
Containment of Regular Path Queries under Description Logic Constraints∗

Diego Calvanese
KRDB Research Centre

Free University of Bozen-Bolzano
Piazza Domenicani 3, Bolzano, Italy

calvanese@inf.unibz.it

Magdalena Ortiz and Mantas Šimkus
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Abstract
Query containment has been studied extensively
in KR and databases, for different kinds of query
languages and domain constraints. We address
the longstanding open problem of containment un-
der expressive description logic (DL) constraints
for two-way regular path queries (2RPQs) and
their conjunctions, which generalize conjunctive
queries with the ability to express regular navi-
gation. We show that, surprisingly, functionality
constraints alone make containment of 2RPQs al-
ready EXPTIME-hard. By employing automata-
theoretic techniques, we also provide a matching
upper bound that extends to very expressive DL
constraints. For conjunctive 2RPQs we prove a fur-
ther exponential jump in complexity, and provide
again a matching upper bound for expressive DLs.
Our techniques provide also a solution to the prob-
lem of query entailment over DL knowledge bases
in which individuals in the ABox may be related
through regular role-paths.

1 Introduction
Query containment [Abiteboul et al., 1995], called subsump-
tion in AI [Baader et al., 2007], is a fundamental task in con-
texts like query optimization, information integration, knowl-
edge base verification, and management of semistructured
and XML data, cf. [Levy and Rousset, 1998; ten Cate and
Lutz, 2009].

The complexity of query containment has been studied ex-
tensively, starting from the classical NP-completeness result
for plain conjunctive queries (CQs) [Chandra and Merlin,
1977]. For recursive Datalog queries the problem is unde-
cidable [Shmueli, 1993] but it remains decidable when one
of the two queries is non-recursive [Sagiv, 1988; Chaudhuri
and Vardi, 1997]. Containment has also been addressed for
various forms of recursive queries over graph databases, i.e.,
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databases consisting of binary relations only. In this set-
ting, which is receiving increased attention [Barcelò et al.,
2010], the basic querying mechanism is (two-way) regular
path queries (2RPQs) [Calvanese et al., 2003]. These queries
ask for all pairs of objects connected by a path conforming to
a regular language over the binary relations, and thus support
a restricted form of recursion. 2RPQs have been included in
the new version of the SPARQL language for querying on-
tologies, which is currently under standarisation at W3C.1

By employing techniques based on two-way automata over
finite words, containment has been shown PSPACE-complete
for 2RPQs [Calvanese et al., 2003], and EXPSPACE-complete
for conjunctive 2RPQs (C2RPQs), the expressive variant of
queries considered here that extends plain CQs by allowing
each atom to be a 2RPQ [Calvanese et al., 2000].

We address here the problem of query containment under
constraints, which amounts to checking whether containment
between the answers to two queries holds for all structures
(i.e., databases) satisfying a given set of constraints. This
problem has been considered, e.g., under various forms of
database constraints [Johnson and Klug, 1984], and for XML
queries under constraints expressed as DTDs [ten Cate and
Lutz, 2009]. We consider constraints expressed in terms of
expressive Description Logics (DLs) [Baader et al., 2007],
which allow one to capture by means of a TBox complex con-
ditions that hold in a domain of interest.

For plain CQs over TBoxes, containment Q1 ⊆ Q2 of two
queries is equivalent to checking entailment ofQ2 in a knowl-
edge base (KB) whose extensional component (ABox) is di-
rectly obtained from Q1. In general, entailment/containment
of CQs in expressive DLs is exponentially harder than infer-
ence over plain KBs, e.g., 2EXPTIME-hard for extensions of
ALC with inverse roles [Lutz, 2008], or with role hierarchies
and transitivity [Eiter et al., 2009]. Tight upper bounds for en-
tailment/containment of CQs under expressive DL constraints
have been obtained using a variety of techniques [Glimm et
al., 2008; Lutz, 2008; Eiter et al., 2009], and extended to
entailment of C2RPQs [Calvanese et al., 2009]. However,
these upper bounds do not easily extend to containment in
the presence of regular path constructs, as a 2RPQ or C2RPQ
on the left of Q1 ⊆ Q2, unlike a CQ, cannot be written as an
ABox. Using nominals to incorporateQ1 into the TBox, tight

1http://www.w3.org/TR/sparql11-query/
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upper bounds for containment of (an extension of) C2RPQs
were obtained in [Calvanese et al., 2009], but only for DLs
that cannot express functionality constraints, or for the case
where inverses are disallowed from both the constraints and
the query. The case when both inverses and functionality are
allowed remained open until now, since there are no algo-
rithms for reasoning in logics that support both, together with
regular expressions and nominals. A technique for contain-
ment of C2RPQs under this kind of expressive DL constraints
had been proposed in [Calvanese et al., 1998], but it turned
out to be incomplete.

We show that, surprisingly, the presence of functional-
ity constraints alone makes containment of 2RPQs EXP-
TIME-hard (it is PSPACE-complete in the absence of con-
straints [Calvanese et al., 2003]). This result is based on
the ability, under functionality, to generate/traverse a tree us-
ing a regular language. We also provide the first algorithm
for containment of 2RPQs under functionality contraints, and
obtain a tight EXPTIME upper bound that extends to very
expressive DL constraints. This is achieved extending ideas
used for 2RPQs without constraints [Calvanese et al., 2000;
2003] to the setting of expressive DLs, in order to character-
ize a non-trivial class of structures over which containment
can be decided using automata on infinite trees [Calvanese
et al., 2009]. For containment of a 2RPQ in a C2RPQs un-
der functionality constraints alone, we prove a further jump
in complexity to 2EXPTIME, and provide again a matching
upper bound for containment between C2RPQs under expres-
sive DL constraints. Our techniques provide also a solution
to the problem of query entailment over DL KBs in which
individuals in the ABox may be related through regular role-
paths, since such ABoxes can be encoded as C2RPQs.

