
Leveraging Relational Technology for
Data-Centric Dynamic Systems

Diego Calvanese, Marco Montali, Fabio Patrizi, Andrey Rivkin

Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
{calvanese,montali,patrizi,rivkin}@inf.unibz.it

Abstract. We base our work on a model called data-centric dynamic system
(DCDS), which can be seen as a framework for modeling and verification of
systems where both the process controlling the dynamics and the manipulation of
data are equally central. More specifically, a DCDS consists of a data layer and a
process layer, interacting as follows: the data layer stores all the data of interest
in a relational database, and the process layer modifies and evolves such data by
executing actions under the control of a process, and possibly injecting into the
system external data retrieved through service calls. In this work, we propose an
implementation of DCDSs in which all aspects concerning not only the data layer
but also the process layer, are realized by means of functionalities provided by a
relational DBMS. We present the architecture of our prototype system, describe
its functionality, and discuss the next steps we intend to take towards realizing
a full-fledged DCDS-based system that supports verification of rich temporal
properties.

1 Introduction

Modeling and analyzing the correctness of today’s complex business processes is a very
challenging task, that touches on the one side the management of static (data-related)
aspects, and on the other side dynamic (process-related) concerns. Traditional approaches
deal with these two pillars separately, and this divide et impera approach has led to the
development of successful theories and technologies, such as:

– databases, ontologies and information integration to account for static aspects;
– business process management, service-oriented computing, formal verification and

model checking for dynamic ones.
However, it has been extensively argued that this separation prevents business experts

and analysts from understanding the organization as a whole, and of taking correspond-
ing strategic decisions [13,18]. Therefore, more recently these two aspects have been
addressed together, and this has lead to a flourishing literature dealing with the formal
foundations [4,5] of data-aware (business) processes, as well as languages [15,12,16],
and integrated software platforms [14] for modeling and running them.

In this spectrum, an important dimension regards whether the process works over
a data component that is assumed to completely or only partially capture the domain
knowledge. In this work, we focus on complete information, and consider in particular
the framework of data-centric dynamic systems (DCDSs) [2], which tackles modeling
and verification of data-aware processes running over a full-fledged relational database



2 Calvanese, Montali, Patrizi, Rivkin

with integrity constraints. On top of this relational database, a process modifies and
evolves the data by executing (update) actions, possibly injecting external data retrieved
through service calls. As pointed out in [2] DCDSs are expressively equivalent to the
artifact-centric model. Furthermore, they can embed virtually all approaches proposed in
the literature for formally capturing data-aware dynamic systems [12,5], including the
well-known relational transducers [1].

In the last decade, verification of data-aware processes has been mainly studied
from the foundational point of view [12,5], with the main goal of understanding the
conditions that guarantee its decidability. Much less attention has been devoted to the
actual implementation of corresponding verification methods, with only few exceptions,
notably [10].

In this work, we discuss our ongoing effort towards the implementation of a system
for running and verifying DCDSs. In particular, our objective has been to fully implement
DCDSs by means of functionalities provided by a relational DBMS, in such a way that
all aspects concerning both the data layer and the process layer are directly realized.
Notably, the same implementation is used both for execution and verification, without
incurring in the typical dychotomy between the running system and its verification
model.

The paper is organized as follows. In Section 2, we provide an overview of DCDSs.
In Section 3, we discuss a realistic example of DCDS, in which we highlight all the
distinctive features of our model. In Section 4, we describe the architecture of our
prototype system and its functionality. We then discuss, in Section 5, the next steps
we intend to take towards realizing a full-fledged DCDS-based system that supports
verification of rich temporal properties. Conclusions follow.

2 Data-Centric Dynamic Systems

A DCDS is a tuple S = 〈D,P〉, where D is the data layer and P is the process layer.
The data layer defines the data model of S; it is a tuple D = 〈C,R, E , I0〉, where: C is
a countably infinite set of constants providing data values, R is a a relational schema
equipped with equality and full denial constraints E , and I0 is an initial database instance
over C that conforms to the schemaR and satisfies the constraints E . The process layer
defines the progression mechanism for the DCDS; it is a tuple P = 〈F ,A, ρ〉, where:
F is a finite set of functions representing calls to external services, A is a finite set of
(update) actions, and ρ is a process specification.

Intuitively, the process layer captures the dynamics of the domain of interest, while
the data layer captures its static properties. More specifically, the process layer describes
the actions (A) that can be executed to query and/or update the current state of the
system (whose structure conforms to the data layer), and how/when such actions can be
executed (process ρ). Some actions need to take values from the external environment;
these can be obtained by performing service calls (from F ). Every action execution must
guarantee that all the constraints in E are satisfied by the data layer, so as to prevent the
exeuction of actions leading to states that are inconsistent with respect to the constraints.

