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Abstract

In order to meet usability requirements, most logic-based
applications provide explanation facilities for reasoning
services. This holds also for DLs, where research has
focused on the explanation of both TBox reasoning and,
more recently, query answering. Besides explaining the
presence of a tuple in a query answer, it is important to
explain also why a given tuple is missing. We address the
latter problem for (conjunctive) query answering over
DL-Lite ontologies, by adopting abductive reasoning,
that is, we look for additions to the ABox that force
a given tuple to be in the result. As reasoning tasks
we consider existence and recognition of an explana-
tion, and relevance and necessity of a certain assertion
for an explanation. We characterize the computational
complexity of these problems for subset minimal and
cardinality minimal explanations.

Introduction
Query answering over ontologies formulated in Description
Logics (DLs) has received considerable attention in both re-
search and industry. Given an ontology, users pose queries
over the conceptual schema and get answers that take into ac-
count the constraints specified at the conceptual level. Many
efforts have concentrated on lightweight DLs. For instance
DL-LiteA, the language at the basis of the OWL 2 QL profile
[Motik et al., 2009], has been tailored for query answering
over large data sets [Calvanese et al., 2009]. In this setting,
expressive power is traded in favour of a better computational
behaviour in terms of data-complexity. In fact, conjunctive
query answering in DL-LiteA enjoys FO-rewritability, i.e., it
can be reduced to the problem of evaluating a suitable FO
query over a database instance.

In order to meet usability requirements set by domain
users, most logic-based applications provide explanation al-
gorithms for reasoning services. This holds also for DLs,
where research has focused on the explanation of TBox rea-
soning (cf. [McGuinness and Borgida, 1995; Borgida, Fran-
coni, and Horrocks, 2000; Penaloza and Sertkaya, 2010;
Horridge, Parsia, and Sattler, 2008]). Additionally, the prob-
lem of explaining positive answers to conjunctive queries
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over DL-LiteA ontologies has been studied in [Borgida, Cal-
vanese, and Rodrı́guez-Muro, 2008], where a procedure for
computing the reasons for a tuple to be in the answers to a
query is outlined. The same paper advocates the importance
of computing explanations also for the absence of query an-
swers. To the best of our knowledge, in the literature, the
problem of explaining negative answers has been considered
only for relational databases extended with provenance infor-
mation. In particular, [Chapman and Jagadish, 2009] studied
the problem of determining the database operations that pre-
vented a given tuple to be in the answers to the query. Also,
[Huang et al., 2008] focused on computing database updates
fixing missing answers to given SQL queries. Unfortunately,
typical ontologies do not provide provenance information
and, thus, negative query answers can not be explained by
adapting one of the available solutions.

For this reason, we formalize the problem of explaining
the absence of a tuple in the context of query answering over
DL ontologies. We adopt abductive reasoning [Eiter and
Gottlob, 1995; Klarman, Endriss, and Schlobach, 2011], that
is, we consider which additions need to be made to the ABox
to force the given tuple to be in the result. More precisely,
given a TBox T , an ABox A, and a query q, an explanation
for a given tuple ~c is a new ABox E such that the answer
to q over 〈T ,A ∪ E〉 contains ~c. An important aspect in
explanations is to provide users with explanations that are
simple to understand and free of redundancy, hence as small
as possible. To address this requirement, we study various
restrictions on explanations, in particular, we focus on subset
minimal and cardinality minimal ones. We consider standard
decision problems associated to logic-based abduction: (i) ex-
istence of an explanation; (ii) recognition of a given ABox
as being an explanation; (iii) relevance and (iv) necessity
of an ABox assertion, i.e., whether it occurs in some or all
explanations. Additionally, it is important to allow one to
restrict the signature of explanations. This can be used to con-
sider only solutions that do not extend the ABox vocabulary:
an important property in the context of accessing relational
databases through ontologies, where database instances are
defined over a small, fixed, vocabulary, and the terminologi-
cal component is used to enrich that vocabulary. The idea of
restricting the explanation signature is an adaptation of a con-
cept introduced in [Baader et al., 2010], which studies among
others the CQ-emptiness problem. That is, given a query q
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over a TBox T decide whether for all ABoxesA over a given
signature Σ, we have that evaluating q over 〈T ,A〉 leads to
an empty result. In our framework, deciding the existence of
an explanation generalizes the CQ non-emptiness problem.
In fact, deciding whether there exists an explanation for a
negative answer amounts to check whether a query admits a
solution w.r.t. a TBox T and an ABox A. In the following
we sketch algorithms to solve the relevant reasoning tasks
and give a precise characterization of their computational
complexity for DL-LiteA. The complexity results for the var-
ious reasoning tasks are summarized in Table 1. We provide
proof sketches here, and refer to [Calvanese et al., 2012] for
full proofs.

