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Abstract
Knowledge and Action Bases (KABs) have been put
forward as a semantically rich representation of a
domain, using a DL KB to account for its static as-
pects, and actions to evolve its extensional part over
time, possibly introducing new objects. Recently,
KABs have been extended to manage inconsistency,
with ad-hoc verification techniques geared towards
specific semantics. This work provides a twofold
contribution along this line of research. On the one
hand, we enrich KABs with a high-level, compact
action language inspired by Golog, obtaining so
called Golog-KABs (GKABs). On the other hand,
we introduce a parametric execution semantics for
GKABs, so as to elegantly accomodate a plethora of
inconsistency-aware semantics based on the notion
of repair. We then provide several reductions for
the verification of sophisticated first-order temporal
properties over inconsistency-aware GKABs, and
show that it can be addressed using known tech-
niques, developed for standard KABs.

1 Introduction
The combination of static and dynamic aspects in modeling
complex organizational domains is a challenging task that has
received increased attention, and has led to the study of set-
tings combining formalisms from knowledge representation,
database theory, and process management [Hull, 2008; Vianu,
2009; Calvanese et al., 2013a]. Specifically, Knowledge and
Action Bases (KABs) [Bagheri Hariri et al., 2013b] have been
put forward to provide a semantically rich representation of a
domain. In KABs, static aspects are modeled using a knowl-
edge base (KB) expressed in the lightweight Description Logic
(DL) [Baader et al., 2003] DL-LiteA [Calvanese et al., 2007b;
2009], while actions are used to evolve its extensional part
over time, possibly introducing fresh individuals from the ex-
ternal environment. An important aspect that has received
little attention so far in such systems is the management of in-
consistency with respect to domain knowledge that may arise
when the extensional information is evolved over time. In fact,
inconsistency is typically handled naively by just rejecting up-
dates in actions when they would lead to inconsistency. This
shortcoming is not only present in KABs, but virtually in all

related approaches in the literature, e.g., [Deutsch et al., 2009;
Belardinelli et al., 2012; Bagheri Hariri et al., 2013a].

To overcome this limitation, KABs have been extended
lately with mechanisms to handle inconsistency [Calvanese
et al., 2013b]. However, this has been done by defining ad-
hoc execution semantics and corresponding ad-hoc verification
techniques geared towards specific semantics for inconsistency
management. Furthermore, it has been left open whether intro-
ducing inconsistency management in the rich setting of KABs,
effectively leads to systems with a different level of expressive
power. In this paper, we attack these issues by: (i) Proposing
(standard) GKABs, which enrich KABs with a compact action
language inspired by Golog [Levesque et al., 1997] that can
be conveniently used to specify processes at a high-level of
abstraction. As in KABs, standard GKABs still manage incon-
sistency naively. (ii) Defining a parametric execution semantic
for GKABs that is able to elegantly accomodate a plethora
of inconsistency-aware semantics based on the well-known
notion of repair [Eiter and Gottlob, 1992; Bertossi, 2006;
Lembo et al., 2010; Calvanese et al., 2010]. (iii) Provid-
ing several reductions showing that verification of sophisti-
cated first-order temporal properties over inconsistency-aware
GKABs can be recast as a corresponding verification problem
over standard GKABs. (iv) Showing that verification of stan-
dard and inconsistency-aware GKABs can be addressed using
known techniques, developed for standard KABs. Full proofs
can be found in an extended technical report [Calvanese et al.,
2015].

2 Preliminaries
We start by introducing the necessary technical preliminaries.

2.1 DL-LiteA
We fix a countably infinite set ∆ of individuals, acting as
standard names. To model KBs, we use the lightweight logic
DL-LiteA [Calvanese et al., 2007b; 2009], whose concepts and
roles are built according to B ::= N | ∃R and R ::= P | P−,
where N is a concept name,B a basic concept, P a role name,
P− an inverse role, and R a basic role.

A DL-LiteA KB is a pair 〈T,A〉, where: (i) A is an Abox,
i.e., a finite set of ABox assertions (or facts) of the form N(c1)
or P (c1, c2), where c1, c2 are individuals. (ii) T = Tp ]
Tn ] Tf is a TBox, i.e., a finite set constituted by a subset
Tp of positive inclusion assertions of the form B1 v B2 and



R1 v R2, a subset Tn of negative inclusion assertions of
the form B1 v ¬B2 and R1 v ¬R2, and a subset Tf of
functionality assertions of the form (funct R). We denote by
ADOM(A) the set of individuals explicitly present in A.