2 Preliminaries
We introduce now our notation for standard notions, the spe-
cific description logic (DL) that we use as a constraint lan-
guage, and the class of queries that we consider.

We make use of regular languages, represented by non-
deterministic finite state automata (NFAs) or regular expres-
sions. Recall that an NFA over an alphabet Σ is a tuple α =
〈S,Σ, δ, s, f〉, where S is a finite set of states, δ ⊆ S×Σ×S
the transition relation, s ∈ S the initial state, and f ∈ S
the final state2. We use Sα, Σα, δα, Ini(α), and Fin(α) to
denote the five components of such an α. We assume that
there are no incoming transitions into the initial state, and no
outgoing transitions from the final state (i.e., s2 6= Ini(α) and
s1 6= Fin(α) for all (s1, c, s2) ∈ δ). This is w.l.o.g., since
every NFA can be translated in polynomial time into an NFA
with the above properties while preserving the accepted lan-
guage.

2.1 The Description Logic ALCIFbreg
We define now the DL ALCIFbreg . The vocabulary com-
prises countably infinite sets NR of role names and NC of
concept names. If P ∈ NR, then P− is the inverse of P ,
and NR = NR ∪ {P− | P ∈ NR} is the set of atomic roles.

2We can assume w.l.o.g. that an NFA has a unique final state.

Each R ∈ NR is a simple role, and if R,R′ are simple roles,
so areR∩R′,R∪R′, andR\R′. Every NFA whose alphabet
is a set of simple roles is a role. Every A∈NC is a concept,
and if R is a simple role, α is a role, and C, C ′ are concepts,
then C uC ′, C tC ′, ∃α.C, ∀α.C, 6 1R.C and >2R.C are
concepts. AnALCIFbreg constraint is an expression CvC ′
where C,C ′ are concepts. If C is of the form > v 6 1R.>
we call it a functionality constraint (where > is a shortcut for
Ct¬C). A set T ofALCIFbreg constraints is called a TBox.
The syntactic closure of T , cl(T ), is defined in the usual way
and is assumed to contain concepts in negation normal form
(NNF) only. Recall that cl(T ) contains every concept in T
and is closed under subconcepts and negation (in NNF).

A structure is a pair I = 〈∆I , ·I〉 where ∆I 6= ∅,
AI ⊆ ∆I for each A∈NC, and P I ⊆ ∆I × ∆I for each
P ∈NR. The function ·I is extended to concepts and roles
in the usual way [Baader et al., 2007], we only recall that
αI = {〈d1, d2〉 | d2 is an α-successor of d1 in I}, where d2

is an α-successor of d1 in I if there is a word R1 · · ·Rn ac-
cepted by α and a sequence e0, . . . , en of elements in ∆I

such that e0 = d1, en = d2, and 〈ei−1, ei〉 ∈ RIi for
1 ≤ i ≤ n. A structure I is a model of T , in symbols I |= T ,
if CI ⊆ C ′I for every C v C ′ ∈ T .

2.2 (Conjunctive) 2-way Regular Path Queries
Let V be a countably infinite set of variables. An atom is an
expression α(x, y), where x, y ∈ V and α is an NFA with
alphabet Σα = NR. A conjunctive 2-way regular path query
(C2RPQ) Q is an expression

Q(x1, . . . , xn)← α1(u1, v1), . . . , αm(um, vm),

where {x1, . . . , xn} ⊆ {u1, v1, . . . , um, vm} and each
αi(ui, vi), 1 ≤ i ≤ m, is an atom. We let At(Q) =⋃

1≤i≤m{αi(ui, vi)} and V(Q) =
⋃

1≤i≤m{ui, vi}. A match
for Q in a structure I is a mapping π : V(Q)→ ∆I such that
π(y) is an α-successor of π(x) for each α(x, y) ∈ At(Q).

The tuple 〈x1, . . . , xn〉 of answer variables ofQ is denoted
by AVars(Q). The answer toQ over I, denoted Ans(Q, I), is
the set of all n-tuples 〈d1, . . . , dn〉 such that 〈d1, . . . , dn〉 =
〈π(x1), . . . , π(xn)〉 for some match π for Q in I.

A query is Boolean if it has no answer variables. A 2-
way regular path query (2RPQ) is a C2RPQ of the form
Q(x, y) ← α(x, y). A conjunctive query (CQ) is a C2RPQ
where the regular language of each atom consists of one role.3

The Query Containment Problem. Assume a pair Q1, Q2

of C2RPQs and a TBox T . We say thatQ1 is contained inQ2

w.r.t. T , denoted Q1 ⊆T Q2, if Ans(Q1, I) ⊆ Ans(Q2, I)
for each model I of T . The query containment problem is to
decide given Q1, Q2, and T , whether Q1 ⊆T Q2.