An action α ∈ A is an expression α(p1, . . . , pn) : {e1, . . . , em}where α(p1, . . . , pn)
is the action signature, with α the action name and p1, . . . , pn the action parameters,



Leveraging Relational Technology for Data-Centric Dynamic Systems 3

Apartment

PK ap_id

 plan

MeterReading

PK id

FK1,U1 ap_id
FK2,U1 day
 amount
 confirmed
 processed

Day

PK day

ProcessingRequest

PK r_id

FK1,U1 ap_id
U1 from
U1 to {TC, FC}

{TP, FP}

{No, Moderate, Strong}

Fig. 1. The electrical readings processing data component

and {e1, . . . , em} is a set of (simultaneous) effect specifications. Each ei has the form
qi  del Di, add Ai, where: qi is a query over R whose terms are variables, action
parameters, and constants from ADOM(I0)1; and Di and Ai are sets of facts from R,
whose terms include free variables of qi (which, in turn, include action parameters)
and terms from ADOM(I0). Each Ai may include Skolem terms obtained by applying a
function f ∈ F to any of the terms above. Skolem terms represent external service calls
and model the values returned by the external environment when the action is executed.

The process specification ρ, is a finite set of condition-action (CA) rules. Each CA
rule has the form Q 7→ α, where α ∈ A and Q is a query over R, constituting the
precondition of the CA rule, whose free variables are the parameters of α (other terms
can be quantified variables or constants in ADOM(I0)). W.l.o.g., we can assume that there
is a single CA rule for each action.

As regards the process execution, it essentially amounts to iterating over the following
steps. First, an action α is chosen by the user and the corresponding CA rule in ρ is
evaluated over the current database instance I (initially I0). This produces a (finite)
set of complete bindings for α’s parameters. Then, the user is asked to pick one of
such bindings, say ~p, so as to obtain a ground action α~p. The next step is the action
execution, which consists of applying all the action effects simultaneously. This requires
(i) evaluating all queries qi~p (with partial assignment to their variables) associated with
all effect specifications, (ii) binding the values occurring in the answers with the terms
in all del Di and all add Ai, and (iii) first deleting all the facts obtained in all Di’s, and
subsequently adding those obtained in all Ai’s, from and to the current database instance
I. In case some term t in some Ai involves a service call, the corresponding service
is called with the appropriate inputs, to obtain the value to be assigned to t. We stress
that all deletions take place at the same time, followed by all additions. Importantly,
the final update (deletions and additions) is actually performed only if the resulting
instance satisfies the constraints in E (otherwise a new iteration starts again on the
current database instance, but the current binding is no longer provided as an option to
the user). When the update is performed, a new instance I ′ is obtained, over which the
process can iterate again. For a detailed description of the execution semantics, we refer
the reader to [2].



4 Calvanese, Montali, Patrizi, Rivkin

3 The Electricity Consumption Process

In this work we rely on the example describing the processing of electricity consumption
readouts in a house composed of three-room apartments. Each lodger has to choose
an annual electricity saving plan for her apartment that is used as a threshold for the
processing of the consumption data collected and stored in a database on a daily basis.
These data can be processed given a selected period, and can later on be archived. This
eventually leads to their elimination from the database.

The schema and constraints are listed in Figure 1. The schema is constituted by the
following relations:

– Apartment(id, plan) states that there is an apartment with a number id and a
chosen saving plan plan. We reserve a special constant null to model the case
when the apartment is not having a saving plan assigned.

– Readings(id, ap id, day, amount, confirmed, processed) represents an
amount of electricity consumed by apartment apid on a certain day. Control
state flags confirmed and processed are ranging over sets of predefined values
{FC , TC} and {FP , TP }, respectively. The first flag is used by an agent deciding on
the correctness of the readings, while the second one is used by an agent checking
the readings compliance with a saving plan assigned.

– PRequest(p id, ap id, from, to) serves as a list of processing requests checking
whether confirmed readings of an apartment with number apid conform to its saving
plan within the selected [from, to] period in days.