We rely on the standard semantics of DLs based on FOL
interpretations I = (∆I , ·I), where cI ∈ ∆I , NI ⊆ ∆I ,
and P I ⊆ ∆I × ∆I . The semantics of the DL-LiteA con-
structs and of TBox and ABox assertions, and the notions of
satisfaction and of model are as usual (see, e.g., [Calvanese
et al., 2007b]). We say that A is T -consistent if 〈T,A〉 is
satisfiable, i.e., admits at least one model. We also assume
that all concepts and roles in T are satisfiable, i.e., for every
concept N in T , there exists at least one model I of T such
that NI is non-empty, and similarly for roles.
Queries. We use queries to access KBs and extract individuals
of interest. A union of conjunctive queries (UCQ) q over a KB
〈T,A〉 is a FOL formula of the form

∨
1≤i≤n ∃~yi.conj i(~x, ~yi),

where each conj i(~x, ~yi) is a conjunction of atoms, whose
predicates are either concept/role names of T , or equality
assertions involving variables ~x and ~yi, and/or individuals.

The (certain) answers of q over 〈T,A〉 are defined as the set
ans(q, T,A) of substitutions σ of the free variables in q with
inviduals in ADOM(A), such that qσ evaluates to true in every
model of 〈T,A〉. If q has no free variables, then it is called
boolean and its certain answers are either the empty substitu-
tion (corresponding to true), or the empty set (corresponding
to false). We also consider the extension of UCQs named EQL-
Lite(UCQ) [Calvanese et al., 2007a] (briefly, ECQs), that is,
the FOL query language whose atoms are UCQs evaluated
according to the certain answer semantics above. Formally, an
ECQ over a TBox T is a (possibly open) formula of the form1:

Q ::= [q] | ¬Q | Q1 ∧Q2 | ∃x.Q
where q is a UCQ, and [q] denotes the fact that q is evalu-
ated under the (minimal) knowledge operator [Calvanese et
al., 2007a].2 Intuitively, the certain answers ANS(Q,T,A)
of an ECQ Q over 〈T,A〉 are obtained by computing the cer-
tain answers of the UCQs embedded in Q, then composing
such answers through the FO constructs in Q (interpreting
existential variables as ranging over ADOM(A)).

2.2 Inconsistency Management in DL KBs
Retrieving certain answers from a KB makes sense only if the
KB is consistent: if it is not, then each query returns all pos-
sible tuples of individuals of the ABox. In a dynamic setting
where the ABox evolves over time, consistency is a too strong
requirement, and in fact a number of approaches have been
proposed to handle the instance-level evolution of KBs, man-
aging inconsistency when it arises. Such approaches typically
follow one of the two following two strategies: (i) inconsisten-
cies are kept in the KBs, but the semantics of query answering
is refined to take this into account (consistent query answering
[Bertossi, 2006]); (ii) the extensional part of an inconsistent
KB is (minimally) repaired so as to remove inconsistencies,
and certain answers are then applied over the curated KB. In
this paper, we follow the approach in [Calvanese et al., 2013b],

1In this work we only consider domain independent ECQs.
2We omit the square brackets for single-atom UCQs.

and consequently focus on repair-based approaches. However,
our results seamlessly carry over the setting of consistent query
answering. We then recall the basic notions related to inconsis-
tency management via repair, distinguishing approaches that
repair an ABox and those that repair an update.

ABox repairs. Starting from the seminal work in [Eiter and
Gottlob, 1992], in [Lembo et al., 2010] two approaches for
repairing KBs are proposed: ABox repair (AR) and intersec-
tion ABox repair (IAR). In [Calvanese et al., 2013b], these
approaches are used to handle inconsistency in KABs, and are
respectively called bold-repair (b-repair) and certain-repair
(c-repair). Formally, a b-repair of an ABox A w.r.t. a TBox
T is a maximal T-consistent subset A′ of A, i.e.: (i) A′ ⊆ A,
(ii) A′ is T -consistent, and (iii) there does not exists A′′
such that A′ ⊂ A′′ ⊆ A and A′′ is T -consistent. We de-
note by B-REP(T,A) the set of all b-repairs of 〈T,A〉. The
c-repair of an ABox A w.r.t. a TBox T is the (unique) set
C-REP(T,A) = ∩Ai∈B-REP(T,A)Ai of ABox assertions, ob-
tained by intersecting all b-repairs.

Inconsistency in KB evolution. In a setting where the KB is
subject to instance-level evolution, b- and c-repairs are com-
puted agnostically from the updates: each update is committed,
and only secondly the obtained ABox is repaired if inconsis-
tent. In [Calvanese et al., 2010], a so-called bold semantics
is proposed to apply the notion of repair to the update itself.
Specifically, the bold semantics is defined over a consistent
KB 〈T,A〉 and an instance-level update that comprises two
ABoxes F− and F+, respectively containing those assertions
that have to be deleted from and then added to A. It is as-
sumed that F+ is consistent with T , and that new assertions
have “priority”: if an inconsistency arises, newly introduced
facts are preferred to those already present in A. Formally,
the evolution of an ABox A w.r.t. a TBox T by F+ and F−,
written EVOL(T,A, F+, F−), is an ABox Ae = F+ ∪ A′,
where (i) A′ ⊆ (A \ F−), (ii) F+ ∪A′ is T -consistent, and
(iii) there does not exists A′′ such that A′ ⊂ A′′ ⊆ (A \ F−)
and F+ ∪A′′ is T -consistent.

