes Cs, Ce, m2 classes Fij , for i, j ∈ {1, . . . ,m}, and the following assertions:

Cs ¹̇ ∃A0 u ∀A0.B−1 u · · · u ∀A0.B−m
B+

i ¹̇ ∀A0.Fi1, for i ∈ {1, . . . ,m}
B+

1 ¹̇ ∃A0

Fij ¹̇ ∀A0.F(i+1)j , for i ∈ {1, . . . ,m− 1},
j ∈ {1, . . . ,m}

Fi(i+1) ¹̇ ∃A0, for i ∈ {1, . . . ,m− 1}
Fmi ¹̇ ∀A0.Ce, for i ∈ {1, . . . ,m}
Fm1 ¹̇ ∃A0.

(4.18)

Assertions 4.18 are chosen in such a way that the set of chains starting at B+
i and ending in Ce is active

and that no proper subset of this set of chains is active. This justifies the following lemma.

Lemma 4.2.19 (1) Let I be a model of assertions 4.18 containing an object o with o ∈ B+I
i , for i ∈

{1, . . . ,m}. Then CIe 6= ∅.
(2) For each proper subset B of {1, . . . ,m} there is a model IB of assertions 4.18 containing an object o

with o ∈ B+I
i , for i ∈ B, and o 6∈ B+I

i , for i 6∈ B, and CIe = ∅.

Proof. We define the A0-chains Fi := B+
i Fi1 · · ·FimCe, for i ∈ {1, . . . ,m}. Assertions 4.18 are such that

the set of A0-chains F := {F1, . . . , Fm} is active and every proper subset of F is not active. Claim 1 follows
directly by applying Lemma 4.2.1, and claim 2 by applying Lemma 4.2.2.

We then encode the clauses of f by means of chains obtained in a way similar to Construction 4.2.5, and
we embed these chains in the schema that realizes the counter. The two chains K+

i and K−
i that encode the

clauses of f for literals i and −i are inserted in the part of the schema that corresponds to the i-th bit of the
counter. The idea is that these chains should block the count if there is a set A of Q-assignments canonical
for Q and for which all assignments in A satisfy f . If such a set does not exist the count proceeds till the
end and class Ce is forced to be populated. We ensure that in such a case an inconsistency occurs by adding
an assertion which makes Ce inconsistent.

In order for the reduction to be effective, all sets of Q-assignments canonical for Q have to be tried in
succession. If a letter i is universally quantified in Q, then each such set A contains pairs of assignments
that assign the same values to i+1, . . . ,m, a different value to i, and are unrelated with respect to the values
they assign to 1, . . . , i−1. Since both assignments that constitute such a pair have to satisfy f , if q is valid
the count for both has to be blocked. Therefore, we insert the two chains K+

i and K−
i corresponding to i

in parallel in the schema, which ensures the generation of two different objects that separately activate the
count. Conversely, if i is existentially quantified, then the sets of Q-assignments come in pairs containing
the same assignments except for the value assigned to i by the assignments that correspond each other in
the two sets. Therefore we have to try the two sets in succession and we insert the two chains that encode
i in succession in the schema: K−

i connected to B−i , and K+
i connected to B+

i . This ensures that they are
both traversed as the count proceeds and can separately contribute to block it.

Let q := Q.f be a quantified boolean formula, where Q := (Qmm) · · · (Q11) is a prefix from 1 to m and
f := {c1, . . . , cn} is a formula in DNF over {1, . . . ,m}. Let further k be the number of “∀” in Q. In the
following, when we refer to the h-th “∀” quantifier we mean the h-th symbol “∀” that appears in Q when
scanning from left to right.

Construction 4.2.20 The schema Sq := (Cq,Aq, Tq) corresponding to a quantified boolean formula q :=
Q.f is defined as follows:
The set Cq of classes of Sq contains the following elements:
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• Two classes Cs, and Ce.

• m2 classes Fij , for i, j ∈ {1, . . . ,m}.
• 2·m·(n+ 1) classes C+

ij , C
−
ij , for i ∈ {1, . . . ,m}, j ∈ {0, . . . , n}. These classes correspond to the classes

of Construction 4.2.5 that are used to encode the clauses of f .

• The classes that are used to implement the counter. For each “bit” i the number of these classes varies
and depends also on the value of the i-th quantifier in Q. For this reason we introduce these classes
below, when we need them in the assertions of the schema.

The set Aq of attributes of Sq contains the following elements:

• The attributes A1, . . . , Am used to implement the counter.

• The attribute Ac used for the encoding of the clauses.

• The attributes A+, A− used to connect the chains that encode the clauses to the schema that imple-
ments the counter.

• The attribute A0 used to introduce the contradiction when the count terminates.

The set Tq of assertions of Sq contains the following elements:

• A set of assertions which are identical to the ones in Construction 4.2.5 and which encode the clauses
of f . We repeat them here for completeness.

– For each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} the assertions

C+
i(j−1) ¹̇ ∀Ac.C+

ij

C−i(j−1) ¹̇ ∀Ac.C−ij .
(4.19)

– For each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},
∗ if −i ∈ cj , the assertion

C+
i(j−1) ¹̇ ∃Ac. (4.20)

∗ if i ∈ cj , the assertion
C−i(j−1) ¹̇ ∃Ac. (4.21)

For each i ∈ {1, . . . ,m}, the assertions that realize the i-th bit of the counter and the corresponding classes
that have to be introduced depend on the value of Qi, and if Qi = ∀, also on the number of “∀” that precede
Qi in Q. We remind that the total number of “∀” in Q is k.

• If Qi equals “∃”, then Cq contains 2·k additional classes B+1
i , . . . , B+k

i and B−1
i , . . . , B−k

i , and Tq

contains the following assertions:

B−j
i ¹̇ ∀A−.B−(j+1)

i u ∀A+.B−(j+1)
i ,

for j ∈ {1, . . . , k − 1}
B−k

i ¹̇ ∀A−.C−i0 u ∀A+.C−i0
C−in ¹̇ ∀A1.B−1

i u ∀A2.B−1
i u · · · u ∀Ai−1.B−1

i

C−in ¹̇ ∀Ai.B+1
i u ∃Ai

B+j
i ¹̇ ∀A−.B+(j+1)

i u ∀A+.B+(j+1)
i ,

for j ∈ {1, . . . , k − 1}
B+k

i ¹̇ ∀A−.C+
i0 u ∀A+.C+

i0

C+
in ¹̇ ∀A1.B+1

i u ∀A2.B+1
i u · · · u ∀Ai−1.B+1

i

C+
in ¹̇ ∀Ai+1.B−1

i u ∀Ai+2.B−1
i u · · · u ∀Am.B−1

i

B−1
i ¹̇ ¬B+1

i .

(4.22)

These assertions have a form which is similar to that of assertions 4.17, considering that classes B−i
and B+

i have been replaced with two chains of classes. These chains embed the chains that encode the
clauses of f for literals i and −i into the schema that implements the counter. In this case the chain
that encodes the clauses for literal i is connected via some intermediate classes to the end of the chain
that encodes the clauses for literal −i.
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• If Qi is the h-th “∀”, then Cq contains h + 2·k additional classes B1
i , . . . , B

h
i , B+1

i , . . . , B+k
i , and

B−1
i , . . . , B−k

i , and Tq contains the following assertions:

Bj
i ¹̇ ∀A−.Bj+1

i u ∀A+.Bj+1
i ,

for j ∈ {1, . . . , h− 1}
Bh

i ¹̇ ∀A+.B+(h+1)
i u ∀A−.B−(h+1)

i

B−j
i ¹̇ ∀A−.B−(j+1)

i u ∀A+.B−(j+1)
i ,

for j ∈ {1, . . . , k − 1}
B−k

i ¹̇ ∀A−.C−i0 u ∀A+.C−i0
C−in ¹̇ ∀A1.B−1

i u ∀A2.B−1
i u · · · u ∀Ai−1.B−1

i

C−in ¹̇ ∀Ai.B1
i u ∀Ai+1.B1

i u · · · u ∀Am.B1
i

C−in ¹̇ ∃Ai

B+j
i ¹̇ ∀A−.B+(j+1)

i u ∀A+.B+(j+1)
i ,

for j ∈ {1, . . . , k − 1}
B+k

i ¹̇ ∀A−.C+
i0 u ∀A+.C+

i0

C+
in ¹̇ ∀A1.B+1

i u ∀A2.B+1
i u · · · u ∀Ai−1.B+1

i

C+
in ¹̇ ∀Ai.B1

i u ∀Ai+1.B1
i u · · · u ∀Am.B1

i

C+
in ¹̇ ∃Ai

B
−(h+1)
i ¹̇ ¬B+(h+1)

i .

(4.23)

In this case the chains that encode the clauses for literals i and −i are inserted in parallel in the
schema. The chain of classes B1 · · ·Bh and its increasing length with each “∀”-quantifier in the prefix
has the same effect of generation of objects achieved by the schema of Construction 4.2.3.

• A set of assertions which initialize the counter and force class Ce to be populated if the count terminates.
These assertions are identical to assertions 4.18, except for the fact that in the present schema the
classes B−i and B+

i have been replaced by classes that vary with the value of the i-th quantifier in the
prefix.

The assertions that do not depend on the quantifier prefix are:

Fij ¹̇ ∀A0.F(i+1)j , for i ∈ {1, . . . ,m− 1},
j ∈ {1, . . . ,m}

Fi(i+1) ¹̇ ∃A0, for i ∈ {1, . . . ,m− 1}
Fmi ¹̇ ∀A0.Ce, for i ∈ {1, . . . ,m}
Fm1 ¹̇ ∃A0.

(4.24)

For each i ∈ {1, . . . ,m}, the assertions that depend on the value of the i-th quantifier Qi in the prefix
are:

– If Qi equals “∃”
Cs ¹̇ ∀A0.B−1

i

C+
in ¹̇ ∀A0.Fi1.

(4.25)

– If Qi equals “∀”
Cs ¹̇ ∀A0.B1

i

C−in ¹̇ ∀A0.Fi1

C+
in ¹̇ ∀A0.Fi1.

(4.26)

• We also need to add assertions that force the activation of all chains in the schema that involve the
classes Bj

i , B
+j
i and B−j

i , and the activation of the connection to the initial class Cs and the final
chains constituted by the classes Fij .

Cs ¹̇ ∃A0

C+
1n ¹̇ ∃A0

B+j
1 ¹̇ ∃A+ u ∃A−, for j ∈ {1, . . . , k}

B−j
1 ¹̇ ∃A+ u ∃A−, for j ∈ {1, . . . , k}.

(4.27)
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If Q1 equals “∀”, we add also the assertions:

C−1n ¹̇ ∃A0

B1
1 ¹̇ ∃A+ u ∃A−. (4.28)

• Finally, we add an assertion that forces an inconsistency in the schema if class Ce is forced to be
populated.

Ce ¹̇ ¬Ce. (4.29)

Theorem 4.2.21 Let q be a quantified boolean formula and Sq the primitive L0-schema obtained from q as
specified in Construction 4.2.20. Then Cs is consistent in Sq if and only if q is valid.

Proof (sketch). We first discuss the case where Q contains a single quantifier. If q := ∃1.f , then Sq

consists of a single chain from class Cs to class Ce, which contains as subchains the encodings K+
1 and K−

1

of literals 1 and −1 in f . If q is valid there is a Q-assignment α that satisfies f , and since Q contains just
one quantifier, either K−

1 or K+
1 correspond to α. By Lemma 4.2.7 either K−

1 or K+
1 is not active in Sq,

and so the whole chain is not active in Sq. By Lemma 4.2.2 we can populate Cs in a model I of Sq without
being forced to populate Ce. On the other hand, if q is not valid then both chains K+

1 and K−
1 are active.

By Lemma 4.2.1, if we try to populate class Cs we are forced to introduce an instance of class Ce, which
generates a contradiction. Therefore Cs is not consistent in Sq.

Similarly, if q := ∀1.f , then assertions 4.23 give rise to two separate chains K−
1 and K+

1 which both
connect Cs to Cf . Note that K−

1 and K+
1 cannot activate each other since K−

1 is an (A0A
− · · ·)-chain, while

K+
1 is an (A0A

+ · · ·)-chain. If q is valid both possible Q-assignments satisfy f . Therefore neither K−
1 nor

K+
1 is active in Sq and Cs is consistent in Sq. If q is not valid then at least one of the Q-assignments does

not satisfy f and the corresponding chain is active. This forces the introduction of an instance of Ce as soon
as we try to populate Cs.

For an arbitrary prefix Q := (Q11) · · · (Qmm), we attempt the construction of a model I of Sq in which
CIs 6= ∅ by stepping through the counter. If we put an object o in CIs , by assertions 4.25.1, 4.26.1, and 4.27.1
we have to introduce an object o0 that is an instance of all initial classes that implement the counter. By
Lemma 4.2.17 this object forces in every model the introduction of a sequence of objects that correspond to
the steps of the count. In particular, if we are forced to populate with a common instance o all final classes in
the chains of the counter (for bit i, these classes are C+

in if Qi equals “∃”, and either C+
in or C−in, if Qi equals

“∀”), by part 1 of Lemma 4.2.19 we are also forced to populate Ce, and therefore to generate a contradiction.
On the other hand, if we can block the count and avoid to generate such a common instance o, by part 2 of
Lemma 4.2.19 we can also avoid to generate an instance of Ce. By Lemma 4.2.18 it is sufficient to consider
a model of Sq that corresponds to the canonical model of Sm, in which at each step of the count new objects
are generated.

In the rest of the proof we motivate informally why the count can be blocked if and only if q is valid.
One difference between Sq and the schema of Construction 4.2.16 that implements the simple counter is
that in Sq the generation of new objects may in fact be blocked due to the set of the intermediate chains
that encode the clauses. Assertions 4.22 and 4.23 are such that for each canonical set of Q-assignments A
the following holds: Let Hα be the set of Ac-chains that correspond to a Q-assignment α (in the sense of
Definition 4.2.6). Then for each α in A there is an object oα that is an instance of all initial classes of the
chains in Hα. If there is an α that does not satisfy f , then the set Hα is active, and the presence of oα forces
the existence of an object that represents the next step in the count. If all α ∈ A satisfy f , then no set of
chains Hα is active and we can stop the generation of new objects and therefore the count. Since all sets
of Q-assignments canonical for Q are considered in succession, if there is one such set all of whose members
satisfy f , then at some point the count is terminated and we are not forced to populate class Ce.

It remains to argue that in fact each set of Q-assignments canonical for Q is tried in succession, and that
for each such set A all Q-assignments in A are considered in parallel. This can be shown by induction on the
number m of quantifiers in the prefix. We have already discussed the case when we have just one quantifier.
For the induction step, assume that for a prefix Q of length m we traverse all possible Q assignments in
succession. If we now consider the prefix (∃m+1)Q, we have to add to the counter the subschema defined by
assertions 4.22, in which the chainsK−

m+1 andK+
m+1 are traversed in succession. Since this schema represents

the most significant bit of the counter, while K−
m+1 is traversed 2m times, by induction hypotheses all Q-

assignments canonical for Q are considered in succession. The same holds while K+
m+1 is traversed, which
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shows the claim for this case. If we consider the prefix (∀m + 1)Q, we have to add to the counter the
subschema 4.23, in which the chains K−

m+1 and K+
m+1 are traversed in parallel. In fact, assertion 4.23.2

guarantees that two distinct objects are generated, for which one causes the traversal of K−
m+1 and the

other of K+
m+1. Therefore, we obtain that the assignments α with α(m) = t are considered in parallel with

the assignments α with α(m) = f. We also remark that in order to guarantee that while K−
m+1 (K+

m+1) is
traversed all canonical sets of Q-assignments are considered, we had to introduce classes B1

i , B2
i , . . . , Bh

i

and the corresponding assertions that realize the chains of varying length for each “∀”-quantifier.

As an immediate consequence of Theorem 4.2.21 we get the following lower bound for class consistency
in general primitive L0-schemata.

Corollary 4.2.22 Class consistency in general primitive L0-schemata is PSPACE-hard.

In [37] an algorithm is given that decides class consistency in general primitive L0-schemata in polynomial
space. This shows that the problem is PSPACE-complete.

Corollary 4.2.23 Class consistency in general primitive L0-schemata is PSPACE-complete.

4.3 Eliminating Qualified Existential Quantification

In this section we develop a technique by which a schema, possibly containing the constructor for existential
quantification, can be transformed into a schema where this constructor is not present any more. The
transformation, which we call E-elimination, is polynomial and it does not influence the consistency of the
classes in the schema. It can be applied to primitive schemata, both cyclic and acyclic, expressed in LC or
one of its sub-languages. Since the other constructors, and in particular disjunction, and the acyclicity of
the schema are preserved, our technique provides immediately several results about reasoning on schemata
expressed in the sub-languages of LC and about its computational complexity. On one hand, reasoning
procedures developed for schemata expressed in L0 and LU can be used to reason on schemata expressed
in the more expressive languages LE and LC, respectively. On the other hand, we can deduce several
new interesting lower bounds for the complexity of class consistency, the most relevant being EXPTIME-
hardness of class consistency in general primitive LU-schemata. We remind that primitive schemata represent
the simplest form of schema since they allow one to state only sufficient conditions for membership in a class.
However, the use of disjunction together with cyclic assertions in the schema is already sufficient to make
reasoning on primitive schemata as hard as in the most expressive (but still decidable) schema definition
languages we consider in this thesis.

E-elimination is based on an idea used in [37] to show that verifying class consistency in L0-schemata is
coNP-hard. The result is established by exploiting a reduction from subsumption between class expressions
in LE , which was shown coNP-complete in [62], to class consistency in L0-schemata. The reduction is based
essentially on the elimination of existential quantification from an LE class expression containing a single
attribute by introducing suitable assertions in a schema. We show how to generalize this transformation to
an arbitrary number of attributes and to arbitrary primitive LC-schemata.

In order to define E-elimination we need to perform a preliminary transformation on the schema. An
LC-class expression is called normalized if it is of the form:

C | ¬C | C1 t C2 | ∀A.C | ∃A | ∃A.C.

An assertion is said to be normalized, if the class expression on the right-hand side is normalized. A primitive
LC-schema is normalized if it is constituted solely by normalized class specifications.

Lemma 4.3.1 Every primitive LC-schema S := (C,A, T ) can be transformed in linear time into an equiv-
alent normalized primitive LC-schema S ′ := (C′,A, T ′), where C ⊆ C′.

Proof. The normalized schema S ′ equivalent to S can be obtained by setting C′ := C and T ′ := T , and
repeating the following steps until all assertions in T ′ are normalized: For each assertion C ¹̇ E in T ′, if E
is not normalized then remove C ¹̇ E from T ′ and do the following:
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• If E = E1 u E2, then add C ¹̇ E1 and C ¹̇ E2 to T ′.
• If E = E1 t E2, then add two new class names C1 and C2 to C′ and add C ¹̇ C1 t C2, C1 ¹̇ E1, and
C2 ¹̇ E2 to T ′.

• If E = ∀A.E′, then add a new class name C1 to C′ and add C ¹̇ ∀A.C1 and C1 ¹̇ E′ to T ′.
• If E = ∃A.E′, then add a new class name C1 to C′ and add C ¹̇ ∃A.C1 and C1 ¹̇ E′ to T ′.

The above construction introduces at most one new class name for each subexpression of a class expression
in T . Since the number of such subexpressions is linear in |T |, at most a linear number of new classes is
introduced, and |S ′| is linear in |S|. It is also easy to see that the construction can be performed in linear
time in |S|. By construction S ′ is normalized and C ⊆ C′.

It remains to show that S and S ′ are equivalent. We proceed by induction on the number k of applied
steps of the above procedure, showing that after each step the resulting schema is equivalent to S.
“k = 0”: Then C′ = C, T ′ = T , and S and S ′ are identical.
“k → k+1”: Let Sk := (Ck,A, Tk) be obtained from S by interrupting the above procedure after k new class
names have been introduced, and assume Ck := C ∪ {C1, . . . , Ch}. Let the next step of the procedure be
applied to C ¹̇ ∀A.E, where E is not normalized, and let Sk+1 := (Ck+1,A, Tk+1) be the resulting schema,
where Ck+1 := Ck ∪ {Ch+1} and Tk+1 := Tk ∪ {Ch+1 ¹̇ E, C ¹̇ ∀A.Ch+1} \ {C ¹̇ ∀A.E}. By induction
hypothesis, Sk is equivalent to S. Let I be a model of S, and Ik a model of Sk that extends I by interpreting
C1, . . . , Ch in an appropriate way. We extend Ik to a model Ik+1 of Sk+1, by setting CIk+1

h+1 := EIk . Ik+1

extends Ik and hence also I, and since Ik satisfies C ¹̇ ∀A.E, Ik+1 satisfies by construction also both newly
introduced assertions and is therefore a model of Sk+1. Let now Ik+1 be a model of Sk+1. Since it satisfies
C ¹̇ ∀A.Ch+1, for every instance o of C, if o is connected via attribute A to an object o′, then o′ is an
instance of Ch+1. Since Ik+1 satisfies also Ch+1 ¹̇ E, o′ is also an instance of class expression E. Therefore
Ik+1 satisfies C ¹̇ ∀A.E and it is a model of Sk. By induction hypothesis, every model of Sk, and hence
also Ik+1 is also a model of S. In case the next step of the procedure is applied to ∃A.E or C ¹̇ E1 tE2 we
can proceed in a similar way.

Lemmata 4.3.1 and 2.3.7 allow us to restrict our attention to normalized schemata, and in the rest of the
section we assume that the schemata we deal with are all normalized primitive LC-schemata.

Construction 4.3.2 Let SE := (CE ,AE , TE) be a normalized LC-schema. The schema S := (C,A, T )
obtained from SE by E-elimination is defined as follows:

• C := CE .
• For an attribute A ∈ AE , let AA := {AC | ∃A.C appears in TE}. Then A := AE ∪

⋃
A∈AE AA.

• T is obtained from TE by substituting each assertion

C ¹̇ ∃A.C ′ with C ¹̇ ∃AC′ u ∀AC′ .C ′, and
C ¹̇ ∀A.C ′ with C ¹̇ ∀A.C ′ u ∀AC1 .C

′ u · · · u ∀ACn .C ′,
where AA = {AC1 , . . . , ACn},

and leaving the other assertions unchanged.

We observe that the number of new attributes introduced in S is linear in the number of assertions in
SE , and that |S| is at most quadratic in |SE |. Moreover, the constructor for disjunction is present in S if
and only if it is present in SE . Although we have replaced each qualified existential quantification with an
unqualified one on a different attribute, the interaction between universal and existential quantification is
still captured correctly. In fact, the following theorem holds.

Theorem 4.3.3 Let SE be an LC-schema, C ∈ CE , and S be the schema obtained from SE by E-elimination.
Then C is consistent in S if and only if it is consistent in SE .

Proof. “⇐” Let IE be a model of SE with CIE 6= ∅. We define an interpretation I of S as follows:

• ∆I := ∆IE .
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• For every class C ∈ C, CI := CIE .

• For every attribute A ∈ AE , AI := AIE , and for every attribute AC ∈ AA, AIC := AIE ∩ (∆IE ×CIE ).
We show that I is a model of S, by showing that it satisfies every assertion in T . Let C ¹̇ E be such an
assertion:

• If E = C ′, E = ¬C ′, or E = C1 t C2, then (C ¹̇ E) ∈ TE . Therefore CIE ⊆ EIE and by definition of
I the assertion is satisfied.

• If E = ∃A, for some A ∈ AE , then (C ¹̇ ∃A) ∈ TE . Since by definition of I, CI = CIE and AI = AIE ,
I satisfies C ¹̇ ∃A.

• If E = ∃AC′ u ∀AC′ .C ′, then (C ¹̇ ∃A.C ′) ∈ TE . The assertion C ¹̇ ∀AC′ .C ′ is satisfied since by
definition AIC′ ⊆ ∆IE ×C ′IE . Let o ∈ CI . Since IE satisfies C ¹̇ ∃A.C ′ and o ∈ CIE there is an object
o′ ∈ C ′IE such that (o, o′) ∈ AIE . By definition of AIC′ , we have that (o, o′) ∈ AIC′ , and I satisfies
C ¹̇ E.

• If E = ∀A.C ′ u ∀AC1 .C
′ u · · · u ∀ACn

.C ′, then AA = {AC1 , . . . , ACn
} and (C ¹̇ ∀A.C ′) ∈ TE . The

assertion C ¹̇ ∀A.C ′ is satisfied since by definition CI = CIE , C ′I = C ′IE , and AI = AIE . We show
that C ¹̇ ∀ACi

.C ′ is satisfied in I, for i ∈ {1, . . . , n}. Assume by contradiction that there are two
objects o ∈ CI and o′ 6∈ C ′I such that (o, o′) ∈ AICi

. Since ACi
∈ AA, by definition AICi

⊆ AIE , and
we have also that (o, o′) ∈ AIE . Therefore IE does not satisfy C ¹̇ ∀A.C ′.

“⇒” Let I be a model of S with CI 6= ∅. We define an interpretation IE of SE as follows:

• ∆IE := ∆I .

• For every class C ∈ CE , CIE := CI .

• For every attribute A ∈ AE with AA = {AC1 , . . . , ACn}, AIE := AI ∪AIC1
∪ · · · ∪AICn

.

We show that IE is a model of SE , by showing that it satisfies every assertion in TE . Let C ¹̇ E be such an
assertion, where E is a normalized class expression:

• If E = C ′, E = ¬C ′, or E = C1 t C2, then (C ¹̇ E) ∈ T . Therefore CI ⊆ EI and by definition of IE
the assertion is satisfied.

• If E = ∃A, then (C ¹̇ ∃A) ∈ TE . Since by definition of IE , CIE = CI and AIE ⊆ AI , IE satisfies
C ¹̇ ∃A.

• If E = ∃A.C ′, then (C ¹̇ ∃AC′ u ∀AC′ .C ′) ∈ T . Let o ∈ CIE . Since I satisfies C ¹̇ ∃AC′ and o ∈ CI
there is an object o′ ∈ ∆I such that (o, o′) ∈ AIC′ , and since I satisfies C ¹̇ ∀AC′ .C ′, o′ ∈ C ′I . Since
AC′ ∈ AA, by definition of AIE , we have that (o, o′) ∈ AIE , and since o′ ∈ C ′I , IE satisfies C ¹̇ ∃A.C ′.

• If E = ∀A.C ′, then (C ¹̇ ∀A.C ′ u ∀AC1 .C
′ u · · · u ∀ACn .C ′) ∈ TE , where AA = {AC1 , . . . , ACn}.

Assume by contradiction that there are two objects o ∈ CIE and o′ 6∈ C ′IE such that (o, o′) ∈ AIE . By
definition of AIE , (o, o′) ∈ AI or (o, o′) ∈ AICi

for some i ∈ {1, . . . , n}. Since o ∈ CI and o′ 6∈ C ′I , in
the first case I does not satisfy C ¹̇ ∀A.C ′ and in the second case I does not satisfy C ¹̇ ∀ACi .C

′.

An immediate consequence of Theorem 4.3.3 is a complete characterization of the complexity of verifying
class consistency in primitive LE-schemata, both acyclic and general.

Corollary 4.3.4 (1) Class consistency in acyclic primitive LE-schemata is coNP-complete. (2) Class
consistency in general primitive LE-schemata is PSPACE-complete.

Proof. By Lemmata 4.3.1 and 2.3.7 we can assume without loss of generality to deal only with normalized
LE-schemata. For a primitive LE-schema SE , the schema S obtained from SE by applying Construction 4.3.2
does not contain disjunction and is therefore a primitive L0-schema. Moreover, |S| is polynomial in |SE |, and
S is acyclic if and only if SE is so. Therefore, by Theorem 4.3.3 we can polynomially reduce class consistency
in LE to class consistency in L0. The claims follow from Corollaries 4.2.11 and 4.2.23, which state that class
consistency in primitive L0-schemata is coNP-complete for acyclic schemata and PSPACE-complete for
general schemata.
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We get also a further confirmation of the fact that the complexity source introduced by (acyclic) assertions
in a schema is of the same nature as the one introduced by existential quantification, and results precisely
from the interplay between (unqualified) existential quantification and universal quantification.

Similarly, E-elimination allows us to show lower bounds on reasoning on LU-schemata, by exploiting the
lower bounds for LC. In particular, since verifying the consistency of LC-class expressions is PSPACE-hard
(see [143]) the same hardness result clearly holds for acyclic primitive LC-schemata. Using E-elimination
and applying Theorem 4.3.3 we obtain therefore an alternative proof of Theorem 4.2.15. More important,
from EXPTIME-completeness of class consistency in general primitive LC-schemata (see [39]), we obtain
the same completeness result for general primitive LU-schemata, of which the hardness part was open.

Corollary 4.3.5 Class consistency in general primitive LU-schemata is EXPTIME-hard.

Proof. The proof is similar to the proof of Corollary 4.3.4, using EXPTIME-hardness of class consistency
in general primitive LC-schemata.

We would like to point out that although E-elimination has proved useful for the schema definition
languages below LC, it cannot easily be extended to deal with the other constructors introduced in Chapter 2.
In the schema obtained by E-elimination each attribute A of the original schema is replaced by a set AA

of new attributes. Therefore, each number restriction on A appearing in the schema has to be replaced by
a number restriction on the union of all attributes in AA, which leads to introduce in the resulting schema
the constructor for union of attributes. Similarly, if inverse attributes are present, it is not clear how an
assertion of the form C ¹̇ ∃A−.C ′, involving a qualified existential quantification over an inverse attribute
should be treated.

4.4 Undecidable L-Languages

In this section we show that the expressivity of some of the L-languages introduced in Chapter 2 makes
reasoning about class expressions and/or schemata undecidable. The undecidability is a consequence of the
presence and interaction of several problematic constructors due to the possibility to combine these without
any restrictions. We will see in Section 5.2 that the limitations introduced in LT − on the use of these
constructors are sufficient to make reasoning decidable on all types of schemata.

The following theorem proved in [142] shows that the addition to L0 of role value maps alone already
makes verifying subsumption between class expressions undecidable, even if the schema is empty (and there-
fore reasoning is performed with respect to any interpretation).

Theorem 4.4.1 (Schmidt-Schauß [142]) Subsumption between class expressions in LV is undecidable.

As shown in [87, 88], allowing the use of unrestricted intersection of attributes in LCFL is sufficient to
make the problem of verifying the consistency of a class expression highly undecidable3. The proof in [87]
exploits a reduction to variants of the classic unbounded domino problems, which we very briefly introduce
here.

A domino D is a 1× 1 square tile fixed in orientation, each of whose edges is associated with some color.
A domino problem is a decision problem that asks whether or not it is possible to tile some portion of the
integer grid Z × Z, given a finite set of domino types. The general rule for tiling is that each point of the
grid is associated with one tile type and that adjacent tiles have the same color on the common edge. Each
domino problem may specify additional constraints that the tiling has to satisfy. As shown in [26, 134] the
problem that asks whether a given set of tile types can tile the positive quadrant of the integer grid is already
undecidable4.

Domino problems provide a particularly elegant method for proving lower bounds for program and modal
logics, and thus also for L-languages. Harel in [87] shows that the key point in such proofs is the possibility
in the logic to define the two-dimensional integer grid on which the tiles have to be placed. Once the grid
is defined, to prove undecidability it is sufficient to be able to “access” all points on the grid and state

3By highly undecidable we mean that this problem is Σ1
1-complete.

4More precisely, the unrestricted tiling problem is Π0
1-complete.
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properties for them. An analysis of the (very simple and elegant) proof in [87] shows that the undecidability
result in the presence of intersection holds already for a simpler variant of the logic. This allows us to state
the following theorem.

Theorem 4.4.2 If we add to a primitive LUF-schema a single assertion of the form C ¹̇ ∃((A ◦A′)∩ (A′ ◦
A)), then class consistency becomes undecidable.

Proof (sketch). The grid can be defined through the following Schema S := (C,A, T ):

C := {Point}
A := {right,up}
T := {Point ¹̇ ∃=1right u ∀right.Point u ∃=1up u ∀up.Point

Point ¹̇ ∃((right ◦ up) ∩ (up ◦ right))}
The assertion involving the intersection of the two chains of (functional) attributes, forces any model of this
schema either to be a grid or to be such that it can be unwound to one. Given a set of tile types, the
assertions that express the tiling constraints can easily be added (together with the necessary classes) to this
schema as shown in [87]. They require only to assert that each point in the grid should get one of the tiles
(which can be done using disjunction), and ensuring that adjacent tiles have the same color on the common
edge (which can be done using disjunction and universal quantification on the two attributes right and up).

Then the class Point is consistent in the resulting schema if and only if the positive quadrant can be
tiled with the given set of tile types.

Undecidability arises also if we allow the unrestricted use of number restrictions, and in particular of
functional restrictions on complex links.

Theorem 4.4.3 If we add to a primitive LUF-schema a single assertion of the form C ¹̇ ∃≤1((A ◦ A′) ∪
(A′ ◦A)), then class consistency becomes undecidable.

Proof (sketch). The definition of the grid is similar to the one in the proof of Theorem 4.4.2, except that
we replace the assertion

Point ¹̇ ∃((right ◦ up) ∩ (up ◦ right))
with

Point ¹̇ ∃≤1((right ◦ up) ∪ (up ◦ right)).