3 Counter-models
In this section and the next one, we prove our upper bounds
for query containment. Assume henceforth C2RPQs Q1, Q2

and a TBox T . We refer to any structure I containing a tuple

3Unary atoms A(x), usually allowed in such queries, can be en-
coded by PA(x, x

′), where PA is a fresh role associated to the unary
predicate A and x′ is a fresh variable occurring nowhere else.
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~d such that ~d∈Ans(Q1, I) and ~d /∈ Ans(Q2, I) as a counter-
example (for “Q1 ⊆ Q2”). Note that Q1 ⊆T Q2 does not
hold (in symbols, Q1 *T Q2) iff there is a counter-example
I such that I |= T . We refer to such a structure as a counter-
model (for “Q1 ⊆T Q2”). Our first goal is to show that if
Q1 *T Q2, then there is always a counter-model I with
a “tree-like” structure that can be recognized using a tree-
automaton.
Definition 1 (Tree-shaped structures). A tree is any prefix-
closed set T of words over the set N+ of positive integers.
A structure I is a tree-structure if ∆I is a tree and for each
d1, d2 ∈∆I and atomic role R, 〈d1, d2〉 ∈RI implies d2 =
d1 · c or d1 = d2 · c for some c∈N+. A structure I is tree-
shaped if it is isomorphic to some tree-structure.

We show that Q1 *T Q2 implies that there exists a wit-
nessing counter-model I that can be decomposed into a small
number of tree-shaped structures because it has a small num-
ber of split points. Intuitively, split points are elements d
in I that have at least 3 neighbors d1, d2, d3 such that the
3 arcs d→ d1, d→ d2, and d→ d3 lie on cycles in I. It is
not difficult to see that a structure with n split points can be
represented as n + 1 tree-shaped structures. To understand
split points, we note that in the absence of DL constrains, the
counter-example I can be assumed to resemble the structure
of Q1 and to have at most one split point for each variable
of Q1. In the presence of DL constraints more split points
may be needed to account for elements that need to be col-
lapsed due to functionality constraints. See Figure 1 for an
illustration.

Given a structure I and a set S ⊆ ∆I , we use I|S to de-
note the restriction of I to the elements in S. A path in a
structure I is a possibly infinite sequence P = d0, d1, d2, . . .
of elements in ∆I such that for each di in P , where i > 0,
there is an atomic role R such that 〈di−1, di〉 ∈ RI . We say
P is simple if each element in P occurs exactly once.
Definition 2. Assume a structure I and d0 ∈∆I . We let
dnI(d0) = {d1 | ∃R ∈ NR : 〈d0, d1〉 ∈ RI} be the set
of (direct) neighbors of d0 in I. A node d1 ∈ dnI(d0) is a
tree-neighbor of d0 in I if the structure I|{d0,d1}∪S is tree-
shaped, where S is the set of all nodes dn ∈∆I such that I
has a simple path d0, d1, d2, . . . , dn for some d2, . . . , dn−1.

Let tnI(d0) denote the set of all tree-neighbors of d in I,
and let cnI(d0) = dnI(d0) \ tnI(d0) (the latter are cycle
neighbors of d0). We let Sp(I) = {d∈∆I | |cnI(d)| ≥ 3}
be the set of split points in I, and let OD(I) be the out-degree
of I, that is the maximum |dnI(d)| over all d∈∆I .

Our goal now is to prove the following claim, to which we
dedicate the rest of this section.
Proposition 3. Let T be a TBox, Q1 and Q2 C2RPQs, m
the number of atoms of Q1, and k the total number of states
over all atoms of Q1. If Q1 *T Q2, then there is a counter-
model J such that: (a) |Sp(J )| ≤ |V(Q1)| + 2m, and
(b) OD(J )| ≤ |cl(T )|+ 2k.

Proof. For a function f : B1→B2 and a tuple ~t =
〈b1, . . . , bk〉 ∈ (B1)k, we let f(~t) = 〈f(b1), . . . , f(bk)〉. As-
sume for the remainder of the proof that ~z = 〈z1, . . . , zl〉 =
AVars(Q1) and ~z′ = 〈z′1, . . . , z′l〉 = AVars(Q2).

Assume an arbitrary counter-model I for Q1 *T Q2. The
strategy is to show that I can be reshaped into a counter-
model with the desired properties. Since I is a counter-
model, there is a tuple ~v = 〈v1, . . . , vl〉 ∈ (∆I)m and a match
π for Q1 such that ~v = π(~z) and ~v /∈Ans(Q2, I). We assume
that all NFAs of Q1 have mutually disjoint state sets.

Take an arbitrary atom at = α(x, y) of Q1. Since π is
a match for Q1 in I, we have that π(y) is an α-successor
of π(x) in I. This means there is a sequence Γat =
〈d0, s0〉, . . . , 〈dn, sn〉 such that
(a) 〈d0, s0〉= 〈π(x), Ini(α)〉, 〈dn, sn〉= 〈π(y),Fin(α)〉, and

(b) for each 0 < i ≤ n, there is an atomic role R∈NR such
that (si−1, R, si)∈ δα and 〈di−1, di〉 ∈RI .

We assume that in each Γat there is no i 6= j with
〈di, si〉 = 〈dj , sj〉. Note that a Γat with a repetition
of a pair can be shortened to a sequence with no repeti-
tion while preserving the satisfaction of (a) and (b) above.
Let Elem(Γat) be the set of all elements in Γat . We
let Elem(Q1) =

⋃
at ∈At(Q1) Elem(Γat), and note that

|Elem(Q1)| = Σat ∈At(Q1)|Elem(Γat)|.