2.3 Knowledge and Action Bases
Knowledge and Action Bases (KABs) [Bagheri Hariri et al.,
2013b] have been proposed as a unified framework to simulta-
neously account for the static and dynamic aspects of an appli-
cation domain. This is done by combining a semantically-rich
representation of the domain (via a DL KB), with a process that
evolves the extensional part of such a KB, possibly introduc-
ing, through service calls, new individuals from the external
world. We briefly recall the main aspects of KABs, by com-
bining the framework in [Bagheri Hariri et al., 2013b] with
the action specification formalism in [Montali et al., 2014].

We consider a finite set of distinguished individuals ∆0 ⊂
∆, and a finite set F of functions representing service calls,
which abstractly account for the injection of fresh individuals
from ∆ into the system. A KAB is a tuple K = 〈T,A0,Γ,Π〉
where: (i) T is a DL-LiteA TBox that captures the intensional
aspects of the domain of interest; (ii) A0 is the initial DL-
LiteA ABox, describing the initial configuration of data; (iii) Γ
is a finite set of parametric actions that evolve the ABox;
(iv) Π is a finite set of condition-action rules forming a process,



which describes when actions can be executed, and with which
parameters. We assume that ADOM(A0) ⊆ ∆0.

An action α ∈ Γ has the form α(~p) : {e1, . . . , em}, where
(i) α is the action name, (ii) ~p are the input parameters, and
(iii) {e1, . . . , em} is the set of effects. Each effect has the
form Q(~x) add F+,del F−, where: (i) Q(~x) is an ECQ,
possibly mentioning individuals in ∆0 and action parameters
~p. (ii) F+ is a set of atoms (over the alphabet of T ) to be
added to the ABox, each having as terms: individuals in ∆0,
action parameters ~p, free variables ~x of Q, and service calls,
represented as Skolem terms formed by applying a function
f ∈ F to one of the previous kinds of terms. (iii) F− is a set
of atoms (over the alphabet of T ) to be deleted from the ABox,
each having as terms: individuals in ∆0, input parameters
~p, and free variables of Q. We denote by EFF(α) the set of
effects in α. Intuitively, action α is executed by grounding
its parameters, and then applying its effects in parallel. Each
effect instantiates the atoms mentioned in its head with all
answers of Q, then issues the corresponding service calls pos-
sibly contained in F+, and substitutes them with the obtained
results (which are individuals from ∆). The update induced
by α is produced by adding and removing the ground atoms
so-obtained to/from the current ABox, giving higher priority
to additions.

The process Π comprises a finite set of condition-action
rules of the form Q(~x) 7→ α(~x), where: α ∈ Γ is an action,
and Q(~x) is an ECQ over T , whose terms are free variables ~x,
quantified variables, and individuals in ∆0. Each condition-
action rule determines the instantiations of parameters with
which to execute the action in its head over the current ABox.

The execution semantics of a KAB is given in terms of a
possibly infinite-state transition system, whose construction
depends on the adopted semantics of inconsistency [Calvanese
et al., 2013b]. In general, the transition systems we consider
are of the form 〈∆, T,Σ, s0, abox ,⇒〉, where: (i) T is a
DL-LiteA TBox; (ii) Σ is a (possibly infinite) set of states;
(iii) s0 ∈ Σ is the initial state; (iv) abox is a function that, given
a state s ∈ Σ, returns an ABox associated to s; (v)⇒ ⊆ Σ×Σ
is a transition relation between pairs of states.

Following the terminology in [Calvanese et al., 2013b], we
call S-KAB a KAB under the standard execution semantics
of KABs, where inconsistency is naively managed by simply
rejecting those updates that lead to an inconsistent state. The
transition system ΥSK accounting for the standard execution
semantics of KAB K is then constructed by starting from the
initial ABox, applying the executable actions in all possible
ways, and generating the (consistent) successor states by ap-
plying the corresponding updates, then iterating through this
procedure. As for the semantics of service calls, in line with
[Calvanese et al., 2013b] we adopt the deterministic semantics,
i.e., services return always the same result when called with
the same inputs. Nondeterministic services can be seamlessly
added without affecting our technical results.

To ensure that services behave deterministically, the states
of the transition system are also equipped with a service call
map that stores the service calls issued so far, and their cor-
responding results. Technically, a service call map is a par-
tial function m : SC → ∆, where SC = {sc(v1, . . . , vn) |
sc/n ∈ F and {v1, . . . , vn} ⊆ ∆} is the set of (Skolem terms

representing) service calls.