Theorems 4.4.1, 4.4.2, and 4.4.3 show that in order to obtain from LT a language in which reasoning on
a schema is decidable, we must at least restrict the use of all problematic constructors. This is achieved in
LT −, where only a limited interaction of number restrictions, difference (and therefore intersection) of links,
and role value maps is allowed.

4.5 Discussion

In this chapter we have dealt with the intrinsic complexity of reasoning on primitive L-schemata. We now
discuss briefly previous work on the topic, carried out mostly in the field of Description Logics, and the
impact of the results we established.

We mentioned already that while the complexity of reasoning on class expressions has been thoroughly in-
vestigated, deduction on schemata, was not so well understood. This is especially true of primitive schemata,
i.e. schemata containing only primitive class specifications and no definitions.

For non primitive schemata, reasoning is already complex, even if the language used for constructing
class expressions is very limited. The complexity of class subsumption in such types of schemata for a very
simple language, containing only the constructors for class conjunction and universal quantification over
attributes, is investigated by Baader [9] and Nebel [122]. They reduce the problem of subsumption between
two classes with respect to a (possibly cyclic) schema containing only class definitions to decision problems
for various types of finite sequential automata. In particular, Baader shows that when least or greatest
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Schema empty primitive
Language acyclic general

L− PTIME PTIME PTIME
(subsum.) [32] [40] [40]

L0 PTIME coNP PSPACE
[143] [37], Cor. 4.2.10 [37], Cor. 4.2.22

LE coNP coNP PSPACE
[62] Cor. 4.3.4 (1) Cor. 4.3.4 (2)

LU NP PSPACE-hard EXPTIME
[63] Cor. 4.2.15 Cor. 4.3.5

LC PSPACE PSPACE-hard EXPTIME
[143] [143] [39]

LCL EXPTIME EXPTIME EXPTIME
[127, 140] [107, 140] [107, 140]

Table 4.1: Computational complexity of class consistency in primitive schemata

fixpoint semantics is adopted, class subsumption can be reduced to a problem of language inclusion for two
finite state automata on finite words. This problem is coNP-complete if the automaton, and therefore the
schema is acyclic, while it becomes PSPACE-complete for general schemata. If descriptive semantics is
adopted, however, the reduction is more involved and leads to a problem of language inclusion for Büchi
sequential automata (see Appendix A). This provides a PSPACE-upper bound for descriptive semantics,
but leaves the lower bound open.

If the schema may even contain free assertions, reasoning becomes immediately more difficult. As proved
in [116], it is sufficient to allow for the use of only class conjunction, universal quantification, and negation
of class names (to express disjointness) to make reasoning EXPTIME-hard, i.e. as hard as in the most
expressive languages and schemata considered in this thesis. The EXPTIME-hardness result for class
consistency is established by polynomially reducing to this problem the problem of string-acceptance by a
deterministic Turing Machine that works in exponential time. The TM is encoded in a schema in such a
way that its computation corresponds to a model of the schema. The assumption that the machine works
in exponential time makes it in fact possible to identify uniquely each configuration and each tape position
using only a polynomial number of bits, and therefore of classes used to represent the bits.

The constructors for complex links, namely transitive closure, union and concatenation, are considered
in [11], where it is shown that using such links the assertions of a free schema can be internalized in a
formula. This result coincides in fact with a well known result about Propositional Dynamic Logics (see
Theorem B.1.1), but has been proved independently without making use of the correspondence between
Description Logics and PDLs discussed in Section B.2. Since the size of the formula is polynomial in the
size of the schema it is obtained from, this result has also a direct impact on computational complexity. In
fact, it shows that reasoning only on class expressions (i.e. without any schema) containing such complex
link constructors is already EXPTIME-hard.

An immediate consequence of these results is that, if one wants to actually define classes in a schema (by
necessary and sufficient conditions), one has immediately to give up worst case tractability of schema level
reasoning, even for the most trivial class definition languages.

A question that arises naturally, is whether reasoning becomes easier, when we consider primitive
schemata, which contain only primitive class specifications and no definitions. The importance of such
schemata is motivated by the tight correspondence with database models, described in Chapter 3. They
have been investigated only recently, however, and the impact on the complexity of reasoning of the as-
sumption that the schema contains no definitions is not well understood. In particular, the known reasoning
procedures cannot take advantage of the fact that the schema is primitive and treat it as an arbitrary schema
possibly containing definitions. Also, the known lower bounds were the ones that follow trivially from the
lower bounds established for reasoning on class expressions. Exceptions to this are the results established
in [37], which we already mentioned. A consequence of the results in [40], which also deals explicitly with
primitive schemata, is that for the language L− class subsumption can be decided in polynomial time, even
if the schema contains cycles5.

5In fact, in [40] a more general language is considered, which, however, cannot be easily classified within the family of
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The results we have established in this chapter show, however, that this is in fact the maximum expres-
sivity we can achieve without giving up tractability. As soon as the class language allows one to define an
inconsistent class expression (or in the schema we can express that two classes are disjoint), class consis-
tency becomes intractable. The use of cycles, which are essential for modeling real world domains, and/or
of disjunction increases the computational complexity even more. Qualified existential quantification on the
other hand, does not seem to increase either expressivity or complexity of reasoning, at least for the more
simple class definition languages.

The results about the intrinsic complexity of reasoning on primitive schemata are summarized in Table 4.1.
All entries, except those in the first row, specify the computational complexity of class consistency. The
entries in the first row specify the complexity of class subsumption, since in L−-schemata classes are always
consistent. Each entry reports also a reference to the place (or places) where the result is achieved. The
dictions NP, coNP, PSPACE, and EXPTIME mean that the corresponding problem is complete for
the given class, while PTIME means that the problem is polynomially solvable. We have included for
comparison also a column showing the complexity of reasoning on class expressions with respect to the
empty schema.

L-languages.



Chapter 5

Unrestricted Model Reasoning

In this chapter we discuss the issues related to reasoning on L-schemata with respect to arbitrary models, i.e.
models with a possibly infinite domain. The reasoning procedures we present take advantage of the strong
similarity that exists between the interpretative structures of L-schemata and labeled transition systems used
in computer science to describe the behavior of program schemes. This similarity reflects in a correspondence
between L-schemata and modal logics of programs, which are formalisms specifically designed for reasoning
about program schemes, and which are interpreted in terms of labeled transition systems (see [107, 150] for
surveys). Such correspondence has been pointed out for the first time in [140]. It has successively been
extended in [54, 55] to handle constructs such as number restrictions, that had not been considered in the
context of modal logics of programs, and in [141, 55] to integrate the different types of semantics for cycles
exploiting the relationship with µ-calculus [106].

A brief description of Propositional Dynamic Logics and of the main results for reasoning about them can
be found in Appendix B. Appendix B describes also the above mentioned correspondence with L-schemata.
Section 5.1 describes how to exploit this correspondence to reason on primitive LUNI-schemata. Finally,
in Section 5.2 we show that for the language LT −, where the constructs of LT have been carefully tailored
in order to avoid undecidability, reasoning is indeed decidable.

5.1 Unrestricted Model Reasoning on Primitive LUNI-Schemata

In this section we present a technique for reasoning on primitive LUNI-schemata with respect to unrestricted
models. Table 5.1 recalls the constructors and assertions that are allowed in primitive LUNI-schemata, and
in the rest of the section we assume that all schemata are of this type.

The reasoning method exploits the correspondence between L-languages and PDLs described in Sec-
tion B.2, by reducing the problem of checking the consistency of a class in an LUNI-schema to the problem
of verifying the satisfiability of a formula of cpdl. However, because of the presence of number restrictions

Constructor Name Syntax Semantics
class name C CI ⊆ ∆I

atomic negation ¬C ∆I \ CI
conjunction E1 u E2 EI1 ∩ EI2
disjunction (U) E1 t E2 EI1 ∪ EI2
universal quantification ∀L.E {o | ∀o′ : (o, o′) ∈ LI → o′ ∈ EI}
(unqualified) exist. quantif. ∃L {o | ∃o′ : (o, o′) ∈ LI}
number restrictions (N ) ∃≥mL {o | ]{o′ | (o, o′) ∈ LI} ≥ m}

∃≤nL {o | ]{o′ | (o, o′) ∈ LI} ≤ n}
attribute name A AI ⊆ ∆I ×∆I

inverse attribute (I) A− {(o, o′) | (o′, o) ∈ AI}
primitive class specification C ¹̇ E CI ⊆ EI

Table 5.1: Primitive LUNI-schemata

67
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in LUNI which have no correspondence in cpdl, we cannot exploit directly Theorem B.2.2. To overcome
this problem we perform a (polynomial) transformation of the schema into one that does not contain any
number restrictions and show that this transformation preserves class consistency. For the resulting schema
we can exploit the correspondence with cpdl and obtain a decision procedure that works in worst case
deterministic exponential time. For simplicity and uniformity, in the rest of the section we deal only with
the modified version capdl of cpdl, obtained by considering as programs sequential automata instead of
regular expression, as described in Section B.3.2.

5.1.1 Relaxation of a Schema

We define now a transformation on schemata which associates to each schema S a new schema Srel in which
the number restrictions that appear in the class expressions of S are relaxed.

Definition 5.1.1 The relaxation Srel := (C′,A′, T ′) of a schema (C,A, T ) is defined as follows:

• C′ := C ∪ C≥ ∪ C≤, where both unions are disjoint and

C≥ := {C(≥m L) | ∃≥mL appears as a subexpression in an assertion of T },
C≤ := {C(≤n L) | ∃≤nL appears as a subexpression in an assertion of T }.

• A′ := A.

• T ′ := T ′′ ∪ Tn ∪ Te, where

– T ′′ consists of the assertions of T in which each occurrence of a number restriction ∃≥mL is
replaced by C(≥m L), and each occurrence of a number restriction ∃≤nL is replaced by ∀L.⊥ if
n = 0, and by C(≤n L) if n > 0,

– Tn contains an assertion C(≥m L) ¹̇ ¬C(≤n L) for each pair of number restrictions ∃≥mL and ∃≤nL
with m > n present in T ;

– Te contains an assertion C(≥m L) ¹̇ ∃L for each number restriction ∃≥mL with m > 0 present in
T .

Lemma 5.1.2 The relaxation Srel of a schema S can be constructed in time linear in |S|.
Proof. Straightforward.

The following proposition shows that the constraints that Srel imposes on its models are indeed not
stronger than the ones imposed by S, since the additional assertions that have been added express only
conditions that are implicit in the semantics of number restrictions.

Proposition 5.1.3 Let S be a primitive LUNI-schema and C be a class name of S. If C is consistent in
S, then C is consistent in Srel .

Proof. Let I be a model of S such that CI 6= ∅. We extend I to an interpretation of Srel by interpreting
the additional class names as follows:

CI(≥m L) := (∃≥mL)I

CI(≤n L) := (∃≤nL)I .

The claim can then be shown easily by induction on the structure of class expressions that appear in the
assertions of S.

Proposition 5.1.3 provides a necessary condition for the consistency of a class name in a schema which
is stated in terms of its relaxation Srel . Since Srel does not contain number restrictions, the consistency of
a class in Srel can be verified directly by making use of Theorem B.2.3 and applying reasoning techniques
for capdl. We are going to show that this condition is also sufficient, i.e. that if a class is consistent in Srel

then it is also consistent in the original schema S.
Let frel := δ+(Srel) be the capdl-formula corresponding to Srel . frel contains propositional letters

C(≥m b) and C(≤n b) corresponding to the number restrictions in S. We call such propositional letters
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propositional number restrictions. Let M := (WM,RM,ΠM) be a model of frel and u ∈ WM. We say
that the propositional number restriction C(≥m b) is numerically satisfied in u, if ]{v | (u, v) ∈ RM(b)} ≥ m.
Similarly, C(≤n b) is numerically satisfied in u , if ]{v | (u, v) ∈ RM(b)} ≤ n. frel is numerically satisfiable if
it admits a model M in which all propositional number restrictions are numerically satisfied in all states of
WM.

By Theorem B.2.2 models of Srel and structures in which frel is valid are isomorphic. Recall that Srel

is obtained from S by replacing each number restriction with a new class name and by adding suitable
assertions to the ones already present in S. Therefore, any structure in which also all propositional number
restrictions of frel are numerically satisfied is a model of S. Moreover, since it is sufficient to consider
connected structures (as shown below) , and for such structures validity and satisfiability of frel coincide,
any model of frel1 in which all propositional number restrictions are numerically satisfied is also a model of
S.

In the rest of the section we show how an arbitrary model M of frel can be transformed into one in
which all propositional number restrictions are numerically satisfied. This is done in two steps, by first
transforming M into a particular tree model and then by expanding this tree model in order to ensure that
the propositional number restrictions are satisfied.

5.1.2 Two-Way Deterministic Tree Structures

By Theorem B.4.3 every satisfiable capdl-formula has a tree model. We show now that for the formulae
resulting by applying the transformation δ+ of Definition B.2.1 to primitive LUNI schemata an even stronger
result holds. This is due to the simplified form that such formulae have.

Definition 5.1.4 A capdl-formula f is primitive if the following holds:

• In f negation is applied only to propositional letters.

• f contains no tests, i.e. the alphabets of the automata that define the programs that appear in f are
constituted only by atomic programs2.

• f contains only eventualities of the form 〈b〉> with b an atomic program.

Lemma 5.1.5 Let S be a primitive LUNI-schema, Srel its relaxation, and frel the capdl-formula obtained
by applying transformation δ+ to Srel . Then frel is a primitive capdl-formula.

Proof. Straightforward by induction on the assertions of Srel .

The fact that we deal only with primitive formulae is crucial for showing that the transformations we
are going to perform on models preserve satisfiability. For proofs by induction we need to construct the
closure of the formula we start with. If we constructed the Fischer-Ladner closure in the standard way of
Definition B.4.1, not all formulae in the closure would be primitive. Therefore we define a restricted form of
closure which contains only primitive capdl-formulae and which is nevertheless sufficient for our purposes.

Definition 5.1.6 The restricted closure CL−(f0) of a primitive cpdl-formula f0 is the least set Φ of formulae
such that:

• f0 ∈ Φ.

• If ¬p ∈ Φ then p ∈ Φ.

• If p ∈ Φ then ¬p ∈ Φ.

• If f ∧ f ′ ∈ Φ then f, f ′ ∈ Φ.

• If f ∨ f ′ ∈ Φ then f, f ′ ∈ Φ.

• If [r]f ∈ Φ then f ∈ Φ.

• If [r]f ∈ Φ, where r = (Σ, S, δ, s0, F ), then for all s ∈ S, [rs]f ∈ Φ, where rs := (Σ, S, δ, s, F ) is the
automaton obtained from r by making s to the initial state.

1A structure M is a model of a PDL-formula f , if M, u |= f for some u ∈ WM.
2An atomic program is either a program name or a converse program name.
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Definition 5.1.7 A structure T := (WT ,RT ,ΠT ) is a two-way deterministic tree structure if it is a tree
structure and for any program name a and states x, y ∈ WT the following holds: if (x, y) ∈ RT (a) then for
any state y′ 6= y, (x, y′) 6∈ RT (a), and for any state x′ 6= x, (x′, y) 6∈ RT (a).

Notice that any two-way deterministic tree structure T is an n-ary tree structure with n ≤ 2·]Prog , since
for each node x and each program name a there is at most one node y with (x, y) ∈ RT (a) and at most one
node z with (z, x) ∈ RT (a).

The following lemma strengthens the tree model property for primitive capdl-formulae.

Lemma 5.1.8 Let f be a satisfiable primitive capdl-formula. Then f has a two-way deterministic tree
model T , with T , ε |= f .

Proof. Since f is satisfiable there is a structure M := (WM,RM,ΠM) and a state u ∈ WM such that
M, u |= f . The proof consists of two parts: In part (1) we construct from M a two-way deterministic tree
structure T , and in part (2) we show that T is a model of f . We assume that the set of program names in
f is Prog := {a1, . . . , ak}.

(1) We define a partial mapping α : {1, . . . , 2·k}∗ → WM by induction on the length of the words
in {1, . . . , 2·k}∗. The relations RT (ai) are defined in parallel with α. The set of states of T is given by
WT := {x ∈ {1, . . . , 2·k}∗ | α(x) is defined} and for all nodes x ∈ WT , ΠT (x) := ΠM(α(x)). For the
root ε we define α(ε) := u. For the inductive step suppose that we have already considered every node of
{1, . . . , 2·k}l, where 0 ≤ l ≤ h, and the nodes xi1, xi2, . . . , xi(j−1), for xi ∈ {1, . . . , 2·k}h with α(xi) defined
and 1 ≤ j ≤ 2·k. If j is odd, i.e. j = 2·g−1, where 1 ≤ g ≤ k, let v ∈ WM be such that (α(xi), v) ∈ RM(ag).
If such node v does not exist or if (xi, x) ∈ RT (ag), then α(xij) stays undefined. Otherwise we define
α(xij) := v and we put (xi, xij) in RT (ag). If j is even, i.e. j = 2·g, where 1 ≤ g ≤ k, let v ∈ WM

be such that (v, α(xi)) ∈ RM(ag). If such node v does not exist or if (x, xi) ∈ RT (ag) then α(xij) stays
undefined. Otherwise we define α(xij) := v and we put (xij, xi) in RT (ag). By construction, T is a two-way
deterministic tree structure.

(2) To prove that T , ε |= f , we show that for any formula g ∈ CL−(f) and any state x ∈ WT , if
M, α(x) |= g, then T , x |= g. The proof is by induction on the structure of formulae.

• g = p, where p is a propositional letter. By construction of T we have that T , x |= p iff M, α(x) |= p.

• g = ¬p where p is a propositional letter. Then T , x |= ¬g iff T , x 6|= g iff (by construction of T )
M, α(x) 6|= g iff M, α(x) |= ¬g.

• g = g1∧g2. Then T , x |= g1∧g2 iff T , x |= g1 and T , x |= g2 if (by induction hypothesis) M, α(x) |= g1
and M, α(x) |= g2 iff M, α(x) |= g1 ∧ g2.

• g = g1 ∨ g2. Then T , x |= g1 ∨ g2 iff T , x |= g1 or T , x |= g2 if (by induction hypothesis) M, α(x) |= g1
or M, α(x) |= g2 iff M, α(x) |= g1 ∨ g2.

• g = 〈ai〉>, where ai is a program name. Since M, α(x) |= 〈ai〉>, there is a state v ∈ WM such
that (α(x), v) ∈ RM(ai). The construction of T guarantees that there is some y ∈ WT such that
(x, y) ∈ RT (ai). In particular, either x = z(2·i) for some node z ∈ WT and (x, z) ∈ RT (ai), or for the
node z′ = x(2·i− 1), α(z′) is defined and (x, z′) ∈ RT (ai). Therefore T , x |= 〈ai〉>.

• g = 〈a−i 〉>. We can proceed as in the previous case.

• g = [r]g′, where r is an arbitrary program. Let b1b2 · · · bl be any execution sequence of r such that there
is a (unique) sequence of nodes x0, x1, . . . , xl ∈ WT with x = x0 and (xi−1, xi) ∈ RT (bi), for 1 ≤ i ≤ l.
It is sufficient to show that T , xl |= g′. By construction of T , α(x0), α(x1), . . . , α(xl) are defined and
(α(xi−1), α(xi)) ∈ RM(bi), for 0 ≤ i ≤ l. Since M, α(x0) |= [r]g′, we have that M, α(xi) |= g′, and by
induction hypothesis T , xi |= g′. Thus T , x |= [r]g′.
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5.1.3 Expansion of Two Way Deterministic Tree Structures

We show now how any two-way deterministic tree model T of a primitive cpdl-formula frel := δ+(Srel)
corresponding to the expansion of a primitive LUNI-schema S can be expanded to a model M in which all
propositional number restrictions present in the formula are numerically satisfied. First of all notice that all
propositional number restrictions of the form C(≤n b) are already numerically satisfied in all states of T . This
is because in a two-way deterministic tree model by definition for each state x and atomic program b there
is at most one other state connected to x through b. Notice also that for the same reason no propositional
number restriction of the form C(≥m b) with m > 1 is numerically satisfied in T .

From now on let Prog := {a1, . . . , ak} be the set of program names that appear in frel . For a structure
M := (WM,RM,ΠM), an atomic program b ∈ Prog ∪ Prog− and a state x ∈ WM, let

mmax (M, x, b) := max{m | C(≥m b) ∈ ΠM(x)}
nmin(M, x, b) := min{n | C(≤n b) ∈ ΠM(x)}.

If ΠM(x) does not contain any propositional number restriction C(≥m b), then mmax (x, b) := 0. Similarly, if
ΠM(x) does not contain any propositional number restriction C(≤n b), then nmin(x, b) := ∞.

Lemma 5.1.9 Let T be a tree model of frel . Then for any state x ∈ WT and any atomic program b ∈
Prog ∪ Prog− the following holds

1. mmax (T , x, b) ≤ nmin(T , x, b).
2. If mmax (T , x, b) ≥ 1 then there is a state y ∈ WT such that (x, y) ∈ RT (b).

Proof. For (1) suppose by contradiction that mmax (T , x, b) > nmin(T , x, b) for some state x ∈ WT and
some atomic program b ∈ Prog∪Prog−. Then ΠT (x) contains two propositional number restrictions C(≥m0 b)

and C(≤n0 b), where m0 := mmax (T , x, b) and n0 := nmin(T , x, b). By definition of mmax and nmin , Srel

contains an assertion C(≥m0 b) ¹̇ ¬C(≤n0 b). Since T is a model of frel , there is a state x0 ∈ WT such that
T , x0 |= [rC ](C(≥m0 b) → ¬C(≤n0 b)), where rC is the automaton that accepts (a1 ∪ · · · ∪ ak ∪ a−1 ∪ · · · ∪ a−k )∗.
Since T is connected there are l ≥ 0, states x1, . . . , xl, and atomic programs b1, . . . , bl such that xl = x
and (xi−1, xi) ∈ RT (bi), for 1 ≤ i ≤ l. The word b1b2 · · · bl is an execution sequence of rC , and therefore
T , x |= (C(≥m0 b) → ¬C(≤n0 b)), which gives rise to a contradiction.

For (2) suppose by contradiction that m0 := mmax (T , x, b) > 0 for some state x ∈ WT and some atomic
program b ∈ Prog ∪ Prog−, and that there is no state y ∈ WT such that (x, y) ∈ RT (b). Since m0 > 0, by
definition of mmax , ΠT (x) contains a propositional number restriction C(≥m0 b) and since T is a model of
frel , there is a state x0 ∈ WT such that T , x0 |= [rC ](C(≥m0 b) → 〈b〉>), where rC is as above. By reasoning
as in the previous case we get a contradiction from the fact that both T , x |= C(≥m0 b) and T , x |= [b]⊥.

In order to obtain from a two-way deterministic tree model T of frel a modelM in which all propositional
number restrictions are numerically satisfied, it is sufficient to ensure that those of the type C(≥m b), with
m > 1 are satisfied. Part (1) of Lemma 5.1.9 guarantees that by modifying T in order to numerically satisfy
C(≥m b) we introduce no contradictions with propositional number restrictions of the type C(≤n b). Part (2)
of Lemma 5.1.9 guarantees that whenever we have to numerically satisfy C(≥m b) in a node x, there is already
a node y in T such that (x, y) ∈ RT (b). Therefore we can construct a model M of frel by starting from a
two-way deterministic tree model T and duplicating suitable subtrees connected to each node.

Let T := (WT ,RT ,ΠT ) be a two-way deterministic tree structure obtained from a model of frel by
applying mapping α as defined in the proof of Lemma 5.1.8. For every node xi ∈ WT of such a tree
structure T the following holds:

1. If i is odd, i.e. i = 2·g − 1, where 1 ≤ g ≤ k, then (x, xi) ∈ RT (ag) and xi(i+ 1) 6∈ WT .

2. If i is even, i.e. i = 2·g, where 1 ≤ g ≤ k, then (xi, x) ∈ RT (ag) and xi(i− 1) 6∈ WT .

Such property allows us to define the following transformations on tree structures. Together with the
transformations we define also mappings from nodes of the tree generated by the transformation to nodes
of the original tree. Let m be a positive integer, Tj be a 2·kj-ary two-way deterministic tree structure as
above, for 1 ≤ j ≤ m, and x, y ∈ WT1 two nodes that are neighbors.
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• T ′ := cut(x, y, T1) is the tree structure obtained from T1 by making x to be the new root of the tree
and eliminating from the resulting tree all subtrees except the one rooted at y. In this way we ensure
also that the root of T ′ has at most one successor. In order to define a suitable mapping γcut(x, y, w)
between nodes, we distinguish two cases:

If y is the i-successor of x, i.e. y = xi where 1 ≤ i ≤ 2·k1, then

γcut(x, y, w) :=

{
x, if w = ε.
xw, if w = iw′.
undefined, otherwise.

If x is the i-successor of y in T1, i.e. x = yi, the formal definitions of γcut(x, y, w) and of T ′ are
complicated by the fact that we have to invert the predecessor relation for the nodes on the path from
the root to x. In order to do this without introducing conflicts, properties (1) and (2) established
above are crucial. For a word w := i1 · · · ih ∈ {1, . . . , 2·k1}∗ we define w̃ := ı̃h · · · ı̃1, where ı̃j := ij + 1
if ij is odd, and ı̃j := ij − 1 if ij is even. Let w = vw′ and x̃ = vx′, where v is the common prefix of w
and x̃. Then

γcut(x, y, w) :=

{
x, if w = ε.
x̃′w′, if |v| ≥ 1.
undefined, otherwise.

In both cases, T ′ is a 2·k1-ary tree structure defined as follows:

– WT ′ := {w ∈ {1, . . . , 2·k1}∗ | γcut(x, y, w) ∈ WT1}.
– ΠT ′(w) := ΠT1(γcut(x, y, w)).

– RT ′(a) := {(w,w′) | (γcut(x, y, w), γcut(x, y, w′)) ∈ RT1(a)}.
• T ′ := copy(m, T1) is the tree structure obtained from T by substituting for each node i at depth 1 the

whole subtree starting at i with a subtree starting at m·i. We define the following mapping between
nodes:

γcopy(m,w) :=

{
ε, if w = ε.
iw′, if w = (m·i)w′.
undefined, otherwise.

Formally, T ′ is the 2·k·m-ary tree structure defined as follows:

– WT ′ := {w ∈ {1, . . . , 2·k1·m}∗ | γcopy(m,w) ∈ WT1}.
– ΠT ′(w) := ΠT1(γcopy(m,w)).

– RT ′(a) := {(w,w′) | (γcopy(m,w), γcopy(m,w′)) ∈ RT1(a)}.
• T ′ := app(x, (T2, . . . , Tm), T1) is the tree structure obtained by appending T2, . . . , Tm at node x of T1.

We define the following mapping between nodes:

γapp(x,w) :=
{
w′, if w = xw′.
w, otherwise.

Formally, T ′ is the 2·∑1≤i≤m ki-ary tree structure defined as follows:

– WT ′ := WT1 ∪⋃
1≤i≤m{xw | w ∈ WTi}.

– ΠT ′(w) :=





ΠTj (γapp(x,w)), if j is the least i, 2 ≤ i ≤ m,
with γapp(x,w) ∈ WTi .

ΠT1(w), otherwise.
– RT ′(a) := RT1(a) ∪ {(w,w′) | (γapp(x,w), γapp(x,w′)) ∈ RTi(a)

for some i, 2 ≤ i ≤ m}.
Notice that according to this definition app(x, (T2, . . . , Tm), T1) is guaranteed to be a tree structure
only if the set of nodes of the trees Ti are pairwise disjoint and moreover no tree Ti interferes with
the subtree of T1 rooted at x. That this condition is verified for the trees we consider is ensured by
the construction of M. Moreover, if for all trees Ti the root has only one successor, then T ′ is a
2·max{k1 +m, k2, . . . , km}-ary tree structure.
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Let now m0 be the maximum number that appears in a propositional number restriction of the form
C(≥m r), i.e.

m0 := max{m | ∃b ∈ Prog ∪ Prog− : C(≥m b) appears in frel}.
The transformations defined above are used to construct, starting from T , a M := 2·k·m0-ary tree structure
M, called the expansion of T , in which all propositional number restrictions are numerically satisfied.

Construction 5.1.10 The construction of the expansion M of T proceeds by induction on the length of
the words in {1, . . . ,M}∗ and on the number of atomic programs. In parallel with the construction of M
we define two mappings β : WM →WT and γ : WM →WM. β assigns to each node of M a node of T that
represents its first copy and γ assigns to each node the last node it is a copy from. We call the application
of each step of the construction to a node x and an atomic program bh the expansion of x with respect to bh.

For the base step we put M equal to T and for every node x ∈ WM we define β(x) := x and γ(x) := x.
For the inductive step suppose that we have already expanded the following nodes:

• All nodes in {1, . . . ,M}l−1 with respect to all atomic programs.

• For some x ∈ {1, . . . ,M}l−1 and some i ∈ {1, . . . ,M}, all nodes in {1, . . . ,M}l that lexicographically
precede xi with respect to all atomic programs.

• The node xi with respect to the atomic programs b1, . . . , bh−1.

Let m := mmax (M, xi, bh). We describe now the expansion of node xi with respect to bh. If m ≥ 1, by
part (2) of Lemma 5.1.9 there is a node y ∈ WM such that (xi, y) ∈ RM(bh). If m = 1, or if m > 1 and
there is more than one node y ∈ WM such that (xi, y) ∈ RM(bh)3, we are done and we do not modify M.
Otherwise m > 1 and there is exactly one node y ∈ WM such that (xi, y) ∈ RM(bh).

Let Tj := copy(j, cut(xi, y,M)), 2 ≤ j ≤ m. For any node z ∈ WTj , let γ′(z) := γcut(xi, y, γcopy(m, z))
be the original node in M of which z is a copy. Then we append the tree structures T2, . . . , Tm to node xi,
which formally corresponds to replacing M with M′ := app(xi, (T2, . . . , Tm),M). Finally we put for any
node z ∈ WM′ \WM, β(z) := β(z′) and γ(z) := z′, where z′ := γ′(γapp(xi, z)).

We observe that by construction the following holds: (1) Since each tree Tj is obtained as a copy with
a different coefficient, the trees Tj do not interfere with each other and with the subtree of M rooted at
xi. (2) Since each tree Tj has at most one successor of the root, and since the expansion had not already
been applied to node xi, the resulting structure M is still an M -ary tree structure. (3) β(x) ∈ WT for all
x ∈ WM, and γ(x) is the node from which x was generated in an expansion step. (4) γ(x) precedes x in M
if we visit M breadth-first.

Observations (1) and (2) allow us to proceed with the inductive construction, while observations (3)
and (4) are used below. The following two lemmata characterize the properties of tree structures that are
obtained by the previous construction.

Lemma 5.1.11 Let M be the expansion of a two-way deterministic tree model T of frel , obtained according
to Construction 5.1.10 and let u ∈ WM and f ∈ CL−(frel). Then M, u |= f if and only if T , β(u) |= f .

Proof. The proof is by induction on the structure of formulae.

• f = p, where p is a propositional letter. By construction of M we have that M, u |= p iff T , β(u) |= p.

• f = ¬p where p is a propositional letter. M, u |= ¬p iff M, u 6|= p iff (by induction hypothesis)
T , β(u) 6|= p iff T , β(u) |= ¬p.

• f = f ′ ∧ f ′′. M, u |= f ′ ∧ f ′′ iff M, u |= f ′ and M, u |= f ′′ iff (by induction hypothesis) T , β(u) |= f ′

and T , β(u) |= f ′′ iff T , β(u) |= f ′ ∧ f ′′

• f = f ′ ∨ f ′′. M, u |= f ′ ∨ f ′′ iff M, u |= f ′ or M, u |= f ′′ iff (by induction hypothesis) T , β(u) |= f ′ or
T , β(u) |= f ′′ iff T , β(u) |= f ′ ∨ f ′′

3This means that xi is actually a copy of a node that has already been expanded with respect to bh.



74 CHAPTER 5

• f = 〈ah〉>. “⇒” Suppose that M, u |= 〈ah〉>. Then there is a node v ∈ WM such that (u, v) ∈
ΠM(ah). By construction of M we have that (β(u), β(v)) ∈ RT (ah) and therefore T , β(u) |= 〈ah〉>.

“⇐” Suppose that T , β(u) |= 〈ah〉>. Then there is a node v′ ∈ WT such that (β(u), v′) ∈ RT (ah).
We show by induction on the number of expansion steps in the construction of M, that there is a
node v ∈ WM such that (u, v) ∈ RM(ah). If u ∈ WT then u = β(u) and (u, v′) ∈ RM(ah), since
RT (a) ⊆ RM(a) for all program names a. Otherwise, u has been added to M in some expansion
step. Let M′ be the tree structure immediately before performing this expansion step, and let the
expansion step be on node x with respect to ai and defined as follows: For Tj := copy(j, cut(x, y,M′)),
where 2 ≤ j ≤ m := mmax (M′, x, ai) let M′′ := app(x, (T2, . . . , Tm),M′). Then u ∈ WM′′ \WM′ and
u′ := γ(u), is by construction a node of M′. Again by construction β(u′) = β(u), and it follows by
induction hypothesis that M′, u′ |= 〈ah〉>. Therefore there is a node v′ ∈ WM′ such that (u′, v′) ∈
RM′(ah). Since u 6∈ WM′ , we have u1 := γapp(x, u) ∈ WTj for some j, 2 ≤ j ≤ m. Consider the node
v1 ∈ WTj such that v′ = γcut(x, y, γcopy(j, v1)). Such a node necessarily exists by definition of cut and
copy. In fact, either v′ = x, i.e. v1 = ε, in which case ai = ah, u′ = y, and by construction of M′′,
(u, x) ∈ RM′′(ah). Or v′ ∈ WM′′ \ WM′ and again by definition of cut and copy (u1, v1) ∈ RTj (ah).
But then, by definition of app there is a node v ∈ WM′′ \ WM′ such that γapp(x, v) = v1, and
(u, v) ∈ RM′′(ah).

