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Abstract

In order to meet usability requirements, most logic-based applications provide explana-
tion facilities for reasoning services. This holds also for Description Logics, where research
has focused on the explanation of both TBox reasoning and, more recently, query answer-
ing. Besides explaining the presence of a tuple in a query answer, it is important to explain
also why a given tuple is missing. We address the latter problem for instance and conjunc-
tive query answering over DL-Lite ontologies by adopting abductive reasoning; that is, we
look for additions to the ABox that force a given tuple to be in the result. As reasoning
tasks we consider existence and recognition of an explanation, and relevance and necessity
of a given assertion for an explanation. We characterize the computational complexity of
these problems for arbitrary, subset minimal, and cardinality minimal explanations.

1. Introduction

Ontology-based data access (OBDA) systems are a new form of information systems that
use an ontology, a set of logical constraints, to mediate the access to data. The role of
the ontology in an OBDA system is twofold. On the one hand, it is an intermediate layer
between the domain user and the physical data providing a unified view of the information
held in the various data sources. In many cases, the ontology extends the data vocabulary
by introducing new intensional predicates that can be used to query information in a more
succinct and declarative way. On the other hand, the ontology provides constraints, which
are taken into account while answering queries and which may contribute to enrich the
obtained answers. Hence, potentially relevant implicit knowledge that can be derived from
the data, plus the ontology, can be made explicit by using specifically tailored reasoning
algorithms. Most existing OBDA systems are based on the DL-Lite family of lightweight
Description Logics (DLs), introduced by Calvanese, De Giacomo, Lembo, Lenzerini, and
Rosati (2007), which is also the basis for the QL profile of the OWL 2 ontology language
(Motik, Fokoue, Horrocks, Wu, Lutz, & Grau, 2009).

As argued by McGuinness and Patel-Schneider (1998), in order to meet usability re-
quirements set by domain users, knowledge-based systems should be equipped with ex-
planation algorithms for reasoning services. This holds also for Description Logics, where
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Calvanese, Ortiz, Šimkus & Stefanoni

research has focused on the explanation of TBox reasoning (cf., McGuinness & Borgida,
1995; Borgida, Franconi, & Horrocks, 2000; Penaloza & Sertkaya, 2010; Horridge, Parsia, &
Sattler, 2008). Additionally, Borgida, Calvanese, and Rodriguez-Muro (2008) studied the
problem of explaining positive query answers to conjunctive queries over DL-Lite ontolo-
gies. In particular, they outlined a procedure for computing the reasons for a tuple to be
in the answer to a query, and for minimizing the corresponding explanation shown to the
user. In addition, Borgida et al. (2008) suggested that OBDA systems, besides explaining
positive query answers, should also explain negative query answers; that is, those tuples
that a user expects to be in the result but actually do not occur there. As OBDA systems
answer queries under ontological constraints, explaining negative query answers is not triv-
ial: these constraints need to be taken into account to understand why a required tuple is
missing from the answers. A procedure for explaining negative query answers would then
improve the usability of OBDA systems.

For this reason, we formalize this explanation problem in the context of query answering
over DL ontologies. Following Eiter and Gottlob (1995), we adopt abductive reasoning ; that
is, explanations are set of facts that need to be asserted in the ABox to force the required
tuple to be in the result. Such explanations help users in debugging a negative answer by
giving an effective way of repairing the OBDA system in terms of updates to the data layer.
Since ontologies can be used to enrich the data vocabulary, we consider also restrictions
to the vocabulary over which the additional assertions can be constructed. More precisely,
given a DL TBox T , an ABox A, a query q, and a set Σ of predicates, an explanation for
a given tuple ~c is a new ABox E , all whose predicates occur in Σ, such that the answer
to q over the ontology 〈T ,A ∪ E〉 contains ~c. According to the Occam’s razor principle,
an important aspect in explanations is to provide users with solutions that are simple to
understand and free of redundancy, hence as small as possible. To address this requirement,
we study various restrictions on explanations, in particular, we focus on subset minimal and
cardinality minimal ones. We consider standard decision problems associated to logic-based
abduction: (i) existence of an explanation, (ii) recognition of a given ABox as being an
explanation, and (iii) relevance and (iv) necessity of an ABox assertion—that is, whether
it occurs in some or all explanations. At first, the latter two problems may appear rather
artificial, however, they provide valuable information to the user when debugging negative
answers. Relevance can be used to test whether an assertion the user deems related to the
negative answer is indeed so; whereas, necessity can be used to test whether an assertion is
intrinsically related to the negative answer.

The idea of restricting the vocabulary of explanations is an adaptation of a concept
introduced by Baader, Bienvenu, Lutz, and Wolter (2010), who study among others the
query emptiness problem. That is, given a query q over a TBox T decide whether for all
ABoxes A over a given signature Σ, we have that evaluating q over 〈T ,A〉 leads to an
empty result. In Section 3, we shall see that in our framework deciding the existence of an
explanation relates to the query non-emptiness problem. In fact, for many DLs, deciding
whether a query is non-empty w.r.t. a TBox reduces to checking whether there exists an
explanation for a missing answer.

The purpose of this paper is to shed light on the computational complexity of explaining
missing answers to queries over ontologies formulated in DL-LiteA—an expressive member
of the DL-Lite family of DLs. To this end, we consider two important classes of queries—
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that is, instance queries and unions of conjunctive queries (UCQs)—and we provide com-
putational complexity results for the four decision problems defined above. Moreover, we
perform our complexity analysis under two different explanation settings. We consider the
case in which the explanation vocabulary is a strict subset of the vocabulary of the ontology
and the data, as well as the case in which explanations can be constructed over arbitrary
predicates. In Section 4, we show that when we consider instance queries as input, the
relevant decision problems are NL-complete, irrespective of the chosen explanation setting
and of the particular minimality criterion applied over explanations. In Section 5, we ana-
lyze the complexity of the problem when we admit UCQs as input, and we show that the
complexity varies with respect to both the chosen explanation setting and the minimality
criterion. Our complexity results for UCQs are summarized in Table 5.1.

2. Preliminaries

In this section, we first introduce ontologies formulated in DLs, with a particular focus on the
DL DL-LiteA. We then introduce the languages for querying ontologies that we consider,
and we recall some important properties of DL-LiteA that will be used throughout the
paper. Finally, we briefly present some of the less known complexity classes that will be
mentioned later.

2.1 Description Logic Ontologies

As usual in DLs, we consider countably infinite sets NC , NR, and NI of atomic concepts,
atomic roles, and individuals, respectively. Whenever the distinction between atomic con-
cepts and roles is immaterial, we call an element of NC ∪NR a predicate.

A DL TBox T is a finite set of axioms, whose form depends on the specific DL being
considered; for DL-LiteA, the DL adopted in this paper, the definition is given below. A
DL ABox A is a finite set of ABox assertions, which are expressions of the form A(c) or
P (c, d), where A is an atomic concept, P is an atomic role, and c and d are individuals. A
DL ontology is a pair O = 〈T ,A〉, where T is a DL TBox and A is a DL ABox.

The semantics of DL ontologies is based on first-order interpretations I = 〈∆I , ·I〉, where
∆I is a non-empty set called the domain and ·I is the interpretation function mapping each
individual c ∈ NI to an object cI ∈ ∆I , each atomic concept A ∈ NC to a set AI ⊆ ∆I ,
and each atomic role P ∈ NR to a binary relation P I ⊆ ∆I ×∆I .

An interpretation I satisfies an ABox assertion A(c) if cI ∈ AI , and it satisfies an
assertion P (c, d) if 〈cI , dI〉 ∈ P I . Satisfaction of TBox axioms is also defined according to
their form in each specific DL; we define it below for DL-LiteA. An interpretation I is a
model of 〈T ,A〉, if it satisfies all the axioms in T and all the assertions in A. We call 〈T ,A〉
consistent if it admits at least one model, and inconsistent otherwise. Also, an ABox A is
consistent with a TBox T if the ontology 〈T ,A〉 is consistent.

2.1.1 DL-LiteA

DL-LiteA is a member of the DL-Lite family of DLs (Calvanese et al., 2007; Calvanese,
De Giacomo, Lembo, Lenzerini, Poggi, Rodriguez-Muro, & Rosati, 2009), which has been
designed for dealing efficiently with large amounts of extensional information. In DL-LiteA,
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concept expressions (or, concepts) C, denoting sets of objects, and role expressions (or,
roles) R, denoting binary relations between objects, are formed according to the following
syntax, where A denotes an atomic concept and P an atomic role.1

C −→ A | ∃R R −→ P | P−

A DL-LiteA TBox consists of axioms of the following form.

C1 v C2

R1 v R2

C1 v ¬C2

R1 v ¬R2 (funct R)

Axioms in the first column are called positive inclusions (among concepts and roles, re-
spectively), those in the second column disjointness axioms, and those in the third column
functionality assertions on roles. In order to retain tractability of reasoning, DL-LiteA
TBoxes must satisfy the additional restriction that roles that are functional or inverse func-
tional cannot be specialized. Formally, if a DL-LiteA TBox contains (funct P ) or (funct P−),
then for each role R it does not contain Rv P or Rv P− (Calvanese et al., 2007).

The semantics of concept expressions is specified as follows.

(∃R)I = {o ∈ ∆I | ∃o′ ∈ ∆I : 〈o, o′〉 ∈ RI}

(P−)I = {〈o, o′〉 ∈ ∆I ×∆I | 〈o′, o〉 ∈ P I}

An interpretation I satisfies axiom α1 v α2 if αI1 ⊆ αI2 , it satisfies axiom α1 v ¬α2 if
αI1 ∩ αI2 = ∅, and it satisfies axiom (funct R) if RI is a partial function—that is, for each
set of objects {o, o1, o2} ⊆ ∆I , if 〈o, o1〉 ∈ RI and 〈o, o2〉 ∈ RI , then o1 = o2.

Following the common practice for the DLs of the DL-Lite family (Calvanese et al.,
2007), we usually adopt the unique name assumption (UNA)—that is, for each interpre-
tation I and individual pair c 6= d, we require that cI 6= dI . Whenever we drop this
assumption, we will explicitly say so. Under the UNA, the problem of checking whether a
DL-LiteA ontology is consistent is NL-complete, whereas without the UNA, the problem
becomes PTime-complete (Artale, Calvanese, Kontchakov, & Zakharyaschev, 2009).

2.2 Instance Queries and Conjunctive Queries

Let NV be a countably infinite set of variables. Together NI and NV form the set of terms.
Expressions of the form A(t) or P (t, t′), where A is an atomic concept, P is an atomic role,
and t, t′ are terms, are called atoms.

A conjunctive query (CQ) q of arity n ≥ 0 is an expression q(x1, . . . , xn)← a1, . . . , am,
where, for each i ∈ {1, . . . ,m}, we have that ai is an atom. The tuple 〈x1, . . . , xn〉 is the
tuple of answer variables of q. Let NV (q) be the set of variables occurring in q, let NI(q)
be the set of individuals in q, let at(q) = {a1, . . . , am}, and let |q| be the number of terms
occurring in q. We consider safe CQs—that is, each answer variable xi of q occurs in at
least one of the atoms of q. A Boolean conjunctive query is a CQ with arity 0, and we shall
write it simply as a set of atoms. An instance query q(x) is a conjunctive query whose body
consists of a single unary atom A(x). A union of conjunctive queries (UCQ) is a set of CQs

1. We ignore here the distinction between data values and objects present in DL-LiteA and OWL 2 QL,
since it is immaterial for our results. That is, we do not consider value domains and attributes.
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of the same arity, and we assume w.l.o.g. that all CQs in a UCQ have the same tuple of
answer variables. In the following, we denote with IQ the set of all instance queries and
with CQ the set of all UCQs.

A match for an n-ary CQ q in an interpretation I is a mapping π : NV (q)∪NI(q)→ ∆I

such that

(i) π(c) = cI , for each c ∈ NI(q),

(ii) π(t) ∈ AI , for each A(t) ∈ at(q), and

(iii) 〈π(t), π(t′)〉 ∈ P I , for each P (t, t′) ∈ at(q).

An n-tuple of individuals 〈c1, . . . , cn〉 is an answer to q in I, if there exists a match
π for q in I such that 〈cI1 , . . . , cIn〉 = 〈π(x1), . . . , π(xn)〉. We let ans(q, I) denote the set
of all answers to q in I. A Boolean CQ returns as answer either ∅, representing the
value ‘false’, or the empty tuple 〈〉, representing the value ‘true’. For a UCQ q, we let
ans(q, I) =

⋃
q′∈q ans(q

′, I). The certain answer to a UCQ q of arity n over ontology 〈T ,A〉
is defined as

cert(q, T ,A) = {~c ∈ (NI)
n | ~c ∈ ans(q, I), for each model I of 〈T ,A〉}.

2.3 Query Answering in DL-LiteA

The problem of query answering in DLs is the problem of computing the certain answer
to a given query over a given DL ontology. Formulated in this way, query answering is a
computation problem and not a decision problem. Since in this paper we are interested in
establishing computational complexity results, we identify query answering with its decision
problem, sometimes called the recognition problem, in which the input is constituted by a
DL ontology 〈T ,A〉, a query q(~x), and a tuple ~c of arity |~x|, and the task is to determine
whether ~c ∈ cert(q, T ,A). In the special case of instance queries, this problem is also known
as instance checking. Notice that, since we consider both the ontology and the query as
part of the input, we are considering so-called combined complexity (Vardi, 1982).