Preliminaries
We use the standard notation for DL-LiteA ontologies O =
〈T ,A〉, where T is the TBox and A is the ABox. By NC ,
NR, and NI we denote the alphabets of concept, role, and
constant names. When the distinction between concepts and
roles is inessential, we call elements of NC ∪ NR simply
predicates. As usual, the semantics of DL-LiteA is based on
first-order interpretations I = (∆I , ·I). We adopt the unique
name assumption (UNA), i.e., for every interpretation I and
constant pair c1 6= c2, we have cI1 6= cI2 . An interpretation I
is a model of O if it satisfies all the axioms in the TBox T
and all the assertions in the ABox A. We call O consistent if
it admits at least one model.

As query language we consider conjunctive queries (CQs)
and their unions (UCQs). CQs are written as sets of atoms of
the forms A(t) and P (t, t′), where A and P are predicates
and t, t′ are variables or constants. UCQs are sets of CQs.
For a CQ or UCQ q(~x) with answer variables ~x, we use
cert(q,O) to denote the certain answers over O, that is, the
tuples ~c of constants of arity |~x| that are an answer to q in
each model I of O.

Complexity Theory. We briefly outline the definition of
some non-canonical complexity classes used in the paper,
and refer to [Papadimitriou, 1994] for more details. The
class PNP

‖ contains all the decision problems that can be
solved in polynomial time with an NP oracle, where all oracle
calls must be first prepared and then issued in parallel. The
class DP contains all problems that, considered as languages,
can be characterized as the intersection of a language in NP
and a language in CONP. It is believed that PTIME ⊆ NP ⊆
DP ⊆ PNP

‖ ⊆ ΣP
2 is a strict hierarchy of inclusions. Here we

make such an assumption.

Explaining Negative Query Answers
In this paper we deal with the following problem:

Definition 1. LetO = 〈T ,A〉 be a DL-LiteA ontology, q(~x)
a UCQ, and~c a tuple of constants of arity |~x|. Further, assume
a set Σ ⊆ NC ∪ NR. We call P = 〈T ,A, q,~c,Σ〉 a Query
Abduction Problem (QAP). An explanation for (or, a solution
to) P is an ABox E such that:

(i) the concept and role names of E are contained in Σ,
(ii) the ontology O′ = 〈T ,A ∪ E〉 is consistent, and

(iii) ~c ∈ cert(q,O′).
The set of all explanations for P is denoted by expl(P). If
Σ = NC∪NR, we say thatP has an unrestricted explanation
signature.

The predicates in Σ are the ones allowed in explanations,
hence we call them abducible predicates. If ~c /∈ cert(q,O),
we call ~c a negative answer to q over O. Note that a query
over the ontology can have a negative answer only if the
ontology is consistent. Also, by condition (ii), if the ontology
is inconsistent then P does not have any explanation. Note
also that E may contain constant names not present in A.
Next, we provide an example of a QAP.
Example 1. Let A be the following set of assertions about a
particular university:

DPhil(Anna), DPhil(Beppe),
enroll(Anna,KR), teach(Marco,KR),
enroll(Luca, IDB), teach(Carlo, IDB).