Definition 4 (Induced interpretations). Assume a set D ⊆
2∆I×B , where B is a set. We say D is good if for all e∈D
we have that (i) e 6= ∅, and (ii) 〈d1, s1〉 ∈ e and 〈d2, s2〉 ∈ e
implies d1 = d2. If D is good and e∈D, then let ê be the
unique de in {d | 〈d, s〉 ∈ e}. The interpretation induced by
a good D, is JD where (i) ∆JD = D; (ii) for each atomic
concept A, AJD = {e∈D | ê∈AI}; (iii) for each atomic
role R, RJD = {〈e1, e2〉 ∈D2 | 〈ê1, ê2〉 ∈RI}. For a good
D, let ξD : D→∆I be the function ξD(e) = ê.

As easily seen, if D ⊆ 2∆I×B is good, then ξD is a ho-
momorphism from JD to I. We can now proceed with the
construction of a counter-model with the desired properties.

Stage 1 (Stretching). We construct a basic structure JD0

such that Ans(Q1,JD0) * Ans(Q2,JD0). Intuitively, in
JD0 we ‘stretch’ the paths along which the atoms of Q1 are
matched, possibly duplicating objects so that each (non initial
or final) state of each atom ‘visits’ a different domain object.
We ensure that Q2 still has no match in the stretched struc-
ture. JD0

need not be a model of T , but we shall fix this
later.

For a variable x∈V(Q1), let St(x) be the set of all states
s such that there is α(x1, x2)∈At(Q1) such that (a) x1 = x
and s = Ini(α), or (b) x2 = x and s = Fin(α). For each
x∈V(Q1), let κ(x) = {〈d, s〉 ∈Elem(Q1) | s∈St(x)}. Let

D0 =
⋃

x∈V(Q1)

{κ(x)} ∪
⋃

〈d, s〉 ∈ Elem(Q1) ∧
s /∈

⋃
x∈ V(Q1) St(x)

{{〈d, s〉}}.

Our goal is to show that κ(~z)∈Ans(Q1,JD0
) and

κ(~z) /∈Ans(Q2,JD0) (recall κ(~z) = 〈κ(z1), . . . , κ(zl)〉).
Note first of all that D0 is a good set by construction.

To see that κ(~z)∈Ans(Q1,JD0
), we simply show that

κ is actually a match for Q1 in JD0
. For this, let us as-

sume an arbitrary atom at = α(x, y) of Q1. We must
show that κ(y) is an α-successor of κ(x). To this end,
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π(x3)

π(x1) π(x2)

π(x4)

π(x2)π(x1)

π(x4)π(x3)
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Figure 1: From left to right: an example query Q1 (an arc x → y labeled with α stands for the atom α(x, y)); the (classic)
structure of a counter-example I for Q1 ⊆ Q2, for some (in this context irrelevant) query Q2, in the absence of constraints (4
split points corresponding to V(Q1)); and a possible structure of I in the presence of DL constraints (6 split points, tree-shaped
structures attached).

from Γat = 〈d0, s0〉, . . . , 〈dn, sn〉 define a new sequence
Γ′ = 〈e0, s0〉, . . . , 〈en, sn〉, where each ei is the unique el-
ement in D0 with 〈di, si〉 ∈ ei. It remains to see:
(a) That e0 = κ(x) and en = κ(y). Clearly, s0 ∈St(x)

and sn ∈St(y). Then by the definition of D0 we have
〈d0, s0〉 ∈κ(x) and 〈dn, sn〉 ∈κ(y). Due to the construc-
tion of Γ′, we have e0 = κ(x) and en = κ(y).

(b) That s0 = Ini(α) and sn = Fin(α). This holds by as-
sumption of Γat .

(c) That for each 0 < i ≤ n, there is a symbol R∈NR

such that (si−1, R, si)∈ δα and 〈ei−1, ei〉 ∈RJD0 . As-
sume any such i. By assumption (i.e., due to Γat ),
there is a symbol R∈NR such that (si−1, R, si)∈ δα and
〈di−1, di〉 ∈RI . We know D0 is a good set. Further-
more, 〈di−1, si−1〉 ∈ ei−1 and 〈di, si〉 ∈ ei by construc-
tion of Γ′. Then by the construction of JD0 from D0 and
I, we have 〈ei−1, ei〉 ∈RJD0 .

For κ(~z) /∈Ans(Q2,JD0
), assume towards a contradiction

that κ(~z)∈Ans(Q2,JD0
). Consider the function ξD0

. As
we know, ξD0

is a homomorphism from JD0
to I. Then

clearly ξD0
(κ(~z))∈Ans(Q2, I). Then the contradiction fol-

lows from the assumption that ~v /∈Ans(Q2, I) and the fact
that ξD0(κ(~z)) = ~v. Indeed, for any zi in ~z, we have
ξD0(κ(zi)) = π(zi) and π(zi) = vi.

Stage 2 (Collapsing). This stage transforms JD0
into a struc-

ture that does not violate any functionality constraints. Con-
sider the following rewrite rule RW which rewrites a good
set D ⊆ 2∆I×B : If there are e, e1, e2 ∈D and 6 1R.C ∈
cl(T ) such that ê∈ (6 1R.C)I , {〈e, e1〉, 〈e, e2〉} ⊆ RJD ,
{e1, e2} ⊆ CJD , and e1 6= e2, then replace e1 and e2 by
e3 = e1 ∪ e2. If D′ is a result of applying RW on D, then we
write D→D′. If D→D′, from ê∈ (6 1R.C)I it follows
that ê1 = ê2, and hence D′ is good.