• f = 〈a−h 〉>. We can proceed as in the previous case.

• f = [r]f ′. “⇒” Suppose that M, u |= [r]f ′, and let b1b2 . . . bk be an arbitrary execution sequence of
r. Let x0, x1, . . . , xk be a sequence of nodes of T such that x0 = β(u) and (xi−1, xi) ∈ RT (bi), for
1 ≤ i ≤ k. If such sequence of nodes does not exist, then we are done. If such sequence of nodes exists,
then it is necessarily unique since T is a two-way deterministic tree structure. Therefore it is sufficient
to prove that T , xk |= f ′. We do this by induction on k.

– If k = 0 then M, u |= f ′. By induction on the structure of formulae T , β(u) |= f ′.

– If k ≥ 1, then T , x0 |= 〈b1〉>. By the previous case, since β(u) = x0, M, u |= 〈b1〉> and there is
a node u1 ∈ WM such that (u, u1) ∈ RM(b1). Let r := (Σ, S, δ, s0, F ) and consider the program
rs := (Σ, S, δ, s, F ) where s := δ(s0, b1). Then M, u1 |= [rs]f ′, and b2 . . . bk is an execution
sequence of rs. By construction (β(u), β(u1)) ∈ RT (bi), and since x1 is the only node in WT such
that (x0, x1) ∈ RT (bi), we have that x1 = β(u1). Since M, u1 |= [rs]f ′, b2 . . . bk is an execution
sequence of rs of length k − 1, and x1, . . . , xk is a sequence of nodes of T such that x1 = β(u1)
and (xi−1, xi) ∈ RT (bi), for 2 ≤ i ≤ k, it follows by induction on k that T , xk |= f ′.

“⇐” Suppose that T , β(u) |= [r]f ′, and let b1b2 . . . bk be an arbitrary execution sequence of r. Let
u0, u1, . . . , uk be an arbitrary sequence of nodes of M such that u0 = u and (ui−1, ui) ∈ RM(bi), for
1 ≤ i ≤ k. If such sequence of nodes does not exist, then we are done. If such sequence of nodes exists,
then we prove by induction on k that M, uk |= f ′.

– If k = 0 then T , β(u) |= f ′. By induction on the structure of formulae M, u |= f ′.

– If k ≥ 1, then M, u0 |= 〈b1〉>. Let x0 := β(u0). By the previous case, T , x0 |= 〈b1〉> and
there is a node x1 ∈ WT such that (x0, x1) ∈ RT (b1). Let r := (Σ, S, δ, s0, F ) and consider
the program rs := (Σ, S, δ, s, F ) where s := δ(s0, b1). Then T , x1 |= [rs]f ′, and b2 . . . bk is an
execution sequence of rs. By construction (β(u0), β(u1)) ∈ RT (bi), and since x1 is the only node
in WT such that (x0, x1) ∈ RT (bi), we have that x1 = β(u1). Since T , x1 |= [rs]f ′, b2 . . . bk is an
execution sequence of rs of length k − 1, and u1, . . . , uk is a sequence of nodes of M such that
x1 = β(u1) and (ui−1, ui) ∈ RM(bi), for 2 ≤ i ≤ k, it follows by induction on k that M, uk |= f ′.

Lemma 5.1.12 Let M be the expansion of a two-way deterministic tree model T of frel . Then all proposi-
tional number restrictions are numerically satisfied in all nodes of M.

Proof. With respect to propositional number restrictions of the form C(≤n b), we observe that they are
numerically satisfied in M in all nodes that have not been expanded. Note also that in the construction
of M each node of M has been expanded at most once with respect to each atomic program. Therefore,
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let u be a node of M, bh be a basic program of frel , M′ be the structure before expanding node u with
respect to bh, C(≥m bh) be a propositional number restriction not satisfied in s in M′, and M′′ be the
structure obtained by expanding u with respect to bh. Part (2) of Lemma 5.1.9 guarantees that there is at
least one bh-neighbor of u in T and therefore also in M′. If there is exactly one such neighbor we expand
u with respect to bh. Since mmax (T , u, bh) ≥ m, by expanding u with respect to bh we force C(≥m bh)

to be numerically satisfied in M′′ and therefore also in M. Part (1) of Lemma 5.1.9 guarantees that u
still numerically satisfies in M′′, and therefore also in M, all propositional number restrictions of the type
C(≤n bh). If we assume that there is more than one bh-neighbor of u, then u is the copy of the node γ(u).
Since γ(u) precedes u inMh it has already been expanded with respect to bh. Since ΠM′(u) = ΠM′(γ(u)), we
have that mmax (M′, u, bh) = mmax (M′, γ(u), bh) and γ(u) numerically satisfies C(≥m bh). By construction
u and γ(u) have the same number of bh-neighbors, and we get a contradiction to the fact that C(≥m R) is
not numerically satisfied in u.

5.1.4 Upper Bounds for Unrestricted Model Reasoning

The following lemma summarizes the results of this section.

Lemma 5.1.13 Let frel := δ+(Srel) be a primitive cpdl-formula obtained from the relaxation Srel of a
primitive LUNI-schema. If frel is satisfiable then it is numerically satisfiable.

Proof. Since frel is satisfiable, by Lemma 5.1.8 frel has a two-way deterministic tree model T . Let M be the
expansion of T obtained by Construction 5.1.10. By Lemma 5.1.11M is a model of frel and by Lemma 5.1.12
all propositional number restrictions are numerically satisfied in M. Therefore frel is numerically satisfiable.

Proposition 5.1.14 Let S be a primitive LUNI-schema and C a class name of S. Then C is consistent
in S only if C is consistent in Srel .

Proof. Let C be consistent in Srel . By Theorem B.2.3, δ+(Srel) ∧ δ(C) is satisfiable. By Lemma 5.1.13, it
is numerically satisfiable. More precisely, it admits a connected model M in which all propositional number
restrictions are numerically satisfied in all states of M. By Theorem B.2.2, δ+(Srel) is valid in M and M
is isomorphic to a model I of Srel . Since M is also a model of δ(C), C is consistent in I, and since all
propositional number restrictions of δ+(Srel) are numerically satisfied in all states of M, we have that I is
in fact a model of S.

We obtain as an immediate consequence the following upper bound for unrestricted class consistency in
primitive LUNI-schemata

Theorem 5.1.15 Unrestricted class consistency S 6|=u E ≡ ⊥ in primitive LUNI-schemata can be decided
in worst case deterministic exponential time in |S|+ |E|.

Proof. If E is not a class name, by Proposition 2.3.5, E is consistent in S if and only if C is consistent in
S ′ := (C′,A, T ′), where C′ := C ∪ {C} with C 6∈ C and T ′ := T ∪ {C ¹̇ E}. Since |S ′| is linear in |S|+ |E|,
it is indeed sufficient to consider the case where E is a class name C.

Let Srel be the relaxation of S. By Propositions 5.1.3 and 5.1.14, C is consistent in S if and only if
it is consistent in Srel . By Theorem B.2.3, C is consistent in Srel if and only if the cpdl-formula f :=
δ+(Srel) + δ(C) is satisfiable. |f | is linear in |Srel | and by Lemma 5.1.2 linear in |S|. The claim then follows
from the fact that satisfiability in cpdl can be decided in worst case deterministic exponential time [127].

Corollary 5.1.16 Unrestricted class consistency in primitive LUNI-schemata is EXPTIME-complete.

Proof. The claim follows from Corollary 4.3.5 and Theorem 5.1.15.
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The method described in this section can be used also to decide unrestricted class subsumption S |=f

E1 ¹ E2 in relevant cases. In particular, the condition that has to be ensured for our method to work is
the existence of a two-way deterministic tree model for the satisfiable cpdl-formula corresponding to the
subsumption problem. By Theorem B.2.3, S |=f E1 ¹ E2 if and only if f := δ+(S) ∧ δ(E1) ∧ ¬δ(E2) is
unsatisfiable. If we allow for E2 an arbitrary class expression, due to presence of the negated sub-formula
¬δ(E2), in general we obtain for f a cpdl-formula that is not primitive, since it may contain an eventuality
〈r〉f ′ with f ′ 6= >. Therefore, in general, f does not admit a two-way deterministic tree model even if it
satisfiable. Obviously, if E2 does not contain any universal quantification, the negation normal form4 of
¬δ(E2) is primitive, and Lemma 5.1.8 can be applied.

We can however generalize Lemma 5.1.8 also to the case where f has exactly one eventuality 〈r〉f ′ with
f ′ 6= ⊥. Intuitively this is due to the fact that we can guide the construction of the two-way deterministic
tree structure T from an arbitrary model of f by choosing at each step the “correct” successor node to
include in the tree structure. In such a way we can ensure that T is in fact a model of f . The other results
easily generalize to this case. Since these results are subsumed by the ones in Section 5.2, we omit the details
of the construction and the generalizations of the lemmata, and state the final result without proofs.

Theorem 5.1.17 Unrestricted class subsumption S |=u E1 ¹ E2 in primitive LUNI-schemata can be
decided in worst case deterministic exponential time in |S|+ |E1|+ |E2|, assuming E2 contains at most one
constructor for universal quantification.

5.2 Unrestricted Model Reasoning on Free LT −-Schemata

We have seen in Section 4.4 that several of the constructors present in LT , when used in an unrestricted way,
give rise to undecidability of the class consistency problem. In this section we show that in LT − instead,
the careful choice of restrictions on the use of constructors is sufficient to avoid all problems encountered in
LT . The main result of this section is in fact an algorithm to decide class consistency in free LT −-schemata
that works in deterministic exponential time.

Table 5.2 recalls the constructors and assertions that are allowed in free LT −-schemata, and in the rest
of the section we assume that the schemata we deal with are of this type.

The reasoning procedure we devise for class consistency in LT − can be divided in three main steps.
In the first step we reduce reasoning on free LT −-schemata to reasoning on free LCQIL∆-schemata, by
“reifying” basic links, tuples and sets, and therefore flattening all objects to individuals. Successively we
argue that qualified number restrictions can in fact be replaced by functional restrictions only, thus reducing
the problem to a class consistency problem in LCFIL∆. Finally we show that this problem is decidable
and can be solved in deterministic exponential time by exploiting automata theoretic techniques developed
in the context of PDLs.

5.2.1 Reduction from LT − to LCQIL∆

We define now the reified counterpart of a schema in which basic links tuples and sets are replaced by
LCQIL∆-class expressions. The reification is done by defining suitable mappings from LT −-class and link
expressions to LCQIL∆-class and link expressions and by using these mappings to construct the assertions
of the LCQIL∆-schema. The mappings defined here extend the ones used in [58] in order to handle the
repeat constructor.

Construction 5.2.1 Let S := (C,A, T ) be an LT −-schema. The reified counterpart ℘(S) := (℘(C), ℘(A), ℘(T ))
of S is constructed as follows. Let

CA := {>A | A ∈ A} ∪ {>3}
C{} := {>{}}
C[ ] := {>[ ]} ∪ {>[A1,...,Ak] | [A1, . . . , Ak] occurs in T } ∪

{>[A1,...,Ak] | 〈E | A1, . . . , Ak〉 occurs in T for some E}
C〈〉 := {>〈E|A1,...,Ak〉 | 〈E | A1, . . . , Ak〉 occurs in T }.

4For PDL the negation normal form of a formula is defined exactly as for the corresponding L-language.
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Constructor Name Syntax Semantics
class name C CI ⊆ ∆I

set {E} {{|o1, . . . , oh|} ∈ OI | o1, . . . , oh ∈ EI}
tuple [A1, . . . , Ak] {[A1: o1, . . . , Ak: ok] ∈ OI | o1, . . . , ok ∈ OI}
tuple with key 〈E | A1, . . . , Ak〉 ⊆ [A1, . . . , Ak]I ∩ EI and key condition
conjunction E1 u E2 EI1 ∩ EI2
general negation ¬E ∆I \ EI
universal quantif. ∀A.E {o | ∀o′ : (o, o′) ∈ LI → o′ ∈ EI}
qualified number ∃≤nB.E {o | ]{o′ | (o, o′) ∈ BI ∧ o′ ∈ EI} ≤ n}
restrictions ∃≤nB−.E {o | ]{o′ | (o′, o) ∈ BI ∧ o′ ∈ EI} ≤ n}
role value map (B1 ⊆ B2) {o | {o′ | (o, o′) ∈ BI1 } ⊆ {o′ | (o, o′) ∈ BI2 }}

(B−1 ⊆ B−2 ) {o | {o′ | (o′, o) ∈ BI1 } ⊆ {o′ | (o′, o) ∈ BI2 }}
repeat ∆(L) {o0 | ∃o1, o2, . . . : (oi, oi+1) ∈ LI , i ≥ 0}
attribute name A AI ⊆ ∆I ×∆I

member 3 {({|. . . , o, . . .|}, o) ∈ OI ×OI}
union L1 ∪ L2 LI1 ∪ LI2
difference B1 \B2 BI1 \BI2
concatenation L1 ◦ L2 LI1 ◦ LI2
inverse L− {(o, o′) | (o′, o) ∈ LI}
transitive closure L∗ (LI)∗

identity id(E) {(o, o) | o ∈ EI}
free assertion E1 ¹̇ E2 EI1 ⊆ EI2

Table 5.2: Free LT −-schemata

The sets of classes and attributes of ℘(S) are defined as follows:

℘(C) := C ∪ CA ∪ C{} ∪ C[ ] ∪ C〈〉 ∪ {>C ,>L}
℘(A) := {V1, V2}.

In order to construct ℘(T ) we need to define a mapping γ from LT −-class expressions to LCQIL∆-class
expressions. This is done by defining inductively three mappings.

• The mapping γ′′ from LT −-basic links to LCQIL∆-class expressions is defined as follows:

γ′′(A) := >A

γ′′(3) := >3
γ′′(B1 ∪B2) := γ′′(B1) t γ′′(B2)
γ′′(B1 \B2) := γ′′(B1) u ¬γ′′(B2).

• The mapping γ′ from LT −-links to LCQIL∆-links is defined as follows:

γ′(B) := V −1 ◦ id(γ′′(B)) ◦ V2

γ′(L1 ◦ L2) := γ′(L1) ◦ γ′(L2)
γ′(L1 ∪ L2) := γ′(L1) ∪ γ′(L2)

γ′(L∗) := (γ′(L))∗

γ′(L−) := (γ′(L))−

γ′(id(E)) := id(γ(E)).

• Finally, the mapping γ from LT −-class expressions to LCQIL∆-class expression is defined as follows:

γ(C) := C

γ({E}) := >{} u ∀(V −1 ◦ id(>3) ◦ V2).γ(E)
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γ([A1, . . . , Ak]) := >[A1,...,Ak]

γ(〈E | A1, . . . , Ak〉) := >〈E|A1,...,Ak〉
γ(E1 u E2) := γ(E1) u γ(E2)

γ(¬E) := ¬γ(E)
γ(∀L.E) := ∀γ′(L).γ(E)

γ(∃≤nB.E) := ∃≤nV −1 .(γ′′(B) u ∀V2.γ(E))
γ(∃≤nB−.E) := ∃≤nV −2 .(γ′′(B) u ∀V1.γ(E))

γ(∆(L)) := ∆(γ′(L))
γ((B1 ⊆ B2)) := ∀V1.(¬γ′′(B1) t γ′′(B2))
γ((B−1 ⊆ B−2 )) := ∀V2.(¬γ′′(B1) t γ′′(B2)).

We introduce some abbreviations:

memb := V −1 ◦ id(>3) ◦ V2

PA := V −1 ◦ id(>A) ◦ V2

∃≤nPA.E := ∃≤nV −1 .(>A u ∀V2.E)
∃=nPA.E := ∃≤nV −1 .(>A u ∀V2.E) u ∃PA.E

∃≤nP−A .E := ∃≤nV −2 .(>A u ∀V1.E)
∃=nP−A .E := ∃≤nV −2 .(>A u ∀V1.E) u ∃P−A .E

>[|Ai|] := >[Ai] u ∀(PA1 ∪ · · · ∪ PAi−1 ∪ PAi+1 ∪ · · · ∪ PAh
).⊥,

if A := {A1, . . . , Ah}.
The set ℘(T ) of assertions of ℘(S) is defined as ℘(T ) := ℘1(T ) ∪ ℘2(T ) ∪ ℘3(T ), where

• ℘1(T ) := {γ(E1) ¹̇ γ(E2) | E1 ¹̇ E2 ∈ T }.
• ℘2(T ) is the set constituted by the assertions:

>{} .= ∃memb.> (5.1)

>{} u ∃≤1memb.> ¹̇ ∀memb.(∃≤1memb−.(∃≤1memb.>)). (5.2)

>[|A|] ¹̇ ∃=1PA.> u ∀PA.(∃≤1P−A .[|A|]), (5.3)
for each >[A] in C[ ]

>[A1,...,Ak]
.= >[ ] u ∃=1PA1 .> u · · · u ∃=1PAk

.>, (5.4)
for each >[A1,...,Ak], with k ≥ 1, in C[ ]

>〈E|A〉 ¹̇ γ(E) u >[A] u ∀PA.(∃≤1P−A .γ(E)), (5.5)
for each >〈E|A〉 in C〈〉

>〈E|A1,...,Ak〉 ¹̇ γ(E) u >[A1,...,Ak], (5.6)
for each >〈E|A1,...,Ak〉, with k ≥ 2, in C〈〉.

• ℘3(T ) is the set constituted by the assertions:

> ¹̇ >C t >L (5.7)
>C ¹̇ ∀V1.⊥ u ∀V2.⊥ (5.8)
>L ¹̇ ∃V1.>C u ∃≤1V1.> u ∃V2.>C u ∃≤1V2.> (5.9)
C ¹̇ >C , for each C ∈ C ∪ C{} ∪ C[ ] (5.10)

>A ¹̇ >L, for each >A ∈ CA. (5.11)
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Lemma 5.2.2 The reified counterpart ℘(S) of S can be constructed in time which is polynomial in |S|.

Proof. Straightforward.

Observe that |℘(S)| is polynomially related to |S|, and that ℘(S) is interpreted over usual interpretations
I := (∆I , ·I), where ∆I is a set of unstructured objects. The idea behind the construction of ℘(S) is that
for each model I of S there should be a corresponding model ℘(I) of ℘(S), in which all basic links, sets, and
tuples of I are reified, i.e. correspond to unstructured objects in ∆℘(I). In particular, all attribute names
in A are reified. Each pair (o1, o2) ∈ AI is represented in ℘(I) by an object o ∈ >℘(I)

A connected through
the attributes V1 and V2 to the objects representing o1 and o2 respectively. For sets and tuples we have in
fact embedded a “double reification” in the construction of ℘(S). For example, a set {|o1, . . . , ok|} ∈ OI is
represented in ∆℘(I) by an object o′ ∈ >℘(I)

{} connected through link 3 to the objects o′1, . . . , o
′
k representing

o1, . . . , ok respectively. The link 3 is then itself reified, and each pair of objects (o′, oi) ∈3℘(I) is replaced
by a new object o′′i ∈ >℘(I)

3 connected through attributes V1 and V2 to the objects representing o′ and oi

respectively. A similar observation holds for objects representing tuples and tuples with key. Therefore it is
sufficient to use only the two attributes V1 and V2 in ℘(A).

It would be nice to establish now a one to one mapping from models I of S to models ℘(I) of ℘(S). The
following observation shows, however, that this is not possible in general. In a model of an LT −-schema S
each tuple and set is unique, while in a model of ℘(S) there may be more than one object representing the
same set or tuple. For example, there may be two objects o, o′ ∈ >℘(I)

{} , connected through memb to exactly
the same objects o′1, . . . , o

′
k ∈ ∆℘(I). In this case o and o′ both represent the same set {|o1, . . . , ok|} ∈ OI ,

being o′1, . . . , o
′
k ∈ ∆℘(I) the objects representing o1, . . . , ok ∈ OI , respectively. The same problem may

occur with a reified attribute where two objects in >℘(I)
L may represent the same pair of objects in OI .

Therefore, any model of ℘(S) in which such a situation occurs does not correspond directly to a model of S.
We characterize now those models of ℘(S) that behave “nicely” and show that there is indeed a one to

one correspondence between these models of ℘(S) and the models of S. The situation is similar to the one
encountered in Section 3.3, where we characterized (in Definition 3.3.6) those models that correctly represent
arbitrary n-ary relations.

Definition 5.2.3 A model I of ℘(S) is an aggregate-descriptive model, if the following conditions hold:

• For every o, o′ ∈ >IL and o1, o2 ∈ ∆I ,

((o, o1) ∈ V I1 ∧ (o, o2) ∈ V I2 ∧ (o′, o1) ∈ V I1 ∧ (o′, o2) ∈ V I2 ) → o = o′. (5.12)

• For every o, o′ ∈ >I{},

o 6= o′ → (∃o′′ ∈ ∆I : (o, o′′) ∈ membI ∧ (o′, o′′) 6∈ membI). (5.13)

• For every o, o′ ∈ >I[ ],

(∀o′′ ∈ ∆I :
∧

1≤i≤h

((o, o′′) ∈ P IAi
↔ (o′, o′′) ∈ P IAi

)) → o = o′, (5.14)

where {A1, . . . , Ah} = A.

• For every >〈E|A1,...,Ak〉 ∈ C〈〉, for every o, o′ ∈ >I〈E|A1,...,Ak〉,

(
∧

1≤i≤k

((o, oi) ∈ P IAi
) ∧

∧

1≤i≤k

((o′, oi) ∈ P IAi
)) → o = o′. (5.15)
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Lemma 5.2.4 Let S be an LT −-schema, and ℘(S) be its reified counterpart. Then there is a one to one
mapping between the models of S and the aggregate-descriptive models of ℘(S).

Proof (sketch). Let S := (C,A, T ) and ℘(S) := (℘(C), ℘(A), ℘(T )). For the first direction of the proof, let
I := (OI , ·I) be a model of S. We construct an interpretation I ′ := (∆I′ , ·I′) of ℘(S) by defining

∆I′ := OI ∪ {o(o1,o2) | (o1, o2) ∈ AI , for some A ∈ A ∪ {3}}.

Each class name is interpreted in I ′ as in I, while the class names >[A1,...,Ak] and >〈E|A1,...,Ak〉 are interpreted
as the corresponding class expressions [A1, . . . , Ak], and 〈E | A1, . . . , Ak〉. The only two attributes V1 and
V2 are interpreted as follows:

V I
′

1 := {(o(o1,o2), o1) | o(o1,o2), o1 ∈ ∆I′}
V I

′
2 := {(o(o1,o2), o2) | o(o1,o2), o2 ∈ ∆I′}.

Using the definitions of mappings γ, γ′, and γ′′ it is not difficult to see that since I is a model of S, I ′
satisfies all assertions in ℘1(T ). Assertion 5.1 is satisfied if we interpret >{} as the set of all sets in OI .
Assertions 5.3 are satisfied since in each model of S all tuples, and in particular tuples that have just one
component are unique. A similar observation holds for assertions 5.2 and 5.5. Assertions 5.4 and 5.6 are
satisfied by the semantics of tuples and keys. Finally, assertions 5.7 to 5.11 are satisfied if we interpret >C
as OI , and >L as the set of objects in ∆I′ representing pairs of objects in ∆I .

For the other direction of the proof, let I ′ := (∆I′ , ·I′) be an aggregate-descriptive model of ℘(S). A
model I := (OI , ·I) of S can be obtained from I ′ by defining OI := >I′C . Each class name is interpreted in
I as in I ′. All objects that are instances of >[ ] in I ′, have in I the structure of a tuple, and all objects that
are instances of >{} in I ′, have in I the structure of a set. Every attribute A ∈ A is interpreted as the set
of pairs of objects (o1, o2) ∈ ∆I′ such that for some o ∈ >I′A , (o, o1) ∈ V I

′
1 and (o, o2) ∈ V I

′
2 . Notice that

assertions 5.7 to 5.11 imply that o1, o2 ∈ OI , while o 6∈ OI . Also, since I ′ is an aggregate descriptive model,
the cardinality of AI is equal to the cardinality of >I′A , which implies that also all number restrictions
are interpreted in the correct way. A similar observation holds for tuples and sets, where additionally
properties 5.13, 5.14 and 5.15 guarantee that sets and tuples are unique, and that the key conditions are
satisfied in I. Using also the assertions in ℘1(T ) it is easy to see, that I is a model of S.

Lemma 5.2.4 implies that for a class name C ∈ C, S 6|=u C ≡ ⊥ is equivalent to verifying if C is consistent
in an aggregate descriptive model of ℘(S). However, this does not directly establish decidability of class
consistency in LT −, since it is not known how to reason with the reified counterpart ℘(S) of an LT −-schema
S when interpreted over aggregate-descriptive models.

Following [58] we show now that this problem can be overcome in a very simple way, namely by just
forgetting about aggregate descriptive models. This is a consequence of Lemma 5.2.5 below which shows
that it is always possible to interpret a schema over an aggregate-descriptive model when verifying class
consistency. The proof of Lemma 5.2.5 is based on the disjoint union model property which can be stated
as follows: Let S be a LT −-schema and I := (∆I , ·I) and I ′ := (∆I′ , ·I′) be two models of S. Then the
interpretation I ] I ′ := (∆I ]∆I′ , ·I ] ·I′) obtained as the disjoint union of I and I ′, is also a model of S.
The disjoint union model property is in fact typical of the vast majority of Modal Logics and of all logics
whose semantics is based on Kripke structures, such as Description Logics.

Lemma 5.2.5 Let S be an LT −-schema and ℘(S) its reified counterpart. If ℘(S) is consistent, then it has
an aggregate-descriptive model.

Proof (sketch). Let I be a model of ℘(S). We can build an aggregate-descriptive model I ′ as follows:
We start by transforming I into a model Ir satisfying condition 5.12. Given an object a ∈ >IL, we denote

by Vi(a), i ∈ {1, 2}, the object o such that (a, o) ∈ V Ii (recall that due to assertion 5.9, V Ii is functional).
For each o1, o2 ∈ ∆I we define X(V1:o1,V2:o2) := {a ∈ >IL | V1(a) = o1 ∧ V2(a) = o2}. Some of such sets
will be empty, some will be a singleton, some will be not a singleton. We call conflict the existence of a
non-singleton set X(V1:o1,V2:o2). From each non-singleton X(V1:o1,V2:o2) we randomly choose one object o, and
we say that the others induce a conflict on (V1: o1, V2: o2). We call Conf the set of all objects inducing a
conflict for some (V1: o1, V2: o2). Note that Conf may be uncountable, in general.
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We define an interpretation I2Conf as the disjoint union of ](2Conf ) copies of I, one copy, denoted by IZ ,
for every set Z ∈ 2Conf . We denote by oZ the copy in IZ of the object o in I. By the disjoint union model
property, I2Conf is a model of ℘(S). Let IZ and IZ′ be two copies of I in I2Conf . We call exchanging V2(aZ)
with V2(aZ′) the operation on I2Conf consisting of replacing in V IZ2 (aZ , V2(aZ)) with (aZ , V2(aZ′)) and, at
the same time, replacing in V

IZ′
2 (aZ′ , V2(aZ′)) with (aZ′ , V2(aZ)). Intuitively, by exchanging V2(aZ) with

V2(aZ′), the objects aZ and aZ′ do not induce conflicts anymore. Ir is now obtained from I2Conf as follows:
For each a ∈ Conf , for each Z ∈ 2Conf such that a ∈ Z, we exchange V2(aZ) with V2(aZ\{a}). It is possible
to show that all conflicts are thus eliminated while no new conflict is created. Hence, in Ir, condition 5.12 is
satisfied. We still have to show that Ir is a model of ℘(S). Indeed, it is straightforward to check by induction
that for every class expression E appearing in ℘(S), for all Z ∈ 2Conf , o ∈ EI if and only if dZ ∈ EIr

. Thus
all assertions in ℘(T ) are still satisfied in Ir.

The above transformation can be adapted in order to build from Ir a model Irs fulfilling conditions 5.13
and 5.14. Observe that for singleton sets and for tuples with only one component, conditions 5.13 and 5.14
are already fulfilled in I due to assertions 5.2 and 5.3 in ℘(T ).

Finally, the aggregate-descriptive model I ′ is obtained from Irs as follows: We enumerate in some way
the various >〈E|A1,...,Ak〉, with n ≥ 2, in >[ ] (there are a finite number, say l, of them), and we apply l times,
one for each >〈E|A1,...,Ak〉, a variant of transformation above to Irs, so that at each step h of this process,
the resulting model of ℘(S) is forced to satisfy condition 5.15 for the h-th >〈E|A1,...,Ak〉.

Summing up, we can state the following proposition.

Proposition 5.2.6 Let S be an LT −-schema, C a class name in S, and ℘(S) the reified counterpart of S,
obtained from S according to Construction 5.2.1. Then C is consistent in S if and only if it is consistent in
℘(S).

Proof. “⇒” Straightforward by Lemma 5.2.4.
“⇐” Let I be a model of ℘(S) with CI 6= ∅. By Lemma 5.2.5 there is an aggregate descriptive model

I ′ of ℘(S) with CI
′ 6= ∅. By Lemma 5.2.4 I ′ corresponds to a model I ′′ of S and CI

′′ 6= ∅.

5.2.2 Reduction from LCQIL∆ to LCFIL∆

The reified counterpart ℘(S) of an LT −-schema S may still contain qualified number restrictions, which are
cumbersome to deal with, when applying the automata theoretic techniques we present in the next section.
Using a technique introduced in [52] we show now how to transform an LCQIL∆-schema into one containing
just functional restrictions (on attributes and inverse attributes).

The transformation is done by representing the inverse attribute V −i , i ∈ {1, 2}, which is not functional
(while Vi is so), by the attribute expression Fi ◦ R∗i , where Fi, Ri are new attributes which will be forced
to be globally functional. The main point of such transformation is that now qualified number restrictions
can be encoded as constraints on the chain Fi ◦ R∗i . Formally, we define the functional counterpart of an
LCQIL∆-schema as follows.

Construction 5.2.7 Let S be an LT −-schema and ℘(S) := (℘(C), ℘(A), ℘(T )) be its reified counterpart.
The functional counterpart ρ(S) := (ρ(C), ρ(A), ρ(T )) of S is constructed as follows:

• ρ(C) := ℘(C).

• ρ(A) := {F1F2, R1, R2}.

• ρ(T ) := ρ1(T ) ∪ ρ2(T ), where ρ1(T ) is obtained from ℘(T ) by recursively replacing

– every occurrence of Vi with (Fi ◦R∗i )−.

– every occurrence of ∃≤1Vi.> with >.

– every occurrence of ∃≤kV −i .E with ∀(Fi ◦ R∗i ◦ (id(E) ◦ R+
i )k).¬E, where L+ stands for L ◦ L∗,

and Lk stands for L ◦ · · · ◦ L︸ ︷︷ ︸
k times

.
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ρ2(T ) consists of the two assertions (i ∈ {1, 2}):

> ¹̇ ∃≤1Fi u ∃≤1Ri u ∃≤1F−i u ∃≤1R−i u ¬(∃F−i .> u ∃R−i .>).

Lemma 5.2.8 The functional counterpart ρ(S) of S can be constructed in time which is polynomial in |S|.

Proof. Straightforward, using also Lemma 5.2.2.

Note that the assertions in ρ2(T ) constrain the attributes Fi, Ri and their inverses to be globally func-
tional, and impose that no object can be linked to other objects through both F−i and R−i . In other words,
the link (Fi ◦R∗i )− is functional.

Lemma 5.2.9 Let S be an LT −-schema, ℘(S) be its reified counterpart, and ρ(S) be its functional coun-
terpart. Then there is a one-to-one mapping between the models of ρ(S) and the models of ℘(S).

Proof (sketch). Let S := (C,A, T ), ℘(S) := (℘(C), ℘(A), ℘(T )), and ρ(S) := (ρ(C), ρ(A), ρ(T )). For the
first direction of the proof, let I be a model of ℘(S). I can be transformed into a model I ′ of ρ(S) as
follows. We define ∆I′ := ∆I and CI

′
:= CI for every class name C ∈ ℘(C). Then, for each o ∈ ∆I such

that there is some o′ ∈ ∆I with (o, o′) ∈ (V −i )I , let o1, . . . , ok ∈ ∆I be all objects such that (o, oi) ∈ (V −i )I .
We put (o, o1) ∈ F I′i and (oj , oj+1) ∈ RI′i , for j = 1, . . . , l − 1. Note that since Vi is functional, (Fi ◦ R∗i )−
is functional as well. By construction, the assertions in ρ2(T ) are satisfied in I ′, and (o, o′) ∈ (V −i )I if and
only if (o, o′) ∈ (Fi ◦ R∗i )I

′
. Hence, considering that o ∈ (∀(Fi ◦ R∗i ◦ (id(E) ◦ R+

i )k).¬D)I
′

expresses that
there are at most k objects in EI along the chain Fi ◦ Ri, starting from o, it is easy to see that o ∈ EI if
and only if o ∈ ρ(E)I

′
, where ρ(E) results from E by performing the transformation as for ρ1(T ).