In many DLs, instance checking can be reduced to the problem of deciding ontology
consistency. This holds also for DL-LiteA and, thus, answering an instance query can be
done in nondeterministic logarithmic space. In contrast, the problem of answering a UCQ
(and hence a CQ) q over a DL-LiteA ontology 〈T ,A〉 can be solved in nondeterministic
polynomial time by adopting a pure query rewriting approach (Calvanese et al., 2007, 2009).
This technique works in two steps. In the first step, we compute the perfect reformulation
Rq,T of q w.r.t. T—that is, we rewrite the input query q with respect to the TBox T into
a UCQ Rq,T . In this rewriting step, the portion of the TBox relevant for answering q is
compiled into Rq,T . In the second step, we simply evaluate the computed rewriting Rq,T
over the ABox A—seen as a first order interpretation. This is captured by the proposition
below, which makes use of the notion of interpretation associated to an ABox, formalized
in the following definition.

Definition 2.1. Given an ABox A, let DBA be the interpretation whose domain ∆DBA is
the set of individuals occurring in A, and

(i) cDBA = c, for all individuals c occurring in A;
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(ii) ADBA = {c | A(c) ∈ A}, for all A ∈ NC ;
(iii) PDBA = {〈c, d〉 | P (c, d) ∈ A}, for all P ∈ NR.

The following proposition summarizes the results about query answering based on rewrit-
ing that have been shown for the logics of the DL-Lite family (and for DL-LiteA in partic-
ular) and that we will exploit in the following.

Proposition 2.1. (Calvanese et al., 2007, 2009) Let 〈T ,A〉 be a DL-LiteA ontology, let q
be a UCQ, and let max(q) = maxqi∈q |at(qi)|. It is possible to construct a UCQ Rq,T , called
the perfect reformulation of q w.r.t. T , such that

cert(q, T ,A) = ans(Rq,T ,DBA).

Moreover, Rq,T satisfies the following properties.

• All predicates occurring in Rq,T occur in T or in q.
• Each qr ∈ Rq,T has at most max(q) atoms and at most 2 ·max(q) terms.
• If q consists of a single instance query, then each qr ∈ Rq,T has only one atom.
• Each qr ∈ Rq,T can be obtained in nondeterministic polynomial time in the combined

size of T and q.
• Deciding whether a given tuple of individuals is in ans(Rq,T ,DBA) can also be achieved

in nondeterministic polynomial time in the combined size of T and q.

2.4 Complexity Theory

We briefly outline the definition of some non-canonical complexity classes used in the paper;
for more details, we refer the reader to standard textbooks on computational complexity
(e.g., Papadimitriou, 1994). The class ΣP

2 is a member of the Polynomial Hierarchy: it is
the class of all decision problems solvable in nondeterministic polynomial time using an NP
oracle. The class PNP

‖ contains all decision problems that can be solved in polynomial time
with an NP oracle, where all oracle calls must be first prepared and then issued in parallel.
The class DP contains all problems that, considered as languages, can be characterized as
the intersection of a language in NP and a language in coNP. Additionally, the class NL
contains all decision problems that can be solved by a nondeterministic Turing machine using
a logarithmic amount of space. It is believed that NL ⊆ PTime ⊆ NP ⊆ DP ⊆ PNP

‖ ⊆ ΣP
2

is a strict hierarchy of inclusions. Here we make such an assumption.

As usual, we use reductions between problems to infer complexity bounds throughout
the paper. Unless stated otherwise, these are all many-one logarithmic space reductions.

3. Explaining Negative Query Answers

In this section, we formalize as an abductive task the problem of finding explanations for
negative answers to queries over DL ontologies.

For a DL TBox T , a DL ABox A, and a query q from IQ∪CQ, we let Σ(T ,A, q) denote
the set of all those predicates that occur in T , A, or q. A signature Σ is a non-empty finite
subset of NC ∪ NR. Furthermore, an ABox A is a Σ-ABox if all the assertions in A use
only predicates from Σ; that is, if Σ(∅,A, ∅) ⊆ Σ.
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Definition 3.1. Let 〈T ,A〉 be a DL ontology, q(~x) a query from IQ ∪ CQ, ~c a tuple of
individuals of arity |~x|, and Σ a signature. We call P = 〈T ,A, q,~c,Σ〉 a Query Abduction
Problem (QAP). An explanation for (or, a solution to) P is a Σ-ABox E such that

(i) the ontology 〈T ,A ∪ E〉 is consistent, and

(ii) ~c ∈ cert(q, T ,A ∪ E).

The set of all explanations for P is denoted by expl(P). The predicates in Σ are the ones
allowed in explanations, hence we call them abducible predicates. If Σ(T ,A, q) ⊆ Σ, we say
that P has unrestricted explanation signature; otherwise, if Σ does not contain all symbols
in Σ(T ,A, q), we say that P has restricted explanation signature.

For such a QAP, we call tuple ~c a negative answer to q over 〈T ,A〉, if ~c /∈ cert(q, T ,A).
Clearly, query q over ontology 〈T ,A〉 admits a negative answer only if 〈T ,A〉 is consistent.
Also, by condition (i), if the ontology is inconsistent, then P does not admit explanations.

Ontology languages, such as DL-LiteA, which allow for the specification of existential
restrictions and negative constraints (e.g., disjointness axioms), sometimes require explana-
tions to introduce fresh individuals that do not occur within the QAP. We next precisely
characterize these individuals.

Definition 3.2. Let P = 〈T ,A, q,~c,Σ〉 be a QAP and let E be a solution to P. An arbitrary
individual u occurring in E is anonymous if it does not occur in T , A, q, and in ~c.

Now, we use an example to highlight how query abduction problems can be useful in
debugging negative query answers.

Example 3.1. Let Au be the following set of assertions about a particular university.

DPhil(Anna) DPhil(Beppe)
enroll(Anna,KR) teach(Marco,KR)
enroll(Luca, IDB) teach(Carlo, IDB)

That is, Anna and Beppe are doctoral students, Anna is enrolled in the KR course, which
is taught by Marco, and Luca is enrolled in the introductory DB course (IDB), which is
taught by Carlo. Now, consider the following DL-LiteA TBox Tu formalizing the university
domain, of which Au is a (partial) instance.

∃enroll v Student
∃enroll− v Course

DPhil v Student

∃teach v Lecturer
∃teach− v Course
Course v ∃teach−

Tu models that objects in the domain of enroll are Students, and objects in the domain of
teach are Lecturers, whereas objects in the range of enroll or of teach are Courses. Among
the students we have DPhil students. Finally, every Course must be taught by someone.

Now, assume that the university administration is interested in finding all those who
are teaching a course in which at least one of the enrolled students is a doctoral student,
which is captured by the following query.

qu(x)← teach(x, y), enroll(z, y),DPhil(z)
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Assume that Carlo is expected to be part of the result. This is not the case, as Luca is the
only student of Carlo and he is not known to be a DPhil student. Hence Carlo /∈ cert(q, T ,A)
and Carlo is a negative answer. Suppose that we have complete information on all the
predicates but enroll and teach—that is, only the latter predicates are abducible. It is easy
to see that

Eu = {teach(Carlo, c), enroll(Beppe, c), enroll(Luca, c)}

is an explanation for the QAP Pu = 〈Tu,Au, qu,Carlo, {enroll, teach}〉, which suggests the
existence of a course, represented by the anonymous individual c, that does not occur in
the ABox Au.

The above example shows that certain explanations may be too assumptive in that they
include assertions that are not required to solve the problem. Indeed, in the example’s
explanation there is no reason to assume that Luca is enrolled in the anonymous course
c. In the following, we will examine various restrictions to expl(P) to reduce redundancy
in explanations, achieved by introducing a preference relation among explanations. This
relation is reflexive and transitive—that is, we have a pre-order among explanations. For
such a pre-order � on expl(P), we write E ≺ E ′ if E � E ′ and E ′ � E .

Definition 3.3. The preferred explanations expl�(P) of a QAP P under the pre-order �,
called �-explanations or (�-solutions), are defined as follows.

expl�(P) = { E ∈ expl(P) | there is no E ′ ∈ expl(P) such that E ′ ≺ E }

We consider two preference orders that are commonly adopted when comparing abduc-
tive solutions: the subset-minimality order, denoted by ⊆, and the minimum explanation
size order, denoted by ≤. The latter order is defined by E ≤ E ′ iff |E| ≤ |E ′|. Considering
that, by the definition, explanations are finite, for an arbitrary QAP P, we have that each
≤-solution to P is also a ⊆-solution to P; that is, expl≤(P) ⊆ expl⊆(P).

Example 3.2. As we already argued, the ABox Eu is a redundant solution to the QAP Pu
introduced in Example 3.1. Next, we introduce two minimal solutions. First, we consider
the solution asserting Carlo to teach an anonymous course c and Beppe to be enrolled in
that course. This ABox E ′u = {teach(Carlo, c), enroll(Beppe, c)} is a ⊆-explanation. Second,
we consider the solution asserting Beppe to be enrolled in the IDB course. This ABox
E ′′u = {enroll(Beppe, IDB)} is a ≤-explanation (and hence also a ⊆-explanation).

In the context of logic-based abduction, four main decision problems have been consid-
ered of interest (Eiter & Gottlob, 1995), and they are parametrized according to the chosen
preference order �.

Definition 3.4. Given a QAP P, an ABox assertion ϕ(~d) over abducible predicate ϕ, and
an ABox E, we define the following decision problems.

• �-exist(ence): Does there exist a �-explanation for P?

• �-nec(essity): Does assertion ϕ(~d) occur in all �-explanations for P?

• �-rel(evance): Does assertion ϕ(~d) occur in some �-explanation for P?
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• �-rec(ognition): Is ABox E a �-explanation for P?

Whenever no preference is applied (i.e., when � is the identity), we omit to write � in
front of the problems’ names.

In this paper, we study the complexity of the above reasoning problems for query abduc-
tion. We start by highlighting, in the remaining part of this section, interesting properties
of query abduction problems and important connections between reasoning tasks.

3.1 Reductions between Reasoning Problems

We now show that some of the introduced problems can be reduced to each other. Unless
otherwise stated, the reductions we present work for all DLs, for both instance queries and
UCQs, and for both restricted and unrestricted explanation signatures.

We start by showing that nec is at least as hard as non-exist (i.e., the complement of
the exist problem).

Proposition 3.1. For every DL, non-exist is reducible to nec.

Proof. Assume a QAP P = 〈T ,A, q,~c,Σ〉 and let ϕ(~d) be an arbitrary ABox assertion,
such that ϕ and ~d do not occur in P. The following holds: P has no explanation iff ϕ(~d) is
necessary for P ′ = 〈T ,A, q,~c,Σ ∪ {ϕ}〉. By the construction, it follows that each solution
to P is also a solution to P ′; furthermore, for each solution E ′ to P ′, ϕ 6∈ Σ(∅, E ′, ∅) implies
that E ′ is a solution to P. By the definition of P ′ and since ϕ and ~d are globally fresh,
for each ABox E , we have that E is an explanation for P ′ if and only if E \ {ϕ(~d)} is an
explanation for P ′. The correctness of the reduction immediately follows.

For QAPs with restricted explanation signatures, we next show that nec reduces to
non-exist. The reduction works for every DL that allows for disjointness axioms.

Proposition 3.2. For every DL that allows for concept and role disjointness axioms, and
under restricted explanation signatures, nec is reducible to non-exist.

Proof. Consider an instance of nec given by a QAP P = 〈T ,A, q,~c,Σ〉 where Σ might be
restricted, and by an ABox assertion ϕ(~d). Next, we show how to construct a QAP P ′ such
that ϕ(~d) is necessary for P iff P ′ does not admit solutions. To this end, let ϕ′ and ϕ̄ be
two globally fresh predicates of the same arity as ϕ; furthermore, let TBox T ′, ABox A′,
and signature Σ′ be as follows.

T ′ := T ∪ {ϕ′ v ϕ} ∪ {ϕ̄v ¬ϕ′} A′ := A ∪ {ϕ̄(~d)} Σ′ := {ψ ∈ Σ | ψ 6= ϕ} ∪ {ϕ′}

Finally, let P ′ := 〈T ′,A′, q,~c,Σ′〉. Now, we show the correctness of the reduction; that is,
ϕ(~d) is necessary for P iff P ′ does not admit solutions.

(⇒) We prove the contrapositive. Suppose that P ′ has a solution E ′. By the definition
of 〈T ′,A′〉 and of Σ′, we have that ϕ′(~d) 6∈ E ′ and that predicate ϕ does not occur in E ′.
Let ABox E be defined as follows.