We let πD0
(x) = κ(x). For each D′ that results from

rewriting, let πD′(x) be the unique e∈D′ with κ(x) ⊆ e.
It is not difficult to see that the counter-example is preserved
while rewriting D0 with RW. This follows directly from the
fact that JD0 is a counter-example and the following lemma.

Lemma 5. If (a) D→D′, (b) πD is a match for Q1 in JD
s.t.πD(~z)∈Ans(Q1,JD), and (c) πD(~z) /∈Ans(Q2,JD),

then πD′(~z)∈Ans(Q1,JD′) and πD′(~z) /∈Ans(Q2,JD′).

Note that by the construction of D0, |Sp(JD0)| ≤ |V(Q1)|.
RW may add at most 2m new split point, i.e., |Sp(JD1)| ≤
|V(Q1)|+2m. To see this, for a structure J , we let SD(J ) =
Σd∈ Sp(J )(|cnJ (d)| − 3). Then the bound is immediate from
the easy fact that SD(JD0

) ≤ 2m and the following:

Lemma 6. IfD→D′, then either (a) |Sp(JD′)| ≤ |Sp(JD)|,
or (b) |Sp(JD′)|= |Sp(JD)|+ 1 and SD(JD′)<SD(JD).

Proof. Let e, e1, e2, and e3 witness D→D′ as above. As-
sume the case (?) such that Sp(JD′) = Sp(JD) ∪ {e3}.
Since {e1, e2} ∩ D′ = ∅, the assumption (?) implies
e1 /∈ Sp(JD) and e2 /∈Sp(JD). Since e3 ∈Sp(JD′), we must
have |cnJD (e1)| = |cnJD (e2)| = 2. This implies that
{e1, e2} ⊆ cnJD (e). There can be 3 possible cases:

(a) |cnJD (e)| > 3. From {e1, e2} ⊆ cnJD (e) we know that
|cnJD′ (e3)| = 3 and |cnJD′ (e)| = |cnJD (e)| − 1. Then
we obtain SD(JD′) = SD(JD)− 1.

(b) |cnJD (e)| = 3. Then |cnJD′ (e)| = 2. This means
e∈Sp(JD) and e /∈Sp(JD′). Contradiction to (?).

(c) |cnJD (e)| < 3. Assume {e′1, e′′1} = cnJD (e1) and
{e′2, e′′2} = cnJD (e2). We clearly have cnJD′ (e3) ⊆
cnJD (e1)∪cnJD (e2). Since {e1, e2} ⊆ cnJD (e), we get
|cnJD (e)| = 2, e∈ cnJD (e1), and e∈ cnJD (e2). Thus
|cnJD (e1) ∪ cnJD (e2)| ≤ 3 and |cnJD′ (e)| = 1. Since
e3 ∈ cnJD′ (e), we get e /∈ cnJD′ (e3). From this we ob-
tain that |cnJD′ (e3)| ≤ 2, which contradicts the assump-
tion that e3 ∈Sp(JD′).

Assume the remaining case where (?) is false. Note that for
all e′ ∈D′, where e′ 6= e3, we have |cnJD′ (e

′)| ≤ |cnJD (e′)|.
Thus Sp(JD′) ⊆ Sp(JD) ∪ {e3}. Thus if Sp(JD′) 6=
Sp(JD) ∪ {e3}, then either e3 /∈Sp(JD′) or Sp(JD′) (
Sp(JD). In any case, |Sp(JD′)| ≤ |Sp(JD)|.

LetD1 be the good set that results after applying RW exhaus-
tively on D0. It is not hard to see the OD(JD1

)| ≤ 2k bound,
which follows from the following lemma:

Lemma 7. For all e∈D1, |e| ≤ k and |dnJD1
(e)| ≤ 2|e|.
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Stage 3 (Unraveling). Stage 2 guarantees a counter-example
JD1 with few splits points and small out-degree. Functional-
ity cannot be violated in JD1

, because I |= T and each node
e in ∆JD1 satisfies every 6 1R.C ∈ cl(T ) that ê satisfies in
I. Moreover, e also satisfies in JD1

the same concept names
and Boolean combinations thereof as ê satisfies in I. How-
ever, JD1

might not be a model of T because nodes might
lack neighbors needed to satisfy existential concepts of the
forms ∃α.C and >2R.C in cl(T ). This can be fixed using the
standard unraveling technique for ALCIFbreg [Calvanese et
al., 2009], which allows us to satisfy existential concepts by
attaching to the nodes of JD1 tree-shaped structures obtained
from I, which have branching≤ |cl(T )|. The resulting struc-
ture J may be infinite, but the number of split points is pre-
served and the out-degree is still bounded by |cl(T )| + 2k.
Furthermore, there is a homomorphism from J to I (coin-
ciding with e 7→ ê for the nodes in JD1

) that preserves all
concepts in cl(T ) and all paths that are relevant for Q1 and
Q2. J is the desired counter-model. This concludes the proof
of Proposition 3.

4 Deciding Query Containment
Similarly to tree-shaped structures, we define forest-shaped
ones. Such a structure is essentially the union of a finite set
of tree-shaped structures, which additionally allow any node
to be directly related to the root of any tree.