For the opposite direction, let I ′ be a model of ρ(S). I ′ can be transformed in a model I of ℘(S) by
defining ∆I =: ∆I′ , CI := CI

′
, for any class name C, and V Ii := ((−Fi ◦R∗i ))I

′
. Note that by the assertions

in ρ2(T ), ((−Fi ◦R∗i ))I
′
is a partial function. Again, considering that o ∈ (∀(Fi ◦R∗i ◦ (id(D) ◦R+

i )k).¬D)I
′

expresses that there are at most k objects along the chain Fi ◦ R∗i , starting from o, which are in DI , it is
easy to verify by induction that d ∈ CI if and only if d ∈ ρ(C)I

′
.

This result combined with those of Section 5.2.1 allows us to reduce reasoning in LT − to reasoning in
LCFIL∆.

Proposition 5.2.10 Let S be an LT −-schema, C a class name in S, and ρ(S) the functional counterpart of
S, obtained from S according to Construction 5.2.7. Then C is consistent in S if and only if it is consistent
in ρ(S).

Proof. Straightforward by Proposition 5.2.6 and Lemma 5.2.9.

5.2.3 Decidability of LCFIL∆

In this section we show that verifying class consistency in free LCFIL∆-schemata is decidable in deter-
ministic exponential time in the size of the schema. To this end we exploit the correspondence defined in
Section B.2 and extended in Section B.3.1 to deal with functional restrictions and the repeat constructor,
and show that satisfiability in the PDL rfcpdl corresponding to LCFIL∆ is decidable in deterministic
exponential time.

Our decision procedure is based on automata theoretic techniques, and it is convenient to resort to the
variant rfcapdl of rfcpdl obtained by expressing programs inside eventualities by sequential automata
(instead of regular expressions) and by expressing the repeat formulae by means of Büchi automata, as
shown in Section B.3.2. Since the mapping φ from a rfcpdl-formula f to an equivalent rfcapdl-formula
φ(f) is linear, proving decidability of satisfiability in rfcapdl in deterministic exponential time is sufficient
to establish the desired result. Our proof closely follows the one given in [161] for rcadpdl and extends
it to deal with local functionality on both direct and converse atomic programs. Some basic notions about
automata on infinite objects have been included in Appendix A.
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We reduce the problem of satisfiability of a rfcapdl-formula to a problem of nonemptiness of the
language accepted by a finite automaton on infinite trees. This is a standard technique used for proving
decidability and upper bound results for PDLs [151, 161, 165], program logics [164, 163, 152] and various
other modal and temporal logics [74, 85, 72, 147, 166], and which can also be profitably exploited for the
optimization of database logic programs [162].

The fundamental property needed to apply these techniques is the tree model property, i.e. every satisfiable
formula admits a tree model, and which holds also for rfcapdl.

Proposition 5.2.11 Every satisfiable rfcapdl-formula f has an n-ary tree model T , with n polynomial in
|f |, and such that T , ε |= f .

Proof. The proof can be done by standard techniques, following the line of a similar proof in [165].

Rather than delving into technical details, which are indeed quite intricate, in the rest of the section
we would like to give an intuition on the ideas underlying the reduction from satisfiability in PDLs to
nonemptiness problems for automata on infinite trees. The considerations that are specific for rfcapdl
establish then the desired reduction.

The reduction is based on the tree model property of these logics and the close correspondence that can
be established between particular infinite trees that can be accepted by an automaton (Hintikka trees) and
models of a formula. In fact, the automaton corresponding to a formula does not directly accept the tree
models of the formula but so called Hintikka trees which are in a natural correspondence with them. A
Hintikka tree for a formula f is an n-ary tree over an alphabet Σ that consists of all subsets of CL+(f)∪X.
Here, CL+(f) denotes the “extended” closure of the formula that extends the Fischer-Ladner closure as
defined in Definition B.4.1, and whose exact definition depends on the logic we are considering. X is a set
of symbols that enable the automaton that accepts the Hintikka trees to verify additional conditions that
need to be satisfied for establishing the correspondence with the tree models of the formula. The arity n
of the Hintikka tree is at most ]CL+(f), which is itself polynomially related to |f |. A Hintikka tree can be
obtained from an n-ary tree model (with n polynomial in |f |) by labeling each node with the set of formulae
in CL+(f) satisfied in that node (and with some of the symbols in X). Note that since ]CL+(f) (and also
]X) is polynomial in |f |, the size of the alphabet of the automaton is at most exponential in |f |.

For this technique to work it is fundamental that the logic we consider has the tree model property, which
allows us to restrict our attention to tree models. Since these are in correspondence with Hintikka trees (for
a suitable definition of Hintikka tree), we can solve satisfiability in PDL by reducing it to a nonemptiness
problem for automata on infinite trees. The automaton that has to be tested for nonemptiness is precisely
the automaton that accepts the Hintikka trees of the formula.

Such automaton needs to check that the conditions for a Hintikka tree are satisfied. These conditions
correspond to the conditions imposed by the semantics of formulae on a model. For example, if the label
of a node contains a formula f1 ∧ f2, the semantics of “∧” implies that the label must contain also both
formulae f1 and f2. Similar observations hold for the other propositional connectives, where the type of
check that the automaton needs to perform is essentially local, i.e. can be performed by analyzing just the
current node. The situation is fundamentally different in the case where the label of the node contains an
eventuality 〈r〉f . In order to check the conditions implied by the presence of this eventuality, the automaton
must be able to analyze nodes of the tree that are an arbitrary finite number of steps away from the current
node. It must verify that there is indeed one such node in which f is satisfied, and which is connected to
the current node via an execution sequence of r.

For this reason the automaton corresponding to a formula can usually be thought of as divided in two
components [165, 85, 166]:

• A local automaton, which checks the local conditions.

• An eventuality automaton, which is responsible for verifying that all eventualities in a node are satisfied.

The definition of the local automaton is usually straightforward, while the eventuality automaton needs some
more attention.

Concerning the logic we are interested in, namely rfcapdl, we remark that local functionality on (direct
and converse) atomic programs is a local condition, since it involves only the current node and its predecessor
and successors. Therefore it can be checked by embedding it in the local automaton. Repeat formulae, on
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the other hand, are of a different nature and cannot be handled completely neither by the local nor by the
eventuality automaton. This is due to the fact that they require to check for the (non)existence of an infinite
sequence of nodes satisfying certain conditions.

It turns out that the presence of the converse constructor on programs is problematic when trying to apply
the method describe here. In a tree model of a PDL without converse, all eventualities are accomplished
by going “downwards” in the tree. This means that if a formula 〈r〉f is satisfied in a state x, then the
sequence of states that lead to the state where f is satisfied have all the form xxi1xi2 · · ·, i.e. they all appear
below x in the tree. This fits nicely with the way tree automata operate, since the automaton needs only
to go downwards in the tree to check if an eventuality is satisfied. If converse programs are present in the
formula, however, going down in the tree may not be sufficient, since there may be eventualities that are
accomplished in a node by moving upwards. To solve this problem, Streett proposes in [151] to use “two-
way” automata to deal with converse programs and shows then how to reduce the emptiness problem for his
two-way automata to the emptiness problem for classic one-way automata. Unfortunately the translation
involves a triple exponential blow-up in the size of the automaton and therefore cannot lead to the single
exponential upper bound we are interested in5.

In order to deal more efficiently with converse programs and repeat, Vardi and Wolper propose in [164,
161, 165] to introduce cycle-formulae that deal with cycling computations. For a program r, a formula
cycle(r) is satisfied in a state u if there is an execution sequence of r that leads from u through a sequence
of states back to u itself. Formulae of this type are not added to the logic but are just used as additional
labels of the nodes of the Hintikka tree accepted by a one-way automaton. These additional labels enable the
automaton to check all eventualities by moving downwards in the tree, since they “anticipate” the conditions
that have to be satisfied in a node for the fulfillment of eventualities that are encountered further down. In
this sense cycle-formulae act similarly to the set of axioms used in [53] to eliminate converse when verifying
satisfiability.

Additionally, in order to enable one-way automata to check cycle-formulae by moving downward, one
needs to add directed cycle-formulae, where the direction of the path that satisfies the cycle-formula is
specified. The semantics of such formulae is defined only on tree structures. Finally, in order to deal with
the repeat constructor, strengthened (directed) cycle-formulae have to be introduced, which additionally
require that the automaton representing program r goes through a designated set of states when accepting
the execution sequence that realizes the formula. For the details and the semantics of the introduced cycle
formulae we refer to [161, 165].

Coming back to satisfiability in rfcapdl, we remind that this logic differs from the logic rcadpdl
studied in [161] by the presence of local functionality on both direct and converse atomic programs instead
of global functionality on all direct atomic programs (and no restriction of this sort for converse programs).
As noticed above, local functionality is a local condition, and we can extend the definition of Hintikka tree
for a rcadpdl-formula f given in [161] to include it. In a Hintikka tree T for a rcadpdl-formula f , for
each node x of T , the set labeling x contains besides formulae of CL+(f), also an atomic program (either
direct or converse). This atomic program is used in the construction of a model I of f from the Hintikka
tree, and denotes the program that connects in I the state corresponding to x to the state corresponding
to the predecessor of x. The definition of Hintikka tree of [161] is modified by substituting the condition for
global functionality (condition 2) with the following:

(2’) For all x ∈ [n]∗:

(2’.1) ](T (x) ∩ (Prog ∪ Prog−)) ≤ 1

(2’.2) If b ∈ (Prog ∪Prog−), 〈b〉≤1 ∈ T (x), y and z are two distinct successors of x, and b− ∈ T (y), then
b− 6∈ T (z).

(2’.3) If b ∈ (Prog ∪ Prog−), 〈b〉≤1 ∈ T (x), y is a successors of x, and b ∈ T (x), then b− 6∈ T (y).

Condition 2’.1 ensures that when constructing from T a tree model I, the atomic program connecting a
state to its predecessor can be chosen in a unique way. Condition 2’.2 ensures that if an atomic program b
is required to be functional in a state u, then u cannot have two distinct successors connected to it via b.
Finally Condition 2’.3 handles the case where a node is connected to its predecessor via a functional atomic
program.

5[151] actually shows a quadruple exponential blow-up, but the complexity can be reduced by exploiting the results in [135].
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Therefore, we can repeat the same arguments used in [161] for the logic rcadpdl and reduce satisfiability
in rfcapdl to a nonemptiness problem for certain types of automata. The automaton constructed from a
formula accepts exactly the Hintikka trees for the formula, and therefore has to check the conditions in the
definition of Hintikka tree. The local conditions, the conditions for eventualities (and cycle formulae), and
a part of the conditions for repeat formulae can be verified by a Büchi tree automaton. However, one of the
conditions that are essential for repeat formulae, and which is a condition that holds along infinite paths
in the tree, cannot be verified by a Büchi tree automaton. The solution is to construct a Büchi sequential
automaton that checks for violations of this condition. Summing up, the automaton that accepts exactly the
Hintikka trees of a formula f is a pair Hf := (Rf , Bf ), where Rf is a Büchi tree automaton and Bf is a Büchi
sequential automaton, both over 2CL+(f)∪Prog∪Prog−∪{∅}. Rf has a number of states that is exponential in
|f |, while Bf has a number of states that is quadratic in |f |.

Hf is a special case of hybrid tree automaton introduced in [163], and defined as a pair H := (Rt, Bs),
where Rt is a Rabin tree automaton and Bs is a Büchi sequential automaton, both over the same alphabet
Σ. H accepts a tree T if T is accepted by Rt, and for every infinite path p starting at ε, Bs rejects T (p).

We can conclude these observations by stating the following proposition without proof.

Proposition 5.2.12 Let f be a rfcapdl-formula. Then one can construct in deterministic exponential
time in |f | a hybrid tree automaton Hf := (Rf , Bf ) such that the following holds:

• Rf has a number of states that is exponential in |f |.
• Bf has a number of states that is polynomial in |f |.
• f is satisfiable if and only if the set of trees accepted by Hf is nonempty.

In [163] it is shown that the nonemptiness problem for a hybrid tree automaton H := (Rt, Bs) can be
solved in nondeterministic time that is polynomial in the number of states of Rt and exponential in the
number of states of Bs. This would give a nondeterministic exponential upper bound for satisfiability in
rfcapdl.

However, exploiting the methods in [73], which build on the fundamental results in [135], and in [72], we
can obtain a deterministic exponential upper bound.

Proposition 5.2.13 (Emerson and Jutla [73]) The nonemptiness problem for a hybrid tree automaton
H := (Rt, Bs) can be solved in deterministic time that is polynomial in the number of states of Rt and
exponential in the number of states of Bs.

Proof. The nonemptiness problem for H := (Rt, Bs) can be solved as follows:

1. The (possibly nondeterministic) sequential Büchi automaton Bs is determinized and complemented
using the construction in [73]. This yields a deterministic sequential Rabin automaton Ds with number
of states exponential in the number of states of Bs, but with polynomial number of pairs.

2. Ds, which accepts all infinite strings rejected by Bs, being deterministic can easily be transformed into
a Rabin tree automaton Dt which accepts the infinite trees T in which all infinite paths starting at ε
are accepted by Ds. The number of states (pairs) of Dt is linear in the number of states (pairs) of Ds.

3. Rt and Dt can now be combined into a single Rabin tree automaton Ht that accepts the infinite trees
accepted by both Rt and Dt, i.e. the infinite trees accepted by Rt and for which all infinite path
starting at ε are rejected by Bt. Therefore Ht accepts the same set of trees as H. Ht has a number of
states which is linear in the number of states of Rt and exponential in the number of states of Bs. The
number of pairs of Ht is linear in the number of pairs of Rt and polynomial in the number of states of
Bs.

4. By Theorem A.2.5, the nonemptiness problem for Ht, and therefore also for H, can be solved in
deterministic time polynomial in the number of states of Ht and exponential in the number of pairs of
Ht.

The claim follows by observing that the number of states of Ht is linear in the number of states of Rt, and
the number of pairs of Ht is polynomial in the number of states of Bs.
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This allows us to establish the desired upper bound for satisfiability in rfcapdl.

Proposition 5.2.14 Satisfiability of a rfcapdl-formula f can be decided in deterministic exponential time
in |f |.

Proof. By Proposition 5.2.12 we can construct from f in deterministic exponential time in |f | a hybrid
tree automaton Hf := (Rf , Bf ) such that Rf has a number of states exponential in |f |, Bf has a number
of states polynomial in |f |, and f is satisfiable if and only if the set of trees accepted by Hf is nonempty.
By Proposition 5.2.13 we can decide whether Hf accepts some tree in deterministic time that is polynomial
in the number of states of Rf and exponential in the number of states of Bf , and therefore in deterministic
exponential time in |f |.

5.2.4 Upper Bounds for Unrestricted Model Reasoning

We can now integrate the results of this section and establish the upper bound for unrestricted model
reasoning in LT −.

Theorem 5.2.15 Unrestricted class consistency S 6|=u E ≡ ⊥ in free LT −-schemata can be decided in worst
case deterministic exponential time in |S|+ |E|.

Proof. If E is not a class name, we construct the schema S ′ := (C′,A, T ′), where C′ := C ∪ {C} with C 6∈ C
and T ′ := T ∪ {C ¹̇ E,E ¹̇ C}. It is easy to see that S and S ′ are equivalent, and that E is consistent in
S if and only if C is consistent in S ′. Since |S ′| is linear in |S| + |E|, it is indeed sufficient to consider the
case where E is a class name C.

By Lemma 5.2.8, we can construct the functional counterpart ρ(S) of S in time polynomial in |S|, and
by Proposition 5.2.10, C is consistent in S if and only if it is consistent in ρ(S). ρ(S) is a free LCFIL∆-
schema and by applying the correspondence defined in Section B.2 and extended in Section B.3.1 to deal
with functional restrictions and the repeat constructor, we have that C is consistent in ρ(S) if and only if the
rfcapdl-formula f := δ+(ρ(S))∧ δ(C) is satisfiable. The claim follows from the fact that |f | is polynomial
in |ρ(S)| and therefore also in |S| and by Proposition 5.2.14.

Corollary 5.2.16 Unrestricted class consistency in free LT −-schemata is EXPTIME-complete.

Proof. The claim follows from Corollary 4.3.5 and Theorem 5.2.15.

Theorem 5.2.17 Unrestricted class subsumption S |=u E1 ¹ E2 in free LT −-schemata can be decided in
worst case deterministic exponential time in |S|+ |E1|+ |E2|.

Proof. Since LT − contains general negation, for each LT −-class expression E, ¬E is also an LT −-class
expression. By Proposition 2.3.2, S |=u E1 ¹ E2 if and only if S |=u E1 u¬E2 ≡ ⊥, and by Theorem 5.2.15
this can be decided in worst case deterministic exponential time in |S|+ |E1|+ |E2|.



Chapter 6

Finite Model Reasoning

In this chapter we discuss the issues related to reasoning on L-schemata with respect to finite models. We
have seen in Chapter 2 that the presence of functional restrictions and inverse attributes in an L-language
is already sufficient to give rise to complex interactions through cyclic class specifications in a schema. Such
interactions may cause a schema or a class to be consistent, but only in infinite models (see Example 2.4.2), or
may cause subsumption relations to hold only if reasoning is restricted to finite models (see Example 2.4.3).
The techniques based on automata on infinite trees introduced in Chapter 5 exploit the tree-model property
of L-languages and assume that even finite models are unwound to a (possibly) infinite tree. By using
tree automata there seems to be no easy way to distinguish between an infinite tree-model resulting form
unwinding an finite model (containing cycles) and one resulting from unwinding a proper infinite model. For
this reason the known methods are not applicable in the finite case and we have to approach the problem
in a completely different way. We need also a proper treatment of number restrictions which may interact
with the other constructors of the language, playing a crucial role in the existence of finite models.

The technique we introduce in this chapter is based on the idea of separating the reasoning process in
two distinct phases. The first phase deals with all constructors except number restrictions and existential
quantifications (which in the unqualified form is just a particular case of number restriction), and builds
an expanded schema in which these constructors are embedded implicitly in the classes and attributes.
In the second phase the assertions involving number restrictions are used to derive from this expanded
schema a system of linear inequalities. The system is defined in such a way that its solutions of a certain
type (acceptable solutions) are directly related to the finite models of the original schema. In particular,
from each acceptable solution one can directly deduce the cardinalities of the extensions of all classes and
attributes in a possible finite model. The proposed method allows us to establish decidability of finite model
reasoning in free LCNI-schemata and provides a tight upper bound for the important case of primitive
LUNI-schemata. Moreover, under certain assumptions that are very common in databases it results in
efficient reasoning procedures.

The chapter is organized as follows. Section 6.1 contains results about systems of linear inequalities that
are needed in the rest of the chapter. In Section 6.2 we present a method for reasoning on primitive LUNI-
schemata. A complexity analysis shows that the method works in worst case exponential time, implying its
optimality from a complexity theoretic point of view. In Section 6.3 we analyze in some more detail issues
related to the complexity of the proposed method, and show that in several relevant cases it can be applied
efficiently. Finally, in Section 6.4 we show how the techniques can be extended in order to deal with free
LCNI-schemata.

6.1 Systems of Linear Inequalities

We regard a system of linear inequalities as a pair Ψ := (V,D), where V is the set of unknowns, and D is
the set of linear inequalities.

The following lemma establishes a property of certain systems of inequalities that relates the existence
of integer solutions to the existence of arbitrary positive solutions.

Definition 6.1.1 A linear inequality
∑n

i=1 ci ·xi ≥ b is said to be positive if b ≥ 0.

87
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Lemma 6.1.2 Let Ψ = ({x1, . . . , xn},D) be a system of positive linear inequalities with integer coefficients.
If Ψ admits a nonnegative rational solution Sol, then the following holds:

1. For every constant r ≥ 1, Solr := r ·Sol is a solution of Ψ.

2. Ψ admits a nonnegative integer solution.

Proof. (1) For a homogeneous inequality
∑n

i=1 ci ·xi ≥ 0 in D and for any positive constant r we have that

n∑

i=1

ci ·Solr(xi) =
n∑

i=1

ci · r ·Sol(xi) = r ·
n∑

i=1

ci ·Sol(xi) ≥ 0,

where the inequality holds since Sol is a solution of Ψ. For a positive inequality
∑n

i=1 ci ·xi ≥ b in D and
for any constant r ≥ 1 we have that

n∑

i=1

ci ·Solr(xi) =
n∑

i=1

ci · r ·Sol(xi) = r ·
n∑

i=1

ci ·Sol(xi) ≥ r · b ≥ b,

where the last inequalities hold since Sol is a solution of Ψ, r ≥ 1, and b > 0. This shows that Solr is a
solution of Ψ.

(2) Let r be some common multiplier of the denominators of the rational values assigned by Sol to
x1, . . . , xn, if these values are viewed as integer fractions. Then Solr assigns only integer values to the
unknowns and by (1) it is a solution of Ψ.

6.1.1 Acceptable Solutions

We now define a special class of solutions for a system Ψ := (V,D) of positive linear inequalities with integer
coefficients. We will see in the following sections that solutions belonging to such class reflect constraints
that arise naturally due to the semantics of L-schemata.

Let the set V of unknowns be partitioned into two sets Vf := {f1, . . . , fnf
} and Vd := {d1, . . . , dnd

}. We
call the unknowns of Vf free and those of Vd dependent. Let further W ⊆ Vd × Vf be a total relation from
Vd to Vf , i.e. the domain of W equals Vd.

Definition 6.1.3 A solution Sol of Ψ is said to be W-acceptable if

∀di ∈ Vd, ∀fj ∈ Vf : (di, fj) ∈ W ∧ Sol(fj) = 0 → Sol(di) = 0.

In other words, for a W-acceptable solution Sol , an unknown f that appears in the codomain of W
and that is assigned value 0 by Sol , forces all unknowns of which f is a W-image to be also assigned value
0 by Sol . To give an intuitive idea of why such a condition is needed, we anticipate that the system of
inequalities we construct has unknowns corresponding to classes and attributes, and that a solution of the
system of inequalities gives the cardinalities of the extensions of classes and attributes in a possible model
of the schema. An acceptable solution ensures that if an unknown is assigned value 0 and therefore the
corresponding class has an empty extension, then also all attributes that refer to that class have an empty
extension.

The following lemma suggests an algorithm for verifying the existence of W-acceptable nonnegative
integer solutions of Ψ that works in nondeterministic polynomial time in the size of Ψ.

Lemma 6.1.4 For a subset Z ⊆ Vf of the free unknowns, let ΨZ := (V,DZ) be the following system of
inequalities:

DZ := D ∪ {fj = 0 | fj ∈ Z}
∪ {fj ≥ 1 | fj ∈ Vf \ Z}
∪ {di = 0 | di ∈ Vd ∧ ∃fj ∈ Z : (di, fj) ∈ W} .

Then Ψ admits a W-acceptable nonnegative integer solution if and only if there is a Z ∈ Vf such that ΨZ

admits a nonnegative integer solution.
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Proof. “⇐” Since D ⊆ DZ , every solution of ΨZ is also a solution of Ψ. The claim then follows by observing
that ΨZ is defined in such a way that all its solutions are W-acceptable.

“⇒” Suppose that Ψ admits a W-acceptable nonnegative integer solution Sol . Let Z := {fj ∈ Vf |
Sol(fj) = 0}. Since Sol is W-acceptable, for all unknowns di ∈ Vd such that there is an fj ∈ Z with
(di, fj) ∈ W it holds that Sol(di) = 0. Therefore Sol is also a nonnegative integer solution of ΨZ .

The algorithm to test the existence of W-acceptable nonnegative integer solutions of Ψ works as follows:
It selects nondeterministically a subset Z ∈ Vf and tests whether ΨZ admits a nonnegative solution. If
it finds such a Z, it answers “yes”, otherwise it answers “no”. The correctness of the negative answer is
guaranteed by the “only-if” part of Lemma 6.1.4. The correctness of the positive answer is guaranteed by
the “if” part of Lemma 6.1.4 by observing that since all inequalities both in Ψ and in ΨZ are positive,
by Lemma 6.1.2 the existence of arbitrary rational solutions guarantees the existence of integer solutions.
Moreover the algorithm works in nondeterministic polynomial time since for all Z ∈ Vf the size of ΨZ is
polynomial in the size of Ψ and the existence of rational solutions of ΨZ can be verified in polynomial time
in the size of ΨZ (see for example [145]).

However, by exploiting the previous result and making use of the following lemma we can show that the
existence of W-acceptable nonnegative integer solutions of Ψ can be verified in (deterministic) polynomial
time in the size of Ψ. The lemma is an easy consequence of a well-known result about the complexity
of integer programming (see for example [123]) and which essentially states that the existence of integer
solutions of a system of inequalities implies the existence of solutions of bounded size.

Lemma 6.1.5 Let Ψ be a system of m linear inequalities in n unknowns, and let the coefficients and con-
stants that appear in the inequalities be in {0,±1, . . . ,±a}. If Ψ admits a nonnegative integer solution, then
it also admits one in which the values assigned to the unknowns are all bounded by

H(Ψ) := (n+m) ·(m · a)2m+1.

Proof. Let Ψ := (V,D). Without loss of generality we can assume that Ψ has the following form:

V := {x1, . . . , xn}

D :=

{
n∑

i=1

cij ·xi ≥ bj

∣∣∣ j ∈ {1, . . . ,m}
}
.

Let further Ψ′ := (V ′,D′) be the following system of linear equations

V ′ := {x1, . . . , xn, y1, . . . , ym}

D′ :=

{
n∑

i=1

cij ·xi − yj = bj

∣∣∣ j ∈ {1, . . . ,m}
}
,

where the unknowns y1, . . . , ym are not present in V. Clearly every nonnegative solution of Ψ′ is also a
solution of Ψ, if restricted to the unknowns in V, and every nonnegative solution of Ψ can be extended to a
nonnegative solution of Ψ′. The claim then follows from the following result proved in [123]: If Ψ′ admits a
nonnegative solution then it also admits one in which the values assigned to the unknowns are all bounded
by n′ ·(m · a)2m+1, where n′ := n+m is the number of unknowns in Ψ′.

Proposition 6.1.6 Checking if a system Ψ of positive linear inequalities with integer coefficients admits a
W-acceptable nonnegative integer solution can be done in polynomial time with respect to |Ψ|.

Proof. By part 2 of Lemma 6.1.2, it is sufficient to check if Ψ admits an W-acceptable nonnegative rational
solution. We denote with SOL(Ψ) the set of solutions of Ψ, and with SOLacc(Ψ) the set of W-acceptable
solutions. For a positive integer k we define the set Acc(Ψ,W, k) of inequalities as follows:

Acc(Ψ,W, k) := {di ≤ k · fj | di ∈ Vd ∧ fj ∈ Vf ∧ (di, fj) ∈ W}.
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For simplicity we denote with Ψ∪Acc(Ψ,W, k) the system (V,D∪Acc(Ψ,W, k)). Clearly Ψ∪Acc(Ψ,W, k)
admits only W-acceptable solutions. Moreover, since all unknowns in Acc(Ψ,W, k) are also unknowns in Ψ,
for every positive integer k the following holds:

SOL(Ψ ∪Acc(Ψ,W, k)) = SOLacc(Ψ ∪Acc(Ψ,W, k)) ⊆ SOLacc(Ψ).

Therefore, if for some positive integer k, Ψ∪Acc(Ψ,W, k) admits a solution, this will also be an acceptable
solution of Ψ. We show that the converse is also true, in the sense that it is possible to find a value kΨ whose
binary representation is polynomial in n and m such that the following holds: If Ψ admits an acceptable
solution then Ψ ∪ Acc(Ψ,W, kΨ) admits a solution. Since the number of inequalities in Acc(Ψ,W, kΨ) is
polynomial in n and m and since verifying the existence of solutions of a system of linear inequalities can be
done in polynomial time, we are done.

In the rest of the proof we show that such a positive integer kΨ can effectively be computed. For Z ⊆ Vf ,
let ΨZ be defined as in Lemma 6.1.4. We show that, if for some Z ⊆ Vf , ΨZ admits a nonnegative integer
solution, and therefore by Lemma 6.1.5 a solution Sol bounded by hZ := H(ΨZ), then Sol is also a solution
of Ψ∪Acc(Ψ,W, hZ). In fact, since all solutions of ΨZ are solutions of Ψ, the only inequalities that Sol could
violate are those of Acc(Ψ,W, hZ). Assume by contradiction that Sol violates an inequality di ≤ hZ · fj for
some di ∈ Vd and fj ∈ Vf with (di, fj) ∈ W. Since Sol is a solution of ΨZ , if fj ∈ Z then Sol(fj) = 0 and
Sol(di) = 0, and the inequality is satisfied. If fj 6∈ Z then Sol(fj) ≥ 1, and since the maximum value that
Sol can assign to dj is hZ , the inequality is also satisfied. In both cases we obtain a contradiction.

By Lemma 6.1.4 Ψ admits a W-acceptable nonnegative integer solution only if for some Z ∈ Vf , ΨZ

admits a nonnegative integer solution. By the above argument this is only the case if Ψ ∪ Acc(Ψ,W, hm)
admits a nonnegative integer solution, where hm := max{hZ | Z ⊆ Vf}. An upper bound for hm can easily
be obtained from Lemma 6.1.5 by observing that ΨZ contains not more unknowns than Ψ, and at most
m+ |Vf \ Z| < m+ n inequalities. Therefore it suffices to define

kΨ := (n+m) ·(M · a)2M+1 > hZ ,

where M := m+ n, which also guarantees that the binary representation of kΨ is polynomial in |Ψ|.

6.2 Finite Model Reasoning on Primitive LUNI-Schemata

In this section we present a technique for reasoning on primitive LUNI-schemata1 with respect to finite
models. The method is based on the idea introduced in [111] to construct from a schema S a system ΨS
of linear inequalities and relate the existence of solutions of ΨS to the existence of models of schema S.
The unknowns introduced in ΨS are intended to represent the number of instances of each class and each
attribute in a possible finite model of S, while the inequalities take into account the constraints on the
number of instances deriving from number restrictions in S. The approach introduced in [111], which is to
use one unknown for each class and attribute, works however only for a relatively simple data model, with no
possibility to specify inclusions between classes and in which all classes are therefore assumed to be disjoint.
Since in LUNI-schemata classes may be forced to have instances in common, it is not possible to proceed
in this way. We overcome this problem by introducing the notion of expansion of a schema, from which the
system of inequalities can directly be constructed.

We use the following schema as our running example.

Example 6.2.1 Let Sb := (Cb,Ab, Tb) be the LUNI-schema where

Cb := {Root, OtherNode},
Ab := {edge},
and the set Tb of assertions consists of:

Root ¹̇ ∃≤0edge− u ∀edge.OtherNode u ∃≥1edge u ∃≤2edge

OtherNode ¹̇ ∀edge−.(Root t OtherNode) u ∃=1edge− u
∀edge.OtherNode u ∃≥1edge u ∃≤2edge u ¬Root.

1The types of constructors and assertions allowed in primitive LUNI-schemata are shown in Table 5.1.
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The schema Sb describes the properties of binary trees, where each node has at most one predecessor and at
most two successors. In fact, we distinguish between nodes that have no predecessor (Root) and those that
have one (OtherNode). Additionally, we require that each node has at least one successor2. This combination
of requirements makes the class Root finitely inconsistent. The intuitive explanation for this is exactly the
same as in Example 2.4.2. The class OtherNode, on the other hand, can be populated in a finite model of
the schema, although the model we obtain is in a certain sense counterintuitive, since it necessarily contains
a cycle in the edge relation. The reasoning procedure we are going to develop will confirm this informal
argumentation.

6.2.1 Normalization of a Schema

In order to apply our decision procedure we need to perform a preliminary transformation on the schema,
which is similar to the one defined in Section 4.3 to eliminate the nesting of constructors in class expressions.
We use the term class literal to denote a class name or a class name preceded by the symbol “¬”. In the
sequel the letter D ranges over class literals. An LUNI-class expression is called normalized if it is of the
form:

D | D1 tD2 | ∀L.D | ∃≥mL | ∃≤nL,

where m is a positive and n a nonnegative integer. The definition of normalized schema is identical to the
one in Section 4.3, and we repeat it here for completeness. An assertion is said to be normalized, if the class
expression on the right-hand side is normalized. A primitive LUNI-schema is normalized if it is constituted
solely by normalized primitive class specifications.

Lemma 6.2.2 Every primitive LUNI-schema S := (C,A, T ) can be transformed in linear time into an
equivalent normalized primitive LUNI-schema S ′ := (C′,A, T ′), where C ⊆ C′.

Proof. The proof is analogous to the proof of Lemma 4.3.1.

Example 6.2.1 (cont.) The normalized LUNI-schema Sn := (Cn,An, Tn) corresponding to schema Sb is
given by

Cn := {Root, OtherNode, Node},
An := {edge},

and the set Tn of assertions consists of:

Node ¹̇ Root t OtherNode OtherNode ¹̇ ∀edge−.Node
OtherNode ¹̇ ∃≥1edge−

Root ¹̇ ∃≤0edge− OtherNode ¹̇ ∃≤1edge−

Root ¹̇ ∀edge.OtherNode OtherNode ¹̇ ∀edge.OtherNode
Root ¹̇ ∃≥1edge OtherNode ¹̇ ∃≥1edge
Root ¹̇ ∃≤2edge OtherNode ¹̇ ∃≤2edge

OtherNode ¹̇ ¬Root.