– Day(day) is an auxiliary unary relation modeling a data type storing finite range
of natural numbers from 1 to 365. With abuse of notation we define a ≤ relation
such that for any two days d1 and d2: d1 ≤ d2 = {d ∈ Day(d) | d1 ≤N d ≤N d2},
where ≤N is the built-in comparison over N.
The schema on Figure 1 is equipped with the following constraints:

– Every Apartment is having one of the three predefined saving plans assigned:

∀id, p.Apartment(id, p)→ (p = No ∨ p = Moderate ∨ p = Strong)

Similarly, for control state flags of Readings we have:

∀id, ap, d, a, c, p.Readings(id, ap, d, a, c, p)→ c = FC ∨ c = TC
∀id, ap, d, a, c, p.Readings(id, ap, d, a, c, p)→ p = FP ∨ p = TP

– The first columns of Apartment , Readings and PRequest are the (primary) keys
of corresponding relations:

∀id, p, p′.Apartment(id, p) ∧Apartment(id, p′)→ p = p′

∀id, ap, ap′, d, d′, a, a′, c, c′, p, p′.Readings(id, ap, d, a, c, p)∧
Readings(id, ap′, d′, a′, c′, p′)→ ap = ap′ ∧ d = d′ ∧ a = a′ ∧ c = c′ ∧ p = p′

∀id, ap, ap′, f, f ′, t, t′.PRequest(id, ap, f, t) ∧ PRequest(id, ap′, f ′, t′)
→ ap = ap′ ∧ f = f ′ ∧ t = t′

1 The active domain ADOM(I) of a DB instance I is the subset of elements of C occurring in I.



Leveraging Relational Technology for Data-Centric Dynamic Systems 5

���������	
�

���
��	

��	����

�����������

�
	�
	�������
����
	��	��

�����	����� ��	��	��	��	��

����	�������

�
	�	��
����
	��	��

Fig. 2. BPMN diagram sketching how a house flows through the process

By analogy, one can formulate unique index constraints for Readings and PRequest :

∀ap, d, id, id′, a, a′, c, c′, p, p′.Readings(id, ap, d, a, c, p)∧
Readings(id′, ap, d, a′, c′, p′)→ id = id′ ∧ a = a′ ∧ c = c′ ∧ p = p′

∀ap, f, t, id, id′.PRequest(id, ap, f, t) ∧ PRequest(id′, ap, f, t)→ id = id′

– The foreign key constraints are formalized as:

∀id, ap, d, a, c, p.Readings(id, ap, d, a, c, p)→ ∃pl.Apartment(id, pl)
∀id, ap, f, t.PRequest(id, ap, f, t)→ ∃pl.Apartment(id, pl)

– The domain constraint demands that, if a chosen plan is either Moderate or Strong,
then the relevant electricity consumption threshold should be respected:

∀id, ap, d, a.Readings(id, ap, d, a, TC, TP) ∧Apartment(ap, Moderate)→ a ≤ 11
∀id, ap, d, a.Readings(id, ap, d, a, TC, TP) ∧Apartment(ap, Strong)→ a ≤ 8

Finally, we assume that at the beginning of the year the list of all the apartments
without defined plans (i.e., null) is known.

Figure 2 shows a BPMN diagram sketching the electrical readings processing mech-
anism, where each task corresponds to a certain DCDS action manipulating the data
layer of Figure 2. Given our initial assumption on the apartment plans, one should first
define a plan type by calling an action ASSIGN-PLAN for each Apartment with null

in the corresponding attribute. The plan type is assigned to the apartment by calling the
newPlan service.

Apartment(id, null) 7→ ASSIGN-PLAN(id)

ASSIGN-PLAN(id) :{
true del{Apartment(id, null)} add{Apartment(id,newPlan(id))}

}
One electrical reading from the apartment is registered in the system for a given day

by calling the readout service. The correctness of the reading is obtained from service



6 Calvanese, Montali, Patrizi, Rivkin

confirm , which models a user form asking an external agent to provide a confirmation
degree value. The reading entry identifier is generated using the newID service.

¬Readings(id, ap, d, a, c, p)∧
Day(d) ∧Apartment(ap, pl) ∧ pl 6= null 7→ LOG-READING(ap, d)

LOG-READING(ap, d) :{
true add{Reading(newId(), ap, d, readout(ap, d), confirm(), FP)}

}
At any stage of the system execution, all the readings which have not been confirmed

by the agent can be removed from the system using the CLEANUP action.

Apartment(id, p) ∧ p 6= null 7→ CLEANUP()

CLEANUP() :{
∀id, c∃ap, d, p.Reading(id, ap, d, a, c, p) del{Reading(id, ap, d, a, c, p)}

}
Each apartment’s readings can be processed so that to check their compliance with

a saving plan assigned. However, in order to do so the processing request has to be
created. An external agent responsible for the creation of the request is asked to specify
a processing period using two service calls: getFromDate and getToDate .