E := {ψ(~t) ∈ E ′ | ψ 6= ϕ′} ∪ {ϕ(~t) | ϕ′(~t) ∈ E ′}
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By the construction, E is a Σ-ABox that does not contain ϕ(~d). It remains to show that
E is a solution to P. To this end, please observe that each model J of 〈T ′,A′ ∪ E ′〉 is
a model of 〈T ,A ∪ E〉, since ϕ′ v ϕ ∈ T ′. In addition, each model I of 〈T ,A ∪ E〉 can
be extended to a model J of 〈T ′,A′ ∪ E ′〉 by setting ϕ′J := {(~t)J | ϕ′(~t) ∈ E ′} and
ϕ̄J := {(~d)J }. It follows that 〈T ′,A′ ∪ E ′〉 is a conservative extension of 〈T ,A ∪ E〉. Given
that ~c ∈ cert(q, T ′,A′ ∪ E ′) and that q is over 〈T ,A〉, we obtain that ~c ∈ cert(q, T ,A ∪ E).
Furthermore, since 〈T ′,A′ ∪ E ′〉 is consistent, we also have that 〈T ,A ∪ E〉 is consistent; so
E is a solution to P that does not contain assertion ϕ(~d), as required.

(⇐) We prove the contrapositive. Suppose that a solution E to P exists such that
ϕ(~d) 6∈ E . Let ABox E ′ be defined as follows.

E ′ := {ψ(~t) ∈ E | ψ 6= ϕ} ∪ {ϕ′(~t) | ϕ(~t) ∈ E}

By the construction, E ′ is a Σ′-ABox which does not contain ϕ′(~d). It remains to show
that E ′ is a solution to P ′. As we have seen before, 〈T ′,A′ ∪ E ′〉 is a conservative exten-
sion of 〈T ,A ∪ E〉. Given that ~c ∈ cert(q, T ,A ∪ E), we obtain that ~c ∈ cert(q, T ′,A′ ∪ E ′).
Furthermore, since 〈T ,A ∪ E〉 is consistent and ϕ′(~d) 6∈ E ′, we also have that 〈T ′,A′ ∪ E ′〉
is consistent; so E ′ is a solution to P ′, as required.

A simple modification of Proposition 3.2 shows that this result applies also to DLs that
allow for negative ABox assertions of the form ¬A(c) and ¬P (c, c′) instead of disjointness
axioms. We next show that rel and exist are mutually reducible.

Proposition 3.3. For every DL, rel and exist are mutually reducible.

Proof. First, we show that we can reduce rel to exist. Let P be an arbitrary QAP of
the form 〈T ,A, q,~c,Σ〉 and let ϕ(~d) be an arbitrary ABox assertion such that ϕ ∈ Σ. We
construct a QAP P ′ such that ϕ(~d) is relevant to P if and only if P ′ admits a solution.
To this end, let A′ be the ABox defined as A′ = A ∪ {ϕ(~d)}. Then, we define QAP P ′ as
P ′ = 〈T ,A′, q,~c,Σ〉. Next, we prove the correctness of the reduction. The only-if direction
is immediate. For the if direction, suppose that P ′ admits a solution E ′. It follows, by the
definition of P ′, that Σ-ABox E ′ ∪ {ϕ(~d)} is consistent with TBox T . Moreover, this latter
ABox is also a solution to P and, therefore, the given assertion is relevant.

Second, we prove that exist is reducible to rel. Let P be an arbitrary QAP of the
form 〈T ,A, q,~c,Σ〉, let ϕ be an arbitrary predicate from Σ, and let ~d be an arbitrary tuple
of individuals not occurring in P such that ~d is of the same arity as predicate ϕ. We prove
that P admits a solution iff ϕ(~d) is relevant for P. The if direction follows by the definition
of relevance. To show the only-if direction, suppose that P admits a solution E . If ϕ(~d)
occurs in E , it is relevant for P. Otherwise, since individuals ~d do not occur in P and ϕ ∈ Σ,
ABox E ∪ {ϕ(~d)} is also a solution to P, and hence ϕ(~d) is relevant for P.

Moreover, ⊆-nec and nec are also mutually reducible.

Proposition 3.4. For every DL, ⊆-nec and nec are mutually reducible.

Proof. For an arbitrary QAP P and an arbitrary ABox assertion ϕ(~d), we have that ϕ(~d)
occurs in all ⊆-minimal explanations for P iff ϕ(~d) occurs in all explanations for P. Thus,
nec and ⊆-nec are equivalent problems.
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Finally, since our preference orders prefer ‘smaller’ explanations and, by the definition,
explanations are finite, our orders are well-founded. It immediately follows that there exists
an explanation for an arbitrary QAP P if and only if P admits a minimal explanation under
both our preference orders.

Proposition 3.5. For every DL, ⊆-exist, ≤-exist, and exist are mutually reducible.

3.2 QAPs and the Query Emptiness Problem

As mentioned in the introduction, deciding the existence of an explanation is related to the
query emptiness problem studied by Baader et al. (2010). Since we will rely on that problem
to infer some complexity bounds throughout the paper, we briefly introduce it here.

Definition 3.5. Let T be a DL TBox, Q ∈ {IQ, CQ} a query language, and Σ a signature.
We say that a Q-query q is empty for Σ given T if for every Σ-ABox A that is consistent
with T we have that cert(q, T ,A) = ∅. Otherwise, we say that q is non-empty for Σ given
T . The Q non-emptiness problem consists in deciding, for input T , q, and Σ, whether q is
non-empty for Σ given T .

Next, we first show that, for every DL, and for both instance queries and Boolean UCQs,
query non-emptiness reduces to exist. Then, we show that for the DL-LiteA case this holds
even for arbitrary UCQs.

Proposition 3.6. For every DL and both instance queries and Boolean UCQs, Q non-
emptiness is reducible to exist.

Proof. Let T be an arbitrary DL TBox, let q ∈ IQ ∪ CQ be an arbitrary query such that
q ∈ CQ implies that q is a Boolean UCQ, and let Σ be an arbitrary signature. We show
how to construct a QAP P such that q is non-empty for Σ given T iff P admits a solution.
To this end, let ~c be an arbitrary tuple such that q ∈ CQ implies that ~c = 〈〉, and q ∈ IQ
implies that ~c = 〈a〉 where a is a globally fresh individual. Clearly, we have that q is
non-empty for Σ given T iff P = 〈T , ∅, q,~c,Σ〉 admits a solution.

The relationship between CQ non-emptiness and exist can tightened, when we restrict
our attention to DL-LiteA TBoxes.

Proposition 3.7. For DL-LiteA, CQ non-emptiness is reducible to exist.

Proof. Consider a DL-LiteA TBox T , a signature Σ, and this time an n-ary query q ∈ CQ.
W.l.o.g., we assume that q is a CQ. Then, we cannot immediately extend the proof given
for Boolean CQs by introducing n (distinct) individuals since we might be forced to match
distinct answer variables of q to the same individual in an ABox witnessing non-emptiness
of q. However, we can adapt the proof to this case as follows. We let N be a fresh atomic
concept not occurring in Σ(T , ∅, q)∪Σ. We define Σ′ = Σ∪{N} and we let q′ be the Boolean
CQ such that at(q′) = at(q)∪ {N(x1), . . . , N(xn)}. Finally, we let P = 〈T , ∅, q′, 〈〉,Σ′〉 be a
QAP. In the following, we show that q is non-empty for Σ given T iff P admits a solution.

(⇒) Suppose that q is non-empty for Σ given T . That is, there exists a Σ-ABox A such
that 〈T ,A〉 is consistent and there exists some n-ary tuple ~a = 〈a1, . . . , an〉 of individuals
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such that ~a ∈ cert(q, T ,A). Now, consider the Σ′-ABox E = A ∪ {N(ai) | 1 ≤ i ≤ n}.
Since N is a fresh predicate, we have that 〈T , E〉 is a conservative extension of 〈T ,A〉.
That is, each model of 〈T ,A〉 can be extended to be a model of 〈T , E〉, and every model
of 〈T , E〉 is also a model of 〈T ,A〉. By the assumption that 〈T ,A〉 is consistent and that
~a ∈ cert(q, T ,A), we conclude that E is a solution to P.

(⇐) Suppose that P admits a solution E . It follows that 〈T , E〉 is consistent and that
for each model I of 〈T , E〉, there exists a match π for q′ such that I |=π q′. Since N is
a fresh predicate not occurring in T and for each answer variable xi of q the atom N(xi)
is contained in q′, we have that π(xi) = aIi for some ai ∈ NI such that N(ai) ∈ E . It
follows that ~a ∈ cert(q, T , E). Consider the Σ-ABox A obtained from E by removing all the
assertions over N ; it immediately follows that 〈T , E〉 is a conservative extension of 〈T ,A〉.
Therefore, also ~a ∈ cert(q, T ,A) and, thus, q is non-empty for Σ given T .

Proposition 3.7 can be generalized to Horn DLs—that is, to all those DLs for which
answering instance and conjunctive queries reduces to evaluating the input query over a
single, canonical model of the ontology. It follows that for DL-LiteA and, more in general,
for all Horn-DLs, deciding exist generalizes the query non-emptiness problem. Hence,
all the hardness results for non-emptiness obtained by Baader et al. (2010) that hold for
instance queries and UCQs apply also to the exist problem under restricted explanation
signatures. However, since we also consider ABoxes and we require a specific tuple to be in
the query answer, the converse does not hold and we can not always transfer their upper
bounds to our setting.

3.3 Canonical Explanations

Before studying the complexity of reasoning over query abduction problems, we first show
that we can restrict the search for explanations. In order to do so, we define the notion of
instantiation of a conjunctive query.

Definition 3.6. Let q be an n-ary CQ with answer variables 〈x1, . . . , xn〉; furthermore, let
~c = 〈c1, . . . , cn〉 be a tuple of individuals. Let ξ be a mapping from the terms of q to NI such
that ξ is identity over NI and for each answer variable xj of q we have that ξ(xj) = cj.
Then, we call the ABox

Eξ = {A(ξ(t)) | A(t) ∈ at(q)} ∪ {R(ξ(s), ξ(t)) | R(s, t) ∈ at(q)}

a ~c-instantiation of q. Given a DL ontology O, if we additionally have that, for each
quantified variable y, ξ(y) is a distinct anonymous individual uy not occurring in q and O,
then we say that Eξ is direct for O.

Note that in the following we do not distinguish between instantiations that differ only
in the assignment of anonymous individuals to variables. Hence, a CQ has only a finite
number of distinct instantiations, and a unique direct one.

3.3.1 Unrestricted Explanation Signature

To obtain an explanation for a QAP P with unrestricted explanation signature, we can
iterate over the set of all possible instantiations to the input query, searching for one such
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instantiation that is consistent with the input ontology. In the absence of the UNA, we
can even consider one single instantiation of each CQ: the direct instantiation, where all
existentially quantified variables are mapped to distinct anonymous individuals. In the
presence of the UNA, if our underlying DL is expressive enough to enforce inequalities over
the individuals occurring in P (e.g., by means of disjointness axioms), we can again reduce
the problem to searching for a CQ whose direct instantiation is consistent with the input
ontology, when the UNA is dropped.

Proposition 3.8. Let O = 〈T ,A〉 be an arbitrary DL ontology and let P = 〈T ,A, q,~c,Σ〉
be an arbitrary QAP with unrestricted explanation signature. Furthermore, for each qi ∈ q,
let Eqi be the direct ~c-instantiation of qi for O. The following hold:

1. Under the UNA, a solution to P exists iff a ~c-instantiation Eξ of some qi ∈ q exists
such that 〈T ,A ∪ Eξ〉 is consistent.

2. Without the UNA, a solution to P exists iff a query qi ∈ q exists such that 〈T ,A ∪ Eqi〉
is consistent.

3. Furthermore, suppose that the DL supports concept disjointness axioms. Under the
UNA, a solution to P exists iff a query qi ∈ q exists such that 〈T ′,A′ ∪ Eqi〉 is consis-
tent without the UNA, where A′ and T ′ extend A and T with a quadratic number of
assertions and axioms, respectively.

Proof. Consider an arbitrary qi ∈ q and let Eξ be an arbitrary ~c-instantiation of qi. We
first prove that consistency of 〈T ,A ∪ Eξ〉 (with or without the UNA) implies that Eξ is a
solution to P (with or without the UNA, resp.). This shows the if direction of 1 and 2. Let
ξ be the mapping generating Eξ and suppose that 〈T ,A ∪ Eξ〉 is consistent. Let I be an
arbitrary model of 〈T ,A ∪ Eξ〉. Then we build a match π for qi in I by setting π(t) = ξ(t)I

for each term t in qi. As π(xj) = ξ(xj)
I = cIj for each answer variable xj , the match π

witnesses ~c ∈ ans(q, I). Hence ~c ∈ cert(q, T ,A ∪ Eξ) and Eξ is a solution to P, as desired.

For the only-if direction of 1, we assume an arbitrary solution E to P, and use it to
show that there exists a ~c-instantiation Eξ of some qi ∈ q such that 〈T ,A ∪ Eξ〉 is consistent.
Since E is a solution to P, by definition, there exists a model I of 〈T ,A ∪ E〉 under the
UNA. Without loss of generality, we assume that ∆I = NI and that for each c ∈ NI we have
that cI = c. Moreover, the interpretation I admits a match π for some qi ∈ q witnessing
~c ∈ ans(qi, I). To define the mapping ξ, we let ξ(t) = π(t) for each term t occurring in qi.
Then I is a model of Eξ. Since it is also a model of 〈T ,A〉, it is a model of 〈T ,A ∪ Eξ〉 and
shows that the latter is consistent, as desired.