2.4 Verification Formalism
To specify sophisticated temporal properties to be verified over
KABs, taking into account the system dynamics as well as the
evolution of data over time, we rely on the µLEQL

A logic, the
FO variant of the µ-calculus defined in [Bagheri Hariri et al.,
2013b]. µLEQL

A combines the standard temporal operators of
the µ-calculus with EQL queries over the states. FO quantifi-
cation is interpreted with an active domain semantics, i.e., it
ranges over those individuals that are explicitly present in the
current ABox, and fully interacts with temporal modalities,
i.e., it applies across states. The µLEQL

A syntax is:
Φ := Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ

where Q is a possibly open EQL query that can make use
of the distinguished individuals in ∆0, Z is a second-order
variable denoting a predicate (of arity 0), 〈−〉Φ indicates the
existence of a next state where Φ holds, and µ is the least
fixpoint operator, parametrized with the free variables of its
bounding formula. We make use of the following standard
abbreviations: ∀x.Φ = ¬(∃x.¬Φ), Φ1∨Φ2 = ¬(¬Φ1∧¬Φ2),
[−]Φ = ¬〈−〉¬Φ, and νZ.Φ = ¬µZ.¬Φ[Z/¬Z].

For the semantics of µLEQL
A , which is given over transi-

tion systems of the form specified in Section 2.3, we refer to
[Bagheri Hariri et al., 2013b]. Given a transition system Υ and
a closed µLEQL

A formula Φ, we call model checking verifying
whether Φ holds in the initial state of Υ, written Υ |= Φ.

3 Golog-KABs and Inconsistency
In this section, we leverage on the KAB framework (cf. Sec-
tion 2.3) and provide a twofold contribution. On the one hand,
we enrich KABs with a high-level action language inspired
by Golog [Levesque et al., 1997]. This allows modelers to
represents processes much more compactly, and will be instru-
mental for the reductions discussed in Sections 4 and 5. On
the other hand, we introduce a parametric execution seman-
tics, which elegantly accomodates a plethora of inconsistency-
aware semantics based on the notion of repair.

A Golog-KAB (GKAB) is a tuple G = 〈T,A0,Γ, δ〉, where
T , A0, and Γ are as in standard KABs, and δ is the Golog
program characterizing the evolution of the GKAB over time,
using the atomic actions in Γ. For simplicity, we only consider
a core fragment3 of Golog based on the action language in
[Calvanese et al., 2011], and define a Golog program as:

δ ::= ε | pick Q(~p).α(~p) | δ1|δ2 | δ1; δ2 |
if ϕ then δ1 else δ2 | while ϕ do δ

where: (1) ε is the empty program; (2) pick Q(~p).α(~p) is
an atomic action invocation guarded by an ECQ Q, such
that α ∈ Γ is applied by non-deterministically substituting
its parameters ~p with an answer of Q; (3) δ1|δ2 is a non-
deterministic choice between programs; (4) δ1; δ2 is sequenc-
ing; (5) if ϕ then δ1 else δ2 and while ϕ do δ are conditional
and loop constructs, using a boolean ECQ ϕ as condition.

3The other Golog constructs, including non-deterministic iteration
and unrestricted pick, can be simulated with the constructs considered
here.



Execution Semantics. As for normal KABs, the execution
semantics of a GKAB G is given in terms of a possibly
infinite-state transition system ΥG , whose states are labelled
with ABoxes. The states we consider, are tuples of the form
〈A,m, δ〉, where A is an ABox, m a service call map, and δ a
program. Together, A and m constitute the data-state, which
captures the result of the actions executed so far, together with
the answers returned by service calls issued in the past. In-
stead, δ is the process-state, which represents the program that
still needs to be executed from the current data-state.

We adopt the functional approach by Levesque [1984] in
defining the semantics of action execution over G, i.e., we
assume G provides two operations: (i) ASK, to answer queries
over the current KB; (ii) TELL, to update the KB through an
atomic action. Since we adopt repairs to handle inconsistency,
the ASK operator corresponds to certain answers computation.

We proceed now to formally define TELL. Given an action
invocation pick Q(~p).α(~p) and an ABox A, we say that
substitution σ of parameters ~p with individuals in ∆ is legal
for α in A if ANS(Qσ, T,A) is true. If so, we also say that
ασ is executable in A, and we define the sets of atoms to be
added and deleted by pick Q(~p).α(~p) with σ in A as follows:
ADDAασ =

⋃
(Q add F+,del F−) in EFF(α)

⋃
ρ∈ANS(Qσ,T,A) F

+σρ

DELAασ =
⋃

(Q add F+,del F−) in EFF(α)

⋃
ρ∈ANS(Qσ,T,A) F

−σρ

In general, ADDAασ is not a proper set of facts, because it
could contain (ground) service calls, to be substituted with
corresponding results. We denote by CALLS(ADDAασ) the set
of ground service calls in ADDAασ, and by EVAL(ADDAασ) the
set of call substitutions with individuals in ∆, i.e., the set

{θ | θ is a total function, θ : CALLS(ADDAασ)→ ∆}
Given two ABoxes A and A′ where A is assumed to be

T -consistent, and two sets F+ and F− of facts, we introduce
a so-called filter relation to indicate thatA′ is obtained fromA
by adding the F+ facts and removing the F− ones. To account
for inconsistencies, the filter could drop some additional facts
when producing A′. Hence, a filter consists of tuples of the
form 〈A,F+, F−, A′〉 satisfying ∅ ⊆ A′ ⊆ ((A\F−)∪F+).
In this light, filter relations provide an abstract mechanism to
accommodate several inconsistency management approaches.