That is, Anna and Beppe are doctoral students. Anna is
enrolled in the KR course, which is taught by Marco, and
Luca is enrolled in the introductory DB course (IDB ), which
is taught by Carlo. Now, consider the following TBox T , in
standard DL-LiteA syntax, formalizing the university domain,
of which A is a (partial) instance:

∃enroll v Student,
∃enroll− v Course,

DPhil v Student,

∃teach v Lecturer,
∃teach− v Course,
Course v ∃teach−.

T models that objects in the domain of enroll are Students,
and objects in the domain of teach are Lecturers, while ob-
jects in the range of enroll or of teach are Courses. Among
the students we have DPhil students. Finally, every Course
must be taught by someone.

Now, assume that the university administration is inter-
ested in finding all those who are teaching a course in which
at least one of the enrolled students is a doctoral student,
which is captured by the following query:

q(x)← teach(x, y), enroll(z, y),DPhil(z).

Assume that Carlo is expected to be part of the result, i.e.,
Carlo ∈ cert(q, 〈T ,A〉). This is not the case, as Luca is the
only student of Carlo and he is not known to be a doctoral
student. Suppose that we have complete information on
all the predicates but enroll and teach, i.e., only the latter
predicates are abducible. It is easy to see that:
{teach(Carlo,AI ), enroll(Beppe,AI ), enroll(Luca,AI )}
is an explanation for the given negative answer, which sug-
gests the existence of a course, AI , not present in A.

This example shows that certain explanations may be too
assumptive in that they include assertions that are not required
to solve the problem. Indeed, in the example’s explanation
there is no reason to assume that Luca is enrolled in the
freshly introduced course on Artificial Intelligence. In the
following, we will examine various restrictions to expl(P)
to reduce redundancy in explanations, achieved by introduc-
ing a preference relation among explanations. This relation
is reflexive and transitive, i.e., we have a pre-order among
explanations. For such a pre-order � on expl(P), we write
E ≺ E ′ if E � E ′ and E ′ � E .
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� �-EXIST �-NEC �-REL �-REC

none NP CONP NP NP
≤ NP PNP

‖ PNP
‖ DP

⊆ NP CONP ΣP
2 DP

Table 1: Summary of main complexity results for DL-LiteA
explanation (all are completeness results)

Definition 2. The preferred explanations expl�(P) of a QAP
P under the pre-order �, called �-explanations, are defined
as follows: expl�(P) = { E ∈ expl(P) | there is no E ′ ∈
expl(P) s.t. E ′ ≺ E }, i.e., expl�(P) contains all explana-
tions the that are minimal under �.

We consider two preference orders that are commonly
adopted when comparing abductive solutions: the subset-
minimality order, denoted by ⊆, and the minimum explana-
tion size order, denoted by ≤. The latter order is defined by
E ≤ E ′ iff |E| ≤ |E ′|. Observe that expl≤(P) ⊆ expl⊆(P).

Example 2. {teach(Carlo,AI ), enroll(Beppe,AI )} is a⊆-
explanation in our example, while {enroll(Beppe, IDB)} is
a ≤-explanation (and hence also a ⊆-explanation).

We study here the four basic decision problems related to
(minimal) explanations [Eiter and Gottlob, 1995], which are
parametric w.r.t. the chosen preference order �.

Definition 3. Given a QAP P , define the following decision
problems:
• ≺-EXIST(ENCE): Does there exist a �-explanation for P?
• ≺-NEC(ESSITY): Does a given assertion α occur in all
�-explanations for P?

• ≺-REL(EVANCE): Does a given assertion α occur in some
�-explanation for P?

• ≺-REC(OGNITION): Is a given ABox E a �-explanation
for P?

Whenever no preference is applied (i.e., when � is the iden-
tity) we omit to write � in front of the problems’ names.

In the next section, we study the complexity of these four
problems in the light of the different preference relations.