The only-if direction of 2 is shown similarly. Suppose that P admits a solution E .
Then there exists a model I of 〈T ,A ∪ E〉 (without the UNA) that admits a match π for
some qi ∈ q witnessing ~c ∈ ans(qi, I). To obtain an interpretation J that is a model of
〈T ,A ∪ Eqi〉, we extend I as follows. For every anonymous individual uy that was introduced
in Eqi due to an existentially quantified variable y, we let uy

J = π(y). The resulting
interpretation is a model of Eqi , and since these individuals uy do not occur in the ontology,
modelhood for 〈T ,A〉 is preserved.

For 3, we use the extended ABox A′ and TBox T ′ to enforce the UNA over the individ-
uals occurring in P. The ABox A′ extends A with an assertion Ac(c) for each individual
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c occurring in P, where each Ac is a fresh concept name. The TBox T ′ consists of axioms
Ac v ¬Ac′ for all pairs c 6= c′ of individuals occurring in P. Since the interpretations of
〈T ,A〉 under the UNA and of 〈T ′,A′〉 without the UNA coincide, the claim easily follows
from statement 2 above.

A direct consequence of this proposition is that, for all DLs, we can restrict our search
to explanations that result from instantiating the input query.

Corollary 3.9. Let P = 〈T ,A, q,~c,Σ〉 be a QAP with unrestricted explanation signature,
let max(q) = maxqi∈q |at(qi)|, and let max-terms(q) = maxqi∈q |qi|. If P has an explanation,
then P has an explanation with concepts and roles only from q, at most max(q) atoms, and
at most max-terms(q) individuals.

3.3.2 Restricted Explanation Signature

If we allow for restricted explanation signatures, then Proposition 3.8 does not hold anymore,
and the search space for possible explanations becomes significantly larger. As we will see
in the following sections, this has a notable effect on the complexity of the different decision
problems. However, in the case of DL-LiteA, we can still show a weaker version of the
proposition that allows us to restrict our search to the instantiations of the queries in the
perfect reformulation of the input query q. Moreover, every ⊆-minimal explanation can be
obtained this way.

Proposition 3.10. Let P = 〈T ,A, q,~c,Σ〉 be a QAP where 〈T ,A〉 is a DL-LiteA ontology,
and let Rq,T be the perfect reformulation of q w.r.t. T . A solution to P exists if and only
if a ~c-instantiation Eξ of some qr ∈ Rq,T exists such that (i) 〈T ,A ∪ Eξ〉 is consistent,
and (ii) Eξ \ A is a Σ-ABox. Moreover, E ′ is a ⊆-minimal explanation implies that query
qr ∈ Rq,T and ABox Eξ exist such that Eξ is a ~c-instantiation of qr and E ′ = Eξ \ A.

Proof. The first part of the claim is shown analogously to item 1 of Proposition 3.8 (recall
that in DL-LiteA we make the UNA). For the if direction, consider an arbitrary qr ∈ Rq,T
and let Eξ be a ~c-instantiation of qr generated from a mapping ξ. We assume that 〈T ,A ∪ Eξ〉
is consistent and that Eξ \ A is a Σ-ABox. Then, to show that Eξ \ A is a solution to P, it
suffices to show the existence of a match π for qr in DBA∪Eξ witnessing ~c ∈ cert(q, T ,A∪Eξ).
This π is easily obtained by setting π(t) = ξ(t)I for each term t in qr. For the only-if
direction, we assume an arbitrary solution E to P and use it to show that there exists a ~c-
instantiation Eξ of some qr ∈ Rq,T that satisfies conditions (i) and (ii). Since E is a solution
to P, by definition, E is a Σ-ABox, 〈T ,A ∪ E〉 is consistent, and ~c ∈ cert(q, T ,A ∪ E). By
Proposition 2.1, it follows that there exists a query qr ∈ Rq,T and a match π for qr in
DBA∪E that witness ~c ∈ ans(qr,DBA∪E). We define a mapping ξ by setting ξ(t) = π(t) for
each term t in qr. Then, for the resulting ~c-instantiation Eξ we have that Eξ ⊆ E ∪A, which
implies the consistency of 〈T ,A ∪ Eξ〉 and that Eξ \ A is also a Σ-ABox as desired.

To show the second part of the claim, suppose E is a ⊆-minimal solution to P. By
Proposition 2.1, we have that there exists some qr ∈ Rq,T for which there exists a match π
witnessing ~c ∈ ans(qr,DBA∪E). We construct a ~c-instantiation Eξ of qr as follows:

Eξ = {A(π(t)) ∈ A ∪ E | A(t) ∈ at(qr)} ∪ {R(π(t), π(t′)) ∈ A ∪ E | R(t, t′) ∈ at(qr)}

By the minimality of E , we have that E = Eξ \ A.
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Similarly as above, this implies that we can consider only small explanations whose size
is linear in the size of the input query q, but now their signature depends not only on q,
but also on the signature of the input TBox T .

Corollary 3.11. Let P = 〈T ,A, q,~c,Σ〉 be a QAP where 〈T ,A〉 is a DL-LiteA ontology.
Furthermore, let max(q) = maxqi∈q |at(qi)|. If P = 〈T ,A, q,~c,Σ〉 has an explanation, then
P has an explanation with concepts and roles only from T and q, at most max(q) atoms,
and at most 2 ·max(q) individuals.

4. Complexity for Instance Queries

We now study the complexity of reasoning over query abduction problems. We consider the
complexity under both unrestricted and restricted explanation signatures, and we consider
the different minimality criteria over abductive solutions. We measure the complexity of
a QAP P = 〈T ,A, q,~c,Σ〉 in terms of the combined size of T , A, q, and Σ—that is, we
consider combined complexity. In this section, we investigate the complexity of reasoning
over QAPs when the body of the input query consists of a single unary atom—that is, we
consider instance queries. In the following section, we shall turn our attention to UCQs.

4.1 Existence of Explanations

Before giving the first complexity results, we show that, for instance queries, ⊆-minimal and
≤-minimal explanations coincide. To see this, consider an arbitrary QAP P = 〈T ,A, q, c,Σ〉
such that q ∈ IQ and let qr be an arbitrary CQ in the perfect reformulation Rq,T . By Propo-
sitions 2.1 and 3.10, it follows that each ~c-instantiation of qr that is consistent with 〈T ,A〉
contains an explanation for P; moreover, each ⊆-minimal explanation for P can be obtained
in this way. As these explanations contain at most one assertion (cf. Proposition 2.1), ≤-
and ⊆-minimal explanations are both of size at most one, and we obtain the following result.

Proposition 4.1. Let P = 〈T ,A, q,~c,Σ〉 be a QAP such that 〈T ,A〉 is a DL-LiteA ontology
and q ∈ IQ, and let E be an arbitrary Σ-ABox. Then, E is a solution to P implies that a
solution E ′ ⊆ E to P exists such that |E ′| ≤ 1. Hence, expl≤(P) = expl⊆(P).

Now we consider the complexity of deciding existence of an explanation.

Theorem 4.2. For DL-LiteA, instance queries, and under both unrestricted and restricted
explanation signatures, exist, ⊆-exist, and ≤-exist are NL-complete.

Proof. By Proposition 3.5, it suffices to show the result for exist. We first provide an
algorithm that yields the desired upper bound, even with restricted explanation signatures.
Then we show that the problem is NL-hard already for the case of unrestricted signatures.

(membership) Let P = 〈T ,A, q, c,Σ〉 be a QAP such that q ∈ IQ. To decide exist in
non-deterministic logarithmic space, we can exploit Proposition 4.1 and test all candidate
singleton explanations by iterating over Σ, the individuals occurring in P, and at most
two anonymous individuals. This results in at most polynomially many candidate solu-
tions E of constant size. For each of them we test whether 〈T ,A ∪ E〉 is consistent and
c ∈ cert(q, T ,A ∪ E). Since for DL-LiteA both ontology consistency and instance checking
can be solved in non-deterministic logarithmic space, exist is in NL.
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Algorithm 1 isNEC

Input: QAP P = 〈T ,A, q,~c,Σ〉 and assertion ϕ(~d) such that 〈T ,A〉 is a DL-LiteA ontology,
q ∈ IQ ∪ CQ, Σ is unrestricted, and ϕ ∈ Σ.

Output: “yes” iff ϕ(~d) is necessary for P.
1: Let ϕ̄ be a globally fresh predicate of the same arity as ϕ.
2: Let T ′ := T ∪ {ϕ̄v ¬ϕ} and let A′ := A ∪ {ϕ̄(~d)}.
3: If 〈T ′,A′, q,~c,Σ〉 admits a solution, then return “no”.
4: Let I be the set of all individuals occurring in P and ~d.
5: Let u be a globally fresh anonymous individual.
6: for all Σ-ABoxes E∗ over the individuals in I ∪ {u} s.t. |E∗| ≤ 1 and ϕ(~d) 6∈ E∗ do
7: If 〈T ,A ∪ E∗〉 |= ϕ(~d) and 〈T ,A ∪ E∗, q,~c,Σ〉 admits a solution, then return “no”.
8: end for
9: Return “yes”.

(hardness) We reduce the DL-LiteA ontology consistency problem (under the UNA)
to exist. Consider an arbitrary DL-LiteA ontology 〈T ,A〉. Furthermore, consider an
arbitrary atomic concept A not occurring in 〈T ,A〉, let q = A(x), let c ∈ NI be an arbitrary
individual, and let P = 〈T ,A, q, c,Σ〉 be a QAP with unrestricted Σ. We show that 〈T ,A〉
is consistent if and only if P admits a solution. The if direction is trivial. For the only-
if direction, suppose that 〈T ,A〉 is consistent, and consider E = {A(c)}. Since 〈T ,A〉 is
consistent and A is fresh, 〈T ,A ∪ E〉 is also consistent. As each model I of 〈T ,A ∪ E〉
satisfies the assertion A(c), E is a solution to P.

4.2 Deciding Necessity

In Section 3.1, we have seen that for QAPs with restricted explanation signatures and
DLs that allow for disjointness axioms, nec reduces to non-exist. For the case of QAPs
with unrestricted explanation signatures but ontologies restricted to DL-LiteA, we provide
in Algorithm 1 a Turing reduction to (non-)exist; that is, a procedure that solves nec by
employing a subroutine for solving exist. The following proposition proves its correctness.

Proposition 4.3. For DL-LiteA, instance queries and UCQs, and under unrestricted ex-
planation signatures, algorithm isNEC decides nec.

Proof. Let P = 〈T ,A, q,~c,Σ〉 be a QAP such that 〈T ,A〉 is a DL-LiteA ontology, query
q ∈ IQ ∪ CQ, and signature Σ is unrestricted; furthermore, let ϕ(~d) be an assertion over
abducible predicate ϕ ∈ Σ. We prove that ϕ(~d) is necessary for P iff isNEC returns “yes”.

For the only-if direction, we prove the contrapositive. Suppose that isNEC returns “no”
on the given instance; we show that a solution E to P exists such that ϕ(~d) 6∈ E . According
to the construction of isNEC, we consider two alternative cases.

• QAP 〈T ′,A′, q,~c,Σ〉 admits a solution E . For DL-LiteA, Calvanese et al. (2009)
showed that negative inclusion axioms affect only the consistency of the given ontology,
but do not contribute towards computing the certain answer; that is, ~c ∈ cert(q, T ′,A′)
iff 〈T ′,A′〉 is consistent and ~c ∈ cert(q, T ,A′). Then, since assertion ϕ̄(~d) is over a
predicate not occurring in P and 〈T ′,A′〉 is consistent, we have that E is also a solution
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to P = 〈T ,A, q,~c,Σ〉. By the definition, such solution does not contain ϕ(~d), since
〈T ′,A′〉 |= ϕ̄(~d) and ϕ̄v ¬ϕ ∈ T ′.

• QAP 〈T ′,A′, q,~c,Σ〉 has no solution. Since isNEC returns “no”, a Σ-ABox E∗ ex-
ists such that |E∗| ≤ 1, ϕ(~d) 6∈ E∗, 〈T ,A ∪ E∗〉 |= ϕ(~d), and QAP 〈T ,A ∪ E∗, q,~c,Σ〉
has a solution E . Given that assertion ϕ(~d) is entailed by 〈T ,A ∪ E∗〉 we have that
E ′ := E \ {ϕ(~d)} is also a solution to 〈T ,A ∪ E∗, q,~c,Σ〉. We conclude that E ′ ∪ E∗ is
a solution to 〈T ,A, q,~c,Σ〉 that does not contain ϕ(~d), as required.

For the if direction, we prove the contrapositive. Suppose that a Σ-ABox E exists such
that E is a solution to P and ϕ(~d) 6∈ E ; we show that isNEC returns “no”. W.l.o.g., the
individual u of Algorithm 1 does not occur in E . Now, if 〈T ,A ∪ E〉 6|= ϕ(~d), we have that E is
a solution to QAP 〈T ′,A′, q,~c,Σ〉, so isNEC returns “no”, as required. Otherwise, consider
the case in which 〈T ,A ∪ E〉 |= ϕ(~d) and take the conjunctive query q′(~x)← ϕ(~x). By the
assumption, we have that ~d ∈ cert(q′, T ,A ∪ E). By Proposition 2.1, a query r ∈ Rq′,T and

a match π for r exist such that r contains a single atom and ~d ∈ ans(r,DBA∪E) is witnessed
by π. Let ψ(~y) be the unique atom occurring in r such that ~x ⊆ ~y and let ψ(~t) be the
assertion obtained from ψ(~y) by replacing each variable y ∈ ~y with π(y). Clearly, we have
that ψ(~t) ∈ A ∪ E . Next, we distinguish among two cases.