We now concretize TELL as follows. Given a GKAB G and
a filter f , we define TELLf as the following relation over pairs
of data-states in ΥG : tuple 〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ TELLf if
• σ is a legal parameter substitution for α in A, and
• there exists θ ∈ EVAL(ADDAασ) such that: (i) θ and m
agree on the common values in their domains (this enforces
the deterministic semantics for services); (ii) m′ = m ∪ θ;
(iii) 〈A, ADDAασθ, DELAασ, A

′〉 ∈ f , where ADDAασθ denotes
the set of facts obtained by applying θ over the atoms in
ADDAασ; (iv) A′ is T -consistent.

As a last preliminary notion towards the parametric execu-
tion semantics of GKABs, we specify when a state 〈A,m, δ〉 is
considered to be final by its program δ, written 〈A,m, δ〉 ∈ F.
This is done by defining the set F of final states as follows:
1. 〈A,m, ε〉 ∈ F;
2. 〈A,m, δ1|δ2〉 ∈ F if 〈A,m, δ1〉 ∈ F or 〈A,m, δ2〉 ∈ F;
3. 〈A,m, δ1; δ2〉 ∈ F if 〈A,m, δ1〉 ∈ F and 〈A,m, δ2〉 ∈ F;
4. 〈A,m, if ϕ then δ1 else δ2〉 ∈ F

if ANS(ϕ, T,A) = true, and 〈A,m, δ1〉 ∈ F;

5. 〈A,m, if ϕ then δ1 else δ2〉 ∈ F
if ANS(ϕ, T,A) = false, and 〈A,m, δ2〉 ∈ F;

6. 〈A,m,while ϕ do δ〉 ∈ F if ANS(ϕ, T,A) = false;
7. 〈A,m,while ϕ do δ〉 ∈ F if ANS(ϕ, T,A) = true, and
〈A,m, δ〉 ∈ F.

Now, given a filter relation f , we define the program execution

relation
ασ,f−−−→, describing how an atomic action with parame-

ters simultaneously evolves the data- and program-state:
1.〈A,m, pick Q(~p).α(~p)〉 ασ,f−−−→ 〈A′,m′, ε〉,

if 〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ TELLf ;

2.〈A,m, δ1|δ2〉
ασ,f−−−→ 〈A′,m′, δ′〉,

if 〈A,m, δ1〉
ασ,f−−−→〈A′,m′, δ′〉 or 〈A,m, δ2〉

ασ,f−−−→ 〈A′,m′, δ′〉;
3.〈A,m, δ1; δ2〉

ασ,f−−−→ 〈A′,m′, δ′1; δ2〉,
if 〈A,m, δ1〉

ασ,f−−−→ 〈A′,m′, δ′1〉;
4.〈A,m, δ1; δ2〉

ασ,f−−−→ 〈A′,m′, δ′2〉,
if 〈A,m, δ1〉 ∈ F, and 〈A,m, δ2〉

ασ,f−−−→ 〈A′,m′, δ′2〉;
5.〈A,m, if ϕ then δ1 else δ2〉

ασ,f−−−→ 〈A′,m′, δ′1〉,
if ANS(ϕ, T,A) = true, and 〈A,m, δ1〉

ασ,f−−−→ 〈A′,m′, δ′1〉;
6.〈A,m, if ϕ then δ1 else δ2〉

ασ,f−−−→ 〈A′,m′, δ′2〉,
if ANS(ϕ, T,A) = false, and 〈A,m, δ2〉

ασ,f−−−→ 〈A′,m′, δ′2〉;
7.〈A,m,while ϕ do δ〉 ασ,f−−−→ 〈A′,m′, δ′;while ϕ do δ〉,

if ANS(ϕ, T,A) = true, and 〈A,m, δ〉 ασ,f−−−→ 〈A′,m′, δ′〉.
Given a GKAB G = 〈T,A0,Γ, δ〉 and a filter relation f ,

we finally define the transition system of G w.r.t. f , writ-
ten Υ fG , as 〈∆, T,Σ, s0, abox ,⇒〉, where s0 = 〈A0, ∅, δ〉,
and Σ and ⇒ are defined by simultaneous induction as the
smallest sets such that s0 ∈ Σ, and if 〈A,m, δ〉 ∈ Σ and