Definition 8 (Forest-shaped structures). A forest of degree k
with at most n roots, or simply an (n, k)-forest, is a subset F
of S = {1, . . . , n}·{1, . . . , k}∗ such thatw·c ∈ F andw ∈ S
imply w ∈ F . The elements of F ∩ {1, . . . , n} are called
roots of F . A structure I is an (n, k)-forest structure if ∆I

is an (n, k)-forest and for each d1, d2 ∈ ∆I and each atomic
role R, 〈d1, d2〉 ∈ RI implies {d1, d2} ∩ {1, . . . , n} 6= ∅,
d2 = d1 ·c, or d1 = d2 ·c for some c ∈ {1, . . . , k}. A structure
I is (n, k)-forest-shaped if I is isomorphic to some (n, k)-
forest structure.

We can now establish a crucial relationship between the
counter-modelJ described in the previous section and forest-
shaped structures: by viewing split points as roots, we can
view J as a forest. More formally:

Theorem 9. If J is a structure with |Sp(J )| < n and
OD(J ) ≤ k, then J is (n, k)-forest-shaped.

Proof. Let R = Sp(J ) if Sp(J ) 6= ∅, and R = {e},
where e ∈ ∆J is arbitrary, otherwise. Let s1, . . . , sm be
an enumeration of R. For each si ∈ R, let Ji =J |Si,
where Si is the set of all nodes dl ∈ ∆J such that J
has a simple path d0, d1, d2, . . . , dl where d0 = si and either
(i) di is a tree-neighbour of di−1 for every 1 < i < l, or
(ii) dl = sj ∈ R with j ≤ i, and for each di, 1 ≤ i < l,
di 6∈ R. For each d ∈ ∆J \ R there is exactly one Ji such
that d ∈ ∆Ji . Each node si ∈ R is the root of exactly one
tree Ji, and may occur as a leaf of any Jj . Take the interpre-
tation J ′, where (a) ∆J

′
=

⋃
si∈R ∆Ji , (b) for all atomic A,

AJ
′
=

⋃
si∈RA

Ji , (c) for all roles R, RJ
′
=

⋃
si∈R r

Ji . It
is easy to verify that J ′ is isomorphic to J , it is forest-shaped

and the roots in J ′ are exactly the elements in R. Thus J ′ is
(m, k)-forest-shaped, and also (n, k)-forest-shaped.

To recognize the existence of such counter-models, and
thus decide query containment, we rely on 2-way alternating
automata on infinite trees (2ATA) [Vardi, 1998] and adapt
known techniques for query answering in expressive DLs
[Calvanese et al., 2009].
Theorem 10. Given an ALCIFbreg TBox T and C2RPQs
Q1 and Q2, deciding Q1 ⊆T Q2 is in 2EXPTIME. If Q2 is a
2RPQ, deciding Q1 ⊆T Q2 is in EXPTIME.

Proof. (Sketch.) Let m = |At(Q1)|, let k be the num-
ber of states over all atoms of Q1, and let ~z=AVars(Q1).
By Proposition 3 and Theorem 9, Q1 *T Q2 iff there is an
(m′, k′)-forest shaped J and a match π for Q1 in J such
that π(~z) 6∈ Ans(Q2,J ), where m′= |V(Q1)|+ 2m+ 1 and
k′= |cl(T )|+ 2k.

An (m′, k′)-forest shaped structure can be represented as a
labeled tree with branching degree max(m′, k′). With some
minor adaptations to the constructions in [Calvanese et al.,
2009], we can build a 2ATA A that accepts a labeled tree
T iff it represents an (m′, k′)-forest shaped model JT of T
where Ans(Q1,J ) 6⊆ Ans(Q2,J ). Every tree accepted by
A is a counter-example, hence Q1 *T Q2 iff the language of
A is not empty. Roughly, A is obtained by intersecting three
automata: AT that accepts T iff JT satisfies the constraints
in T , AQ1 that accepts T iff there is a match π for Q1 in JT,
and A¬Q2

that accepts T iff there is no match for Q2 in JT
giving π(~z) as an answer.

In the case where Q2 is a 2RPQ all three automata are
of small size (the state set is polynomial in the combined
size of T , Q1, and Q2, the alphabet is single exponential,
and the size of the acceptance condition is fixed). Hence we
can test in single exponential time if the language of A is
empty [Vardi, 1998].

In the case where Q2 is a C2RPQ, the automata AT and
AQ1

are exactly the same as above. However, due to the
presence of non-answer (i.e., existentially quantified) vari-
ables in Q2, to obtain A¬Q2

we need automata theoretic op-
erations that cause an exponential blow-up in the size of the
automata (in particular, we need projection, which requires
to transform a 2ATA into an exponentially larger 1-way non-
deterministic automaton (1NTA), and then complementation,
which causes a blow-up in the size of the 1NTA). This results
in the 2EXPTIME upper bound.

5 Lower Bounds
We first recall the DL ALCI, obtained from ALCIFbreg by
disallowing 6 1R.C from the syntax and allowing in con-
cepts ∃R.C and ∀R.C only atomic roles R. It is well known
that checking whether an ALCI TBox T has a model I is
EXPTIME-hard [Baader et al., 2007], and checking whether
T has a model I where a CQ Q has no match is 2EXPTIME-
hard [Lutz, 2008]. It follows immediately that the bounds in
Theorem 10 are tight.

Surprisingly, however, they are tight already for functional
TBoxes, i.e., very simple TBoxes consisting of functionality
constraints only, as we show next.
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Figure 2: The automaton for the query Q1(x, y)← α1(x, y).