• For each variable y ∈ ~y we have that π(y) ∈ I. Then, let E∗ := ∅, if ψ(~t) ∈ A,
and let E∗ := {ψ(~t)}, if ψ(~t) ∈ E . In either case, we have that ϕ(~d) 6∈ E∗, that
〈T ,A ∪ E∗〉 |= ϕ(~d), and that E∗ ⊆ E . Hence, E is a solution to QAP 〈T ,A ∪ E∗, q,~c,Σ〉;
so isNEC returns “no”, as required.

• Variable y ∈ ~y exists such that π(y) 6∈ I. Given that ~d ⊆ I, ~d ∈ ans(r,DBA∪E), and
predicates have arity at most 2, we have that ~d is of the form ~d := 〈d〉, ϕ ∈ NC , and
ψ ∈ NR. It follows that CQ r is of the form r(x)← ψ(x, y) or r(x)← ψ(y, x). Next,
we consider the former case only, as the other case is symmetrical. Then, assertion
ψ(~t) is of the form ψ(d, π(y)). Since π(y) 6∈ I, we have that ψ(d, π(y)) ∈ E . Now, let
E ′ be the ABox obtained from E by replacing each occurrence of individual π(y) with
the individual u of Algorithm 1. Since E ′ is obtained from solution E by uniformly
replacing an anonymous individual with an individual that does not occur in E and P,
we have that E ′ is also a solution to P. By the definition, ϕ(d) 6∈ E ′ and ψ(d, u) ∈ E ′.
Now, let E∗ := {ψ(d, u)}. Since d ∈ ans(r,DBA∪E) is witnessed by π and by the
definition of E∗, we have that 〈T ,A ∪ E∗〉 |= ϕ(d). At last, since E∗ ⊆ E ′ and E ′ is a
solution to P, we conclude that ABox E ′ is a solution to 〈T ,A ∪ E∗, q,~c,Σ〉. Hence,
isNEC returns “no”, as required.

Next, we use Algorithm 1 and Propositions 3.1 and 3.2 to characterize the complexity
of nec in the presence of instance queries.

Theorem 4.4. For DL-LiteA, instance queries, and under both unrestricted and restricted
explanation signatures, nec, ≤-nec, and ⊆-nec are NL-complete.

Proof. For the NL upper bound for nec and under restricted signatures, observe that, by
Proposition 3.2, nec reduces to non-exist. In Theorem 4.2, we proved that exist is in NL.

651



Calvanese, Ortiz, Šimkus & Stefanoni

Given that NL = coNL, we have that nec is in NL as well. The NL upper bound in the
case of unrestricted signature can be established using algorithm isNEC and Proposition 4.3.
Indeed, given that NL = coNL, that non-exist is in coNL, and that checking whether an
assertion is entailed by a DL-LiteA ontology is in coNL as well, we immediately obtain that
isNEC runs in nondeterministic logarithmic space. The coNL-hardness and thus also NL-
hardness of nec follows from Proposition 3.1 and Theorem 4.2. In addition, Proposition 3.4
states that nec and ⊆-nec are equivalent and, thus, also ⊆-nec is NL-complete. Finally,
by Proposition 4.1, we conclude that ≤-nec is NL-complete.

4.3 Deciding Relevance

By Proposition 3.3, deciding the relevance of an assertion to a QAP is equivalent to assessing
whether a QAP admits a solution. We already showed this latter problem to be NL-complete
(see Theorem 4.2). Therefore, the following result easily follows.

Theorem 4.5. For DL-LiteA, instance queries, and under both unrestricted and restricted
explanation signatures, rel is NL-complete.

In the next theorem, we show that the complexity of the problem does not change even
when we apply a minimality criterion over solutions.

Theorem 4.6. For DL-LiteA, instance queries, and under both restricted and unrestricted
explanation signatures, ≤-rel and ⊆-rel are NL-complete.

Proof. By Proposition 4.1, it suffices to show that ≤-rel is NL-complete.

(membership) Let P = 〈T ,A, q, c,Σ〉 be a QAP such that q ∈ IQ and let ϕ(~d) be an
ABox assertion over abducible predicate ϕ. We argue that ϕ(~d) is≤-relevant to P if and only
if (i) c 6∈ cert(q, T ,A), (ii) 〈T ,A ∪ {ϕ(~d)}〉 is consistent, and (iii) c ∈ cert(q, T ,A∪{ϕ(~d)}).
We show the only-if direction, since the if direction directly follows by Proposition 4.1 and
by the definition of solution. Suppose that ϕ(~d) is ≤-relevant to P. By the definition
of minimal solution, it follows that c 6∈ cert(q, T ,A). Also, by Proposition 4.1, it follows
that {ϕ(~d)} is a ≤-solution to P. But then, we have that c ∈ cert(q, T ,A ∪ {ϕ(~d)}) and
that the ontology 〈T ,A ∪ {ϕ(~d)}〉 is consistent. Since conditions (i-iii) can be decided in
non-deterministic logarithmic space for DL-LiteA ontologies, we conclude that, for instance
queries and (un)restricted explanation signatures, ≤-rel is in NL.

(hardness) Hardness can be proved by employing the same reduction as in Theorem 4.2
and by taking A(c) to be the assertion to be shown relevant. By Proposition 4.1, we have
that 〈T ,A〉 is consistent if and only if A(c) is ≤-relevant for P.

4.4 Deciding Recognition

Finally, we consider the problem of deciding whether a given ABox is a solution to a QAP.

Theorem 4.7. For DL-LiteA, instance queries, and under both unrestricted and restricted
explanation signatures, rec is NL-complete.

Proof. (membership) Let P = 〈T ,A, q, c,Σ〉 be a QAP (where Σ may be restricted) such
that q ∈ IQ and let E be an ABox. By the definition of solution to a QAP, we can decide
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�
�-exist �-nec �-rel �-rec

unrestr. restr. unrestr. restr. unrestr. restr. unrestr. restr.

none

PTime NP

PTime coNP PTime NP NP

≤ PNP
‖ PNP

‖ DP

⊆ PTime coNP in ΣP
2 ΣP

2 DP

Table 5.1: Complexity of reasoning over QAPs with UCQs for DL-LiteA. All entries in the
table denote completeness results, except for ⊆-rel under unrestricted explana-
tion signatures.

whether E ∈ expl(P) in three steps: (i) check that E is a Σ-ABox, (ii) check that 〈T ,A ∪ E〉
is consistent, and (iii) check that c ∈ cert(q, T ,A ∪ E). For DL-LiteA ontologies, we can
perform these three steps in non-deterministic logarithmic space. Thus, for instance queries
and under both restricted and unrestricted signatures, rec is in NL.

(hardness) We provide a reduction from the consistency problem of DL-LiteA ontolo-
gies. Consider an arbitrary ontology 〈T ,A〉. Then, we let A be a fresh concept name not
occurring in the ontology and we let c be a fresh individual. Furthermore, let q(x)← A(x)
be our instance query. Finally, we let P = 〈T ,A, q, c,Σ〉 be our query abduction problem
with unrestricted explanation signature and we let E = {A(c)} be our target ABox. It is
not too difficult to see that 〈T ,A〉 is consistent iff E is a solution to P.

Unsurprisingly, the complexity does not change when we consider a minimality criterion
over solutions.

Theorem 4.8. For DL-LiteA, instance queries, and under both unrestricted and restricted
explanation signatures, ≤-rec and ⊆-rec are NL-complete

Proof. By Proposition 4.1, we focus only on ≤-rec.

(membership) In order to decide whether E ∈ expl≤(P) we first check that E is indeed
a solution to P, which we can do in non-deterministic logarithmic space (see Theorem 4.7).
Then, by Proposition 4.1, we need to check that |E| ≤ 1 and that E is the empty ABox
whenever c ∈ cert(q, T ,A). Since instance checking in DL-LiteA is in NL, we conclude that
≤-rec is in NL as well.

(hardness) We can reuse the reduction to consistency in DL-LiteA provided in The-
orem 4.7 to show that, for instance queries and under unrestricted explanation signatures,
≤-nec is NL-hard. We conclude that, under both restricted and unrestricted explanation
signature, ≤-nec and ⊆-nec are NL-complete.

5. Complexity for Unions of Conjunctive Queries

In this section, we consider the more general problem of reasoning over query abduction
problems that admit UCQs in the input. We establish the complexity of the various rea-
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Algorithm 2 someExplanation

Input: QAP P = 〈T ,A, q,~c,Σ〉.
Output: “yes” iff P has an explanation.

1: Guess a CQ qr in the perfect reformulation Rq,T of q w.r.t. T .
2: Guess a ~c-instantiation Eξ of qr.
3: If Eξ \ A is a Σ-ABox and 〈T ,A ∪ Eξ〉 is consistent, then return “yes”.
4: Return “no”.

soning tasks for these problems in DL-LiteA, under both unrestricted and restricted expla-
nation signatures, and under the different minimality criteria. The results in this section
are summarized in Table 5.1.

5.1 Existence of Explanations

We first focus on the problem of deciding whether a query abduction problem with unre-
stricted signature admits at least one explanation.

It follows from Proposition 3.8 that the complexity of this problem coincides with the
complexity of deciding consistency without the UNA in the underlying DL. By Propo-
sition 3.5, this extends to ⊆-exist, and ≤-exist. Since reasoning without the UNA is
PTime-complete for DL-LiteA (Artale et al., 2009), we obtain the following result.

Theorem 5.1. For every DL L, UCQs, and under unrestricted explanation signatures,
exist, ⊆-exist, and ≤-exist have the same complexity as consistency checking without
the UNA in L. Hence for DL-LiteA, the mentioned problems are PTime-complete.

If we allow for restricted explanation signatures, then deciding exist becomes harder.
For DL-LiteA, the complexity increases from PTime to NP.

Theorem 5.2. For DL-LiteA, UCQs, and under restricted explanation signatures, exist,
⊆-exist, and ≤-exist are NP-complete. NP-hardness holds already in the following re-
stricted settings:

1. QAPs where the TBox contains only concept inclusions of the forms A1 v A2 and
A1v¬A2 for concept names A1 and A2, the ABox is empty, and the query is a Boolean
CQ consisting of a conjunction of unary atoms over a single quantified variable.

2. QAPs with an empty TBox.

Proof. By Proposition 3.5, it is sufficient to show that exist is NP-complete.

(membership) The upper bound follows from guess-and-check Algorithm 2, which is
immediate by Proposition 3.10. It guesses non-deterministically a CQ qr in the perfect
reformulation Rq,T of q w.r.t. T , and a ~c-instantiation Eξ of qr. The algorithm then checks
in polynomial time that Eξ \A is a Σ-ABox and that the ontology 〈T ,A ∪ Eξ〉 is consistent;
it was shown by Calvanese et al. (2009) that the latter check is polynomial.

(hardness) Next, we provide the two hardness results. The first one follows directly
from Proposition 3.7 and the hardness proof for CQ query emptiness for the sublogic of
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DL-LiteA known as DL-Litecore given in Theorem 17 by Baader et al. (2010). For show-
ing hardness in the second setting, we reduce the following NP-complete problem: given a
pair of directed graphs G = (V,E) and G′ = (V ′, E′), decide whether there exists an ho-
momorphism from G to G′. To this end, let A = {e(ca, cb) | (a, b) ∈ E′} be an ABox.
Furthermore, for B an arbitrary atomic concept and c a globally fresh individual, let
q = {e(xa, xb) | (a, b) ∈ E} ∪ {B(c)} be a Boolean CQ and Σ = {B} be a signature. Fi-
nally, let PG,G′ = 〈∅,A, q,Σ〉 be a QAP; we show that there exists a homomorphism from
G to G′ iff there is a solution to PG,G′ . Indeed, if there is a homomorphism from G to G′,
then {B(c)} is a solution to P. For the other direction, assume there is an explanation E
for P. Since binary atoms are prohibited from occurring in E by the selection of Σ, there
must exist a match π from q to DBA. Such a mapping π also witnesses the existence a
homomorphism from G to G′.

5.2 Deciding Necessity

Now, we consider the problem of checking whether an assertion occurs in all the solutions
to a QAP P; that is, whether an assertion is necessary for P. For the case of restricted
explanation signatures, we use the reductions from Section 3.1 and Theorem 5.2 to derive
that nec and ⊆-nec are coNP-complete. For the case of unrestricted explanation signa-
tures, we use the procedure for solving nec described in Algorithm 1 to show that nec and
⊆-nec are PTime-complete.

Theorem 5.3. For DL-LiteA, UCQs, and under unrestricted explanation signatures, nec
and ⊆-nec are PTime-complete. Furthermore, under restricted explanation signatures,
nec and ⊆-nec are coNP-complete.

Proof. In Theorem 5.1 and Theorem 5.2, we proved that the problems of deciding the exis-
tence of a solution to a QAP with unrestricted and with restricted explanation signatures
are PTime-complete and NP-complete, respectively. By applying the reduction in Propo-
sition 3.1, we have that nec is PTime-hard under unrestricted and coNP-hard under
restricted explanation signatures.