Notice that we have introduced an additional class Node to replace the disjunction Roott OtherNode nested
within the universal quantification.

Lemmata 6.2.2 and 2.3.7 allow us to restrict our attention to normalized schemata when devising proce-
dures to perform the reasoning services. Therefore, in the rest of the section we assume that the schemata
we deal with are all normalized primitive LUNI-schemata, and that S := (C,A, T ).

2The form of the schema was chosen in order to illustrate the reasoning technique, and we are aware of the fact that schema
Sb is not the best way of modeling the desired type of tree
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6.2.2 Expansion of a Schema

We now define an alternative representation of a schema from which the system of linear inequalities can be
directly derived. The structure of class expressions and of the assertions in this alternative representation is
simplified, at the cost of an exponential increase in size.

In the following we call a set of class names a compound class, and an element of A×2C×2C a compound
attribute. The reason for using this terminology will become clear in the following. F̂ and P̂ range over
compound classes and compound attributes respectively. We also use A[F̂1, F̂2] to denote a compound
attribute (A, F̂1, F̂2) ∈ A×2C×2C , and we say that the compound attribute corresponds to attribute A.

Definition 6.2.3 An expanded schema is a tuple Ŝ = (C,A, F̂ , P̂, T̂ ), where

• C is a set of class names.

• A is a set of attribute names.

• F̂ ⊆ 2C is a set of compound classes.

• P̂ ⊆ A×F̂×F̂ is a set of compound attributes.

• T̂ is a set of compound assertions. Each such assertion has one of the forms

F̂ ¹̇ ∃≥mL, or
F̂ ¹̇ ∃≤nL,

where F̂ ∈ F̂ , L is a link, i.e. either an attribute name in A or the inverse of an attribute name, m is
a positive, and n a nonnegative integer.

Where not specified otherwise, we assume Ŝ = (C,A, F̂ , P̂, T̂ ).
Intuitively, the instances of a compound class F̂ are all those objects of the domain that are instances of

all classes in F̂ and are not instances of any class not in F̂ . A compound attribute A[F̂1, F̂2] is interpreted
as the restriction of attribute A to the pairs whose first component is an instance of F̂1 and whose second
component is an instance of F̂2.

More formally, the semantics of an expanded schema Ŝ is given by extending interpretations over C and
A to compound classes and attributes in the following way:

F̂ I :=
⋂

C∈F̂

CI \
⋃

C∈(C\F̂ )

CI

(A[F̂1, F̂2])I := AI ∩ (F̂ I1 ×F̂ I2 ).

Note that according to this definition two different compound classes have necessarily disjoint interpretations.
The same observation holds for two different compound attributes A[F̂1, F̂2] and A[F̂ ′1, F̂

′
2] that correspond

to the same attribute A.
The following easy lemma, shows how to obtain the extensions of classes and attributes, given the

extensions of all compound classes and compound attributes.

Lemma 6.2.4 Let C ∈ C be a class name and A ∈ A be an attribute name. Then the following holds:

CI =
⋃

F̂∈2C | C∈F̂

F̂ I

AI =
⋃

P̂∈{A}×2C×2C

P̂ I .

Proof. The claim follows directly from the semantics of compound classes and attributes.



6.2 Finite Model Reasoning in LUNI 93

A (finite) interpretation I := (∆I , ·I) satisfies a compound assertion F̂ ¹̇ E, if F̂ I ⊆ EI . I is a (finite)
model of Ŝ if the following conditions hold:

• For each compound class F̂ ∈ 2C \ F̂ , it holds that F̂ I = ∅.

• For each compound attribute P̂ ∈ (A×2C×2C) \ P̂, it holds that P̂ I = ∅.

• I satisfies all compound assertions in T̂ .

The following definition associates to each schema a particular expanded schema. In order to abbreviate
definitions and proofs, we use the following convention: Let F̂ ⊆ 2C be a compound class and D be a class
literal. If D is a positive class literal C, then D ∈ F̂ means simply C ∈ F̂ , and if D is a negative class literal
¬C, then we use D ∈ F̂ to denote C 6∈ F̂ .

Definition 6.2.5 An expanded schema Ŝ := (C,A, F̂ , P̂, T̂ ) is called the expansion of a schema S :=
(C,A, T ) if the following conditions hold:

• F̂ is the set of all S-consistent compound classes, where a compound class F̂ ∈ 2C is said to be
S-consistent, if

– for every C ∈ F̂ , if (C ¹̇ D) ∈ T , then D ∈ F̂ .

– for every C ∈ F̂ , if (C ¹̇ D1 tD2) ∈ T , then D1 ∈ F̂ or D2 ∈ F̂ .

• P̂ is the set of all S-consistent compound attributes, where a compound attribute A[F̂1, F̂2] ∈ A×2C×2C

is said to be S-consistent, if

– F̂1 and F̂2 are S-consistent.

– for every C ∈ F̂1, if (C ¹̇ ∀A.D) ∈ T , then D ∈ F̂2.

– for every C ∈ F̂2, if (C ¹̇ ∀A−.D) ∈ T , then D ∈ F̂1.

• T̂ is the smallest set of compound assertions such that for every F̂ ∈ F̂
– if for some C ∈ F̂ there is an assertion (C ¹̇ ∃≥mL) ∈ T , then T̂ contains the compound assertion
F̂ ¹̇ ∃≥mmaxL, where

mmax := max{m | ∃C ∈ F̂ : (C ¹̇ ∃≥mL) ∈ T }.

– if for some C ∈ F̂ there is an assertion (C ¹̇ ∃≤nL) ∈ T , then T̂ contains the compound assertion
F̂ ¹̇ ∃≤nminL, where

nmin := min{n | ∃C ∈ F̂ : (C ¹̇ ∃≤nL) ∈ T }.

It is easy to see that the size of the expansion is exponential in the size of the original schema. The following
lemma shows that it can also be effectively constructed in exponential time.

Lemma 6.2.6 The expansion Ŝ of S can be constructed in time which is exponential in |S|.

Proof. The set F̂ of S-consistent compound classes can be constructed by enumerating the exponentially
many compound classes and compound attributes and discarding those that are not S-consistent. The
check if a compound class is consistent is essentially equivalent to the evaluation of a propositional formula
(obtained by considering only the propositional part of S) with respect to a propositional truth assignments
(corresponding to the compound class to be checked). Therefore it can be performed in time linear in |S|
and the whole construction of F̂ requires time at most exponential in |S|. A similar argument holds for the
set P̂ of S-consistent compound attributes. The claim then follows by observing that for each compound
class in F̂ there is at most one compound assertion for each assertion in T .
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Example 6.2.1 (cont.) The expansion Ŝn := (Cn,An, F̂n, P̂n, T̂n) of the normalized schema Sn is given by

Cn := {Root, OtherNode Node},
An := {edge},
F̂n := {E, R, O, RN, ON}, where

E := ∅, R := {Root}, O := {OtherNode},
RN := {Node, Root}, ON := {Node, OtherNode},

P̂n := {edge[RN,O], edge[RN,ON], edge[ON,O], edge[ON,ON],
edge[E,R], edge[E,RN], edge[E,E]},

and the set T̂n of compound assertions consists of:

R ¹̇ ∃≤0edge− RN ¹̇ ∃≤0edge−

R ¹̇ ∃≥1edge RN ¹̇ ∃≥1edge
R ¹̇ ∃≤2edge RN ¹̇ ∃≤2edge
O ¹̇ ∃≥1edge− ON ¹̇ ∃≥1edge−

O ¹̇ ∃≤1edge− ON ¹̇ ∃≤1edge−

O ¹̇ ∃≥1edge ON ¹̇ ∃≥1edge
O ¹̇ ∃≤2edge ON ¹̇ ∃≤2edge.

The following lemmata relate the (finite) models of a schema to the (finite) models of its expansion.

Lemma 6.2.7 Let S be a schema and I a (finite) model of S. Then for each S-inconsistent compound class
or compound attribute X, XI = ∅.

Proof. Let F̂ ∈ 2C be S-inconsistent. Then (a) there is an assertion (C ¹̇ D) ∈ T such that C ∈ F̂ and
D 6∈ F̂ , or (b) there is an assertion (C ¹̇ D1 tD2) ∈ T such that C ∈ F̂ , D1 6∈ F̂ , and D2 6∈ F̂ . In case (a)
F̂ I ⊆ CI \DI , and since I satisfies C ¹̇ D, F̂ I = ∅. In case (b) F̂ I ⊆ CI \ (DI1 ∪DI2 ), and since I satisfies
C ¹̇ D1 tD2, F̂ I = ∅.

Let P̂ = A[F̂1, F̂2] ∈ A×2C×2C be S-inconsistent. Then (a) F̂1 or F̂2 is S-inconsistent, or (b) there is an
assertion (C ¹̇ ∀A.D) ∈ T such that C ∈ F̂1 and D 6∈ F̂2, or (c) there is an assertion (C ¹̇ ∀A−.D) ∈ T
such that C ∈ F̂2 and D 6∈ F̂1. In case (a) F̂ I1 = ∅ or F̂ I2 = ∅, and therefore P̂ I ⊆ F̂ I1 ×F̂ I2 = ∅. In case (b),
assume by contradiction that (o1, o2) ∈ P̂ I ⊆ AI for some o1, o2 ∈ ∆I . Then o1 ∈ F̂ I1 ⊆ CI and o2 ∈ F̂ I2 .
Since I satisfies C ¹̇ ∀A.D, it follows that o2 ∈ DI . But F̂ I2 ∩DI = ∅ gives rise to a contradiction. Case
(c) can be treated in a similar way.

Lemma 6.2.8 Let S := (C,A, T ) be a schema, Ŝ its expansion, and I a (finite) interpretation over C and
A. Then I is a (finite) model of S if and only if it is a (finite) model of Ŝ.

Proof. “⇒” Let I be a (finite) model of S. Since F̂ contains exactly the set of S-consistent compound
classes, by Lemma 6.2.7, for a compound class F̂ ∈ 2C \ F̂ we have that F̂ I = ∅. The same argument holds
for compound attributes. Let (F̂ ¹̇ ∃≥mL) ∈ T̂ . Then there is a C ∈ F̂ such that (C ¹̇ ∃≥mL) ∈ T .
Since I satisfies this assertion and F̂ I ⊆ CI , I satisfies also F̂ ¹̇ ∃≥mL. A similar argument holds if
(F̂ ¹̇ ∃≤nL) ∈ T̂ .

“⇐” Let I be a (finite) model of Ŝ and assume by contradiction that there is an assertion (C ¹̇ E) ∈ T
not satisfied by I. This means there is some o ∈ ∆I such that o ∈ CI and o 6∈ EI . Let F̂o be the (unique)
compound class such that o ∈ F̂ Io . Then we have that C ∈ F̂o. Suppose E = D. Since o 6∈ DI , we have
that D 6∈ F̂o. It follows that F̂o is not S-consistent, which by Lemma 6.2.7 contradicts o ∈ F̂ Io . The case
where E = D1 tD2 can be handled in a similar way. Suppose E = ∀L.D. Since o 6∈ (∀A.D)I there is some
o′ ∈ ∆I such that (o, o′) ∈ AI and o′ 6∈ DI . Let F̂o′ be the (unique) compound class such that o′ ∈ F̂ Io′ .
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Then D 6∈ F̂o′ and therefore A[F̂o, F̂o′ ] is not consistent. By Lemma 6.2.7 this contradicts (o, o′) ∈ AI ,
a ∈ F̂ Io , and o′ ∈ F̂ Io′ . The case where E = ∀A−.D can be handled in a similar way. Suppose E = ∃≥mL.
Since C ∈ F̂o, T̂ contains an assertion F̂o ¹̇ ∃≥mmaxL, where mmax ≥ m. From o 6∈ (∃≥mL)I it follows that
o 6∈ (∃≥mmaxL)I , which contradicts the fact that I satisfies all axioms in T̂ . The case where E = ∃≤nL can
be handled in a similar way.

6.2.3 System of Inequalities Corresponding to a Schema

We are now ready to define a system of linear inequalities whose solutions of a certain type are related to
the finite models of the schema.

Definition 6.2.9 Let S be a schema and Ŝ := (C,A, F̂ , P̂, T̂ ) its expansion. Then the system ΨS := (V,D)
corresponding to S is defined as follows:

• V := VF̂ ∪ VP̂ is a set of unknowns, where

– VF̂ := {Var(F̂ ) | F̂ ∈ F̂} and

– VP̂ := {Var(P̂ ) | P̂ ∈ P̂}.

• D is a set of homogeneous linear inequalities over the unknowns in V constituted by the following
inequalities:

– For each compound assertion (F̂ ¹̇ ∃≥mL) ∈ T̂ the inequality

m ·Var(F̂ ) ≤ S(F̂ , L), (6.1)

where

S(F̂ , A) :=
∑

A[F̂ ,F̂2]∈F̂
Var(A[F̂ , F̂2])

S(F̂ , A−) :=
∑

A[F̂1,F̂ ]∈F̂
Var(A[F̂1, F̂ ]).

– For each compound assertion (F̂ ¹̇ ∃≤nL) ∈ T̂ the inequality

n ·Var(F̂ ) ≥ S(F̂ , L). (6.2)

Where not specified otherwise we assume ΨS = (V,D). The following lemma gives an exponential upper
bound for the construction of ΨS .

Lemma 6.2.10 The system of inequalities ΨS can be constructed in time which is at most exponential in
|S|.

Proof. By Lemma 6.2.6 the expansion Ŝ of S can be constructed in exponential time in |S|, and therefore it
has also at most exponential size in |S|. ΨS contains at most one inequality for each compound assertion in
Ŝ, and each such inequality contains a number of unknowns that is smaller than the number of compound
classes and compound attributes together. Therefore |ΨS | is at most quadratic in |Ŝ| and it can also be
effectively constructed in time that is quadratic in |Ŝ|. Summing up we obtain that ΨS can be constructed
in time at most exponential in |S|.
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Example 6.2.1 (cont.) The system ΨSn
:= (Vn,Dn) derived from the expansion Ŝn is defined as follows:

Vn := {e, r, o, rn, on, eRN,O, eRN,ON, eON,O, eON,ON, eE,R, eE,RN, eE,E},
where we have denoted the unknown corresponding to a compound class with the name of the compound
class in lower-case letters, and the unknown corresponding to a compound attribute edge[X,Y ] with eX,Y .
The set Dn of inequalities consists of:

0·r ≥ eE,R 0·rn ≥ eE,RN
1·r ≤ 0 1·rn ≤ eRN,O + eRN,ON
2·r ≥ 0 2·rn ≥ eRN,O + eRN,ON
1·o ≤ eRN,O + eON,O 1·on ≤ eRN,ON + eON,ON
1·o ≥ eRN,O + eON,O 1·on ≥ eRN,ON + eON,ON
1·o ≤ 0 1·on ≤ eON,O + eON,ON
2·o ≥ 0 2·on ≥ eON,O + eON,ON.

After some simplifications we obtain the following equivalent system:

r = o = 0
eRN,O = eON,O = eE,R = eE,RN = 0
rn ≤ eRN,ON ≤ 2·rn
on ≤ eON,ON ≤ 2·on
on = eRN,ON + eON,ON.

6.2.4 Characterization of Finite Class Consistency

In order to establish a correspondence between the existence of particular solutions of ΨS and the existence
of finite models of a schema, consider a simple normalized schema S := (C,A, T ), where A contains only
one attribute name A. We prove a preliminary result which gives a sufficient condition for a finite inter-
pretation I over C and A to be a model of S. Let Ŝ := (C,A, F̂ , P̂, T̂ ) be the expansion of S and assume
F̂ := {F̂1, . . . , F̂K}. The compound attribute A[F̂k, F̂k′ ] is abbreviated with Âkk′ . We also use f̂k as an
abbreviation for Var(F̂k), and âkk′ as an abbreviation for Var(Âkk′). With IF we denote the set {1, . . . ,K}
of indexes of compound classes in F̂ , and with IP we denote the set of pairs of indexes (k, k′) of compound
attributes in P̂, i.e. IP := {(k, k′) | Âkk′ ∈ P̂}. Let ΨS be the system of linear inequalities obtained from Ŝ
as specified in Section 6.2.3.

Lemma 6.2.11 Let F̄ := {f̄k | k ∈ IF } and P̄ := {ākk′ | (k, k′) ∈ IP } be sets of nonnegative integer
numbers such that ΨS is satisfied when we substitute f̄k for f̂k and ākk′ for âkk′ . A finite model I of Ŝ exists
where

1. ]F̂ Ik = f̄k, for k ∈ IF , and

2. ]ÂIkk′ = ākk′ , for (k, k′) ∈ IP ,

if and only if
ākk′ ≤ f̄k · f̄k′ , for (k, k′) ∈ IP . (6.3)

Proof. “⇐” Suppose condition 6.3 holds. We exhibit a finite model I := (∆I , ·I) of Ŝ with f̄k instances of
F̂k, for k ∈ IF , and ākk′ instances of Âkk′ , for (k, k′) ∈ IP . For each k ∈ IF such that f̄k 6= 0, we introduce
f̄k symbols o1k, . . . , o

f̄k

k . Let ∆I be the set of all symbols oj
k. Figure 6.1 specifies how to assign to each

compound class F̂k a set Ext(F̂k) ⊆ ∆I and to A a set Ext(A) ⊆ ∆I×∆I of pairs of elements of ∆I . We
show that by putting F̂ Ik := Ext(F̂k) and ÂIkk′ := Ext(A) ∩ (Ext(F̂k)×Ext(F̂k′)) we indeed obtain a finite
interpretation which is also a model of Ŝ.

In the rest of the proof, when we refer to a step, we implicitly mean a step in the construction of
Figure 6.1. In order to show that I is a model of Ŝ, we have to ensure the following:
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1. 1. For each compound class F̂ ∈ 2C \ F̂ , let Ext(F̂ )← ∅.
2. For each compound attribute P̂ ∈ A×2C×2C \ P̂, let Ext(P̂ )← ∅.
3. For each k ∈ IF , if f̄k = 0, then let Ext(F̂k)← ∅, else let Ext(F̂k)← {o1

k, . . . , o
f̄k
k }.

4. For each (k, k′) ∈ IP , if ākk′ = 0, then Ext(Âkk′)← ∅, else introduce ākk′ pairs, assign to each such

pair p a label lab(p) := (k, k′), and let Ext(Âkk′) ← {p | lab(p) = (k, k′)}. Let Ext(A) be the set of
all introduced pairs.

2. 1. Sort the elements of Ext(A) so that

• elements with different labels are sorted with respect to the usual lexicographic ordering on their
labels, and

• elements with the same label are sorted arbitrarily.

2. For each k ∈ IF , if f̄k 6= 0 then

1. Mark all elements p ∈ Ext(A) with lab(p) = (k, k′) for some k′ ∈ IF . Let M be the number of
marked elements and let pm, for m ∈ {1, . . . , M}, denote the m-th marked element.

2. For m← 1 to M (for each marked element) do
assign oi

k to the first component of pm, where
i := 1 + (m− 1) mod f̄k.

3. Un-mark all elements of Ext(A);

3. 1. Sort the elements of Ext(A) so that

• elements with different labels are sorted with respect to the lexicographic ordering on their labels
obtained by considering the components of the label in reverse order, and

• elements with the same label are sorted in such a way that elements with the same first component
(according to step 2.2.2) are contiguous.

2. For each k′ ∈ IF , if f̄k′ 6= 0 then

1. Mark all elements p ∈ Ext(A) with lab(p) = (k, k′) for some k ∈ IF . Let M be the number of
marked elements and let pm, for m ∈ {1, . . . , M}, denote the m-th marked element.

2. For m← 1 to M (for each marked element) do
assign o′ik to the second component of pm, where
i = 1 + (m− 1) mod f̄k′ .

3. Un-mark all elements of Ext(A).

Figure 6.1: Construction of a finite model of Ŝ
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(a) Each pair in Ext(A) gets assigned an element of ∆I to both of its components.

(b) For each compound class F̂ ∈ 2C \ F̂ , it holds that F̂ I = ∅, and for each compound attribute P̂ ∈
(A×2C×2C) \ P̂, it holds that P̂ I = ∅.

(c) There is no couple of pairs in Ext(A) that get assigned the same pair of elements of ∆I to both
components.

(d) I satisfies all assertions in T̂ .

With respect to case (a), since condition 6.3 holds, if an unknown f̄k = 0, then also ākk′ = āk′k = 0 for
all k′ ∈ IF and in step 1.4 no pairs labeled with (k, k′) or (k′, k) are introduced. This means that each pair
in Ext(A) gets marked exactly once in step 2.2.1 and exactly once in step 3.2.1 and therefore gets assigned
in steps 2.2.3 and 3.2.3 an instance of some compound class to the first and the second component.

With respect to case (b), step 1.1 ensures for each compound class F̂ ∈ 2C \F̂ , that Ext(F̂ ) = ∅, and since
we have defined F̂ I := Ext(F̂ ), we have F̂ I = ∅. Similarly, step 1.2 ensures for each compound attribute
P̂ ∈ (A×2C×2C) \ P̂, that Ext(P̂ ) = ∅, and since we have defined P̂ I := Ext(P̂ ), we have that P̂ I = ∅.

With respect to case (c), notice that in step 2.2.2 an element f j
k can be assigned to the first component of

a pair p only if lab(p) = (k, k′) for some k′ ∈ IF . A similar observation holds for the second component of p.
This means that two pairs of Ext(A) can never get assigned the same pair of components if their labels are
different. Therefore it is sufficient to show that for every (k, k′) ∈ IP , two pairs with the same label (k, k′)
cannot get assigned the same pair of components. The number of pairs labeled with (k, k′) is equal to ākk′ .
After the iteration of step 2.2 relative to the index k, the largest group of pairs that get assigned the same
element of Ext(F̂k) to their first component has at most

ρ1 =
⌈
ākk′/f̄k

⌉ ≤ f̄k′

elements, where the inequality holds because of condition 6.3. Analogously, after the iteration of step 3.3
relative to the index k′, the largest group of pairs that get assigned the same set of elements of Ext(F̂k) and
Ext(F̂k′) to the first and second components respectively, has at most

ρ2 =
⌈
ρ1/f̄k′

⌉ ≤ 1

elements.
With respect to case (d), consider an assertion (F̂k ¹̇ ∃≥mA) ∈ T̂ . If f̄k = 0, then in step 1.3 Ext(F̂k) =

F̂ Ik is set to ∅, and the assertion is trivially satisfied. Otherwise, since f̄k and all ākk′ satisfy inequalities 6.1
of ΨS , it holds that

m ≤



∑

(k,k′)∈IP

ākk′

f̄k

 ≤




∑

(k,k′)∈IP

ākk′

f̄k



.

On the other hand it is easy to see that for each element oj
k of Ext(F̂k), the number of pairs of Ext(A) that

in step 2.2.2 get assigned oj
k to the first component is

either



∑

(k,k′)∈IP

ākk′

f̄k

 or




∑

(k,k′)∈IP

ākk′

f̄k



,

which shows that I satisfies the assertion. A similar argument shows that also assertions of the form
F̂k ¹̇ ∃≤nA, or F̂k ¹̇ ∃≥mA−, or F̂k ¹̇ ∃≤nA− in T̂ are satisfied in I.

“⇒” Notice that the construction of the model must guarantee that AI is a set and not a multiset,
i.e. that no two pairs of Ext(A) get assigned the same first and second components. Suppose that for some
(k, k′) ∈ IP condition 6.3 does not hold, i.e.

ākk′ > f̄k · f̄k′ . (6.4)
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Assume there is a finite model I of Ŝ with f̄k instances of F̂k, f̄k′ instances of F̂k′ , and ākk′ different pairs
in AI whose first component is an instance of F̂k and whose second component is an instance of F̂k′ . Since
the number of different pairs that can be formed from f̄k different first components and f̄k′ different second
components is f̄k · f̄k′ , if condition 6.4 holds, at least two pairs in AI must be equal, contradicting the
assumption that such a model I exists.

The solutions of ΨS that correspond to finite models of S can now be characterized as those that are
WŜ -acceptable (according to Definition 6.1.3) with respect to a particular binary relation WŜ . Let

WŜ := {(Var(P̂ ),Var(F̂ )) | P̂ = A[F̂ , F̂2] ∨ P̂ = A[F̂1, F̂ ]}.

Definition 6.2.12 A solution Sol of ΨS := (V,D) is said to be acceptable if it is WŜ-acceptable (in the
sense of Definition 6.1.3).

Stated differently, an acceptable solution assigns the value 0 to an unknown Var(P̂ ) corresponding to
a compound attribute P̂ := A[F̂1, F̂2], if it assigns the value 0 either to Var(F̂1) or to Var(F̂2). Given a
solution Sol , a finite model of the expansion is constructed by introducing for every compound class and every
compound attribute a number of instances that is equal to the value assigned by Sol to the corresponding
unknown. If this value is 0 for some compound class F̂ , then F̂ has an empty extension in the constructed
model. Therefore every compound attribute that refers to this compound class must also have an empty
extension, and Sol must assign the value 0 to the corrisponding unknown. The solution Sol satisfies this
requirement only if it is acceptable.

In order to check whether a class C in a primitive LUNI-schema is finitely consistent, we can proceed as
follows: We construct the expansion of the schema an derive from it the system of inequalities. We then add
an additional (non-homogenous) inequality that forces the solutions of the system to assign a positive value
to at least one of the unknowns corresponding to the compound classes containing C. If this augmented
system admits an acceptable solution, we can construct from such solution a finite model in which at least
one of the compound classes containing C has a nonempty extension. This shows that C is consistent.
On the contrary, if the schema admits a finite model in which C is populated, the number of instances of
compound classes and attributes in such model provide directly a solution to the system of inequalities, and
this solution is clearly acceptable.

This is formally proved in the following proposition, which represents the main result concerning finite
consistency of a class in a primitive LUNI-schema.

Proposition 6.2.13 Let S := (C,A, T ) be a schema, Ŝ := (C,A, F̂ , P̂, T̂ ) its expansion, C ∈ C a class
name, and ΨS := (V,D) the system of inequalities derived from S. Then C is finitely consistent in S if and
only if ΨC

S := (V,DC), where

DC := D
⋃





∑

F̂∈F̂ | C∈F̂

Var(F̂ ) ≥ 1





admits an acceptable nonnegative integer solution.

Proof. “⇐” Let Sol be an acceptable nonnegative integer solution. For each compound class and compound
attribute X̂, let Sol(X̂) denote the value assigned by Sol to Var(X̂).

We can assume that for every compound attribute A[F̂1, F̂2] ∈ P̂ the following condition holds:

Sol(A[F̂1, F̂2]) ≤ Sol(F̂1) ·Sol(F̂2). (6.5)

In fact, since Sol is an acceptable solution, if Sol(F̂1) = 0 or Sol(F̂2) = 0, then Sol(A[F̂1, F̂2]) = 0 holds.
Assume now that Sol(F̂1) 6= 0 and Sol(F̂2) 6= 0 and condition 6.5 does not hold for some compound attribute
A[F̂1, F̂2]. Then it is sufficient to multiply Sol to a suitably large integer constant to obtain another integer
solution Sol ′ of ΨC

S such that condition 6.5 is satisfied for A[F̂1, F̂2]. Since the only non-homogeneous
inequality of ΨC

S is positive, part 1 of Lemma 6.1.2 guarantees that Sol ′ is indeed a solution of ΨC
S .

For every attribute name A ∈ A, let SA := (C,A, TA) be the schema where TA is obtained from T
by removing all assertions involving an attribute different from A. Let Ŝ be the expansion of S and ŜA
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the expansion of SA. Since TA ⊆ T , each inequality of ΨSA can be obtained from an inequality of ΨS by
removing the unknowns corresponding to compound classes and compound attributes present in ŜA but not
present in Ŝ. Therefore Sol is also a solution of ΨSA if it is extended by assigning the value 0 to all additional
unknowns in ΨSA

.
Lemma 6.2.11 ensures that for every attribute A ∈ A, a finite model IA of ŜA exists, with Sol(Â)

instances of Â, for every S-consistent compound attribute Â corresponding to A, and Sol(F̂ ) instances of F̂ ,
for every S-consistent compound class F̂ of Ŝ. A finite model I of Ŝ can easily be obtained by merging the
models IA for all attributes A and unifying the sets of instances of each compound class. This can in fact be
done since all models of the expansions ŜA are constructed from the same solution of ΨC

S and therefore have
the same number of instances for each compound class. By Lemma 6.2.8 I is also a model of S. Moreover,
since ]F̂ I = Sol(F̂ ) for every compound class F̂ , and since

∑
F̂ |C∈F̂

Sol(F̂ ) ≥ 1, by applying Lemma 6.2.4
we have that

CI =
⋃

F̂ | C∈F̂

F̂ I 6= ∅.

We can conclude that C is finitely consistent in S.
“⇒” Suppose a finite model I of S exists, where CI 6= ∅. Let Sol be the solution that assigns to

each unknown Var(X̂) the number of instances in I of the corresponding compound class or compound
attribute X̂, i.e. Sol(X̂) := ]X̂I . Sol is obviously integer and nonnegative. Moreover it is acceptable, since
if a compound attribute A[F̂1, F̂2] has a nonempty extension, then both F̂1 and F̂2 must have a nonempty
extension, and therefore both Sol(F̂1) 6= 0 and Sol(F̂2) 6= 0.

We show that Sol satisfies all inequalities in ΨC
S . With respect to inequalities 6.1, let (F̂ ¹̇ ∃≥mA) ∈ T̂ .

Since I is a model of S, by Lemma 6.2.8 it is also a model of Ŝ and therefore satisfies F̂ ¹̇ ∃≥mA. It follows
that for each instance o of F̂ in I there must be k ≥ m different pairs (o, o1), . . . , (o, ok) ∈ AI . Therefore,
the number of pairs (o′, o′′) ∈ AI such that o′ ∈ F̂ I must be at least m times the number of instances of F̂
in I, which shows that the inequality 6.1 corresponding to the above assertion is satisfied. With respect to
the inequalities corresponding to a compound assertion involving an inverse attribute and with respect to
inequalities 6.2 we can proceed in a similar way. Finally, since CI 6= ∅, there must be at least one compound
class F̂ such that C ∈ F̂ and F̂ I 6= ∅. This shows that also the additional inequality in ΨC

S is satisfied.

Since by Proposition 6.1.6 we can verify the existence of acceptable nonnegative integer solutions for a
system of inequalities, we can make use of this result to effectively decide finite class consistency in primitive
LUNI- schemata.

Example 6.2.1 (cont.) In order to check whether the class Root is finitely consistent in S0, we add to the
system ΨSn the inequality that forces R or RN to be populated, obtaining

r = o = 0
eRN,O = eON,O = eE,R = eE,RN = 0
rn ≤ eRN,ON ≤ 2·rn
on ≤ eON,ON ≤ 2·on
on = eRN,ON + eON,ON
r + rn ≥ 1.

It is easy to see that the inequalities in ΨSn force both r and rn to get assigned value 0, and therefore the
whole system admits no solution. This shows that the class Root cannot be populated in any finite model
of S0.

Similarly, to check whether the class OtherNode is finitely consistent in S0, we can add the following
inequality to ΨSn :

o + on ≥ 1.

The resulting system admits solutions which are all acceptable. By simplifying the system we can verify that
every solution assigns 0 to all unknowns except to on and to eON,ON, to which it assigns the same value. Let Sol
be such a solution which assigns to on and to eON,ON the positive integer k. A finite model I := (∆I , ·I) of S0

can be obtained by applying the construction described in the proof of Lemma 6.2.11. Since ON must have k
instances and is the only compound class with a nonempty extension, we define ∆I = ONI = OtherNodeI :=
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{o1, . . . , ok}. By construction we obtain then (edge[ON, ON])I = edgeI := {(oi, oi) | i ∈ {1, . . . , k}}, which
indeed gives us a model of S0, although not one in which the edge relation has a tree-like structure.

6.2.5 Upper Bounds for Finite Model Reasoning

Summing up the results of this section, and exploiting the results of Section 6.1 we obtain the following
upper bound for finite class consistency.

Theorem 6.2.14 Finite class consistency S 6|=f E ≡ ⊥ in primitive LUNI-schemata can be decided in
worst case deterministic exponential time in |S|+ |E|.
Proof. If E is not a class name, by Proposition 2.3.5, E is finitely consistent in S if and only if C is finitely
consistent in S ′ := (C′,A, T ′), where C′ := C ∪ {C} with C 6∈ C and T ′ := T ∪ {C ¹̇ E}. Since |S ′| is linear
in |S|+ |E|, it is indeed sufficient to consider the case where E is a class name C.

By Lemma 6.2.2 we can construct a normalized schema S ′ equivalent to S such that |S ′| is linear in
|S|. By Lemma 6.2.10 we can construct the corresponding system ΨC

S′ of linear inequalities in time at
most exponential in |S| and therefore in |S ′|. By Proposition 6.2.13 C is finitely consistent in S ′, and by
Lemma 2.3.7 in S, if and only if ΨC

S′ admits an acceptable nonnegative integer solution. By Proposition 6.1.6
the existence of such solution can be verified in polynomial time in |ΨC

S′ |, i.e. in worst case exponential time
in |S|.

Corollary 6.2.15 Finite class consistency in primitive LUNI-schemata is EXPTIME-complete.

Proof. The claim follows from Corollary 4.3.5 and 6.2.14.