By examining the reductions which result in the above
mentioned lower bounds, it is not hard to see that the bounds
also apply if we ask I to be a finite-tree, that is, a tree-shaped
structure with a finite domain and branching at most |cl(T )|.
Lemma 11. For ALCI, (†) checking whether a TBox T
has a finite-tree model is EXPTIME-hard, and (‡) checking
whether a TBox T has a finite-tree model I where a Boolean
CQ has no match is 2EXPTIME-hard.

To prove our lower bounds, we first polynomially reduce
problem (†) to containment of two 2RPQs w.r.t. functional
TBoxes. Specifically, given anALCI TBox T , we show how
to construct a functional TBox Tf , and 2RPQs Q1(x, y) ←
α1(x, y) and Q2(x, y) ← α2(x, y) such that T has a finite-
tree model iff Q1 6⊆Tf Q2. The idea is to use Q1 and func-
tionality constraints to generate tree-shaped structures encod-
ing interpretations of T , and to use Q2 to find errors in such
structures. An error is either a mistake in the encoding of the
interpretation or a violation of a constraint of T .

Let ∼C denote the NNF of ¬C and let cl′(T ) = cl(T ) ∪
{R,¬R | R or R− occurs in T }. Intuitively, Q1 is used to
generate a finite tree in which each node “stores” the concepts
of cl(T ) that the node satisfies and the roles that connect it to
its parent. Let m = |cl(T )|, let γ1, . . . , γ` be an enumeration
of cl′(T ), and let γ̄ be the complementary symbol of γ, i.e.,
(a) if γ is a concept, then γ̄ = ∼γ; (b) if γ is a role, then
γ̄ = ¬γ; (c) if γ is an expression ¬R then γ̄ = R.

We can now define Q1(x, y) ← α1(x, y), where α1 is
the automaton in Figure 2 that is built using an alphabet Σ
consisting of the following roles and their inverses: Root ,
BT , B1, . . . , Bm, Lγ1 , . . . , Lγ` . The TBox is defined as
Tf = {> v6 1R.> | R ∈ Σ}, i.e., all roles are functional.

To understand how α1 works, a simple but crucial obser-
vation is that, if as role R− is functional, then by starting
from a node n of a structure and traversing R ·R− edges one
gets back to n. We exploit this to explain how α1 generates
(i.e., recognizes) finite trees encoding interpretations. From
the initial state it first makes a Root-step to state s1, from
where it starts generating the interpretation. From s1 it goes
to state s`+1 via intermediate states that ensure that for each
γi, 1 ≤ i ≤ `, one of γi or γ̄i is selected. Notice that, by
the observation above, if α1 traverses a node n of a struc-
ture in state s1, in each of the states s2, . . . , s`+1 it will again
traverse n.

In s`+1, α1 can decide whether to continue by generating a
B1-child, or to continue by marking the node as terminal (via

B1

.

.

.

B1 B1

B1

BTBTBT

B2 B2

B2

B2

Lβ1

Lβ`

BTBT

Root

Figure 3: Example structure without structural errors ‘gener-
ated’ by the query Q1 in Figure 2, for the case where m = 2.

BT ). If α1 chooses the latter, it gets into su, from where it
continues as follows: (i) if the current node is aBm-successor
of its parent, then it moves up in the tree and returns to state
su; (ii) if the current node is a Bi-successor of its parent,
where i < m, it moves up withB−i and then down to generate
the Bi+1-child of the parent, together with its sub-tree. An
example structure for the case m = 2 is given in Figure 3,
where each βi, for 1 ≤ i ≤ `, is either γi or γ̄i.

There are two possible structural errors in the structure
generated by α1: (A) when α1 reads B−i in the state su
it might “introduce” a fresh B−i -edge to a child instead
of moving up, and (B) α1 might not end up where it
started, i.e., Root occurs more than once in the tree. To
solve (A) and (B), and to ensure the satisfaction of T , we
build α2, which we describe using regular expressions.
For a role R, let R±=R·R− and R∓=R−·R. Then
α2 = Σ∗·(α1

2 + · · · + α8
2)·Σ∗. Intuitively, a match for Q2

in a structure generated by α1 means that the structure has
one of eight errors, respectively encoded by the following
expressions α1

2, . . . , α
8
2:

(a) α1
2 =

⋃
1≤i,j≤m, i 6=j(Bi·B

−
j ). Tests for error (A).

(b) α1
2 = Root−·

⋃
1≤i≤mB

−
i . Tests for error (B).

(c) α3
2 =

⋃
CvD∈T (L±C ·L

±
∼D). Checks for a violation of T .
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(d) α4
2 =

⋃
C1tC2∈cl(T )(L

±
C1tC2

·L±∼C1
·L±∼C2

). Trivial.

(e) α5
2 =

⋃
C1uC2∈cl(T )(L

±
C1uC2

·(L±∼C1
+ L±∼C2

)). Trivial.

(f) α6
2 =

⋃
C∈cl(T )(L

±
C ·L

±
∼C). Trivial.

(g) α7
2 =

⋃
∀R.C∈cl(T )

(L±∀R.C ·(
⋃

1≤i≤m

(Bi·L±R +L∓R·B
−
i ))·L±∼C).

Intuitively, we have a violation of ∀R.C if we can select a
Bi-child that has R and L∼C in its label, or the node has R−
in its label and its parent has L∼C .

(h) α8
2 =

⋃
∃R.C∈cl(T )

(L±∃R.C · (Root
∓ + L±¬R− +G1)︸ ︷︷ ︸

?