For the upper bound, we first consider the case of restricted explanation signatures. By
Proposition 3.2, nec reduces to non-exist. By Theorem 5.2, this latter problem can be
solved in nondeterministic polynomial time. We readily obtain that nec is in coNP. For
the case of unrestricted signatures, Proposition 4.3 states that algorithm isNEC solves nec,
even when we consider UCQs in input. By the definition, isNEC requires checking whether
polynomially many QAPs do not admit a solution, and whether polynomially many DL-
LiteA ontologies entail a given assertion. Since for DL-LiteA, instance checking is in PTime
and, by Theorem 5.1, non-exist is in PTime, we conclude that isNEC runs in polynomial
time. Thus, nec under unrestricted signatures is in PTime.

We conclude that nec is PTime-complete under unrestricted and coNP-complete under
restricted explanation signatures.

Finally, Proposition 3.4 states that nec and ⊆-nec are equivalent and, thus, also ⊆-nec
is PTime-complete under unrestricted and coNP-complete under restricted explanation
signatures.
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Now, we consider the complexity of ≤-nec and we show that, under common assump-
tions, the problem is harder than nec. Intuitively, this is because one has to first compute
the minimal size of an explanation, and then inspect all the explanations of that size. In
the following, we will use [i..j] to denote the integer interval {i, . . . , j}.
Theorem 5.4. For DL-LiteA, UCQs, and under both unrestricted and restricted expla-
nation signatures, ≤-nec is PNP

‖ -complete. The hardness holds already for QAPs with an
empty TBox and a CQ.

Proof. We structure the proof as follows. First, we show that ≤-nec is in PNP
‖ . Then, we

prove that the problem is PNP
‖ -hard under restricted signatures. Finally, we argue that the

same reduction can also be used in the particular case of unrestricted signatures.

(membership) Consider an arbitrary QAP P = 〈T ,A, q,~c,Σ〉 (where the signature
may be restricted) and let α be an arbitrary ABox assertion. From Corollary 3.9, we know
that if P has an explanation, then there exists an explanation whose size m is bounded
by max(q) = maxqi∈q |at(qi)|. Observe that 〈P, α〉 is a negative instance of ≤-nec iff there
is an i ∈ [0..m] such that (a) P has an explanation E with |E| = i and α 6∈ E , and (b) E
is ≤-minimal. Thus, we use an auxiliary problem size-out, which is to decide given a
tuple 〈P ′, α′, n′〉, where P ′ is a QAP, α′ is an assertion, and n′ is an integer, whether there
exists an explanation E ′ for P ′ such that |E ′| = n′ and α′ 6∈ E ′. Furthermore, the problem
no-smaller is to decide, given a tuple 〈P ′, n′〉 of a QAP and an integer, whether there
is no explanation E ′ for P ′ such that |E ′| < n′. Observe that size-out is in NP, while
no-smaller is in coNP. Take the tuple S = 〈A0, B0, . . . , Am, Bm〉, where Ai = 〈P, α, i〉
and Bi = 〈P, i〉, for all i ∈ [0..m]. Due to the above observation, α occurs in all ≤-minimal
explanations E for P iff for all i ∈ [0..m], one of the following holds: (i) Ai is a negative
instance of size-out, or (ii) Bi is a negative instance of no-smaller. S can be built in
polynomial time in the size of the input, and whether all instances instances in S satisfy (i)
and (ii) above can be decided by making 2m parallel calls to an NP oracle. Thus we obtain
membership in PNP

‖ .

(hardness) We give a reduction from OddMinVertexCover, which is PNP
‖ -complete

(Wagner, 1987). An instance of this problem is given by a graph G = (V,E), and we are
asked whether the least cardinality over all vertex covers in G is odd. That is, is there an
odd integer k ∈ [1..|V |] such that G has a vertex cover C with |C| = k, and there is no
vertex cover C ′ in G with |C ′| < k?

In the reduction we exploit the following property. Given an integer k and a directed
graph G = (V,E) with m vertices, construct a new graph G′ = ([1..m], E′) such that there
exist two symmetric edges between each i ∈ [1..k] and j ∈ [1..m]. The following holds: if
there is an injective homomorphism h from G to G′, then G has a vertex cover of size k.
Indeed, take C = {v ∈ V | h(v) ≤ k}. Due to injectivity, |C| = k. Assume an arbitrary
edge {v1, v2} ∈ E. Since h is a homomorphism, due to the selection of edges we must have
h(v1) ≤ k or h(v2) ≤ k. Then {v1, v2} ∩ C 6= ∅ by the selection of C.

Assume an arbitrary graph G = (V,E) with vertices V = {v1, . . . , vm}. W.l.o.g.,
G is connected, directed, and has at least 2 nodes. We construct next a QAP PG =
〈∅,A|V |, qG, 〈〉,ΣG〉 and an assertion αG such that G is a positive instance of OddMinVer-
texCover iff αG is ≤-necessary for PG. In the reduction we use individuals odd , even, cij ,
where i, j ∈ [0..m], concept names M , L, and roles P , 6=, Edge.
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L L LL L L L L L L

A0 A1 A4A2 A3
odd

even

Figure 1: The structure of A|V | for a graph G = (V,E) with 4 vertices. Solid arcs in

A` represent assertions Egde(a, b) in A` introduced in (b). A dashed arc from
an ABox A` to the individual par(`) represents the collection of assertions that
relate each individual in A` to par(`) via the role P .

Let qG be the Boolean query consisting of atoms

(i) Edge(xi1 , xi2), for each edge (vi1 , vi2) ∈ E,

(ii) 6=(xi1 , xi2), for each i1, i2 ∈ [1..m], i1 6= i2, and

(iii) L(x1), . . . , L(xm) and P (x1, y), M(y).

Intuitively, in (i) we represent the graph G in the query. We will use atoms in (ii) to
ensure that different variables are mapped to distinct elements. The atoms L(xi) will be
used to measure the size of vertex covers, while the atoms P (x1, y) and M(y) will be used
to determine their parity. We allow explanations only over concept names, and thus set
ΣG = {M,L}.

To define A|V |, we first construct a collection A0, . . . ,Am of ABoxes, where each Aj
consists of the assertions

(a) L(cji ), for each i ∈ [j..m],

(b) Edge(cji1 , c
j
i2

), for all i1, i2 ∈ [1..m] with i1 ≤ j or i2 ≤ j, and

(c) 6=(cji1 , c
j
i2

), for all i1, i2 ∈ [1..m] with i1 6= i2.

For an integer k, let par(k) = odd if k is odd, and par(k) = even, otherwise. Let A′ =
{P (cji , par(j)) | i, j ∈ [0..m]}. Then A|V | = A0∪· · ·∪Am∪A′. See Figure 1 for an example.

Finally, we let αG = M(odd). To prove the correctness of the reduction, we define
up(k) = {L(ck1), . . . , L(ckk),M(par(k))}, and claim the following:

claim 1: If C is a vertex cover in G of size k, then up(k) is an explanation for PG.
Let A∗ = A|V | ∪up(k). It suffices to show the existence of a match π for qG in DBA∗ . Take
an enumeration z1, . . . , zm of variables x1, . . . , xm such that {z1, . . . , zk} = {xi | vi ∈ C}.
Take the mapping π such that π(zi) = cki for all i ∈ [1..m], and π(y) = par(k). Assume
an atom Edge(xi1 , xi2) in qG. Due to (b) in the definition of Aj , it suffices to show that
π(xi1) = ck` or π(xi2) = ck` for some ` ≤ k. Indeed, since C is a vertex cover, vi1 ∈ C or
vi2 ∈ C. Then due to the enumeration of variables, xi1 = z` or xi2 = z` for some ` ≤ k.
Due to the definition of π, π(xi1) = ck` or π(xi2) = ck` for ` ≤ k. The atoms 6=(xi1 , xi2) in
qG are properly mapped due to (c) in the construction of Aj and the fact that π is injective
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by construction. For an atom L(xi) in qG we have two options. If π(xi) = ck` with ` ≤ k,
then L(ck` ) ∈ up(k) by the definition of up(k). Otherwise, if ` > k, then L(ck` ) ∈ Ak by the
definition of Ak. The atom P (π(x1), π(y)) belongs to A∗ due to the definition of A′, while
M(π(y)) ∈ up(k) by construction of up(k).

claim 2: Assume up(k) is an explanation for PG. Then G has a vertex cover of size k.
Let A∗ = A|V |∪up(k) and let π be a match for qG in DBA∗ . Observe that due irreflexivity of
the role 6= and the atoms (ii) in qG, π must be injective. Observe also that for all ` ∈ [1..m],
where ` 6= k, we have |{c`i | L(c`i) ∈ A`}| < m. Due to the connectedness of G and atoms
L(x1), . . . , L(xm) in qG, π must use only the atoms in Ak ∪A′ ∪ up(k). That is, π is also a
match for qG in DBAk∪A′∪up(k). Let C = {vi ∈ V | π(xi) = ckn, n ∈ [1..k]}. Then |C| = k
due to the injectivity of π. To see that C is a vertex cover, assume an edge (vi1 , vi2) ∈ E.
By construction, qG has the atom Edge(xi1 , xi2). Since π is a match in DBAk∪A′∪up(k),

Edge(π(xi1), π(xi2)) ∈ Ak. Then, by construction of Ak, we have π(xi1) = ckn or π(xi2) = ckn
with n ≤ k. Then by the selection of C, {π(xi1), π(xi2)} ∩ C 6= ∅.

claim 3: Assume E is a ≤-minimal explanation for PG with size k. Then E = up(k −
1). Since G is connected and E is ≤-minimal, there exist an index ` ∈ [1..m] such that
E ⊆ {L(c`1), . . . , L(c`m),M(par(`))} and there is a match for qG in A` ∪ A′ ∪ E . Since
L(c`i) ∈ A` for i ∈ [`+1..m] by the definition of A`, we have by cardinality minimality that
E ⊆ {L(c`1), . . . , L(c``),M(par(`))}. By the definition of A`, |{c`i | L(c`i) ∈ A`}| = m − `.
Thus, due to the injectivity of any match π for qG, we must have |{c`i | L(c`i) ∈ E}| ≥ `.
Hence, E = {L(c`1), . . . , L(c``),M(par(`))} = up(`). Since |E| = k, we have ` = k − 1.

We can now finalize the correctness proof:

(⇒) Suppose there exists an odd integer k ∈ [1..|V |] such that G has a vertex cover C
with |C| = k, and there is no vertex cover C ′ in G with |C ′| < k. By claim 1, up(k) is
an explanation for PG. We make sure that up(k) is ≤-minimal. Suppose there exists an
explanation E ′ with size |E ′| < |up(k)|, i.e., |E ′| = ` for some ` ≤ k. We can assume that
E ′ is ≤-minimal. Then by claim 3, E ′ = up(` − 1). It follows from claim 2 that G has a
vertex cover of size ` − 1. Since ` − 1 < k, we arrive at a contradiction to the assumption
that G has no vertex cover of size < k. Thus up(k) is ≤-minimal. Since k is odd, we have
M(odd) ∈ up(k). By claim 3, apart from up(k) there is no other ≤-minimal explanation
for PG. That is, M(odd) occurs in all ≤-minimal explanations for PG.

(⇐) Assume M(odd) occurs in all ≤-minimal explanations for PG. By claim 3, we
know that up(k) is the unique ≤-minimal explanation, for some integer k. Since M(odd) ∈
up(k), we get that k is odd. Then, by claim 2, there is a vertex cover C with size k. It
remains to ensure that there is no vertex cover C ′ of size ` < k. Assume the opposite.
Then by claim 1 we have that up(`) is an explanation with size |up(`)| < |up(k)|, which
contradicts the assumption that up(k) is ≤-minimal. Thus G is a positive instance of
OddMinVertexCover.

The definition of ΣG prohibits binary atoms from occurring in ≤-minimal explanations.
The same effect can be achieved by using ΣG = Σ(∅,A|V |, qG) and by modifying A|V | and qG
to make it prohibitively expensive to have binary atoms in ≤-minimal explanations. Simply
replace each binary assertion r(c, d) in A|V | by fresh assertions r1(c, d), . . . , rm+2(c, d), and
each binary r(x, y) in qG by r1(x, y), . . . , rm+2(x, y). In this way the lower-bound can be
shown for unrestricted explanation signatures.
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5.3 Deciding Relevance

Using Theorems 5.1 and 5.2, and the reductions in Section 3, we obtain the following results.

Theorem 5.5. For DL-LiteA, UCQs, and under unrestricted explanation signatures, rel
is PTime-complete. Under restricted explanation signatures, rel is NP-complete.

Unsurprisingly, for UCQs, ≤-rel has the same complexity as ≤-nec. Indeed, the two
problems share the same source of complexity, namely the need to inspect all explanations
up to a computed size, which allows us to reduce the OddMinVertexCover problem. In
fact, PNP

‖ -hardness can be shown using the same reduction as in the proof of Theorem 5.4,
and a matching upper bound can be obtained by slightly modifying the algorithm for ≤-nec.

Theorem 5.6. For DL-LiteA, UCQs, and under both unrestricted and restricted expla-
nation signatures, ≤-rel is PNP

‖ -complete. PNP
‖ -hardness holds already for QAPs with an

empty TBox and a CQ.

Proof. First, we show that, under restricted explanation signatures, the problem ≤-rel is in
PNP
‖ . Second, we argue that, under unrestricted explanation signatures, ≤-rel is PNP

‖ -hard.