The method for deciding finite class consistency can also be adapted in order to decide finite class
subsumption S |=f E1 ¹ E2 in relevant cases.

We discuss first the case where E1 is a class name C and E2 = ∀L.E, where E is a boolean combination
of class names of S, i.e. it is obtained by applying only the constructors “¬”, “u”, and “t”, starting from
class names. In this case, it is not possible to directly use the algorithm for class consistency, but the method
presented above can be extended as follows. By definition, S 6|=f C ¹ ∀L.E if and only if there is a model
I of S in which there is an instance o of C that is connected via link L to another object o′ that is not an
instance of E. Such condition can be directly verified by adding a suitable inequality to ΨS . We show this
in the case where L is an attribute A. The case where L is the inverse A− of an attribute can be treated
analogously.

We need a preliminary definition. Each compound class F̂ , induces a truth assignment Φ
F̂

on the class
names in C: the value assigned by Φ

F̂
to a class name C is t if C ∈ F̂ and is f otherwise. This truth

assignment can be extended in the obvious way to class expressions which are boolean combinations of class
names. Given such a class expression E we say that F̂ realizes E, written as E a F̂ , if Φ

F̂
(C) = t. Checking

if E a F̂ can be done in linear time with respect to the size of E. The following easy lemma shows how this
syntactic definition has a semantic correspondence.

Lemma 6.2.16 Let E be a boolean combination of class names in C and F̂ a compound class. Then for
every interpretation I the following holds:

E a F̂ =⇒ EI ⊇ F̂ I

E 6a F̂ =⇒ EI ∩ F̂ I = ∅.
Proof. The proof is an easy induction on the structure of E, using Lemma 6.2.4 for the base case.

Proposition 6.2.17 Let S be a schema, C a class name in S, E a boolean combination of class names in
S, and ΨS := (V,D) the system of inequalities derived from S. Then S |=f C ¹ ∀A.E if and only if the
system Ψ′S := (V,D′), where

D′ := D
⋃





∑

F̂∈F̂ | C∈F̂

Var(F̂ ) ≥ 1,
∑

P̂∈X
Var(P̂ ) ≥ 1




,
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and X := {P̂ ∈ P̂ | ∃F̂1, F̂2 ∈ F̂ : P̂ = A[F̂1, F̂2] ∧ C ∈ F̂1 ∧ ∼E a F̂2}, does not admit an acceptable
nonnegative integer solution.

Proof. “⇐” Assume S 6|=f C ¹ ∀A.E. Then there is a model I of S in which there is an instance o of C
that is connected via attribute A to another object o′ that is not an instance of E. Let Sol be the solution
that assigns to each unknown Var(X̂) the number of instances in I of the corresponding compound class
or compound attribute X̂. As shown in Proposition 6.2.13, since I is a model of S in which CI 6= ∅, Sol
is an acceptable nonnegative integer solution that satisfies all inequalities in ΨS , and also the additional
inequality

∑
F̂∈F̂ | C∈F̂

Var(F̂ ) ≥ 1.

Let F̂ be the unique compound class of which o is an instance, and F̂ ′ be the unique compound class
of which o′ is an instance. Let P̂ := A[F̂ , F̂ ′]. From (o, o′) ∈ AI , o ∈ CI , and o′ ∈ (∼E)I it follows that
(o, o′) ∈ P̂ I and by Lemma 6.2.16 we have C ∈ F̂ and ∼E a F̂ ′. Therefore P̂ ∈ X , and since it has a
nonempty extension, Sol(P̂ ) ≥ 1, and Sol satisfies also the inequality

∑
P̂∈X Var(P̂ ) ≥ 1.

“⇒” Let Sol be an acceptable nonnegative integer solution of Ψ′S . By applying the construction in the
proof of Lemma 6.2.11 we obtain a model I of S in which CI 6= ∅, and in which there is an instance (o, o′)
of a compound attribute A[F̂ , F̂ ′], where C ∈ F̂ and ∼E a F̂ ′. Therefore o ∈ CI , and o′ 6∈ EI , from which
we obtain CI 6⊆ (∀A.E)I .

Theorem 6.2.18 Finite class subsumption S |=f E1 ¹ E2 in primitive LUNI-schemata can be decided in
worst case deterministic exponential time in |S|+ |E1|+ |E2|, assuming E2 has one of the following forms:

1. E2 does not contain the constructor for universal quantification.

2. E2 = ∀L.E, where E is a boolean combination of class names in S.

Proof. By Proposition 2.3.5 it is sufficient to consider the case where E1 is a class name C.
In case (1), the negation normal form ∼E2 of ¬E2 (as specified in Definition 2.1.3) is an LUNI-class

expression. Therefore we can make use of Proposition 2.3.2 and reduce the problem of deciding S |=f C ¹ E2

to the problem of deciding S |=f C u ∼E2 ≡ ⊥. By Theorem 6.2.14 this can be decided in worst case
deterministic exponential time in |S|+ |E2|.

In case (2), by Proposition 6.2.17 S |=f C ¹ ∀L.E if and only if Ψ′S does not admit an acceptable
nonnegative integer solution. By Proposition 6.1.6 the existence of such solution can be verified in polynomial
time in |Ψ′S |, i.e. in worst case exponential time in |S|.

We remark that the more general case, where also the subsumer is an arbitrary class expression, can
be handled by the techniques introduced in Section 6.4, which however are more involved and of higher
computational complexity.

6.3 Towards an Efficient Implementation

In this section we analyze in more detail the computational complexity of the method developed in Section 6.2
for verifying finite class consistency. In particular, we discuss how various assumptions on the structure of
the schema that are commonly made in Databases may influence the complexity of the algorithm and lead
to an efficient behaviour in relevant cases that are of practical interest.

The method introduced in Section 6.2 for verifying if a class C is finitely consistent in a primitive LUNI-
schema S0 suggests to split this task in three separate phases:

1. We normalize S0 and obtain an equivalent schema S.

2. We construct the expansion Ŝ of S.

3. We derive from Ŝ a system ΨC
S of linear inequalities and search for nonnegative acceptable integer

solutions of ΨC
S . If such a solution exists we can conclude that C is finitely consistent in S and

therefore also in S0.
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With respect to phase 3, we have seen that the construction of ΨC
S from Ŝ is polynomial, and that the

problem of verifying the existence of a nonnegative acceptable integer solution of ΨC
S can be reduced to the

problem of finding an arbitrary positive rational solution of a system of inequalities whose size is polynomial
in |ΨC

S |. Moreover, for the latter task we can rely on well studied and efficient linear programming methods.
Therefore, we do not discuss phase 3 anymore and in the following we concentrate on the other two phases.

With respect to phase 1, we notice that the normalization of S0 requires the introduction of a number of
new class names that is linear in size S0. Since the number of compound classes is exponential in the number
of class names it is essential to keep this number as small as possible. Analyzing the reasoning procedure
described in Section 6.2 we observe that it can be generalized to the case where the schema is not completely
normalized but contains only assertions C ¹̇ E, where E is a class expression that has one of the following
forms:

• E is a boolean combination of class names.

• E = ∀L.E′ where E′ is a boolean combination of class names.

• E = ∃≥mL.

• E = ∃≤nL.

We call a schema that satisfies this condition partially normalized. The only modification of the presented
reasoning method consists in a generalization of the definitions of consistent compound class and of consistent
compound attribute in order to take into account the more general form of assertions in partially normalized
schemata. All successive considerations apply then unmodified.

This observation allows us to reduce the number of new class names we have to introduce and therefore
also the number of compound classes we have to consider for the construction of the expansion. In the rest
of the section we assume to deal only with partially normalized schemata, and we concentrate on strategies
for optimizing phase 2. We assume also that the boolean combinations of class names that appear in the
schema are all in negation normal form.

6.3.1 Strategies for Constructing the Expansion

The proof of Lemma 6.2.6 suggests a trivial method to construct the expansion of a primitive (partially nor-
malized) LUNI-schema S: Enumerate the exponentially many compound classes and compound attributes
and check for each one in linear time if it is consistent. Proceeding in this way the construction of the
expansion will necessarily require time exponential in |S|. We propose now a strategy for improving the
efficiency of this task in many relevant cases. Since the number of compound attributes is polynomially
related to the number of compound classes, in the following we concentrate only on the issues related to
determining the set of consistent compound classes.

If we analyze more in detail the factors that contribute to the complexity of this task, we can distinguish
between different categories of schemata:

(α) Those schemata where the number of compound classes in the expansion is polynomial in the number
of class names (or can be made polynomial without affecting the result of the class consistency checks).

(β) Those schemata where the number of compound classes in the expansion is exponential in the number
of class names, but where we can safely assume that all but a polynomial number of them have an
empty extension. Here, “safely” means that making this assumption does not influence consistency for
any of the classes of the schema.

(γ) Those schemata where the number of compound classes in the expansion is necessarily exponential in
the number of class names (where “necessarily” means that such a schema does not fall into category
β).

If the schema we have to deal with falls into category (γ), any sound and complete procedure for verifying
class consistency that is based on the construction of the expansion is deemed to work in exponential time.
Therefore, the following considerations are devoted to describe a strategy that, when possible, does better
than the trivial method of enumerating all compound classes and checking each one for consistency. This
strategy may lead to an efficient treatment of the problem in those cases where the schema to be analyzed
falls in category (α) or (β).
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A preliminary analysis shows that in category (α) there must be schemata where, even if the size of the
expansion is polynomial, nevertheless it takes exponential time to discard all inconsistent compound classes,
and there must also be schemata where both the size of the expansion and the time to construct it can be
kept polynomial.

Actually, we argue that in most practical situations, this last case is the most likely to occur. In the
following we propose a heuristics for optimizing the selection of consistent compound classes, which performs
this process in two steps: In the first step, a pre-selection on the compound classes is performed, using an
efficient and possibly incomplete algorithm that allows us to discard a priori as many of them as possible.
In the second step each of the remaining compound classes is then checked for consistency, and only the
consistent ones are taken into account. Since this test can be performed in linear time for each compound
class, the complexity of the second step essentially depends on the number of compound classes that remain
to be considered after the pre-selection.

The pre-selection is done by considering each pair of classes in turn, and trying to extract from the schema
as much information as possible concerning both inclusion and disjointness for the classes in each pair. This
information is used on one hand for discarding inconsistent compound classes, and on the other hand for
singling out those consistent compound classes that can be ignored without influencing the correctness of
consistency checking. Of course there is a tradeoff between the need to be efficient in the pre-selection and
the need to obtain from it as much information as possible.

We propose to construct two data structures, one, called disjointness table, for storing pairs of classes
that are disjoint in every model of the schema, and one, called inclusion table, for storing pairs of classes
such that the first class of the pair is necessarily included in the second. Basically, the pre-selection step
consists in filling in the entries of the two tables. We have determined two criteria that we can follow to do
this:

(a) To consider inclusion or disjointness that logically follows from the propositional part of the assertions
in the schema.

(b) To consider inclusion or disjointness that may be assumed without influencing consistency checking for
any class in the schema.

Regarding criterion (a), the simplest strategy is to fill the entries of the tables simply considering inclusion
and disjointness that are explicitly present in the schema. If, for example, the schema contains an assertion
C1 ¹̇ ¬C2, this allows us immediately to exclude all compound classes containing both C1 and C2. A
more sophisticated method is to consider inclusion or disjointness of two classes that are deducible from the
whole propositional part of the schema. However, if we pose no restrictions on the assertions that are taken
into account, the problem of determining when inclusion or disjointness between classes logically follows
from the propositional part of the schema, is coNP-complete, since it corresponds to propositional validity.
Nevertheless, since we are performing a pre-selection, it may be sufficient to use an efficient and sound
procedure that does not guarantee completeness (see for example [51]).

With respect to criterion (b), we propose a simple syntactic method that can be applied in order to
introduce disjointness between classes without influencing satisfiability of classes in the schema. Let GS :=
(V,E) be the undirected graph constructed from a (partially normalized) primitive LUNI-schema S :=
(C,A, T ) in the following way:

1. For each class C ∈ C, introduce one node nC in V ;

2. For each pair of classes C1, C2 ∈ C, introduce in E an edge between nC1 and nC2 if at least one of the
following conditions is satisfied:

• T contains an assertion C1 ¹̇ E, where E is a boolean combination of class names of C in which
C2 appears positively3 (i.e. not preceded by the symbol “¬”).

• The schema contains an assertion C ¹̇ E, or an assertion C ¹̇ ∀L.E, where C ∈ C and E is a
boolean combination of class names of C in which both C1 and C2 appear positively.

3. For each pair of classes C1, C2 ∈ C, remove (if present) the edge between nC1 and nC2 if C1 and C2

have been determined to be disjoint by applying criterion (a) above.

3We remind that we assume that E is in negation normal form.
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The following theorem, based on the construction of such a graph, allows us to augment the number of
entries in the disjointness table, thus reducing the number of compound classes that actually have to be
taken into account for the construction of the expansion.

Theorem 6.3.1 Let S := (C,A, T ) be a (partially normalized) primitive LUNI-schema and let GS be the
graph derived from S as stated above. Let T ′ be the set of assertions obtained from T by adding an assertion
C1 ¹̇ ¬C2 for each pair of classes C1, C2 ∈ C such that nC1 and nC2 are not connected in GS . Then for each
class C ∈ C we have that C is finitely consistent in S if and only if it is finitely consistent in S ′ := (C,A, T ′).

Proof (sketch). Let C1, C2 ∈ C be such that nC1 and nC2 are not connected in GS , and let I be a model
of S such that there is an o ∈ ∆I with o ∈ CI1 ∩ CI2 . Then we can construct an interpretation I ′ of S as
follows:

• ∆I′ := ∆I ∪ {o1, o2} \ {o}.
• o1 ∈ CI′1 \ CI′2 and o2 ∈ CI′2 \ CI′1 .

• For any class C ∈ C such that o 6∈ CI , we put CI
′
:= CI , and for any class C ∈ C such that o ∈ CI ,

we put either CI
′
:= CI ∪ {o1} \ {o} or CI

′
:= CI ∪ {o2} \ {o}.

• For any attribute in A ∈ A we substitute each pair in which one of the components is o either with a
pair in which the same component is o1 or with one in which it is o2.

It is possible to show that since nC1 and nC2 are not connected in GS , we can make the choices in the
construction of I ′ in such a way that I ′ is a model of S. Proceeding by induction on the number of objects
in ∆I we can effectively construct a finite model of S in which the required condition is satisfied.

Once we have constructed the disjointness and inclusion tables, the information therein is used to cut
down the number of compound classes that have to be checked for consistency. Each entry in the tables
allows us to exclude all compound classes that do not satisfy the inclusion or disjointness condition specified
by the entry, and therefore excludes three quarters of the total number of compound classes.

6.3.2 Special Cases

We discuss now some meaningful cases in which the proposed method for finite class consistency may work
in polynomial time in the size of the schema.

One case that is worth mentioning is when we actually deal with a primitive LNI-schema, i.e. the class
expressions in the schema do not contain the constructor for disjunction. In such case the construction of
the inclusion and disjointness tables represents an optimal strategy in the following sense: On one hand all
possible consequences of the assertions that do not involve number restrictions and universal quantification
can be computed in polynomial time [7], and on the other hand, by applying the method referred to in
Theorem 6.3.1, we can complete the disjointness table in such a way that the number of disjointness assertions
is maximized. It is possible to show that in this case all inconsistent compound classes are determined by
using the information contained in the two tables, and, moreover, all possible disjointness assumptions
between classes are derived, in the sense that introducing further ones may influence the correctness of class
consistency checking.

A meaningful case where the number of compound classes can be reduced dramatically, is when the
disjointness assertions induce a partition of the classes into a number of clusters, such that classes belonging
to different clusters are disjoint. The clusters can easily be determined by constructing a graph with one
node for each class and an edge between two nodes if and only if the corresponding classes are not disjoint.
Each cluster corresponds to a connected component of this graph. In such a case, all compound classes we
have to consider are formed only of classes of the same cluster, and the set of compound classes becomes the
union of the sets of compound classes obtained separately for each cluster. If we can ensure that for each
cluster this number is polynomial, we obtain a system of inequalities whose size is polynomial in the size
of the original schema. This is the case, for example, if the size of each cluster is logarithmic in the total
number of classes.

Another special case to be considered is that of LNI-schemata where the classes are organized in gen-
eralization hierarchies. Generalization hierarchies are treelike structures representing inclusion, where it is
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Constructor Name Syntax Semantics
class name C CI ⊆ ∆I

general negation (C) ¬E ∆I \ EI
conjunction E1 u E2 EI1 ∩ EI2
disjunction E1 t E2 EI1 ∪ EI2
universal quantification ∀A.E {o | ∀o′ : (o, o′) ∈ LI → o′ ∈ EI}
existential quantification ∃A.E {o | ∃o′ : (o, o′) ∈ LI ∧ o′ ∈ EI}
number restrictions (N ) ∃≥mL {o | ]{o′ | (o, o′) ∈ LI} ≥ m}

∃≤nL {o | ]{o′ | (o, o′) ∈ LI} ≤ n}
attribute name A AI ⊆ ∆I ×∆I

inverse attribute (I) A− {(o, o′) | (o′, o) ∈ AI}
free assertion E1 ¹̇ E2 EI1 ⊆ EI2

Table 6.1: Free LCNI-schemata

assumed that classes in different groups are pairwise disjoint, and within one group the same holds for all
classes at the same depth in the tree [20]. In this case, each group corresponds to one cluster, and for each
cluster the number of compound classes equals the number of classes, since it corresponds to the number of
paths from the root of the tree to a class. It follows that our method, when applied to schemas of this type,
works in polynomial time. This is particularly important, if one considers that most object-oriented data
models assume, either implicitly or explicitly, an organization of classes based on generalization hierarchies
(see for example how isa-relationships are treated in [2]).

Finally, an important case where the proposed method works in polynomial time, is if one makes the
most specific class assumption. Such assumption, which is common in many object-oriented data models,
requires that if in a model of a schema S := (C,A, T ) an object belongs to two different classes C1, C2 ∈ C,
then there is another class C ∈ C such that T contains the assertions C ¹̇ C1 and C ¹̇ C2. Under the most
specific class assumption, for every compound class that may be populated in a model of the schema there
must be a corresponding class name in C. Therefore, the number of compound classes is not greater than
the number of class names, and the size of the expansion is polynomial in |S|.

6.4 Finite Model Reasoning on Free LCNI-Schemata

In this section we extend the method introduced in Section 6.2 to solve the problem of reasoning on free
LCNI-Schemata with respect to finite models. Table 6.1 recalls the types of constructors and assertions
that are allowed in free LCNI-schemata.

We construct again a system of linear inequalities and relate the existence of models for the schema
to the existence of particular solutions of the system. However the presence of arbitrary free inclusion
assertions, and the higher expressivity of the underlying language (in particular the presence of qualified
existential quantification) make the construction of the system much more involved than in the previous case.
Indeed, while for primitive LUNI-schemata it is sufficient to construct a system of inequalities whose size is
simply exponential in the size of the schema, the technique presented in this section requires an additional
exponential blowup, so that the size of the resulting system is doubly exponential in the size of the schema.

6.4.1 Normalization of a Schema

In the following we assume that all class expressions that appear in the schema are in negation normal
form. This explains why in Table 6.1 we have chosen a set of constructors that is not minimal. We consider
again a preliminary transformation of the schema in a normalized form. An LCNI-class expression is called
normalized if it is of the form4:

D | D1 uD2 | D1 tD2 | ∀L.D | ∃L.D | ∃≥mL | ∃≤nL.

4we remind that the letter D ranges over class literals
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An assertion is said to be normalized, if the class expression on the left hand side is a class literal and the
expression on the right hand side is normalized. A free LCNI-schema is normalized if it is constituted solely
by normalized assertions.

Lemma 6.4.1 Every free LCNI-schema S := (C,A, T ) can be transformed in linear time into an equivalent
normalized LCNI-schema S ′ := (C′,A, T ′), where C ⊆ C′.

Proof. In the course of the transformation we introduce also assertions of the form D
.= E, which will

be eliminated in the last step. The symbol “∝̇” denotes either “¹̇” or “ .=”. The normalized schema S ′
equivalent to S can be obtained through the following procedure:

1. For each assertion E ¹̇ E′ in T , if E is not a literal then introduce a new class name C, and replace
E ¹̇ E′ with C

.= E, and C ¹̇ E′. This results in a schema S1 = (C1,A, T1) where C1 ⊇ C and all
assertions in T1 have a literal on their left hand side.

2. Repeat the following, until all assertions in T1 are normalized: For each assertion D ∝̇ E in T1, if E is
not normalized then remove D ∝̇ E from T1 and do the following:

• If E = E1 uE2, then add two new class names C1 and C2 to C1 and add D ∝̇ C1 uC2, C1
.= E1,

and C2
.= E2 to T1.

• If E = E1 tE2, then add two new class names C1 and C2 to C1 and add D ∝̇ C1 tC2, C1
.= E1,

and C2
.= E2 to T1.

• If E = ∀L.E1, then add a new class name C to C1 and add D ∝̇ ∀L.C and C .= E1 to T1.

• If E = ∃L.E1, then add a new class name C to C1 and add D ∝̇ ∃L.C and C .= E1 to T1.

This results in a schema S2 = (C2,A, T2) where C2 ⊇ C and T2 contains only normalized assertions.

3. Replace each assertion D .= E in T2 with the pair of assertions D ¹̇ E and ∼D ¹̇ ∼E. This results in
the normalized schema S ′.

Step (1) of the above construction introduces at most one new class name for each assertion in T , and |S1|
is linear in |S|. Step (2) introduces at most one new class name for each subexpression of a class expression
in T1. Since the number of such subexpressions is linear in |T1|, at most a linear number of new classes is
introduced, and |S2| is linear in |S1|. It is also easy to see that the construction can be performed in linear
time in |S1|. Step (2) does not introduce any new classes and only assertions of the form D

.= E in T2 are
replaced by two assertions of at most double size. Therefore |S ′| is linear in |S|. It is also easy to see that
all steps of the construction can be performed in linear time in |S|. By construction S ′ is normalized and
C ⊆ C′.

It remains to show that S and S ′ are equivalent. The equivalence of S and S1 and of S2 and S ′ follows
immediately from the set-theoretic semantics. The equivalence of S1 and S2 can be shown by induction on
the number of sub-steps of step (2), as in the proof of Lemma 6.2.2

Lemmata 6.4.1 and 2.3.7 allow us to restrict our attention to normalized schemata when devising pro-
cedures to perform the reasoning services. Moreover, if we replace each assertion of the form D ¹̇ D1 uD2

with the pair of assertions D ¹̇ D1 and D ¹̇ D2, we obtain a schema that is equivalent to the original one
and of linear size. Therefore, in the rest of the section we assume that the schemata we deal with are all free
normalized LCNI-schemata in which the “u” operator does not appear. Where not specified otherwise, we
assume also that S := (C,A, T ).

6.4.2 Expansion of a Schema

We generalize now the definition of expansion of a schema introduced in Section 6.2.2 to free LCNI-schemata.
Differently from the previous case the expansion represents only an intermediate representation and it cannot
be used directly to derive a system of linear inequalities. The notions of compound class and compound
attribute remain unchanged, while compound assertions are generalized.

Definition 6.4.2 An expanded schema is a tuple Ŝ = (C,A, F̂ , P̂, T̂ ), where
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• C is a set of class names.

• A is a set of attribute names.

• F̂ ⊆ 2C is a set of compound classes.

• P̂ ⊆ A×F̂×F̂ is a set of compound attributes.

• T̂ is a set of compound assertions. Each such assertion has one of the forms

F̂ ¹̇ ∃≥mL, or
F̂ ¹̇ ∃≤nL, or
F̂ ¹̇ ∃L.D,

where F̂ ∈ F̂ , L is a link, i.e. either an attribute name in A or the inverse of an attribute name, D is a
literal, i.e. either a class name in C or its negation, m is a positive, and n a nonnegative integer.

Where not specified otherwise, we assume Ŝ = (C,A, F̂ , P̂, T̂ ).
The semantics of compound classes, compound attributes and the notion of model of an expanded schema

are defined exactly as in Section 6.2.2, considering that satisfaction of a compound assertion is defined also
for assertions of the form F̂ ¹̇ ∃L.D. Generalizing Definition 6.2.5 we associate to each schema an expanded
schema.

Definition 6.4.3 An expanded schema Ŝ := (C,A, F̂ , P̂, T̂ ) is called the expansion of a schema S :=
(C,A, T ) if the following conditions hold:

• F̂ is the set of all S-consistent compound classes, where a compound class F̂ ∈ 2C is said to be
S-consistent, if

– for every D ∈ F̂ , if (D ¹̇ D′) ∈ T , then D′ ∈ F̂ .

– for every D ∈ F̂ , if (D ¹̇ D1 tD2) ∈ T , then D1 ∈ F̂ or D2 ∈ F̂ .

• P̂ is the set of all S-consistent compound attributes, where a compound attribute A[F̂1, F̂2] ∈ A×2C×2C

is said to be S-consistent, if

– F̂1 and F̂2 are S-consistent.

– for every D ∈ F̂1, if (D ¹̇ ∀A.D′) ∈ T , then D′ ∈ F̂2.

– for every D ∈ F̂2, if (D ¹̇ ∀A−1.D′) ∈ T , then D′ ∈ F̂1.

• T̂ is the smallest set of compound assertions such that for every F̂ ∈ F̂
– if for some D ∈ F̂ there is an assertion (D ¹̇ ∃≥mL) ∈ T , then T̂ contains the compound assertion
F̂ ¹̇ ∃≥mmaxL, where

mmax := max{m | ∃D ∈ F̂ : (D ¹̇ ∃≥mL) ∈ T }.

– if for some D ∈ F̂ there is an assertion (D ¹̇ ∃≤nL) ∈ T , then T̂ contains the compound assertion
F̂ ¹̇ ∃≤nminL, where

nmin := min{n | ∃D ∈ F̂ : (D ¹̇ ∃≤nL) ∈ T }.
– if for some D ∈ F̂ there is an assertion (D ¹̇ ∃L.D′) ∈ T , then T̂ contains the compound assertion
F̂ ¹̇ ∃L.D′.

It is easy to see that in general the size of the expansion is exponential in the size of the original schema.
The following lemma shows that it can also be effectively constructed in exponential time.

Lemma 6.4.4 The expansion Ŝ of S can be constructed in time which is exponential in |S|.

Proof. Analogous to the proof of Lemma 6.2.6.
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The following lemmata relate the (finite) models of a schema to the (finite) models of its expansion.
Their proof easily extends the proofs of Lemmata 6.2.8 and 6.2.7, but we repeat it here for completeness.

Lemma 6.4.5 Let S be a schema and I a (finite) model of S. Then for each S-inconsistent compound class
or compound attribute X, XI = ∅.
Proof. Let F̂ ∈ 2C be S-inconsistent. Then (a) there is an assertion (D ¹̇ D′) ∈ T such that D ∈ F̂ and
D′ 6∈ F̂ , or (b) there is an assertion (D ¹̇ D1 tD2) ∈ T such that D ∈ F̂ , D1 6∈ F̂ , and D2 6∈ F̂ . In case
(a) F̂ I ⊆ DI \D′I , and since I satisfies D ¹̇ D′, F̂ I = ∅. In case (b) F̂ I ⊆ DI \ (DI1 ∪DI2 ), and since I
satisfies D ¹̇ D1 tD2, F̂ I = ∅.

Let P̂ = A[F̂1, F̂2] ∈ A×2C×2C be S-inconsistent. Then (a) F̂1 or F̂2 is S-inconsistent, or (b) there is an
assertion (D ¹̇ ∀A.D′) ∈ T such that D ∈ F̂1 and D′ 6∈ F̂2, or (c) there is an assertion (CD ¹̇ ∀A−.D′) ∈ T
such that D ∈ F̂2 and D′ 6∈ F̂1. In case (a) F̂ I1 = ∅ or F̂ I2 = ∅, and therefore P̂ I ⊆ F̂ I1 ×F̂ I2 = ∅. In case (b),
assume by contradiction that (o1, o2) ∈ P̂ I ⊆ AI for some o1, o2 ∈ ∆I . Then o1 ∈ F̂ I1 ⊆ DI and o2 ∈ F̂ I2 .
Since I satisfies D ¹̇ ∀A.D′, it follows that o2 ∈ D′I . But F̂ I2 ∩D′I = ∅ gives rise to a contradiction. Case
(c) can be treated in a similar way.

Lemma 6.4.6 Let S := (C,A, T ) be a schema, Ŝ its expansion, and I a (finite) interpretation over C and
A. Then I is a (finite) model of S if and only if it is a (finite) model of Ŝ.

Proof. “⇒” Let I be a (finite) model of S. Since F̂ contains exactly the set of S-consistent compound
classes, by Lemma 6.4.5, for a compound class F̂ ∈ 2C \ F̂ we have that F̂ I = ∅. The same argument holds
for compound attributes. Let (F̂ ¹̇ ∃≥mL) ∈ T̂ . Then there is a D ∈ F̂ such that (D ¹̇ ∃≥mL) ∈ T .
Since I satisfies this assertion and F̂ I ⊆ DI , I satisfies also F̂ ¹̇ ∃≥mL. A similar argument holds if
(F̂ ¹̇ ∃≤nL) ∈ T̂ . or (F̂ ¹̇ ∃L.D′) ∈ T̂ .

“⇐” Let I be a (finite) model of Ŝ and assume by contradiction that there is an assertion (D ¹̇ E) ∈ T
not satisfied by I. This means there is some o ∈ ∆I such that o ∈ DI and o 6∈ EI . Let F̂o be the (unique)
compound class such that o ∈ F̂ Io . Then we have that D ∈ F̂o. Suppose E = D′. Since o 6∈ D′I , we have
that D′ 6∈ F̂o. It follows that F̂o is not S-consistent, which by Lemma 6.4.5 contradicts o ∈ F̂ Io . The case
where E = D1 tD2 can be handled in a similar way. Suppose E = ∀L.D′. Since o 6∈ (∀A.D′)I there is some
o′ ∈ ∆I such that (o, o′) ∈ AI and o′ 6∈ D′I . Let F̂o′ be the (unique) compound class such that o′ ∈ F̂ Io′ .
Then D′ 6∈ F̂o′ and therefore A[F̂o, F̂o′ ] is not consistent. By Lemma 6.4.5 this contradicts (o, o′) ∈ AI ,
a ∈ F̂ Io , and o′ ∈ F̂ Io′ . The case where E = ∀A−.D′ can be handled in a similar way. Suppose E = ∃≥mL.
Since D ∈ F̂o, T̂ contains an assertion F̂o ¹̇ ∃≥mmaxL, where mmax ≥ m. From o 6∈ (∃≥mL)I it follows that
o 6∈ (∃≥mmaxL)I , which contradicts the fact that I satisfies all assertions in T̂ . The case where E = ∃≤nL

can be handled in a similar way. Suppose E = ∃L.D′. Since D ∈ F̂o, T̂ contains the assertion F̂o ¹̇ ∃L.D′.
The assumption o 6∈ (∃L.D′)I contradicts the fact that I satisfies all assertions in T̂ .

In Section 6.2 we have shown that for primitive LUNI-schemata a system of linear inequalities can
be directly constructed from the expansion, such that the acceptable nonnegative integer solutions of this
system correspond to finite models of the schema. Unfortunately, for free LCNI-schemata this approach
does not work directly, and this is due to the presence of assertions of the form C ¹̇ ∃L.D. One could
think to handle such assertions by constructing the expansion as specified above, simply coding existential
quantifications inside compound assertions and leaving their treatment to the system of inequalities (as done
for number restrictions). The most natural extension of the system of inequalities would be to add for each
assertion of the form D1 ¹̇ ∃A.D2 an inequality

∑

A[F̂1,F̂2] |
D1∈F̂1∧D2∈F̂2

Var(A[F̂1, F̂2]) ≥
∑

F̂ | D1∈F̂

Var(F̂ ),

and similarly for each assertion of the form D1 ¹̇ ∃A−.D2. One could think that imposing such conditions
would guarantee, that from each acceptable nonnegative integer solution of the system a model of the schema
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could be constructed, in which the number of instances of each compound class and compound attribute is
given by the value assigned by the solution to the corresponding unknown. The following example shows
that this is not the case in general.

Example 6.4.7 Let S := (C,A, T ) be the LCNI-schema where

Cb := {C, D1, D2, D3},
Ab := {att},

and the set Tb of assertions consists of:

C0 ¹̇ ∃att.D1 u ∃att.D2 u ∃att.D3 u ∃≤2att u ∀att−.⊥
D1 ¹̇ ¬C0 u ∀att.⊥ u ∀att−.C0

D2 ¹̇ ¬C0 u ∀att.⊥ u ∀att−.C0

D3 ¹̇ ¬C0 u ∀att.⊥ u ∀att−.C0

The assertions in S involving universal quantification and disjointness are not relevant for the example to
work, but have been added to keep the number of compound classes and attributes as small as possible.

The expansion Ŝ := (C,A, F̂ , P̂, T̂ ) of S is given by

F̂n := {C} ∪ {Di1i2i3 | i1, i2, i3 ∈ {0, 1}}, where
C := {C0}, and Di1i2i3 := {Dj | ij = 1, j ∈ {1, 2, 3}}

P̂n := {att[∅, ∅]} ∪ {att[C, Di1i2i3 ] | i1, i2, i3 ∈ {0, 1}},

and the set T̂ of compound assertions consists of:

C ¹̇ ∃att.D1 C ¹̇ ∃att.D3

C ¹̇ ∃att.D2 C ¹̇ ∃≤2att.