Complexity of Explanations
In Table 1 we give an overview of our complexity results for
explanation in DL-LiteA. We measure the complexity of a
QAP P = 〈T ,A, q,~c,Σ〉 in terms of the combined size of
T , A, and q, i.e., we consider combined complexity. Notice
that we do not explicitly count the explanation signature Σ
towards the complexity, since when it is restricted, its size
is bounded by the size of the other parameters (see Propo-
sition 1), and when it is unrestricted it is actually countably
infinite and defined outside of the actual problem instance.

Existence of Explanations
Before discussing our complexity results, we show that when-
ever a QAP P = 〈T ,A, q,~c,Σ〉 has an explanation, then P
has an explanation E that is small in two senses.

First, all concepts and roles occurring in E occur either in
T or in q. Indeed, we can remove from an arbitrary explana-
tion all assertions that make use of predicates not in T or in
q and all conditions in Definition 1 continue to be satisfied
(the removed assertions are irrelevant for certain answers and
for ontology consistency). Second, E is built from a small
number of fresh constants. This can be shown using the
FOL-rewritability of queries in DL-LiteA [Calvanese et al.,
2009], which states that the certain answers to a UCQ over
an ontology O = 〈T ,A〉 can be computed by rewriting each
CQ qi in it into a UCQ Q′i to be evaluated overA alone, seen
as a standard relational database. From this and Definition 1
it follows that if there is a solution to P , then there exists
an explanation E such that some CQ q′i in Q′i has a match in
E ∪A. Furthermore, |E| is bounded by |q′i|, while the number
of fresh constants in E is bounded by the number of variables
in q′i. Indeed, a match for q′i needs to map only the terms
and the atoms occurring in the query. Since it follows from
[Calvanese et al., 2009] that each q′i in Q′i has at most |qi|
atoms and 2 · |qi| terms, we obtain:
Proposition 1. If P = 〈T ,A, q,~c,Σ〉 has an explanation,
then P has an explanation E with concepts and roles only
from T and q, at most max(q) atoms, and at most 2 ·max(q)
fresh ABox constants, where max(q) = maxqi∈q |qi|.

We now turn to the complexity of finding explanations. An
algorithm for EXIST can non-deterministically guess an ABox
E and check in polynomial time whether E is an explanation
for the given QAP. The NP-hardness is proved by reducing
the well-known problem of finding a homomorphism be-
tween two graphs. Note that existence of an explanation for
a QAP P implies existence of a ⊆-minimal and a ≤-minimal
explanation for P , thus all bounds for EXIST hold also for
⊆-EXIST and ≤-EXIST.
Theorem 2. EXIST, ⊆-EXIST, ≤-EXIST are NP-complete.
NP-hardness holds already for QAPs with an empty TBox
and a CQ.

The NP-hardness of EXIST is caused by the restriction of
the alphabet over which solutions can be found. In fact, this
forbids us to explicitly encode the body of the query into
the ABox, and forces us to search for a match. However,
if the signature is not constrained, i.e., Σ = NC ∪ NR,
the problem can be solved in polynomial time. To see this,
keep in mind that CQs, seen as FO formulae, are always
satisfiable. Then an explanation does not exist only if the
structure of the query is not compliant with the constraints
expressed in the ontology. A naı̈ve method to check whether
a UCQ q is compliant with the ontological constraints is to
iteratively go through all the CQs in q and instantiate them
in the ABox, introducing fresh constants for the variables. If
for none of the CQs we obtain a consistent ontology, then
the query violates some of the constraints imposed at the
conceptual level. However, we need to take into account
that the introduced constants might not correspond to distinct
individuals. Indeed, it can be proved that EXIST is equivalent
to the PTIME-complete consistency problem for DL-LiteA
without the unique name assumption [Artale et al., 2009].
Theorem 3. For QAPs with unrestricted signatures, EXIST,
⊆-EXIST, and ≤-EXIST are PTIME-complete.
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Deciding Necessity
The NP-hardness of EXIST implies the intractability of NEC.
Indeed, one can reduce EXIST to non-NEC and obtain a
CONP-lower bound on NEC. To decide in CONP whether a
given assertion ϕ(~t) is necessary for a QAP P = 〈O, q,~c,Σ〉,
we first check whether O is consistent and entails ϕ(~t), as
in this case ϕ(~t) is not necessary. If not, we construct a new
ontology O′ whose models are those models of O in which
ϕ(~t) does not hold, and then check EXIST for the new QAP
P ′ = 〈O′, q,~c,Σ〉. Clearly, ϕ(~t) is necessary iff there is no
explanation for P ′. These bounds hold also for ⊆-NEC, since
ϕ(~t) occurs in all explanations for P iff ϕ(~t) occurs in all
⊆-minimal explanations for P . Hence:
Theorem 4. NEC and ⊆-NEC are CONP-complete. For
QAPs with unrestricted explanation signature, NEC and ⊆-
NEC are PTIME-complete.