(membership) ≤-rel can be tackled in a way similar to ≤-nec. In fact, the algorithm
described in Theorem 5.4 can be modified in order to solve this problem. Let size-in solve
the following problem: given a tuple 〈P, α, n〉, where P is a QAP, α an assertion, and n
an integer, decide whether there exists an explanation E , with |E| = n and α ∈ E . Then,
we change the positivity condition of the ≤-nec algorithm as follows: α occurs in some
≤-minimal explanation E for P iff for some i ∈ [0..m] it holds that: (i) Ai is a positive
instance of size-in, and (ii) Bi is a positive instance of no-smaller. It is easy to see
that size-in is solvable in NP, hence the whole problem is again in PNP

‖ .

(hardness) Recall the reduction from OddMinVertexCover to ≤-nec in the proof
of Theorem 5.4. We argue that exactly the same reduction also shows PNP

‖ -hardness of
≤-rel. Assume a directed graph G and let PG and αG be the QAP and the assertion
resulting in the reduction. To prove the claim it suffices to show the following equivalence:
αG is ≤-necessary for PG iff αG is ≤-relevant for PG. This equivalence follows directly from
claim 3, which states that PG has a unique ≤-minimal explanation.

We now turn our attention to ⊆-rel. For this problem we obtain a precise complexity
characterization for the case of restricted explanation signatures, but we leave it open
whether for unrestricted signatures the ΣP

2 upper bound shown below is tight.2 We note
that for the latter case, a coNP lower bound can be easily shown, for instance, by a
reduction from the non-existence of a homomorphism between two graphs.

Theorem 5.7. For DL-LiteA, UCQs, and under both unrestricted and restricted explana-
tion signatures, ⊆-rel is in ΣP

2 . Under restricted explanation signatures, ⊆-rel is ΣP
2 -hard,

and the hardness holds already for QAPs with an empty TBox and a CQ.

Proof. (membership) Let P = 〈T ,A, q,~c,Σ〉 be a QAP and let α be an ABox assertion. We
now provide an extended version of the algorithm solving existence, which decides whether α

2. The proof of the ΣP
2 lower bound under unrestricted signatures in Theorem 2 by Calvanese, Ortiz, Simkus,

and Stefanoni (2011) is incorrect.
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is ⊆-relevant for P. Let has-subexpl solve the problem of deciding whether a given expla-
nation E has a subset which is itself an explanation. In our modified algorithm, similarly to
Algorithm 2, first we non-deterministically guess a CQ qr in the perfect reformulation Rq,T
of q w.r.t. T and a ~c-instantiation Eξ of qr such that α ∈ Eξ. Additionally to the consistency
test and to checking that Eξ is a Σ-ABox, we also check the complement of has-subexpl
for E , in order to assure that E is ⊆-minimal. It follows that α is ⊆-relevant. Since checking
the complement of has-subexpl can be done in coNP, the problem is solvable in ΣP

2 .

(hardness) We reduce the ΣP
2 -complete problem non-cert3col (Stewart, 1991, see

also Bonatti, Lutz, & Wolter, 2009). An instance of non-cert3col is given by a graph
G = (V,E) with vertices V = {1, . . . , n} such that every edge is labelled with a disjunction
of two literals over the Boolean propositions {p(i,j) | 1 ≤ i, j ≤ n}. We say that edge e ∈ E
evaluates to true under truth assignment τ if τ satisfies the disjunction labelling e. Then,
graph G is a positive instance to non-cert3col iff a truth assignment τ exists such that
graph τ(G)—obtained from G by including only those edges that evalute to true under
τ—is not 3-colorable. Assume an instance G of non-cert3col. We show how to build in
polynomial time a QAP PG = 〈TG,AG, qG,~cG,ΣG〉 and an ABox assertion αG. We first
present all relevant definitions, after which we discuss the intuition behind the reduction
and prove its correctness.

In the construction, we use an empty TBox and a Boolean CQ, thus TG = ∅ and ~cG = 〈〉.
In order to define the ABox AG, let L be a function that assigns to each edge e ∈ E the
set {l1, l2} of literals occurring in its label. Moreover, we let T(e) (resp., F(e)) be the set
containing each truth assignment τ to the literals in L(e) such that edge e evaluates to true
(resp., false) under τ . Finally, for each truth assignment τ and each literal l occurring in
G, we define the image of l w.r.t. τ , written imgτ (l), as follows.

imgτ (l) :=

{
l if τ(l) = t

l̄ otherwise

We are now ready to define the ABox AG. In the definition, we use individuals a1, . . . , a4;
moreover, for each literal l in G, we use individuals l and l̄ to denote l’s truth value. Also,
for all 1 ≤ k ≤ ` ≤ 4, each edge e ∈ E, and each truth assignment τ ∈ T(e) ∪ F(e), we let
σe,τk,` be a fresh individual. ABox AG consists of four distinct components A∗, At

T , Af
T , and

AC which we introduce next.

A∗ ={d(l, l̄), d(l̄, l) | literal l occurs in G} ∪
{B(ak) | 1 ≤ k ≤ 3}

At
T ={Re(ak, σe,τk,` ), Re(σ

e,τ
k,` , a`) | e ∈ E, τ ∈ T(e), 1 ≤ k < ` ≤ 3} ∪

{P (σe,τk,` , imgτ (l)) | e ∈ E, τ ∈ T(e), l ∈ L(e), 1 ≤ k < ` ≤ 3}

Af
T ={Re(ak, σe,τk,` ), Re(σ

e,τ
k,` , a`) | e ∈ E, τ ∈ F(e), 1 ≤ k ≤ ` ≤ 3} ∪

{P (σe,τk,` , imgτ (l)) | e ∈ E, τ ∈ F(e), l ∈ L(e), 1 ≤ k ≤ ` ≤ 3}

AC ={Re(a4, σ
e,τ
4,4), Re(σ

e,τ
4,4 , a4) | e ∈ E, τ ∈ T(e) ∪ F(e)} ∪

{P (σe,τ4,4 , imgτ (l)) | e ∈ E, τ ∈ T(e) ∪ F(e), l ∈ L(e)}
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Next, we define the Boolean query qG. To this end, for each vertex i ∈ V , let xi be a
distinct variable; for each edge 〈i, j〉 ∈ E, let yi,j be a distinct variable; and, for each literal
l occurring in G, let zl and z̄l be two distinct variables. Then, for each edge 〈i, j〉 ∈ E, let
qG contain the following atoms.

{B(xi), Re(xi, yi,j), Re(yi,j , xj), B(xj)} ∪ {P (yi,j , zl), Al(zl), d(zl, z̄l) | l ∈ L(e)}

Finally, we let αG = B(a4) be the assertion we want to show to be relevant and let
ΣG = {Al | literal l occurs in G} ∪ {B} be the signature.

Now, we outline the main idea behind this construction. ABox AG encodes two struc-
tures: a triangular structure At

T ∪ Af
T and a cyclic structure AC . The former structure

over individuals a1, a2, and a3 is such that edges in G that evaluate to true according to an
arbitrary truth assignment τ can be mapped only to non-reflexive edges (cf. At

T ). In con-
trast, edges of G that evaluate to false according to τ can be mapped to an arbitrary edge
(cf. Af

T ). The latter, cyclic, structure AC over individual a4 (which is not asserted to be
member of B) is such that G can be mapped over AC under all possible truth assignments.

Query qG is obtained from graph G by requiring that each vertex of the graph is a
member of concept B, by reifying edges of the graph, and by incorporating the disjunction
over literals. In particular, for each literal l in G, variables zl and z̄l represent the truth
values of l and atom Al(zl) is used to enforce a particular truth assignment. Since ABox AG
does not contain assertions over concept Al, each minimal explanation Eτ for PG corresponds
to a truth assignment τ for G. That is, such Eτ contains, for each literal l in G, either Al(l)
or Al(l̄). Also, by the definition of the ABox, query qG can be mapped over At

T ∪ Af
T

under minimal explanation Eτ implies that τ(G) is 3-colorable. In contrast, for every truth
assignment τ , we can map query qG over the cyclic structure AC , provided that explanation
Eτ asserts the individual a4 to be a member of B. We are now ready to formally prove the
correctness of our reduction.

(⇒) Suppose there is a truth assignment τ such that τ(G) is not 3-colorable; we show
that assertion B(a4) is ⊆-relevant for PG. Consider the Σ-ABox E = {B(a4)} ∪ Eτ , where
Eτ = {Al(l) | τ(l) = t} ∪ {Al(l̄) | τ(l) = f}. Clearly, E is an explanation. Indeed, we can
match the query qG over the cyclic structure AC by mapping all variables xi of qG to
(interpretation of) a4. Suppose there is a smaller explanation E ′ ⊂ E . Observe that Eτ ⊆ E ′.
This is because, for each literal l, concept Al does not occur in AG but does occur in qG.
Then, E \ {B(a4)} must be an explanation. Then qG can be matched over the triangular
structure encoded in AG. Thus, τ(G) is 3-colorable which contradicts the assumption.

(⇐) Let E be a ⊆-minimal explanation for PG containing B(a4); we show that there
exists a truth assignment τ such that τ(G) is not 3-colorable. We first argue that for each
literal l we have that either Al(l) ∈ E or Al(l̄) ∈ E . This follows from three considerations.
First, due to the signature restriction, predicate d cannot occur in E . Second, for each literal
l, query qG contains atoms Al(zl) and d(zl, z̄l), whereas ABox AG contains assertions d(l, l̄)
and d(l̄, l). Third, for each literal l, concept Al occurs in qG with one and only variable
zl. Therefore, since E is a minimal solution, we know that exactly one of Al(l) ∈ E and
Al(l̄) ∈ E holds. Next, we define the truth assignment τ to the literals occurring in G. For
each literal l in G, let τ(l) = t if Al(l) ∈ E , and τ(l) = f if Al(l̄) ∈ E . It is not difficult
to argue that t(G) is not 3-colorable and thus G is a positive instance of non-cert3col.
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Indeed, if τ(G) was 3-colorable, qG could be mapped over the triangle structure of AG
making E \ {B(a4)} a smaller explanation, which is a contradiction.

5.4 Recognizing Explanations

Unsurprisingly, for UCQs and under both unrestricted and restricted explanation signatures,
rec is in NP. Indeed, in order to solve the problem, we need to check consistency of the
explanation with the ontology, and check whether the given tuple is in the certain answer
to the query. The former is polynomial and the latter in NP.

Theorem 5.8. For DL-LiteA, UCQs, and under both restricted and unrestricted explana-
tion signatures, we have that rec is NP-complete. NP-hardness holds already for QAPs
with an empty TBox and a CQ.

Proof. As usual, we first show that, under (un)restricted explanation signatures, rec is
in NP. Then, we argue that, under unrestricted explanation signatures, the problem is
NP-hard.

(membership) Given a QAP P = 〈T ,A, q,~c,Σ〉 and an ABox E , we devise an algorithm
deciding rec as follows. Firstly, the procedure checks that E is indeed a Σ-ABox; this check
is linear in E . Then it makes sure that extending the ontology with ABox E does not lead
to an inconsistent theory; this can be checked in polynomial time (Artale et al., 2009). At
last, it decides whether ~c occurs in cert(q, T ,A ∪ E); by Proposition 2.1 this is feasible in
NP. Hence overall the algorithm runs in non-deterministic polynomial time.

(hardness) We use essentially the same reduction from the existence of a homomor-
phism between directed graphs G and G′ as in the proof of Theorem 5.2, the only difference
being that instead of reducing it to the existence of an explanation over the signature
Σ = {B}, we leave the signature unrestricted (that is, Σ = Σ(T ,A, q)), and reduce the
problem to deciding whether E = {B(c)} is an explanation.

In case a preference order is in place, to recognize an explanation one has to check min-
imality as well. This check is coNP-hard for ⊆- and ≤-minimality, leading to completeness
for DP.

Theorem 5.9. For DL-LiteA, UCQs, and under both restricted and unrestricted expla-
nation signatures, we have that ≤-rec and ⊆-rec are DP-complete. DP-hardness holds
already for QAPs with an empty TBox and a CQ.

Proof. We first argue that, under (un)restricted explanation signatures, the two problems
are in DP. Then, under unrestricted explanation signatures, we prove that ≤-rec and
⊆-rec are DP-hard.

(membership) Membership of a problem Π in DP can be shown by providing two
languages L1 ∈ NP and L2 ∈ coNP, such that the set of all yes-instances of Π is L1 ∩ L2.
For ≤-rec, simply let

L1 = {(P, E) | E ∈ expl(P)}
L2 = {(P, E) | P has no explanation E ′ s.t. |E ′| < |E|}

For ⊆-rec, we take L1 as above and L2 = {(P, E) | P has no explanation E ′ s.t. E ′ ( E}.
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(hardness) DP-hardness is shown by a reduction from the problem HP-noHP. An
instance of HP-noHP is given by two directed graphs G = (V,E) and G′ = (V ′, E′), where
〈G,G′〉 is a positive instance iff G has an Hamilton path and G′ does not have one. For
such a pair 〈G,G′〉, we define a QAP P = 〈∅,A, q, 〈〉,Σ〉 and a Σ-ABox E such that:

(a) 〈G,G′〉 is a positive instance of HP-noHP iff E is a ≤-minimal explanation for P, and
(b) 〈G,G′〉 is a positive instance of HP-noHP iff E is a ⊆-minimal explanation for P.