〈A,m, δ〉 ασ,f−−−→ 〈A′,m′, δ′〉, then 〈A′,m′, δ′〉 ∈ Σ and
〈A,m, δ〉 ⇒ 〈A′,m′, δ′〉. By suitbably concretizing the filter
relation, we can obtain a plethora of execution semantics.
Standard and Inconsistency-Aware Semantics. Given
a GKAB G = 〈T,A0,Γ, δ〉, we exploit filter relations to
define its standard execution semantics (reconstructing
that of [Calvanese et al., 2013b] for normal KABs), and
three inconsistency-aware semantics that incorporate the
repair-based approaches reviewed in Section 2.2. In particular,
we introduce 4 filter relations fS , fB , fC , fE , as follows.
Given an ABox A, an atomic action α(~p) ∈ Γ, a legal
parameter substitution σ for α in A, and a service call
evaluation θ ∈ EVAL(ADDAασ), let F+ = ADDAασθ and
F− = DELAασ. We then have 〈A,F+, F−, A′〉 ∈ f , where
A′ = (A \ F−) ∪ F+, if f = fS
A′ ∈ B-REP(T, (A \ F−) ∪ F+), if f = fB
A′ = C-REP(T, (A \ F−) ∪ F+), if f = fC
A′ = EVOL(T,A, F+, F−), if f = fE and

F+ is T -consistent
Filter fS gives rise to the standard execution semantics for G,
since it just applies the update induced by the ground atomic
action ασ (giving priority to additions over deletions). Filter
fB gives rise to the b-repair execution semantics for G, where
inconsistent ABoxes are repaired by non-deterministically
picking a b-repair. Filter fC gives rise to the c-repair
execution semantics for G, where inconsistent ABoxes are
repaired by computing their unique c-repair. Filter fE gives



rise to the b-evol execution semantics for G, where for updates
leading to inconsistent ABoxes, their unique bold-evolution
is computed. We call the GKABs adopting these semantics
S-GKABs, B-GKABs, C-GKABs, and E-GKABs, respectively,
and we group the last three forms of GKABs under the
umbrella of inconsistency-aware GKABs (I-GKABs).

Transforming S-KABs to S-GKABs. We close this section
by showing that our S-GKABs are able to capture normal S-
KABs in the literature [Bagheri Hariri et al., 2013b; Calvanese
et al., 2013b]. In particular, we show the following.

Theorem 1. Verification of µLEQL
A properties over S-KABs

can be recast as verification over S-GKABs.

Proof sketch. We provide a translation τS that, given an S-
KAB K = 〈T,A0,Γ,Π〉 with transition system ΥSK , generates
an S-GKAB τS(K) = 〈T,A0,Γ, δ〉. Program δ is obtained
from Π as δ = while true do (a1|a2| . . . |a|Π|), where, for
each condition-action ruleQi(~x) 7→ αi(~x) ∈ Π, we have ai =
pick Qi(~x).αi(~x). The translation produces a program that
continues forever to non-deterministically pick an executable
action with parameters (as specified by Π), or stops if no
action is executable. It can be then proven directly that for
every µLEQL

A property Φ, ΥSK |= Φ iff Υ fSτS(K) |= Φ.

4 Compilation of Inconsistency Management
This section provides a general account of inconsistency man-
agement in GKABs, proving that all inconsistency-aware vari-
ants introduced in Section 3 can be reduced to S-GKABs.

Theorem 2. Verification of µLEQL
A properties over I-GKABs

can be recast as verification over S-GKABs.

The remainder of this section is devoted to prove this result,
case by case. Our general strategy is to show that S-GKABs
are sufficiently expressive to incorporate the repair-based ap-
proaches of Section 2.2, so that an action executed under a
certain inconsistency semantics can be compiled into a Golog
program that applies the action with the standard semantics,
and then explicitly handles the inconsistency, if needed.

We start by recalling that checking whether a DL-LiteA KB
〈T,A〉 is inconsistent is FO rewritable, i.e., can be reduced
to evaluating a boolean query QTunsat over A (interpreted as a
database) [Calvanese et al., 2007b]. To express such queries
compactly, we make use of the following abbreviations. For
role R = P−, atom R(x, y) denotes P (y, x). For concept
B = ∃P , atom B(x) denotes P (x, ), where ‘ ’ stands for
an anonymous existentially quantified variable. Similarly, for
B = ∃P−, atom B(x) denotes P ( , x).

In particular, the boolean query QTunsat is:

QTunsat =
∨

(funct R)∈T ∃x, y, z.q
f
unsat((funct R), x, y, z) ∨∨

T |=B1v¬B2
∃x.qnunsat(B1 v ¬B2, x) ∨∨

T |=R1v¬R2
∃x, y.qnunsat(R1 v ¬R2, x, y)

where:
• qfunsat((functR), x, y, z) = R(x, y)∧R(x, z)∧¬[y = z];
• qnunsat(B1 v ¬B2, x) = B1(x) ∧B2(x);
• qnunsat(R1 v ¬R2, x, y) = R1(x, y) ∧R2(x, y).

4.1 From B-GKABs to S-GKABs
To encode B-GKABs into S-GKABs, we use a special
fact M(rep) to distinguish stable states, where an atomic
action can be applied, from intermediate states used by
the S-GKABs to incrementally remove inconsistent facts
from the ABox. Stable/repair states are marked by the ab-
sence/presence of M(rep). To set/unset M(rep), we define set
Γrep = {α+

rep(), α
−
rep()} of actions, where α+

rep() : {true 
add {M(rep)}}, and α−rep() : {true del {M(rep)}}.