Now, we consider necessity under the minimum explana-
tion size order and we show that under common assumptions
the problem is harder than NEC. Intuitively, this is because
one has to compute first the minimal size of an explanation
and, then, inspect all the explanations of that size. This in-
tuition can be directly translated into an algorithm, which
uses a polynomial number of parallel calls to an NP oracle.
Consider an assertion α and a QAP P . By Proposition 1,
we know that the size of explanations for P is bounded by
somem which depends polynomially on the size of the query.
Our algorithm prepares and then issues in parallel m calls
to the oracle of the form 〈Ai, Bi〉, where Ai asks whether
there exists an explanation for P of size i that contains α,
and Bi asks whether there exists no explanation for P that
is strictly smaller than i. One can show that α is necessary
for P iff there is no index j ≤ m, such that the oracle for
inputAj andBj returns respectively true and false. The hard-
ness can be proved by reducing the PNP

‖ -complete problem
ODDMINVERTEXCOVER [Wagner, 1987].

Theorem 5. ≤-NEC is PNP
‖ -complete. PNP

‖ -hardness holds
already for QAPs with an empty TBox, a CQ, and an unre-
stricted explanation signature.

Deciding Relevance
The NP-hardness of NEC extends also to REL. Membership in
NP can be shown by a reduction to EXIST. For a given QAP
P and an assertion α, construct from P a new QAP P ′ by
extending the ABox in P with the assertion α. Intuitively, we
restrict the search to those explanations that do not contradict
α. Then α is relevant for P iff an explanation for P ′ exists.
Theorem 6. REL is NP-complete. NP-hardness holds al-
ready for QAPs with an empty TBox and a CQ.

When dealing with ⊆-REL there is another increase in
complexity. Intuitively, this is because there is an exponential
number of candidate explanations to examine and for each
of them one has to check that none of its subsets is itself an
explanation, which requires a CONP computation. Formally,
a ΣP

2 algorithm for the problem can be obtained similarly
as for existence, by first non-deterministically guessing an
ABox E containing α and checking that it is an explanation.

Then we must additionally check that none of the subsets
of E is itself an explanation, from which it follows that α
is ⊆-relevant. Since deciding whether an explanation has a
subset that is itself an explanation can be easily done in NP,
the problem is solvable in non-deterministic polynomial time
by a TM with an NP oracle. A matching lower bound can be
shown by reducing the ΣP

2 -complete problem co-CERT3COL
[Stewart, 1991].

Theorem 7. ⊆-REL is ΣP
2 -complete. ΣP

2 -hardness holds
already for (i) QAPs with an empty TBox and a CQ, and
(ii) QAPs with an empty TBox, a UCQ, and an unrestricted
explanation signature.

Unsurprisingly, ≤-REL has the same complexity as ≤-
NEC. The two problems share the same source of complexity,
namely the need to inspect all explanations up to a computed
size, which allows us to reduce the ODDMINVERTEXCOVER
problem. In fact, PNP

‖ -hardness can be shown using the same
reduction as in the proof of Theorem 5. A matching up-
per bound can also be obtained by slightly modifying the
algorithm for ≤-NEC.

Theorem 8. ≤-REL is PNP
‖ -complete. PNP

‖ -hardness holds
already for QAPs with an empty TBox, a CQ, and an unre-
stricted explanation signature.