The system Ψ′S of inequalities derived from the expansion as explained above, i.e. including the additional
inequalities to handle the qualified existential quantification is the following

2·Var(C) ≥
∑

i1,i2,i3∈{0,1}
Var(att[C, Di1i2i3 ])

Var(C) ≤
∑

i2,i3∈{0,1}
Var(att[C, D1i2i3 ])

Var(C) ≤
∑

i1,i3∈{0,1}
Var(att[C, Di11i3 ])

Var(C) ≤
∑

i1,i2∈{0,1}
Var(att[C, Di1i21])

Let Sol be the assignment that assigns

• the value 2 to Var(C),

• the value 1 to the unknowns corresponding to the compound classes in {D111, D100, D010, D001}, and
the compound attributes in {att[C, D111], att[C, D100], att[C, D010], att[C, D001]}, and

• the value 0 to all other unknowns.

Then Sol is indeed a solution of Ψ′S which is acceptable and satisfies the additional condition 6.3 required
for the existence of a corresponding finite model. Nevertheless one can easily verify that there is no finite
model of S in which the number of instances of each compound class and attribute is the one specified by
the value that Sol assigns to the corresponding unknown.
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The intuitive reason why this simple approach does not lead to the desired results in the case at hand, is
that it relies on the uniformity of all objects that are instances of the same compound class. When setting
up the system of inequalities we are in fact transforming local constraints on the number of connections
that a single object may have into global constraints on the total number of connections of a certain type.
The necessary differentiation is introduced by constructing the expansion. Once this is done, all instances
of the same compound concept can be regarded as equivalent. This is also reflected in the construction of
the model in the proof of Lemma 6.2.11. The approach works for the case of LUNI-schemata, where no
class expression can distinguish between different instances of the same compound class. If we use existential
quantification, however, due to the increased expressivity it is not sufficient anymore to split the schema
into compound classes to obtain a uniform behaviour of the instances. This leads us to introduce the notion
of biexpansion of a schema, where we make a more fine-grained separation based also on the existence of
connections of certain types.

6.4.3 Biexpansion of a Schema

In order to define the biexpansion of a schema we need some additional terminology. LetA− := {A− | A ∈ A}
and L := A ∪ A−. We use GC,A to denote 2C×(22C )L. An element of GC,A is called a bicompound class,
and it is constituted by a pair in which the first element is a compound class, and the second element is a
function that associates to each attribute and inverse attribute a set of compound classes. An element of
A×GC,A×GC,A is called a bicompound attribute. G̃ and Q̃ range over bicompound classes and bicompound
attributes respectively. We introduce two functions that allow us to refer to the components of bicompound
classes: The function cc : GC,A → 2C returns the first component of a bicompound class, and the function
ccs : GC,A×L → 22C returns for a bicompound class G̃ and a link L the set of compound classes assigned
to L by the second component of G̃. In analogy to compound attributes we use A[G̃1, G̃2] to denote a
bicompound attribute (A, G̃1, G̃2).

Definition 6.4.8 A doubly expanded schema is a tuple S̃ = (C,A, G̃, Q̃, T̃ ), where

• C is a set of atomic classes.

• A is a set of atomic attributes.

• G̃ ⊆ 2C×(22C )L is a set of bicompound classes.

• Q̃ ⊆ A×G̃×G̃ is a set of bicompound attributes.

• T̃ is a set of bicompound assertions. Each such assertion has one of the forms

G̃ ¹̇ ∃≥mL or
G̃ ¹̇ ∃≤nL,

where G̃ ∈ G̃, L ∈ L, m is a positive, and n a nonnegative integer.

Where not specified otherwise, we assume S̃ = (C,A, G̃, Q̃, T̃ ).
The intuition behind the definition of bicompoud classes and attributes is the following: If cc(G̃) = F̂ ,

then all instances of G̃ are also instances of F̂ . Let o be such an instance. Then for each compound class F̂ ′

in ccs(G̃, L), there is an instance o′ of F̂ ′ connected to o via link L, while for every compound class not in
ccs(G̃, L) there is no such instance. In analogy to compound attributes, a bicompound attribute A[G̃1, G̃2]
is interpreted as the restriction of attribute A to the pairs whose first component is an instance of G̃1 and
whose second component is an instance of G̃2.

More formally, the semantics of a doubly expanded schema S̃ is given by extending interpretations over
C and A to bicompound classes and attributes. For simplicity of notation we make use of class expressions
built by applying the LCNI-constructors to both class names and compound classes. The interpretation of
such expressions is analogous to the interpretation of ordinary class expressions, considering the semantics
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of compound classes as defined in the previous section. The semantics of bicompound classes and attributes
is then defined as follows:

G̃I := (cc(G̃))I ∩
⋂

L∈L




⋂

F̂∈ccs(G̃,L)

(∃L.F̂ )I ∩
⋂

F̂∈2C\ccs(G̃,L)

(¬∃L.F̂ )I




(A[G̃1, G̃2])I := AI ∩ (G̃I1×G̃I2 ).

This definition together with the fact that different compound classes have disjoint extensions implies that
two different bicompound classes also have disjoint extensions. The same observation holds for two different
bicompound attributes A[G̃1, G̃2] and A[G̃′1, G̃

′
2] that refer to the same attribute A.

The following easy lemma, shows how to obtain the extensions of classes and attributes, given the
extensions of all bicompound classes and bicompound attributes.

Lemma 6.4.9 Let C ∈ C be a class name and A ∈ A be an attribute name. Then the following holds:

CI =
⋃

G̃∈GC,A | C∈cc(G̃)

G̃I

AI =
⋃

Q̃∈{A}×GC,A×GC,A

Q̃I .

Proof. The claim follows directly from the semantics of bicompound classes and attributes.

A (finite) interpretation I := (∆I , ·I) satisfies a bicompound assertion G̃ ¹̇ E, if G̃I ⊆ EI . I is a (finite)
model of S̃ if the following conditions hold:

• For each bicompound class G̃ ∈ GC,A \ G̃, it holds that G̃I = ∅.

• For each bicompound attribute Q̃ ∈ (A×GC,A×GC,A) \ Q̃, it holds that Q̃I = ∅.

• I satisfies all bicompound assertions in T̃ .

Definition 6.4.10 A doubly expanded schema S̃ = (C,A, G̃, Q̃, T̃ ) is called the biexpansion of a schema
S := (C,A, T ) if the following conditions hold:

• G̃ is the set of all S-consistent bicompound classes, where a bicompound class G̃ ∈ GC,A is said to be
S-consistent, if

– cc(G̃) is S-consistent.

– for every L ∈ L, for every F̂ ∈ ccs(G̃, L), F̂ is S-consistent.

– for every L ∈ L, for every D ∈ cc(G̃), if (D ¹̇ ∃L.D′) ∈ T , then there is a F̂ ∈ ccs(G̃, L) such
that D′ ∈ F̂ .

– for every L ∈ L, for every D ∈ cc(G̃), if (D ¹̇ ∀L.D′) ∈ T , then for all F̂ ∈ ccs(G̃, L) it holds
that D′ ∈ F̂ .

• Q̃ is the set of all S-consistent bicompound attributes, where a bicompound attribute A[G̃1, G̃2] ∈
A×GC,A×GC,A is said to be S-consistent, if

– G̃1 and G̃2 are S-consistent.

– for every D ∈ cc(G̃1), if (D ¹̇ ∀A.D′) ∈ T , then D′ ∈ cc(G̃2).

– for every D ∈ cc(G̃2), if (D ¹̇ ∀A−.D′) ∈ T , then D′ ∈ cc(G̃1).

– cc(G̃2) ∈ ccs(G̃1, A).

– cc(G̃1) ∈ ccs(G̃2, A
−).



6.4 Finite Model Reasoning in LCNI 113

• T̃ is the smallest set of bicompound assertions such that for every G̃ ∈ G̃
– if for some D ∈ cc(G̃) there is an assertion (D ¹̇ ∃≥mL) ∈ T , then T̃ contains the bicompound

assertion G̃ ¹̇ ∃≥mmaxL, where

mmax := max{m | ∃D ∈ cc(G̃) : (D ¹̇ ∃≥mL) ∈ T }.

– if for some D ∈ cc(G̃) there is an assertion (D ¹̇ ∃≤nL) ∈ T , then T̃ contains the bicompound
assertion G̃ ¹̇ ∃≤nminL, where

nmin := min{n | ∃D ∈ cc(G̃) : (D ¹̇ ∃≤nL) ∈ T }.

It is easy to see that the size of the biexpansion is doubly exponential in the size of the original schema.
The following lemma shows that it can also be effectively constructed in double exponential time.

Lemma 6.4.11 The biexpansion S̃ of S can be constructed in time which is doubly exponential in |S|.
Proof. Similar to the proof of Lemma 6.2.6.

The following lemmata relate the (finite) models of a schema to the (finite) models of its biexpansion.

Lemma 6.4.12 Let S be a schema and I a (finite) model of S. Then for each S-inconsistent bicompound
class or bicompound attribute X, XI = ∅.
Proof. Let G̃ ∈ GC,A be S-inconsistent. Then (a) cc(G̃) is S-inconsistent, or (b) there is a link L ∈ L and
a compound class F̂ ∈ ccs(G̃, L) such that F̂ is S-inconsistent, or (c) there is a link L ∈ L and an assertion
(D ¹̇ ∃L.D′) ∈ T such that D ∈ cc(G̃) and for all F̂ ∈ ccs(G̃, L), D 6∈ F̂ , or (d) there is a link L ∈ L and
an assertion (D ¹̇ ∀L.D′) ∈ T such that D ∈ cc(G̃) and for some F̂0 ∈ ccs(G̃, L) D′ 6∈ F̂0. In case (a),
by Lemma 6.4.5 (cc(G̃))I = ∅, and therefore G̃I = ∅. In case (b), by Lemma 6.4.5 F̂ I = ∅, which implies
(∃L.F̂ )I = ∅. From G̃I ⊆ (∃L.F̂ )I it follows that G̃I = ∅. In case (c), assume by contradiction that o ∈ G̃I
for some o ∈ ∆I . Since D ∈ cc(G̃), o ∈ DI , and since I satisfies D ¹̇ ∃L.D′, there is o′ ∈ D′I such that
(o, o′) ∈ LI . Since DI ∩ F̂ I = ∅ for all F̂ ∈ ccs(G̃, L), there is some F̂0 ∈ 2C \ ccs(G̃, L) such that o′ ∈ F̂ I0 .
But then o ∈ (∃L.F̂0)I in contradiction to G̃I ⊆ (¬∃L.F̂0)I . In case (d), assume by contradiction that
o ∈ G̃I for some o ∈ ∆I . Since F̂0 ∈ ccs(G̃, L) there is o′ ∈ F̂ I0 such that (o, o′) ∈ LI . From D′ 6∈ F̂0 we
have that o′ 6∈ D′I , and from D ∈ cc(G̃) we have that o ∈ DI . This contradicts the fact that I satisfies
D ¹̇ ∀R.D′.

Let Q̃ = A[G̃1, G̃2] ∈ A×GC,A×GC,A be S-inconsistent. Then (a) G̃1 or G̃2 is S-inconsistent, or (b)
there is an assertion (D ¹̇ ∀A.D′) ∈ T such that D ∈ G̃1 and D′ 6∈ G̃2, or (c) there is an assertion
(D ¹̇ ∀A−.D′) ∈ T such that D ∈ G̃2 and D′ 6∈ G̃1, or (d) cc(G̃2) 6∈ ccs(G̃1, A), or (e) cc(G̃1) 6∈ ccs(G̃2, A

−).
In case (a) G̃I1 = ∅ or G̃I2 = ∅, and therefore Q̃I ⊆ G̃I1×G̃I2 = ∅. In case (b), assume by contradiction that
(o, o′) ∈ Q̃I ⊆ AI . Then o ∈ G̃I1 ⊆ DI and o′ ∈ G̃I2 . Since I satisfies D ¹̇ ∀A.D′, it follows that o′ ∈ D′I .
But G̃I2 ∩L′I = ∅ gives rise to a contradiction. Case (c) can be treated in a similar way. In case (d), assume
by contradiction that (o, o′) ∈ Q̃I . Since cc(G̃2) 6∈ ccs(G̃1, P ), G̃I1 ⊆ (¬∃A.cc(G̃2))I , contradicting o ∈ G̃I1
and o′ ∈ G̃I2 ⊆ (cc(G̃2))I . Case (e) can be treated in a similar way.

Lemma 6.4.13 Let S := (C,A, T ) be a schema, S̃ its biexpansion, and I an interpretation over C and A.
Then I is a (finite) model of S if and only if it is a (finite) model of S̃.

Proof. “⇒” Let I be a (finite) model of S. Since G̃ contains exactly the set of S-consistent bicompound
classes, by Lemma 6.4.12, for a bicompound class G̃ ∈ GC,A \ G̃ we have that G̃I = ∅. The same argument
holds for bicompound attributes. Let (G̃ ¹̇ ∃≥mL) ∈ T̃ . Then there is a D ∈ cc(G̃) such that (D ¹̇ ∃≥mL) ∈
T . Since I satisfies this assertion and G̃I ⊆ (cc(G̃))I ⊆ LI , I satisfies also G̃ ¹̇ ∃≥mL. A similar argument
holds if (G̃ ¹̇ ∃≤nL) ∈ T̃ .
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“⇐” Let I be a (finite) model of S̃ and assume by contradiction that there is an assertion (D ¹̇ E) ∈ T
not satisfied by I. This means there is some o ∈ ∆I such that o ∈ DI and o 6∈ EI . Let G̃o be the (unique)
bicompound class such that o ∈ G̃Io . Then we have that D ∈ cc(G̃o). Suppose E = D′. Since o 6∈ D′I , we
have that D′ 6∈ cc(G̃o). It follows that cc(G̃o) and therefore also G̃o are not S-consistent. By Lemma 6.4.12
this contradicts o ∈ F̂ Io . The case where E = D1tD2 can be handled in a similar way. Suppose E = ∀A.D′.
Since o 6∈ (∀A.D′)I there is some o′ ∈ ∆I such that (o, o′) ∈ AI and o′ 6∈ D′I . Let G̃o′ be the (unique)
bicompound class such that o′ ∈ G̃Io′ . Then D′ 6∈ cc(G̃o′) and therefore A[G̃o, G̃o′ ] is not S-consistent. By
Lemma 6.4.12 this contradicts (o, o′) ∈ AI , o ∈ G̃Io , and o′ ∈ G̃Io′ . The case where E = ∀A−.D′ is handled
in a similar way. Suppose E = ∃L.D′. Since D ∈ cc(G̃o), there is a F̂0 ∈ ccs(G̃a, L) such that D′ ∈ F̂0.
Therefore G̃I ⊆ (∃L.F̂0)I ⊆ (∃L.D′)I , which together with o ∈ G̃Io contradicts o 6∈ (∃L.D′)I . Suppose
E = ∃≥mL. Since D ∈ cc(G̃o), T̃ contains an assertion G̃o ¹̇ ∃≥mmaxL, where mmax ≥ m. From o 6∈ ∃≥mLI

it follows that o 6∈ ∃≥mmaxLI , which contradicts the fact that I satisfies all assertions in T̂ . The case where
E = ∃≤nL is handled in a similar way.

6.4.4 System of Inequalities Corresponding to a Schema

We are now ready to define a system of linear inequalities whose solutions of a certain type are related to
the finite models of the schema.

Definition 6.4.14 Let S be a schema and S̃ = (C,A, G̃, Q̃, T̃ ) its biexpansion. Then the system ΨS = (V,D)
corresponding to S is defined as follows:

• V := VG̃ ∪ VQ̃ is a set of unknowns, where

– VG̃ := {Var(G̃) | G̃ ∈ G̃} and

– VQ̃ := {Var(Q̃) | Q̃ ∈ Q̃}.
• D is a set of homogeneous linear inequalities over the unknowns in V constituted by the following

inequalities:

– for each G̃ ∈ G̃, for each A ∈ A, for each F̂ ∈ ccs(G̃, A) the inequality

Var(G̃) ≤
∑

A[G̃,G̃2]∈Q̃ | cc(G̃2)=F̂

Var(A[G̃, G̃2]). (6.6)

– for each G̃ ∈ G̃, for each A ∈ A, for each F̂ ∈ ccs(G̃, A−) the inequality

Var(G̃) ≤
∑

A[G̃1,G̃]∈Q̃ | cc(G̃1)=F̂

Var(A[G̃1, G̃]). (6.7)

– for each bicompound assertion (G̃ ¹̇ ∃≥mL) ∈ T̃ the inequality

m ·Var(G̃) ≤ S(G̃, L), (6.8)

where

S(G̃, A) :=
∑

A[G̃,G̃2]∈Q̃
Var(A[G̃, G̃2])

S(G̃, A−) :=
∑

A[G̃1,G̃]∈Q̃
Var(A[G̃1, G̃]).

– for each bicompound assertion (G̃ ¹̇ ∃≤nL) ∈ T̃ the inequality

n ·Var(G̃) ≥ S(G̃, L). (6.9)
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Where not specified otherwise we assume ΨS = (V,D). The following lemma gives a double exponential
upper bound for the construction of ΨS .

Lemma 6.4.15 The system of inequalities ΨS can be constructed in time which is at most double exponential
in |S|.

Proof. By Lemma 6.4.11 the biexpansion S̃ of S can be constructed in double exponential time in |S|, and
therefore it has also at most double exponential size in |S|. ΨS contains at most one inequality for each
bicompound assertion in S̃, and each such inequality contains a number of unknowns that is smaller than
the number of bicompound classes and bicompound attributes together. Therefore |ΨS | is at most quadratic
in |S̃| and it can also be effectively constructed in time that is quadratic in |S̃|. Summing up we obtain that
ΨS can be constructed in at most double exponential size in |S|.

6.4.5 Characterization of Finite Class Consistency

In order to establish a correspondence between the existence of particular solutions of ΨS and the existence
of models of a schema, consider a simple normalized LCNI-schema S := (C,A, T ), where A contains only
one attribute name A. We prove a preliminary result which gives a sufficient condition for an interpretation
I over C and A to be a model of S. Let S̃ = (C,A, G̃, Q̃, T̃ ) be the biexpansion of S and assume G̃ :=
{G̃11, . . . , G̃1K1 , . . . , G̃H1, . . . , G̃HKH}, where cc(G̃hk) = cc(G̃hk′) =: F̂h, for h ∈ {1, . . . , H}, and k, k′ ∈
{1, . . . ,KH}. The bicompound attribute A[G̃hk, G̃h′k′ ] is abbreviated with Ãhk,h′k′ . We also use g̃hk as an
abbreviation for Var(G̃hk), and ãhk,h′k′ as an abbreviation for Var(Ãhk,h′k′). With IG we denote the set
{(h, k) | h ∈ {1, . . . , H}, k ∈ {1, . . . ,Kh}} of all pairs of indexes of bicompound classes in G̃, and with IQ we
denote the set of quadruples of indexes (h, k, h′, k′) of bicompound attributes in Q̃, i.e. IQ := {(h, k, h′, k′) |
Ãhk,h′k′ ∈ Q̃}. Let ΨS be the system of linear inequalities obtained from S̃ as specified in Section 6.4.4.

Lemma 6.4.16 Let Ḡ := {ḡhk | (h, k) ∈ IG} and Q̄ := {āhk,h′k′ | (h, k, h′, k′) ∈ IQ} be sets of nonnegative
integer numbers such that ΨS is satisfied when we substitute ḡhk for g̃hk and āhk,h′k′ for ãhk,h′k′ . A finite
model I of S̃ exists where

1. ]G̃Ihk = ḡhk, for (h, k) ∈ IG, and

2. ]ÃIhk,h′k′ = āhk,h′k′ , for (h, k, h′, k′) ∈ IQ,

if and only if
āhk,h′k′ ≤ ḡhk · ḡh′k′ , for (h, k, h′, k′) ∈ IQ (6.10)

Proof. “⇐” Suppose condition 6.10 holds. We exhibit a finite model I := (∆I , ·I) of S̃ with ḡhk instances
of G̃hk, for (h, k) ∈ IG, and āhk,h′k′ instances of Ãhk,h′k′ , for (h, k, h′, k′) ∈ IQ. For each (h, k) ∈ IG such that
ḡhk 6= 0, we introduce ḡhk symbols b1hk, . . . , b

ḡhk

hk . Let ∆I be the set of all symbols bjhk. For h ∈ {1, . . . ,H} we
define F̂ Ih := {bjhk | k ∈ {1, . . . ,Kh}, j ∈ {1, . . . , ḡhk}}. Note that this is always possible, since the extensions
of compound classes are always disjoint, and since F̂h = cc(G̃hk) by definition. Figure 6.2 specifies how to
assign to each bicompound class G̃hk a set Ext(G̃hk) ⊆ F̂ Ih and to A a set Ext(A) ⊆ ∆I×∆I of pairs of
elements of ∆I . We show that by putting G̃Ihk := Ext(G̃hk) and ÃIhk,h′k′ := Ext(A)∩ (Ext(G̃hk)×Ext(G̃hk))
we indeed obtain a finite interpretation which is also a model of S̃.

In the rest of the proof, when we refer to a step, we implicitly mean a step in the construction of
Figure 6.2. In order to show that I is a model of S̃, we have to ensure the following:

(a) Each pair in Ext(A) gets assigned an element of ∆I to both of its components.

(b) For each bicompound class G̃ ∈ GC,A \ G̃, it holds that G̃I = ∅, and for each bicompound attribute
Q̃ ∈ (A×GC,A×GC,A) \ Q̃, it holds that Q̃I = ∅.

(c) There is no couple of pairs in Ext(A) that get assigned the same pair of elements of ∆I to both
components.
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1. 1. For each bicompound class G̃ ∈ GC,A \ G̃, let Ext(G̃)← ∅.
2. For each bicompound attribute Q̃ ∈ A×GC,A×GC,A \ Q̃, let Ext(Q̃)← ∅.
3. For each (h, k) ∈ IG, if ḡhk = 0, then let Ext(G̃hk)← ∅, else let Ext(G̃hk)← {b1

hk, . . . , b
ḡhk
hk }.

4. For each (h, k, h′, k′) ∈ IQ, if āhk,h′k′ = 0, then Ext(Ãhk,h′k′)← ∅, else introduce āhk,h′k′ pairs, assign

to each such pair p a label lab(p) := (h, k, h′, k′), and let Ext(Ãhk,h′k′)← {p | lab(p) = (h, k, h′, k′)}.
Let Ext(A) be the set of all introduced pairs.

2. 1. Sort the elements of Ext(A) so that

• elements with different labels are sorted with respect to the usual lexicographic ordering on their
labels, and

• elements with the same label are sorted arbitrarily.

2. For each (h, k) ∈ IG, if ḡhk 6= 0 then

1. Mark all elements p ∈ Ext(A) with lab(p) = (h, k, h′, k′) for some (h′, k′) ∈ IG. Let M be the
number of marked elements and let pm, for m ∈ {1, . . . , M}, denote the m-th marked element.

2. For m← 1 to M (for each marked element) do
assign bi

hk to the first component of pm, where
i = 1 + (m− 1) mod ḡhk.

3. Un-mark all elements of Ext(A);

3. 1. Sort the elements of Ext(A) so that

• elements with different labels are sorted with respect to the lexicographic ordering on their labels
obtained by considering the components of the label in the following order: 3, 4, 1, 2, and

• elements with the same label are sorted in such a way that elements with the same first component
(according to step 2.2.2) are contiguous.

2. For each (h′, k′) ∈ IG, if ḡh′k′ 6= 0 then

1. Mark all elements p ∈ Ext(A) with lab(p) = (h, k, h′, k′) for some (h, k) ∈ IG. Let M be the
number of marked elements and let pm, for m ∈ {1, . . . , M}, denote the m-th marked element.

2. For m← 1 to M (for each marked element) do
assign bi

h′k′ to the second component of pm, where
i = 1 + (m− 1) mod ḡh′k′ .

3. Un-mark all elements of Ext(A).

Figure 6.2: Construction of a finite model of S̃
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(d) I satisfies all assertions in T̃ .

With respect to case (a), since condition 6.10 holds, if an unknown ḡhk = 0, then also āhk,h′k′ = āh′k′,hk =
0 for all (h′, k′) ∈ IG and in step 1.4 no pairs labeled with (h, k, h′, k′) or (h′, k′, h, k) are introduced. This
means that each pair in Ext(A) gets marked exactly once in step 2.2.1 and exactly once in step 3.2.1 and
therefore gets assigned in steps 2.2.2 and 3.2.2 an instance of some bicompound class to the first and the
second component.

With respect to case (b), we first show that for each bicompound class G̃hk ∈ G̃, the elements assigned
to Ext(G̃hk) in step 1.3 are indeed instances of G̃hk in I. If ḡhk = 0 we are done, since no elements are
assigned to Ext(G̃hk). If ḡhk > 0 we have to show that for j ∈ {1, . . . , ḡhk} the following holds: (b1) for
every compound class F̂ ∈ ccs(G̃hk, A), there is an instance c ∈ F̂ I such that (bjhk, c) ∈ Ext(A), and (b2) for
every compound class F̂ ′ ∈ ccs(G̃hk, A

−), there is an instance c′ ∈ F̂ ′I such that (c′, bjhk) ∈ Ext(A). With
respect to case (b1), let F̂h0 ∈ ccs(G̃hk, A). Since Ḡ and Q̄ satisfy the inequalities 6.6, in step 1.4 at least
ḡhk pairs labeled with (h, k, h0, k

′) for some k′ are introduced. In step 2.1 these pairs are sorted such that
they are contiguous and in the iteration of step 2.2.1 relative to (h, k) they are all marked. Therefore, in
step 2.2.2, since the elements b1hk, . . . , b

ḡhk

hk are assigned to the first component of consecutive tuples, each bjhk

gets assigned to the first component of a tuple labeled with (h, k, h0, k
′). In step 3.2.2 the second components

of these tuples get assigned elements of Ext(G̃h′0k) and these are instances of F̂h0 by definition. Case (b2) can
be shown in a similar way. This, together with the fact that all elements in ∆I get assigned to Ext(G̃hk) for
exactly one (h, k) ∈ IG and that bicompound classes are pairwise disjoint, implies that Ext(G̃) = G̃I for all
bicompound classes in GC,A. With respect to bicompound attributes, in steps 2.2.2 and 3.2.2 a pair labeled
with (h, k, h′, k′) gets assigned to the first component only elements of Ext(G̃hk) = G̃Ihk and to the second
component only elements of Ext(G̃h′k′) = G̃Ih′k′ . This implies that Ext(Q̃) = Q̃I for every bicompound
attribute Q̃. Step 1.1 ensures for each bicompound class G̃ ∈ GC,A \ G̃, that Ext(G̃) = G̃I = ∅. Similarly,
step 1.2 ensures for each bicompound attribute Q̃ ∈ (A×GC,A×GC,A) \ Q̃, that Ext(Q̃) = Q̃I = ∅.

With respect to case (c), notice that in step 2.2.2 an element bjhk can be assigned to the first component
of a pair p only if lab(p) = (h, k, h′, k′) for some (h′, k′) ∈ IG. A similar observation holds for the second
component of p. This means that two pairs of Ext(A) can never get assigned the same pair of components
if their labels are different. Therefore it is sufficient to show that for every (h, k, h′, k′) ∈ IQ, two pairs with
the same label (h, k, h′, k′) cannot get assigned the same pair of components. The number of pairs labeled
with (h, k, h′, k′) is equal to āhk,h′k′ . After the iteration of step 2.2 relative to the indexes (h, k), the largest
group of pairs that get assigned the same element of Ext(G̃hk) to their first component has at most

ρ1 = dāhk,h′k′/ḡhke ≤ ḡh′k′

elements, where the inequality holds because of condition 6.10. Analogously, after the iteration of step 3.2
relative to the indexes (h′, k′), the largest group of pairs that get assigned the same set of elements of
Ext(G̃hk) and Ext(G̃h′k′) to the first and second components respectively, has at most

ρ2 = dρ1/ḡh′k′e ≤ 1

elements.

With respect to case (d), consider an assertion (G̃hk ¹̇ ∃≥mA) ∈ T̃ . If ḡhk = 0, then in step 1.3
Ext(G̃hk) =: G̃Ihk is set to ∅, and the assertion is trivially satisfied. Otherwise, since ḡhk and all āhk,h′k′

satisfy inequalities 6.8 of ΨS , it holds that

m ≤



∑

(h,k,h′,k′)∈IQ

āhk,h′k′

ḡhk

 ≤




∑

(h,k,h′,k′)∈IQ

āhk,h′k′

ḡhk



.
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On the other hand it is easy to see that for each element oj
hk of Ext(G̃hk), the number of pairs of Ext(A)

that in step 2.2.2 get assigned oj
hk to the first component is

either



∑

(h,k,h′,k′)∈IQ

āhk,h′k′

ḡhk

 or




∑

(h,k,h′,k′)∈IQ

āhk,h′k′

ḡhk



,

which shows that I satisfies the assertion. A similar argument shows that also assertions of the form
G̃hk ¹̇ ∃≤nA, or G̃hk ¹̇ ∃≥mA−, or G̃hk ¹̇ ∃≤nA− in T̃ are satisfied in I.

“⇒” Notice that the construction of the model must guarantee that AI is a set and not a multiset,
i.e. that no two pairs of Ext(A) get assigned the same first and second components. Suppose that for some
(h, k, h′, k′) ∈ IQ condition 6.10 does not hold, i.e.

āhk,h′k′ > ḡhk · ḡh′k′ . (6.11)

Assume there is a finite model I of S̃ with ḡhk instances of G̃hk, ḡh′k′ instances of G̃h′k′ , and āhk,h′k′ different
pairs in P I whose first component is an instance of G̃hk and whose second component is an instance of G̃h′k′ .
Since the number of different pairs that can be formed from ḡhk different first components and ḡh′k′ different
second components is ḡhk · ḡh′k′ , if condition 6.11 holds, at least two pairs in P I must be equal, contradicting
the assumption that such a model I exists.

Similarly as for primitive LUNI-schemata, the solutions of ΨS that correspond to finite models of S
can now be characterized as those that are WS̃ -acceptable (according to Definition 6.1.3) with respect to a
particular binary relation WS̃ . Let

WS̃ := {(Var(Q̃),Var(G̃)) | Q̃ = A[G̃, G̃2] ∨ Q̃ = A[G̃1, G̃]}.

Acceptable solutions of ΨS are defined exactly as in Definition 6.2.12, considering the new definition of
relation WS̃ .

We are now ready to prove the main result concerning finite consistency of a class in a free LCNI-schema.

Theorem 6.4.17 Let S := (C,A, T ) be an LCNI-schema, S̃ := (C,A, G̃, Q̃, T̃ ) its expansion, C ∈ C a class
name, and ΨS := (V,D) the system of inequalities derived from S. Then C is finitely consistent in S if and
only if ΨC

S := (V,DC), where

DC := D
⋃





∑

G̃∈G̃ | C∈cc(G̃)

Var(G̃) ≥ 1





admits an acceptable nonnegative integer solution.

Proof. “⇐” Let Sol be an acceptable nonnegative integer solution. For each bicompound class and
bicompound attribute X̃, let Sol(X̃) denote the value assigned by Sol to Var(X̃).

We can assume that for every bicompound attribute A[G̃1, G̃2] ∈ Q̃ the following condition holds:

Sol(A[G̃1, G̃2]) ≤ Sol(G̃1) ·Sol(G̃2). (6.12)

In fact, since Sol is an acceptable solution, if Sol(G̃1) = 0 or Sol(G̃2) = 0, then Sol(A[G̃1, G̃2]) = 0 holds.
Assume now that Sol(G̃1) 6= 0 and Sol(G̃2) 6= 0 and condition 6.12 does not hold for some bicompound
attribute A[G̃1, G̃2]. Then it is sufficient to multiply S to a suitably large integer constant to obtain another
integer solution S ′ of ΨC

S such that condition 6.12 is satisfied for A[G̃1, G̃2]. Since the only non-homogeneous
inequality of ΨC

S is positive, part 1 of Lemma 6.1.2 guarantees that S ′ is indeed a solution of ΨC
S .

For every attribute name A ∈ A, let SA = (C,A, TA) be the schema where TA is obtained from T by
removing all assertions involving an attribute different from A. Let S̃ be the biexpansion of S and S̃A the
biexpansion of SA. Since TA ⊆ T , each inequality of ΨSA

can be obtained from an inequality of ΨS by
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removing the unknowns corresponding to bicompound classes and bicompound attributes present in S̃A but
not present in S̃. Therefore Sol is also a solution of ΨSA

if it is extended by assigning the value 0 to all
additional unknowns in ΨSA .

Lemma 6.4.16 ensures that for every attribute A ∈ A, a finite model IA of S̃A exists, with Sol(Q̃)
instances of Q̃, for every S-consistent bicompound attribute Q̃ corresponding to A, and Sol(G̃) instances of
G̃, for every S-consistent bicompound class G̃ of S̃. A finite model I of S̃ can easily be obtained by merging
the models IA for all attributes A and unifying the sets of instances of each bicompound class. This can
in fact be done since all models of the biexpansions S̃A are constructed from the same solution of ΨC

S and
therefore have the same number of instances for each bicompound class. By Lemma 6.4.13, I is also a model
of S. Moreover, since ]G̃I = Sol(G̃) for every bicompound class G̃ and since

∑
G̃|C∈cc(G̃)

Sol(G̃) ≥ 1, by
applying Lemma 6.4.9 we have that

CI =
⋃

G̃|C∈cc(G̃)

G̃I 6= ∅.