W.l.o.g., nodes in G and G′ are disjoint and are ordinary individuals. Construct an ABox
AG = {e(vi, vj) | (vi, vj) ∈ E} ∪ {d(vi, vj) | vi, vj ∈ V, vi 6= vi}. Intuitively, an assertion
e(vi, vj) encodes an edge (vi, vj) in the graph G, whereas an assertion d(vi, vj) encodes that
nodes vi and vj are distinct. The ABox AG′ encodes G′ in a similar way as before, using roles
e′ instead of e, and in addition it has an assertion A(v′i) for each v′i ∈ V ′. Take a set of fresh
individuals O = {o1, . . . , o|V ′|} and an ABox AC = {e′(oi, oj), d(oi, oj) | 1 ≤ i 6= j ≤ |V ′|}.
Then the ABox A in P is defined as A = AG ∪ AG′ ∪ AC .

Let q = q1 ∧ q′1 ∧ q2 ∧ q′2 ∧ q3 be a Boolean CQ with

q1 = {e(x1, x2), e(x2, x3), . . . , e(x|V |−1, x|V |))},
q′1 = {d(xi, xj) | vi, vj ∈ V, vi 6= vj},
q2 = {e′(y1, y2), e′(y2, y3), . . . , e′(y|V ′|−1, y|V ′|)},
q′2 = {d(yi, yj) | v′i, v′j ∈ V ′, v′i 6= v′j},
q3 = {A(y1), . . . , A(y|V ′|)}.

Intuitively, q1∧q′1 asks for a simple path with |V | vertices related via the role e. Analogously,
q2 ∧ q′2 asks for a simple path with |V ′| vertices related via the role e′. Additionally, q3 asks
that each node on the latter path satisfies A.

Finally, we let E = {A(oi) | oi ∈ O} and we let Σ = Σ(T ,A, q).
(⇒) Assume that 〈G,G′〉 is a positive instance of HP-noHP, and let a1, . . . a|V | be a

Hamilton path in G. We show that E is a ≤-minimal and a ⊆-minimal explanation for P.
To this end, first take a mapping π for variables in q such that π(x1) = a1, . . . , π(x|V |) = a|V |
and π(y1) = o1, . . . , π(y|V ′|) = o|V ′|. Then clearly π is a match for q in DBA∪E , and hence
E is an explanation to P. Indeed, the subquery q1 ∧ q′1 of q is fulfilled because a1, . . . a|V |
is a Hamilton path in G, q2 ∧ q′2 is fulfilled because AC has a clique of size |V ′|, while q3

is fulfilled by E . To assure minimality, assume towards a contradiction that there is an
explanation E ′ with |E ′| < |E| or |E ′| ⊂ |E|. In any case, |E ′| < |V ′|. Assume π′ is a match
for q in DBA∪E ′ . Note that AG and AG′ do not share individuals. Since q3 ∧ q′2 asks for
|V ′| elements satisfying A and |E ′| < |V ′|, π′ must map the variables y1, . . . , y|V ′| to the |V ′|
distinct individuals of AG′ . Then the presence of q2 in q implies the existence of a Hamilton
path in G′. Contradiction.

(⇐) Assume that E ∈ expl≤(P) (resp., E ∈ expl⊆(P)) and π is a match for q in DBA∪E .
Note that e′ does not occur in AG and e does not occur in AG′ ∪AC . Then by construction
of q1 ∧ q′1 and AG, π maps the variables x1, . . . , x|V | to the |V | distinct constants of AG and
G must have a Hamilton path. Towards a contradiction suppose G′ also has a Hamilton
path. Then by construction of AG′ , q2 ∧ q′2 ∧ q3 has a match in DBAG′ . This means we can
build a match π′ for q in DBAG′ , which in turn means that ∅ is an explanation to P. This
contradicts the assumption that E is ≤-minimal (resp., ⊆-minimal).
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6. Discussion

In this section, we discuss some issues that remain for further investigation.

6.1 Computing Explanations

In our complexity analysis for DL-LiteA, we have not considered the problem of computing
solutions to query abduction problems. Nevertheless, we can infer upper bounds on the
complexity of computing solutions to a QAP P from the presented results. If the input
query in P is an instance query, then both computing an arbitrary solution and computing
all minimal3 solutions is easy, since by Proposition 3.10, we only need to consider single-
ton candidate explanations, and their number is polynomially bounded. The problem of
computing an arbitrary solution E remains polynomial for UCQs if the signature of P is
unrestricted, since we can always obtain E by creating a suitable direct instantiation of
one of the CQs in input (see Section 3.3). Instead, under restricted signatures, the total
number of (minimal) solutions is in general exponential in the size of the signature Σ and
in the maximal size of each query occurring in the input UCQ; so computing all of them
requires in general exponential time. It remains to be investigated whether these solutions
can be enumerated with a polynomial delay (cf., Penaloza & Sertkaya, 2010). In the case of
a restricted signature, however, the NP-harness result established in Theorem 5.2 implies
that to compute a solution E one essentially essentially cannot do better than guessing the
ABox E and deciding whether E ∈ expl�(P).

6.2 Data Complexity

In this work we have focused on combined complexity. With respect to data complexity
(i.e., when the complexity is measured with respect to the size of the ABox only, while both
the query and the TBox are considered fixed) and ontology complexity (i.e., when only the
query is considered fixed), we observe that those inference tasks that we have shown to be
NP-complete essentially rely on checking ontology consistency, and hence are in AC0 in data
complexity (Calvanese et al., 2009). Moreover, by Corollaries 3.9 and 3.11, one can restrict
the attention to explanations that are bounded by the size of the query, it follows that for
a fixed query, there are only polynomially many explanations to be considered. Hence all
our reasoning tasks are polynomial both in data complexity and in ontology complexity.

6.3 Other Description Logics.

All the lower bounds proved in the paper do not rely on properties that are exclusive to
DL-LiteA, hence they hold for other DLs as well. In fact, as we have mentioned, many
lower bounds hold even in the absence of a TBox. As for the upper bounds, we have
relied on DL-LiteA and on the existence of the perfect reformulation of a given query (see
Proposition 2.1) only to argue that canonical explanations are small and have a restricted
signature (more specifically, that they can be obtained by instantiating CQs in the perfect
reformulation of the input query) and that query answering can be done in NP. For this
reason, we expect our results to carry over to other DLs that admit “small” explanations

3. Since every ABox that is a superset of a solution is itself a solution, if we don’t impose any minimality
condition, there will always be an exponential number of solutions, provided that one exists.
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and for which query answering is in NP. For instance, both the lower and the upper bounds
we have established hold for OWL 2 QL, which is obtained from DL-LiteA by forbidding
functionality assertions and dropping the unique name assumption (as our results do not
rely on functionality axioms, the unique name assumption is irrelevant).

For more expressive DLs, some bounds on the complexity of our reasoning tasks can also
be inferred. In Corollary 5.1, we showed that for QAPs under unrestricted explanation sig-
natures, deciding the existence of an explanation has the same complexity as ontology con-
sistency without the UNA. Hence, the problem is ExpTime-complete for all the extensions
of ALC in which standard reasoning (with or without the UNA) is also ExpTime-complete,
like the well known SHIQ. If we consider restricted explanation signatures, the problem
becomes significantly harder. This is witnessed by the lower bounds by Baader et al. (2010)
stemming from CQ-emptiness (see Proposition 3.6): exist is already 2ExpTime hard for
ALCI (Theorem 28 of Baader et al., 2010), and undecidable for ALCF (Theorem 29). For
ALC, the authors have recently improved the lower bound of CQ-emptiness from ExpTime
to NExpTime (personal communication). As mentioned in Section 3, their upper bounds
do not apply directly to our setting (although we expect some of them to extend), and the
precise characterization of the reasoning problems considered in this paper for expressive
DLs remains open.

7. Related Work

The problem of explaining missing query answers was first considered by the database
community (Jagadish, Chapman, Elkiss, Jayapandian, Li, Nandi, & Yu, 2007). In the
literature, we found three different models of explanation for missing answers, which differ
on the notion of solution. First, Chapman and Jagadish (2009) have proposed a model in
which explanations are those relational operations (e.g., natural joins or selections) that are
responsible for preventing the given tuple to be returned in the answers. Second, Tran and
Chan (2010) have defined solutions to be refinements to the input query such that the given
tuple is an answer to the relaxed query over the database. Third, Huang, Chen, Doan,
and Naughton (2008) have defined solutions to be sequences of database update operations
such that the result of answering the given conjunctive query over the updated relational
instance includes the missing answer. Herschel and Hernández (2010) have generalized
this latter model by considering UCQs with aggregation and grouping. Although this
explanation model is closely related to ours, both the work by Huang et al. and by Herschel
and Hernández tackle the problem from the point of view of computing solutions, whereas
we are interested in outlining the computational complexity of the problem. Moreover, in
the spirit of abductive reasoning, our solutions are of a declarative rather than operational
nature—that is, solutions are databases rather than a sequence of database operations.

In classical logic, abductive reasoning is a form of non sequitur argument, in which a
conclusion B is not a logical consequence of the premises Γ (Γ 6|= B), even though B is
assumed to follow from the theory (Eiter & Gottlob, 1995). The aim is to find a set of
formulas A such that Γ ∪ A |= B. Abductive reasoning is important also in the context of
Description Logics (Elsenbroich, Kutz, & Sattler, 2006), where three orthogonal abductive
problems have been studied. First, abduction has been studied to explain concepts—that
is, given two concepts C and D and a TBox T , concept abduction amounts to finding a

665



Calvanese, Ortiz, Šimkus & Stefanoni

concept H such that T |= C uH v D and C uH is satisfiable w.r.t. T (Noia, Sciascio, &
Donini, 2009; Bienvenu, 2008). Second, Hubauer, Grimm, Lamparter, and Roshchin (2012)
have applied TBox abductive reasoning to diagnosis of complex systems. In particular,
given a TBox T , a set of abducible axioms Ax , and a set of axioms O, TBox abduction
amounts to finding a subset A of Ax such that T ∪ A |= O. Third, Klarman, Endriss, and
Schlobach (2011) have studied the problem of ABox abduction over ALC ontologies. This
problem consists in finding which additions need to be made to the ABox in order to force
a set of ABox assertions to be logically entailed by the ontology. Along the same line, Du,
Qi, Shen, and Pan (2011a) have considered this problem from a more practical perspective.

More recently, Du, Wang, Qi, Pan, and Hu (2011b) have defined the problem of abductive
conjunctive query answering, which they use as the basis for a new approach to semantic
matchmaking. Given a satisfiable DL ontologyO and a CQ q, a tuple ~c is called an abductive
answer to q w.r.t. O if there exists a set E of ABox assertions such that O ∪ E |= q(~c).
Similarly to our approach, the authors allow to restrict the signature over which abductive
solutions can be constructed. In addition, one can limit the impact of E on O by specifying
a set of closed predicates; for each assertion α over a closed predicate we require that
O ∪ E |= α if and only if O |= α. The main contribution of the paper is a procedure for
computing abductive answers to CQs over ontologies formulated in the DLP fragment of
OWL 2, which is a fragment orthogonal to DL-LiteA in terms of expressiveness. Considering
closed predicates in the context of DL-LiteA and QAPs is an interesting research direction.

8. Conclusions

In this paper we have studied the problem of explaining negative answers to user queries
over DL-LiteA ontologies. We have formalized the problem as an abductive task: given
a (U)CQ q, a consistent ontology O and a tuple of constants ~c such that ~c is not in the
certain answers of q over O, an explanation is defined as a set of ABox assertions that,
when added to O, preserve its consistency and result in ~c being in the certain answers.
We considered the special cases of allowing only a restricted signature for the assertions
in the explanation, and having only an instance query rather than a full (U)CQ in the
input. We have also considered preference orders between explanations, and studied two
such orders: subset minimal and cardinality minimal explanations. For all these cases,
we have obtained complexity bounds for four decision problems inspired in knowledge base
abduction: deciding existence of an explanation (exist), deciding whether a given assertion
occurs in all (nec) or some (rel) explanations, and recognizing explanations (rec). All
our complexity bounds are tight, with the exception of rel for subset minimal explanations
under unrestricted signatures, for which we leave open a gap between coNP-hardness and
membership in ΣP

2 .

Specifically, we have shown that in the case of instance queries all these decision prob-
lems are tractable, and in fact NL-complete, even when restricted explanations signatures
and preference orders are simultaneously considered. The picture is significantly different
for (U)CQs, as the results in Table 5.1 show. Indeed, tractability is always lost as soon as
one considers restricted explanations signatures. If the signatures are not restricted, con-
sidering a preference order also results in intractability for most cases, the only exceptions
being exist, which is always tractable, and nec, which is polynomial for subset minimal
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explanations but PNP
‖ for cardinality minimal ones. In contrast to nec, rel is harder, under

common assumptions, for subset minimal than for cardinality minimal explanations. rec
is hard even when the explanations signature is not restricted and no preference order is
considered.

It would be interesting to apply this framework to other lightweight description logics,
starting with those of the EL-family. Also, we would like to investigate other minimality
criteria. For instance, semantic criteria allow one to reward explanations that are less/more
constraining in terms of the models of an ontology.
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