Given a B-GKAB G = 〈T,A0,Γ, δ〉, we define the set
ΓTb of b-repair actions and the set ΛTb of b-repair atomic
action invocations as follows. For each functionality assertion
(funct R) ∈ T , we include in ΓTb and ΛTb respectively:
• pick ∃z.qfunsat((funct R), x, y, z).αF (x, y) ∈ ΛTb , and
• αF (x, y) :{R(x, z)∧¬[z = y] del {R(x, z)}} ∈ ΓTb

This invocation repairs an inconsistency related to (funct R)
by removing all tuples causing the inconsistency, except one.
For each negative concept inclusion B1 v ¬B2 s.t. T |=
B1 v ¬B2, we include in ΓTb and ΛTb respectively:
• pick qnunsat(B1 v ¬B2, x).αB1

(x) ∈ ΛTb , and
• αB1

(x) : {true del {B1(x)}} ∈ ΓTb
This invocation repairs an inconsistency related to B1 v ¬B2

by removing an individual that is both in B1 and B2 from
B1. Similarly for negative role inclusions. Given ΛTb =
{a1, . . . , an}, we then define the b-repair program

δTb = while QTunsat do (a1|a2| . . . |an),
Intuitively, δTb iterates while the ABox is inconsistent, and at
each iteration, non-deterministically picks one of the sources
of inconsistency, and removes one or more facts causing it.
Consequently, the loop is guaranteed to terminate, in a state
that corresponds to one of the b-repairs of the initial ABox.

With this machinery at hand, we are ready to define a
translation τB that, given G, produces S-GKAB τB(G) =
〈Tp, A0,Γ∪ ΓTb ∪ Γrep, δ

′〉, where only the positive inclusion
assertions Tp of the original TBox T are maintained (guaran-
teeing that τB(G) never encounters inconsistency). Program δ′

is obtained from program δ of G by replacing each occurrence
of an atomic action invocation pick Q(~p).α(~p) with

pick Q(~p).α(~p); pick true.α+
rep(); δ

T
b ; pick true.α−rep()

This program concatenates the original action invocation
with a corresponding “repair” phase. Obviously, this means
that when an inconsistent ABox is produced, a single transi-
tion in G corresponds to a sequence of transitions in τB(G).
Hence, we need to introduce a translation tB that takes a
µLEQL

A formula Φ over G and produces a corresponding for-
mula over τB(G). This is done by first obtaining formula
Φ′ = NNF(Φ), where NNF(Φ) denotes the negation normal
form of Φ. Then, every subformula of Φ of the form 〈−〉Ψ
becomes 〈−〉〈−〉µZ.((M(rep)∧〈−〉Z)∨ (¬M(rep)∧ tB(Ψ))),
so as to translate a next-state condition over G into reachability
of the next stable state over τB(G). Similarly for [−]Ψ.

With these two translations at hand, we can show that
Υ fBG |= Φ iff Υ fSτB(G) |= tB(Φ).

4.2 From C-GKABs to S-GKABs
Making inconsistency management for C-GKABs explicit
requires just a single action, which removes all individuals that



are involved in some form of inconsistency. Hence, given a
TBox T , we define a 0-ary c-repair action αTc , where EFF(αTc )
is the smallest set containing the following effects:
• for each assertion (funct R) ∈ T ,
qfunsat((funct R), x, y, z) {del {R(x, y), R(x, z)}}
• for each assertion B1 v ¬B2 s.t. T |= B1 v ¬B2,
qnunsat(B1 v ¬B2, x) {del {B1(x), B2(x)}};
• similarly for negative role inclusions.

Notice that all effects are guarded by queries that extract only
individuals involved in an inconsistency. Hence, other facts
are kept unaltered, which also means that αTc is a no-op when
applied over a T -consistent ABox. We define a translation
τC that, given a C-GKAB G = 〈T,A0,Γ, δ〉, generates an
S-GKAB τC(G) = 〈Tp, A0,Γ ∪ {αTc }, δ′〉, which, as for B-
GKABs, only maintains positive inclusion assertions of T .
Program δ′ is obtained from δ by replacing each occurrence
of an atomic action invocation of the form pick Q(~p).α(~p)
with pick Q(~p).α(~p); pick true.αTc (). This attests that each
transition in G corresponds to a sequence of two transitions in
τC(G): the first mimics the action execution, while the second
computes the c-repair of the obtained ABox.

A µLEQL
A property Φ over G can then be recast as a corre-

sponding property over τC(G) that substitutes each subformula
〈−〉Ψ of Φ with 〈−〉〈−〉Ψ (similarly for [−]Φ). By denoting this
translation with tdup, we get Υ fCG |= Φ iff Υ fSτC(G) |= tdup(Φ).