We can conclude that C is finitely consistent in S.
“⇒” Suppose a finite model I of S exists, where CI 6= ∅. Let Sol be the solution that assigns to

each unknown Var(X̃) the number of instances in I of the corresponding bicompound class or bicompound
attribute X̃, i.e. Sol(X̃) := ]X̃I . Sol is obviously integer and nonnegative. Moreover it is acceptable, since if
a bicompound attribute A[G̃1, G̃2] has a nonempty extension, then both G̃1 and G̃2 must have a nonempty
extension, and therefore both S(G̃1) 6= 0 and S(G̃2) 6= 0.

We show that S satisfies all inequalities in ΨC
S . With respect to inequalities 6.6, let G̃ ∈ G̃, A ∈ A

and F̂ ∈ ccs(G̃, A). Since by definition G̃I ⊆ (∃A.F̂ )I , for each instance o of G̃ in I there must be a pair
(o, o′) ∈ AI such that o′ is an instance of F̂ in I. Therefore, the number of different pairs (o1, o2) ∈ AI such
that o1 ∈ G̃I and o2 ∈ G̃I2 for some bicompound class G̃2 with cc(G̃2) = F̂ must be greater or equal to the
number of instances of G̃ in I, which shows that inequalities 6.6 are satisfied. With respect to inequalities 6.7
we can proceed in a similar way. With respect to inequalities 6.8, let (G̃ ¹̇ ∃≥mA) ∈ T̃ . Since I is a model
of S, by Lemma 6.4.13, it is also a model of S̃ and therefore satisfies G̃ ¹̇ ∃≥mA. It follows that for each
instance p of G̃ in I there must be k ≥ m different pairs (o, o1), . . . , (o, ok) ∈ P I . Therefore, the number of
pairs (o′, o′′) ∈ AI such that o′ ∈ G̃I must be at least m times the number of instances of G̃ in I, which shows
that the inequality 6.8 corresponding to the above assertion is satisfied. With respect to the inequalities
corresponding to a bicompound assertion involving an inverse attribute and with respect to inequalities 6.9
we can proceed in a similar way. Finally, since CI 6= ∅, there must be at least one bicompound class G̃ such
that C ∈ cc(G̃) and G̃I 6= ∅. This shows that also the additional inequality in ΨC

S is satisfied.

Since by Proposition 6.1.6 we can verify the existence of acceptable nonnegative integer solutions for a
system of inequalities, we can make use of this result to effectively decide finite class consistency in free
LCNI- schemata.

6.4.6 Upper Bounds for Finite Model Reasoning

Summarizing the results of this section and using Proposition 6.1.6 we obtain the following theorems.

Theorem 6.4.18 Finite class consistency S 6|=f E ≡ ⊥ in free LCNI-schemata can be decided in worst
case deterministic double exponential time in |S|+ |E|.

Proof. If E is not a class name, we construct the schema S ′ := (C′,A, T ′), where C′ := C ∪ {C} with C 6∈ C
and T ′ := T ∪ {C ¹̇ E,E ¹̇ C}. It is easy to see that S and S ′ are equivalent, and that E is finitely
consistent in S if and only if C is finitely consistent in S ′. Since |S ′| is linear in |S| + |E|, it is indeed
sufficient to consider the case where E is a class name C.

By Lemma 6.4.1, we can construct a normalized schema S ′ equivalent to S such that |S ′| is linear in
|S|. By Lemma 6.4.15, we can construct the corresponding system ΨC

S′ of linear inequalities in time at most
double exponential in |S| and therefore in |S ′|. By Theorem 6.4.17, C is finitely consistent in S ′, and by
Lemma 2.3.7 in S, if and only if ΨC

S′ admits an acceptable nonnegative integer solution. By Proposition 6.1.6,
the existence of such solution can be verified in polynomial time in |ΨC

S′ |, i.e. in worst case double exponential
time in |S|.
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Theorem 6.4.19 Finite class subsumption S |=f E1 ¹ E2 in free LCNI-schemata can be decided in worst
case deterministic double exponential time in |S|+ |E1|+ |E2|.

Proof. Since LCNI contains general negation, for each LCNI-class expression E, ¬E is also an LCNI-class
expression. By Proposition 2.3.2, S |=f E1 ¹ E2 if and only if S |=f E1 u¬E2 ≡ ⊥, and by Theorem 6.4.18,
this can be decided in worst case deterministic double exponential time in |S|+ |E1|+ |E2|.

6.5 Discussion

The reasoning technique proposed in Section 6.2 provides a tight upper bound for class consistency in
primitive LUNI-schemata. In fact, the method can easily be extended to handle a wider class of schemata,
in which a negated class name and, more in general, a generic boolean combination of class names may
appear on the left hand side of assertions. In particular, this makes it possible to deal also with schemata
containg definitions of classes that are boolean combinations of class names, and reason on such schemata
in deterministic exponential time.

The problematic constructor, which cannot be handled correctly by means of the expansion, is essentially
qualifed existential quantification. We have seen that we can nevertheless reason on schemata in which such
constructor may appear on the right hand side of a schema assertions, by paying the price of an additional
exponential increase in size caused by the biexpansion. In fact, once we allow for qualified existential
quantification, by the above observation and by Lemma 6.4.1, we can deal with arbitrary free assertions.

The method described in Section 6.4 can also be extended to schemata containing qualified number
restrictions. To this end it is necessary to refine the biexpansion of the schema, since the differentiation
introduced by bicompound concepts as specified in Definition 6.4.8 is too coarse. In fact, qualified number
restrictions force us to make a separation in bicompound classes based not only on the existence but also
on the number of links of a certain type. It turns out that it is in fact sufficient to consider only intervals
of numbers of links, where the ranges of these intervals are given by the numbers that effectively appear in
the schema. In this way it is still possible to keep the size of the resulting “extended” biexpansion doubly
exponential in the size of the schema. The resulting “extended” bicompound assertions can then again be
coded by means of a system of linear inequalities, and we can prove the counterpart of Theorem 6.4.17 for
the system derived from a free LCQI-schema.

The complexity gap between EXPTIME-hardness and the deterministic double exponential time algo-
rithm for finite model reasoning in free LCNI- and LCQI-schemata is still open, however. A significant
extension of the method would be provided by the possibility to handle, besides inverse, also other construc-
tors on attributes, and especially transitive closure. This would make it possible to exploit reification of
attributes and therefore to reason with respect to finite models in free LT −-schemata (not containing the
repeat constructor).



Appendix A

Finite Automata on Infinite Objects

In this chapter we define the fundamental notions about finite automata on finite and infinite words and on
infinite trees.

A.1 Sequential Automata

Sequential (finite state) automata, which accept regular sets of finite words over a specified alphabet, are
omnipresent in Computer Science [96, 113].

Definition A.1.1 A sequential automaton is a tuple A := (Σ, S, δ, s0, F ), where

• Σ is a finite set of symbols called the alphabet of the automaton.

• S is a finite set of states.

• δ : S×Σ → 2S is the transition relation that assigns to each state and letter the set of successor states.

• s0 ∈ S is the initial state.

• F ⊆ S is the set of final states.

A is deterministic if the transition relation δ is deterministic, i.e ]δ(s, a) ≤ 1 for all s ∈ S and all a ∈ Σ. δ
is extended to Σ∗ as follows (the empty string is denoted with ε):

δ(s, ε) := {s}
δ(s, wa) := {t | t ∈ δ(s′, a) for some s′ ∈ δ(s, w)}.

A accepts a finite word w ∈ Σ∗ if δ(s0, w) ∩ F 6= ∅.

Büchi sequential automata are finite automata that have the same form as sequential automata, but use
a different acceptance condition, since they accept infinite words rather than finite ones. They have been
introduced by Büchi in [41], who was motivated by decision problems in mathematical logic. They have been
shown to provide a normal form for certain monadic second order theories, and the decidability for these
theories could be reduced to the decidability of the emptiness problem for Büchi automata. These results
were then generalized by Rabin [132, 133] using automata on infinite trees.

We denote the set of infinite words over a finite alphabet Σ with Σω. For an infinite word w ∈ Σω, inf (w)
is the set of letters that appear infinitely often in w. Note that since Σ is finite, inf (w) is nonempty.

Definition A.1.2 A Büchi sequential automaton is a tuple B := (Σ, S, δ, s0, F ), where Σ, S δ, s0, and F
are as in Definition A.1.1.

A run of B over an infinite word w := w1w2 · · · ∈ Σω is an infinite word ws := s′0s
′
1 · · · ∈ Sω, where

s′0 = s0 and s′i ∈ δ(s′i−1, wi), for i ≥ 1. A run ws of B over w is accepting if inf (ws) ∩ F 6= ∅. B accepts an
infinite word w ∈ Σω if it has an accepting run over w.

121



122 APPENDIX A

Observe that the acceptance condition in a Büchi sequential automaton only cares about those states
that occur infinitely often in a run, while nothing can be said about states that should appear finitely often.

The class of languages accepted by Büchi automata, called ω-regular languages, is closed under boolean
operations (the closure under complement is extremely nontrivial [41]) and under concatenation of finite with
infinite words. The class of ω-regular languages has also a natural definition in terms of basic operations on
finite and infinite words, and corresponds in a precise sense to the class of regular languages on finite words.

However, if we require the transition relation of the automaton to be deterministic, Büchi acceptance
condition is not sufficient to obtain the whole class of ω-regular languages (see for example [157]). In fact,
deterministic Büchi automata are not closed under complement. This led to the introduction of variants of
Büchi automata, in which the acceptance condition is changed and in which the restriction to deterministic
transition relations represents no limitation in expressivity.

The following type of automata was introduced by Rabin [131]. The essential difference with respect to
Büchi automata is that one can talk also about states that should occur only finitely often in an accepting
run.

Definition A.1.3 A Rabin sequential automaton is a tuple R := (Σ, S, δ, s0,F), where Σ, S δ, and s0, are
as in Definition A.1.1, and F ⊆ 2S × 2S is a set of accepting pairs.

A run ws of R over w is accepting if for some (X,Y ) ∈ F we have inf (ws)∩X = ∅ and inf (ws)∩ Y 6= ∅.
R accepts an infinite word w ∈ Σω if it has an accepting run over w.

Büchi automata are just special cases of Rabin automata (with F := {(∅, F )}, using the notation of
the respective definitions). Nevertheless Rabin sequential automata are not more powerful than Büchi
sequential automata, since they also accept the class of ω-regular languages1. The usefulness of Rabin
automata follows from the important determinization theorem by McNaughton [117], which implies that
already deterministic Rabin sequential automata accept all ω-regular languages. While the determinization
construction of McNaughton is rather complicated, an elegant essentially optimal construction was given in
[135].

A.2 Tree Automata

For x, y ∈ {1, . . . , n}∗ we say that x is a prefix of y if there is a w ∈ {1, . . . , n}∗ such that y = xw. The
common prefix of x and y is the longest prefix of both x and y. The following definition shows that for an
infinite tree in which each node has exactly n successors the set of nodes can be identified with the elements
of {1, . . . , n}∗.
Definition A.2.1 An (infinite) n-ary tree T over an alphabet Σ is a labeling of the set {1, . . . , n}∗ by
elements of Σ, i.e. T : {1, . . . , n}∗ → Σ. An element of {1, . . . , n}∗ is a node of the tree. Let x, y ∈ {1, . . . , n}∗.

• If x = ε, then x is the root of the tree.

• If y = xi for some i ∈ {1, . . . , n}, then x is the predecessor of y and y is the i-th successor of x. We
call the predecessor of x also 0-th neighbor of x, and the i-th successor of x also i-th neighbor of x.

• If x is a prefix of y, then x precedes y and y succeeds x, denoted with x ¹ y. x properly precedes y and
y properly succeeds x, denoted with x ≺ y, if x ¹ y and x 6= y.

• A path starting at x is an infinite set {x0, x1, . . .} of nodes such that x0 = x and xi+i is a successor of
xi, for all i ≥ 0.

For a tree T : {1, . . . , n}∗ → Σ and a path p, inf (T, p) is the set of labels that appear infinitely often on
p.

All types of automata on words introduced in Section A.1 can be generalized to trees: On a given n-
ary tree T , the automaton starts its computation in an initial state at the root ε of the tree, and then
simultaneously works down the paths of the tree level by level. The transition relation is therefore extended
by specifying for the value of T in a certain node x and for each successor xi of x, the state assumed by the
automaton in xi. We give here only the definitions of automata on infinite trees, which are the only ones
that are used in this thesis.

1This is not the case for tree automata, where Rabin automata are strictly more powerful, as discussed in Section A.2.
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Definition A.2.2 A Büchi tree automaton on n-ary trees is a tuple Bt := (Σ, S, δ, S0, F ), where

• Σ is the alphabet of the automaton.

• S is a finite set of states.

• δ : S × Σ → 2Sn

is the transition relation that assigns to each state and letter the set of possible
n-tuples of successor states.

• S0 ⊆ S is the set of initial states.

• F ⊆ S is the set of final states.

A run of Bt over an (infinite) n-ary tree T : {1, . . . , n}∗ → Σ is an n-ary tree Ts : {1, . . . , n}∗ → S, where
Ts(ε) ∈ S0 and for every x ∈ {1, . . . , n}∗, we have that (Ts(x1), . . . , Ts(xn)) ∈ δ(Ts(x), T (x)). A run Ts of
Bt over T is accepting if for every infinite path p starting at ε we have inf (Ts, p) ∩ F 6= ∅.

Bt accepts an infinite tree T if it has an accepting run over T .

Definition A.2.3 A Rabin tree automaton on n-ary trees is a tuple Rt := (Σ, S, δ, S0,F), where Σ, S δ,
and S0, are as in Definition A.2.2, and F ⊆ 2S × 2S is a set of accepting pairs.

A run Ts of Rt over T is accepting if for every infinite path p starting at ε there is some (X,Y ) ∈ F such
that inf (Ts, p) ∩X = ∅ and inf (Ts, p) ∩ Y 6= ∅. Rt accepts an infinite tree T if it has an accepting run over
T .

These automata have been introduced and studied by Rabin [132, 133], and have been used to show one
of the most profound decidability results in logic, namely the decidability of SnS, the monadic second order
theory of n successors. Based on this result, a large number of problems in logic (including satisfiability in
most propositional temporal and dynamic logics) could be shown to be decidable, by reducing them to SnS
(see for example [81]).

Again, Büchi tree automata are a special case of Rabin tree automata. But different from the case of
infinite words, Rabin tree automata are strictly more powerful than Büchi tree automata (see for example
[157]).

The difference in expressivity is also reflected in a difference in the complexity of the emptiness problem
for these automata, which has first been shown decidable in [133].

Theorem A.2.4 (Vardi and Wolper [165]) The emptiness problem for Büchi tree automata is logspace
complete for PTIME.

Theorem A.2.5 (Emerson and Jutla [72]) The nonemptiness problem for Rabin tree automata is NP-
complete. Moreover, there is an algorithm that, given a Rabin tree automaton Rt with n states and m
accepting pairs, decides if the set of trees accepted by Rt is nonempty in time that is polynomial in n and
exponential in m.

The latter result, together with Safra’s construction for the determinization of sequential Büchi au-
tomata [135], has been proved fundamental for establishing tight upper bounds for satisfiability in a series
of propositional and temporal logics whose decision procedures are based on automata on infinite trees
[151, 164, 147, 152].
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Appendix B

Propositional Dynamic Logics

Propositional Dynamic Logics (PDLs) have been introduced by Fischer and Ladner in [80] as a formal
system for reasoning about computer programs and successively have been studied extensively and extended
in several ways (see [107]).

B.1 Syntax and Semantics of PDLs

Syntactically, a PDL is constituted by expressions of two sorts: programs and formulae. Programs and
formulae are built by starting from a set Prog of program names and a set Prop of propositional letters and
applying suitable operators. We denote propositional letters with p, arbitrary formulae with f , program
names with a, and arbitrary programs with r, all possibly with subscripts. We focus on the propositional
dynamic logic cpdl [80], whose abstract syntax is as follows:

f −→ > | ⊥ | p | f1 ∧ f2 | ¬f | 〈r〉f
r −→ a | r1 ∪ r2 | r1; r2 | r∗ | r− | f?.

The propositional dynamic logic pdl is obtained from cpdl by eliminating the rule for converse programs.
We adopt the usual abbreviations for the other propositional connectives, and we identify a formula ¬¬f

with f . We use [r]f in place of ¬〈r〉¬f . With atomic programs, for which we use the letter b, we denote
either program names or program names to which the converse operator is applied1. A direct atomic program
is simply a program name and a converse atomic program is a program name to which the converse operator
is applied. Prog− is the set of negative atomic programs. Formulae of the form 〈r〉f are called eventualities,
and programs of the form f? are called tests.

In the following we assume without loss of generality that the converse operator is applied only to program
names. This is justified by the following equivalences which are a consequence of the semantics given below:

(r1; r2)− ≡ r−1 ; r−2 (r∗)− ≡ (r−)∗

(r1 ∪ r2)− ≡ r−1 ∪ r−2 (f?)− ≡ f?.

The semantics of PDLs (see for example [107]) is based on the notion of (Kripke) structure, which is
defined as a triple M := (WM,RM,ΠM), where WM is a non-empty (possibly infinite) set of states (or
worlds), RM : Prog → 2W

M×WM
is a transition relation that interprets program names, and ΠM : WM →

2Prop assigns to each state the atomic propositions that are satisfied in that state. The transition relation
RM can then be extended inductively to all programs as follows:

RM(r1 ∪ r2) := RM(r1) ∪RM(r2)
RM(r1; r2) := RM(r1) ◦ RM(r2)
RM(r−) := {(u, u′) ∈ WM ×WM | (u, u′) ∈ RM(r)}
RM(r∗) := (RM(r))∗

RM(f?) := {(u, u) ∈ WM ×WM | M, u |= f},
1For pdl atomic programs and program names coincide.
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where satisfaction of a formula f in a state u, denoted with M, u |= f , is defined inductively as follows:

• For p ∈ Prop, M, u |= p iff p ∈ ΠM(u).

• For all u ∈ WM, M, u |= >.

• For no u ∈ WM, M, u |= ⊥.

• M, u |= f1 ∧ f2 iff M, u |= f1 and M, u |= f2.

• M, u |= ¬f iff not M, u |= f .

• M, u |= 〈r〉f iff there exists a state u′ such that (u, u′) ∈ RM(r) and M, u′ |= f .

If the transition relation is required to be a function that assigns to each state and program a unique suc-
cessor state, then we are dealing with the deterministic variants of PDL, called dpdl and cdpdl respectively
[23, 165].

A structure M is called a model of a formula f if there exists a state u ∈ WM such that M, u |= f . A
formula f is satisfiable if there exists a model of f , unsatisfiable otherwise, and it is valid in structure M,
if for all u ∈ WM, M, u |= f . We call axioms, formulae that are assumed to be valid. Formally, a structure
M is a model of an axiom f , if f is valid in M2. An axiom is satisfiable, if it has a model. A structure M
is a model of a finite set of axioms Γ, if M is a model of all axioms in Γ. A finite set of axioms is satisfiable
if it has a model. We say that a finite set of axioms Γ logically implies a formula f , written Γ |= f , if f is
valid in every model of Γ.

Observe that satisfiability of a formula f as well as satisfiability of a finite set of axioms Γ can be
reformulated by means of logical implication as ∅ 6|= ¬f and Γ 6|= ⊥, respectively.

The following theorem shows that axioms do not add expressivity to PDLs since they can be internalized
in formulae. Therefore, when reasoning in PDLs it is sufficient to consider the problem of (un)satisfiability
of a single PDL formula.

Theorem B.1.1 (Kozen and Tiuryn [107]) Let Γ be a finite set of cpdl-axioms, and f a cpdl-formula.
Then Γ |= f if and only if the cpdl-formula

¬f ∧ [(b1 ∪ . . . ∪ bh)∗]Γ′

is unsatisfiable, where {b1, . . . , bh} is the set Prog∪Prog− of (direct and converse) atomic programs occurring
in Γ ∪ {f} and Γ′ is the conjunction of all axioms in Γ.

This result exploits the power of program constructs (union, reflexive transitive closure) and the connected
model property3 of PDLs in order to represent axioms (valid formulae). An analogous result holds also for the
most common extensions of cpdl. For the logics without converse operator, in the analogue of Theorem B.1.1
the formula to check for unsatisfiability is

¬f ∧ [(a1 ∪ . . . ∪ ah)∗]Γ′.

Theorem B.1.1 (and its analogues) is one of the main reasons to exploit the correspondence between
L-languages and PDLs.

B.2 The Correspondence between L-Languages and PDLs

The correspondence between L-languages and PDLs, first pointed out by Schild in [140], is based on the
similarity between the interpretative structures of the two logics: at the extensional level, objects (members
of ∆I) in the L-language correspond to states in PDL, whereas connections between two objects correspond
to state transitions. At the intensional level, classes correspond to propositions, and attributes correspond
to programs. The correspondence is established through a (one-to-one and onto) mapping δ from class
expressions to pdl-formulae, and from attribute expressions to pdl-programs. We show the correspondence
on the example of cpdl and LCIL.

2Contrast this to the model of a formula, where the formula is only required to be satisfiable, i.e. to hold in one state.
3That is, if a formula has a model, it has a model which is connected.
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Definition B.2.1 The mapping δ from LCIL-class expressions to cpdl-formulae is defined inductively as
follows:

δ(C) := C δ(A) := A
δ(E1 u E2) := δ(E1) ∧ δ(E2) δ(L1 ∪ L2) := δ(L1) ∪ δ(L2)
δ(E1 t E2) := δ(E1) ∨ δ(E2) δ(L1 ◦ L2) := δ(L1); δ(L2)

δ(¬E) := ¬δ(E) δ(L−) := δ(L)−

δ(∀L.E) := [δ(L)]δ(E) δ(L∗) := δ(L)∗

δ(∃L.E) := 〈δ(L)〉δ(E) δ(id(E)) := δ(E)?

The mapping δ can then be extended to a mapping δ+ from free LCIL-schemata to cpdl-formulae. Namely,
if S := (C,A, T ) is an LCIL-schema with A := {A1, . . . , Ah} and T := {T1, . . . , Tk}, then

δ+(S) := [(A1 ∪ · · · ∪Ah ∪A−1 ∪ · · · ∪A−h )∗](δ+(T1) ∧ · · · ∧ δ+(Tk))
δ+(E1 ¹̇ E2) := (δ(E1) → δ(E2)).

The transformation δ together with the definitions of semantics for L-languages and PDLs shows that
these two formalisms are in fact just syntactic variant of each other. Mapping δ+ carries this correspondence
even further and allows to internalize assertions of L-schemata in formulae of PDL. Therefore, by making
use of Theorem B.1.1, both unrestricted class consistency and unrestricted class subsumption in LCIL can
be (polynomially) reduced to (un)satisfiability of cpdl-formulae.

Theorem B.2.2 (Schild [140]) Let S be a free LCIL-schema and δ+(S) the corresponding cpdl-formula.
Then each model of S is isomorphic to a structure in which δ+(S) is valid and vice versa. Moreover, in each
connected structure, δ+(S) is valid if and only if it is satisfiable.

Theorem B.2.3 (Schild [140]) Let S be a free LCIL-schema and E1, E2 two class expressions containing
only class and attribute names of S. Then

1. S 6|=u E1 ≡ ⊥ if and only if δ+(S) ∧ δ(E1) is satisfiable.

2. S |=u E1 ¹ E2 if and only if δ+(S) ∧ δ(E1) ∧ ¬δ(E2) is unsatisfiable.

Note that the size of the above cpdl-formulae is polynomial with respect to |S|+ |E1|+ |E2|.
Since satisfiability for cpdl is an EXPTIME-complete problem (see [127]), we obtain the same com-

plexity bounds for reasoning on free LCIL-schemata with respect to unrestricted models.

Corollary B.2.4 Unrestricted class consistency and class subsumption in free LCIL-schemata are EXPTIME-
complete problems.

The correspondence described above (through the mappings δ and δ+) and the complexity results about
reasoning can be extended to other L-languages and PDLs in a straightforward way.

B.3 Extensions and Variants of PDLs

We introduce here some extensions and variants of PDLs.

B.3.1 Extensions of cpdl (rcpdl, qcpdl, fcpdl)

In this thesis we sometimes refer also to two extensions of cpdl. The first, called rcpdl, is obtained from
cpdl by adding repeat formulae. Such formulae allow one to express infinite repetition of programs [151, 89]
and are introduced by the syntax rule:

f −→ ∆(r).

For a structure M := (WM,RM,ΠM) and a state u ∈ WM we have that

• M, u |= ∆(r) iff there is an infinite sequence u0, u1, . . . of states in WM such that u0 = u, and
(ui, ui+1) ∈ RM(r) for all i ≥ 0.
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The second extension we consider, called qcpdl, is obtained form cpdl by adding formulae which allow
one to express qualified number restrictions on both direct and converse atomic programs in a state [56, 52].
Such formulae are introduced by the syntax rule:

f −→ 〈b〉≥mf ′ | 〈b〉≤nf ′,

where m is a positive and n a nonnegative integer.
For a structure M := (WM,RM,ΠM) and a state u ∈ WM we have that

• M, u |= 〈b〉≥mf ′ iff there are at most m distinct states u′ ∈ WM such that (u, u′) ∈ RM(b) and
M, u′ |= f ′.

• M, u |= 〈b〉≤nf ′ iff there are at most m distinct states u′ ∈ WM such that (u, u′) ∈ RM(b) and
M, u′ |= f ′.

In this thesis we deal only with the restricted form of qualified number restrictions called local functionality
[54] and described by

f −→ 〈a〉≤1 | 〈a−〉≤1.

We denote the extension of cpdl by this type of formulae with fcpdl.
fcpdl differs from cdpdl in two aspects: First, in fcpdl functionality for a program can be expressed

locally, i.e. in one state, for a specified atomic program in contrast to global functionality for all program
names of cdpdl. Second, fcpdl allows to express functionality of both direct and converse atomic programs,
while no such restriction on converse atomic programs can be imposed in cdpdl. Since global functionality
can easily be espressed by means of local functionality, fcpdl in fact properly extends cdpdl.

For the interested reader we also mention the tight relation that exists between qualified number restric-
tions and graded modalities in modal logic [158, 159, 76, 79].

The logic obtained form cpdl by adding both repeat formulae and qualified number restrictions (resp.
local functionality) is called rqcpdl (resp. rfcpdl).

Formulae to express qualified number restricitions in PDLs correspond to qualified number restrictions
in L-languages, and the repeat constructor of L∆ mimics its analogue in PDLs. Therefore the mapping δ
from L-languages to PDLs can easily be extended to these constructors and formulae:

δ(∆(L)) := ∆(δ(L))
δ(∃≥mA.E) := 〈δ(A)〉≥mδ(E)

δ(∃≥mA−.E) := 〈δ(A−)〉≥mδ(E)
δ(∃≤nA.E) := 〈δ(A)〉≤nδ(E)

δ(∃≤nA−.E) := 〈δ(A−)〉≤nδ(E).

B.3.2 Variants of PDLs Described by Automata (APDLs)

The reasoning techniques we describe in the body of the thesis are presented in an automata-theoretic
framework. For this reason it is useful to consider variants of PDLs in which the programs are described by
finite state automata rather than by regular expressions [90, 128, 165]. We call such variants APDLs.

In an APDL, formulae are defined exactly as for the corresponding PDL, whereas programs are defined
by the following syntax rule:

• If r is a sequential automaton over an alphabet Σ, where Σ is a finite set of atomic programs and tests,
then r is a program.

We call a word w ∈ Σ∗ accepted by a program r (as defined in Section A.1) an execution sequence of r.
The semantics for formulae of an APDL is defined exactly as for the corresponding PDL, while the

semantics for APDL programs is defined for atomic programs and test as for the corresponding PDL, and
for programs expressed through automata by the following condition:

• RM(r) := {(u, u′) | there exists a word w := w1 · · ·wn accepted by r and states u0, u1, . . . , un ∈ WM

such that u = u0, u′ = un and for all i ∈ {1, . . . , n} we have (ui−1, ui) ∈ RM(wi)}.
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If the PDL we consider contains also repeat formulae, it is convenient to replace these by formulae
expressed by means of a Büchi automaton, i.e. we replace the syntax rule for repeat with

f −→ ∆(B),

where B is a Büchi sequential automaton over an alphabet Σ of atomic programs and tests. We call such
formulae Büchi-repeat formulae.

The semantics for these formulae is based on Büchi acceptance condition for infinite words, as defined in
Definition A.1.2. For a structure M := (WM,RM,ΠM) and a state u ∈ WM we have that

• M, u |= ∆(B) iff there exists an infinite word w := w1w2 · · · accepted by B and an infinite sequence
u0, u1, . . . of states in WM such that u0 = u, and (ui−1, ui) ∈ RM(wi) for all i ≥ 1.

It has been shown in [161] that there is a linear translation from a PDL with repeat formulae to the
corresponding PDL with Büchi repeat formulae (and a quadratic translation in the other direction). Since
also the translation from regular expressions to automata is linear, all results that hold for an APDL
can immediately be applied to the corresponding PDL. We assume also that the mappings δ and δ+ of
Definition B.2.1 are extended by a mapping φ that transforms each program appearing in an eventuality and
expressed through a regular expression to a program expressed through an equivalent sequential automaton,
and each repeat formula to an equivalent Büchi-repeat formula.

B.4 Additional Notions about PDLs

We introduce here some additional fundamental notions about PDLs that are at the basis of most results
established for these logics.

B.4.1 Fischer-Ladner Closure

The notion of Fischer-Ladner closure introduced in [80] for pdl is useful when performing structural induction
on formulae. Intuitively, the Fischer-Ladner closure of a formula f contains all “subformulae” of f that are
relevant for verifying its satisfiability. It can be defined for all variants of PDLs, and we specify it here for
APDLs.

Definition B.4.1 The Fischer-Ladner closure CL(f0) of a capdl-formula f0 is the least set Φ of formulae
such that:

• f0 ∈ Φ.

• If ¬f ∈ Φ then f ∈ Φ.

• If f ∈ Φ then ¬f ∈ Φ4.

• If f ∧ f ′ ∈ Φ then f, f ′ ∈ Φ.

• If 〈r〉f ∈ Φ then f ∈ Φ.

• If 〈r〉f ∈ Φ, where r = (Σ, S, δ, s0, F ), then f ′ ∈ Φ for all f ′? ∈ Σ.

• If 〈r〉f ∈ Φ, where r = (Σ, S, δ, s0, F ), then for all s ∈ S, 〈rs〉f ∈ Φ, where rs := (Σ, S, δ, s, F ) is the
automaton obtained from r by making s to the initial state.

It is easy to verify that ]CL(f) is linear in |f |.

B.4.2 Tree Structures

Every structure can be ragarded as a graph by considering the states as nodes and the instances of the
transition relations as arcs. A tree structure is a structure in which such graph has the form of an (infinite)
tree of bounded degree. More formally it can be defined by considering trees as of Definition A.2.1.

Definition B.4.2 A structure T := (WT ,RT ,ΠT ) is an (n-ary) tree structure if:

4We remind that we identify ¬¬f with f .
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• WT ⊆ {1, . . . , n}∗.
• xi ∈ WT only if x ∈ WT and for some program name a either (x, xi) ∈ RT (a) or (xi, x) ∈ RT (a).

• (x, y) ∈ RT (a) for any program name a only if y is a neighbor of x, (y, x) 6∈ RT (a), and (x, y) 6∈ RT (a′)
and (y, x) 6∈ RT (a′) for any other program name a′ 6= a.

A structure is a tree structure for a formula f if it is an n-ary tree structure with n linear in |f |.

When talking about tree structures we adopt the common terminology used for trees, as introduced in
Definition A.2.1. We use also the term b-arc, where b is an atomic program, to denote a pair of nodes
(x, y) ∈ RM(b). y is then said to be a b-neighbor of x.

The importance of tree structures in the context of PDLs is given by the fundamental tree model property
shared by almost all variants of PDLs (and APDLs) considered in the literature. If a PDL has the tree
model property, then every satisfiable formula of this PDL admits a model which is a tree structure for the
formula. The following theorem states the tree model property for capdl.

Theorem B.4.3 (Streett [151]) Let f be a satisfiable capdl-formula. Then f has an n-ary tree model
T , with n ≤ ]CL(f) and T , ε |= f .

The tree model property allows us to restrict our attention to tree structures when verifying satisfiability
of a formula and makes it possible to use techniques based on automata on infinite trees [157]. In order to
verify the satisfiability of a formula f one constructs a tree automaton that accepts exactly the tree structures
for f . More precisely, the automaton accepts so called Hintikka trees, which are in direct correspondence
with the tree structures for the formula. Therefore, in order to verify satisfiability of a formula it is sufficient
to check whether the automaton associated to the formula accepts some (infinite) tree. Since such check can
(usually) be performed in an efficient way [165, 72], the complexity of satisfiability in PDLs is buried in the
construction of the automaton, whose size is exponential in the size of the formula.

By exploiting such techniques tight complexity bounds for satisfiability in a great variety of PDLs (and
other logics of programs) have been obtained [151, 164, 152].
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