Recognizing Explanations
To solve REC one needs to check consistency of the expla-
nation with the ontology, and check whether the tuple is in
the certain answer to the query. The former is polynomial
and the latter in NP, therefore REC is in NP. One can show
NP-hardness by reducing the problem of finding a homomor-
phism between two directed graphs.

Theorem 9. REC is NP-complete. NP-hardness holds al-
ready for QAPs with an empty TBox, a CQ, and an unre-
stricted explanation signature.

In case a preference order is in place, to recognize an ex-
planation one has to check minimality as well. This check is
CONP-hard for ⊆- and ≤-minimality, leading to complete-
ness for DP. Membership in DP can be shown by providing
two languages L1 ∈ NP and L2 ∈ CONP, such that the set of
all yes-instances of our problem is L1 ∩ L2. For ≤-REC, we
simply let L1 = {(P, E) | E is an explanation for P} and
L2 = {(P, E) | P has no explanation E ′ s.t. |E ′| ≤ |E|}. For
⊆-REC, we take L1 as above and L2 = {(P, E) | P does not
have an explanation E ′ s.t. E ′ ⊂ E}. Matching hardness is
shown by a reduction from the problem HP-NOHP, that is,
given two directed graphs G and G′, decide whether G has a
Hamilton path and G′ does not have one.

Theorem 10. ≤-REC and ⊆-REC are DP-complete. DP-
hardness holds already for QAPs with an empty TBox, a CQ,
and an unrestricted explanation signature.

Computing Explanations We discuss now the problem of
actually computing a solution to a QAP P . The complexity
of this problem is determined by the established complexity
bounds for reasoning tasks over QAPs. Consider first the
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problem of finding an arbitrary solution E to P with unre-
stricted explanation signature. By Theorem 3, one can do
so in polynomial-time by creating a suitable instantiation
of the query in the ABox. In general, however, one cannot
do better than guessing an ABox E and deciding whether
E ∈ expl�(P). The intuition is that the search space for
solutions is intrinsically exponential in the size of the query
and minimality criteria require a check over all the solutions.

Conclusions

In this paper we characterize the computational complex-
ity of the novel problem of explanation of negative answers
to user queries over DL-LiteA ontologies. All the lower
bounds proved in the paper do not rely on the notion of FOL
rewritability. Our upper bounds rely on FOL rewritability
only to argue that solutions are of polynomial size w.r.t. the
input query, and on the fact that query answering can be
done in NP. For this reason, we expect our results to carry
over to other DLs that admit “small” explanations and for
which query answering is in NP. For instance, the complex-
ity bounds are applicable to OWL 2-QL, which is obtained
from DL-LiteA by forbidding functionality assertions and
dropping the unique name assumption (as our results do not
rely on functionality axioms, the unique name assumption is
irrelevant).

For more expressive DLs, some bounds on the complex-
ity of our reasoning tasks can also be inferred. For QAPs
with unrestricted signature, deciding the existence of an ex-
planation has in general the same complexity as checking
ontology consistency. If we consider restricted signature,
lower bounds follow from results on CQ-emptiness from
[Baader et al., 2010], while we expect some upper bounds to
be inherited from the complexity of query entailment.

In this work we have focused on combined complexity.
With respect to data complexity (i.e., when both the query
and the TBox are considered fixed), we observe that those
inference tasks that we have shown to be NP-complete es-
sentially rely on checking ontology consistency. It follows
that they are FOL rewritable, and hence in AC0 in data com-
plexity. Moreover, given that explanations are bounded by
the size of the query (see Proposition 1), it is easy to see that
for a fixed query, there are only polynomially many explana-
tions. Hence all our reasoning tasks are polynomial in data
complexity and in ontology complexity (i.e., when only the
query is considered fixed).

Finally, it would be interesting to apply this framework
to other lightweight description logics, starting with those
of the EL-family. Also, we would like to investigate other
minimality criteria. For instance, semantic criteria allow
one to reward explanations that are less/more constraining in
terms of the models of an ontology.
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