4.3 From E-GKABs to S-GKABs
Differently from the case of B-GKABs and C-GKABs, E-
GKABs pose two challenges: (i) when applying an atomic
action (and managing the possibly arising inconsistency) it is
necessary to distinguish those facts that are newly introduced
by the action from those already present in the system; (ii) the
evolution semantics can be applied only if the facts to be added
are consistent with the TBox, and hence an additional check
is required to abort the action execution if this is not the case.
To this aim, given a TBox T , we duplicate concepts and roles
in T , introducing a fresh concept name Nn for every concept
name N in T (similarly for roles). The key idea is to insert
those individuals that are added toN also inNn, so as to trace
that they are part of the update.

The first issue described above is then tackled by compiling
the bold evolution semantics into a 0-ary evolution action αTe ,
where EFF(αTe ) is the smallest set of effects containing:
• for each assertion (funct R) ∈ T ,
∃z.qfunsat((functR), x, y, z)∧Rn(x, y) {del {R(x, z)}}

• for each assertion B1v ¬B2 s.t. T |= B1 v ¬B2,
qnunsat(B1 v ¬B2, x) ∧Bn1 (x) {del {B2(x)}};

• similarly for negative role inclusion assertions;
• for each concept name N , Nn(x) {del {Nn(x)}};
• similarly for role names.
These effects mirror those of Section 4.2, with the difference
that they asymmetrically remove old facts when inconsis-
tency arises. The last two bullets guarantee that the con-
tent of concept and role names tracking the newly added
facts are flushed. We then define a translation τE that,
given an E-GKAB G = 〈T,A0,Γ, δ〉, generates an S-GKAB
τE(G) = 〈Tp ∪ Tn, A0,Γ

′ ∪ {αTe }, δ′〉, where:

• Tn is obtained from T by renaming each concept name N
in T into Nn (similarly for roles). In this way, the original
concepts/roles are only subject in τE(G) to the positive
inclusion assertions of T , while concepts/roles tracking
newly inserted facts are subject also to negative constraints.
This blocks the generation of the successor state when the
facts to be added to the current ABox are T -inconsistent.

• Γ′ is obtained by translating each action in α(~p) ∈
Γ into action α′(~p), such that for each effect Q  
add F+,del F− ∈ EFF(α), we have Q  add F+ ∪
F+n,del F− ∈ EFF(α′) where F+n duplicates F+ by
using the vocabulary for newly introduced facts.

• δ′ is obtained from δ by replacing each action invocation
pick Q(~p).α(~p) with pick Q(~p).α′(~p); pick true.αTe ().

By exploiting the same µLEQL
A translation used in Section 4.2,

we obtain that Υ fEG |= Φ iff Υ fSτE(G) |= tdup(Φ).

5 From Golog to Standard KABs
We close our tour by showing that S-GKABs can be compiled
into the normal S-KABs of [Bagheri Hariri et al., 2013b;
Calvanese et al., 2013b].

Theorem 3. Verification of µLEQL
A properties over S-GKABs

can be recast as verification over S-KABs.

Proof sketch. We introduce a translation from S-GKABs to
S-KABs, and from µLEQL

A properties over S-GKABs to cor-
responding properties over S-KABs, in such a way that ver-
ification in the first setting can be reduced to verification in
the second setting. The translation is quite involved, for space
reasons we refer to [Calvanese et al., 2015] for details.

From Theorems 1 and 3, we obtain that S-KABs and S-
GKABs are expressively equivalent. From Theorems 2 and 3,
we get our second major result: inconsistency-management
can be compiled into an S-KAB by concatenating the two
translations from I-GKABs to S-GKABs, and then to S-KABs.

Theorem 4. Verification of µLEQL
A properties over I-GKABs

can be recast as verification over S-KABs.

Even more interesting is the fact that the semantic prop-
erty of run-boundedness [Bagheri Hariri et al., 2013a; 2013b]
is preserved by all translations presented in this paper. Intu-
itively, run-boundedness requires that every run of the system
cumulatively encounters at most a bounded number of indi-
viduals. Unboundedly many individuals can still be present
in the overall system, provided that they do not accumulate in
the same run. Thanks to the preservation of run-boundedness,
and to the compilation of I-GKABs into S-KABs, we get:

Theorem 5. Verification of µLEQL
A properties over run-

bounded I-GKABs is decidable, and reducible to standard
µ-calculus finite-state model checking.

Proof sketch. The claim follows by combining the fact that
all translations preserve run-boundedness, Theorem 4, and
the results in [Bagheri Hariri et al., 2013a; 2013b] for run-
bounded S-KABs.



6 Conclusion
We introduced GKABs, which extend KABs with Golog-
inspired high-level programs, and provided a parametric ex-
ecution semantics supporting an elegant treatment of incon-
sistency. We have shown that verification of rich temporal
properties over (inconsistency-aware) GKABs can be recast
as verification over standard KABs, by encoding the seman-
tics of inconsistency in terms of Golog programs and specific
inconsistency-management actions, and Golog programs into
standard KAB condition-action rules. An overview of our re-
ductions is depicted below. Our approach is very general, and
can be seamlessly extended to account for other mechanisms
for handling inconsistency, and more in general data cleaning.

S-GKABs S-KABs

B-GKABs C-GKABs E-GKABs
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