· (B±T +G2)︸ ︷︷ ︸
??

),

where G1 = (B−1 ·L
±
∼C ·B1) + · · ·+ (B−m·L±∼C ·Bm), and

G2 = (B1·(L±¬R + L±∼C)·B−1 ) · · · (Bm·(L±¬R + L±∼C)·B−m).
Intuitively, we have a violation of ∃R.C if (a) the parent of
the node is not an R-neighbor where C holds (ensured by ?),
and (b) all the children are not R-neighbors where C holds
(ensured by ??).

By this construction we have that T has a finite-tree model iff
Q1 *Tf Q2. Then from Theorem 10 we obtain:

Theorem 12. Containment of two 2RPQs w.r.t. ALCIFbreg
TBoxes is EXPTIME-complete, even for TBoxes consisting of
functionality constraints only.

We can exploit the above ideas also to polynomially re-
duce (‡) to containment of an RPQ in a C2RPQ w.r.t.
ALCIFbreg TBoxes. The query Q1 on the left and the TBox
Tf remain the same. We assume that all variables in the
query Q over T are different from x, y. For a role R, let
αR = (

⋃
1≤i≤mBi)·L

±
R + L±R− ·(

⋃
1≤i≤mB

−
i ). We build

a new query Q′ from Q2 by replacing each atom R(z1, z2)
by (αR + α2)(z1, z2), and adding the atom Σ∗(x, y). Then
T has a finite-tree counter-model for Q iff Q1 *Tf Q′. By
combining this with Theorem 10, we obtain:

Theorem 13. Containment of a 2RPQ in a C2RPQ
w.r.t. ALCIFbreg TBoxes is 2EXPTIME-complete, even for
TBoxes consisting of functionality constraints only.

6 Regular ABoxes
Apart from the TBox, DL knowledge bases have an asser-
tional component called ABox, which is a set of assertions
a:C and (a, b):R, stating the participation of the (objects de-
noted by) individual names a, b, . . . in (the interpretation of)
concepts C and roles R. Until now, in DLs that support reg-
ular languages over atomic roles as role expressions, ABox
assertions (a, b):R are restricted to atomic or simple roles R,
e.g., in [Calvanese et al., 2009]. The results of this paper
yield the first algorithms and optimal complexity bounds for
reasoning in the presence of NFAs or regular expressions in
the ABox.

Formally, a ALCIFbreg KB is a pair K = 〈T ,A〉 where
T is a TBox and A is a set of assertions of the form (a, b):α
where a, b are individuals and α is a role. A structure I inter-
prets each individual a as an element aI ∈ ∆I . We say that
(a, b):α is satisfied in a structure I if 〈aI , bI〉 ∈ αI . A model

of the KB is a model of T that satisfies all the assertions inA.
Given a Boolean C2RPQ Q, we say that K entails Q, written
K |= Q, if Q has a match is every model of K.4 Given a KB
K = 〈T ,A〉 where A = {(a1, b1):α1, . . . , (an, bn):αn}, let
QA ← α1(ua1 , vb1), . . . , αm(ubn , vbn) be a Boolean C2RPQ
obtained from A by using a fresh variable xa for each indi-
vidual a. Then, I is a model of K iff I |= T and there is a
match for QA in I. Hence, K is satisfiable iff QA 6⊆T Q⊥,
where Q⊥ is a query that does not have a match in any in-
terpretation (such as Q⊥ ← α⊥(x, y) where α⊥ is an NFA
whose language is the simple role R \R). Moreover, given a
C2RPQ Q, we can also decide query entailment w.r.t. K, by
exploiting that K |= Q iff QA ⊆T Q. Hence we obtain:
Theorem 14. Let K be a ALCIFbreg KB whose ABox con-
sists of assertions (a, b):α, for an NFA α over the alphabet
of simple roles, and let Q be a Boolean C2RPQ. Then (i) de-
ciding whether K is satisfiable is EXPTIME-complete, and
(ii) deciding whether K |= Q is 2EXPTIME-complete.

7 Conclusions
We have closed the open problem of decidability of contain-
ment of 2RPQs and of C2RPQs in the presence of constraints,
that range from simple functionality constraints to very ex-
pressive DL constraints, and have given optimal algorithms
for the problem. Indeed, the upper bounds given here extend
to the prominent DL SHIQ that underlies OWL Lite (which
can be polynomially encoded into ALCIFbreg provided
that numbers are coded in unary [Calvanese et al., 2009;
Rudolph et al., 2008]). They also show decidability of query
containment for the fragment SRIQ− of SROIQ that dis-
allows nominals, role (ir)reflexivity axioms, and concepts of
the form ∃Self.r. However, since the reduction of SRIQ−
to ALCIFbreg is exponential in general [Kazakov, 2008],
we only obtain a 2EXPTIME upper bound for 2RPQs and a
3EXPTIME upper bound for C2RPQs which are not known to
be tight. We believe that our techniques can be extended with
the ∃Self.r construct to obtain a tight upper bound for the DL
ZIQ, which can simulate (with an exponential blow-up) full
SRIQ. Our results are also relevant because they provide a
necessary step towards solving containment of SPARQL 1.1
queries under the OWL 2 entailment regimes.

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison Wesley
Publ. Co., 1995.

[Baader et al., 2007] Franz Baader, Diego Calvanese, Deb-
orah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge
University Press, 2nd edition, 2007.
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