Reading(id, ap, d, a, TC, p) 7→ CREATE-REQUEST(ap)

CREATE-REQUEST(ap) :{
true add{PRequest(newID(), ap, getFromDate(ap), getToDate(ap))}

}
As soon as the processing request has been created, the readings during the spec-

ified period can be processed. Note that every processed entry should conform to the
consumption threshold imposed by the chosen plan.

PReqest(id, ap, from, to)∧
Day(from) ∧Day(to) ∧Apartments(ap, p) 7→ PROCESS-DATA(id, ap, from, to)

PROCESS-DATA(id, ap, from, to) :∀d∃r id, a.Reading(r id, ap, d, a, TC, FP) ∧ d ≥ from ∧ d ≤ to 
del{PReqest(id, ap, from, to), Reading(r id, ap, d, a, TC, FP}
add{Reading(r id, ap, d, a, TC, TP}


One can try to archive all the processed readings which are not going to be exploited

anymore in the system by calling the ARCHIVE action.

Apartment(ap, p) ∧Day(from) ∧Day(to) ∧ p 6= null 7→ ARCHIVE(ap, from, to)

ARCHIVE(ap, from, to) :{
∀id, d∃a.Reading(id, ap, d, a, TC, TP) ∧ d ≥ from ∧ d ≤ to 

del{Reading(id, ap, d, a, TC, TP)}

}
In the next section, we describe an actual implementation of the system based on

RDBMS technology.



Leveraging Relational Technology for Data-Centric Dynamic Systems 7

DCDS Engine

Persistent 
Storage

Designer DB Engine Flow Engine

Service 
Manager ..

.

ServicesDCDS Specification

Data Spec

Workflow Spec

RDBMS

DCDS State

Fig. 3. Architecture of the DCDS implementation

4 Specifying and Implementing DCDSs in a RDBMS

A DCDS specification is maintained by the RDBMS, which interacts with the Flow
Engine implemented in Java. The Flow Engine executes calls to the RDBMS, and handles
the interaction with external services through a Service Manager.

Specifically, the RDBMSs maintains: (i) a data layer specification consisting of re-
lational tables, equipped with functional dependencies and additional domain-dependent
constraints, and (ii) a process layer specification, consisting of action metadata in the
form of a relational table containing the action names together with their parameters.
Moreover, the DBMS stores sets of prepared statements and of (parameterized) stored
procedures. Each prepared statement is an SQL query that corresponds to (i) a query in
the precondition of a CA rule, or (ii) a query in an action effect. Each stored procedure
is associated to an action, and takes care of deleting and adding the facts in all its effects.
The parameters of the procedure represent those action parameters that are used in the
delete and add lists of the action effects.

At each moment in time, the DBMS stores the DCDS snapshot, which is subject
to the data layer specification. The snapshot is initialized to the initial state of the
DCDS, and then manipulated by the Flow Engine. We illustrate now the operation of
the Flow Engine, which initializes the DCDS execution by querying the DBMS about
the available actions, and then repeatedly calls an action by coordinating the activation
of prepared statements and stored procedures according to the action execution cycle,
while interacting with external services to acquire the service call results. Specifically,
with reference to Figure 4, an action execution cycle is carried out as follows: (1) The
cycle starts with the user choosing one of the available actions presented by the Flow
Engine. (2) The Flow Engine evaluates the CA-rule associated to the chosen action α
by calling the corresponding prepared statement over the current DCDS snapshot, and
stores the returned possible parameter assignments for the action in a temporary table T .
All parameters assignments in T are initially unmarked, meaning that they are available
for the user to choose. (3) If unmarked parameters are present in T , the user is asked to



8 Calvanese, Montali, Patrizi, Rivkin

choose one of those, which is marked as unavailable, and the Flow Engine proceeds with
evaluating α instantiated with the chosen parameters. (4) To do so, first the queries in all
the effects of α are executed, which provides values to instantiate both the arguments of
the service calls (stored in service calls tables, one for each service), and the facts to
delete and add from the current snapshot. (5) The service calls are executed by calling
the service manager, and the returned results provide the missing instantiations for the
facts to add. (6) A transaction is started to perform the delete and add operations. (7) If
the DCDS constraints are satisfied, the transaction is committed, and the next iteration
of the action execution cycle is started. Otherwise, if the constraints are not satisfied, the
transaction is aborted so that the DCDS snapshot stays unmodified, and the user is asked
to choose a different parameter from the ones still available in T . (8) If no unmarked
parameters are available, the user is asked to choose another action.

Figure 5 shows a simple run of the DCDS representing electrical readings handling
process. The run starts with a table containing data of two apartments. The user chooses
the only executable action (ASSIGN-PLAN), the Flow Engine evaluates its CA-rule query
and asks the user to select one of the apartment id’s. The latter one chooses id = 2 as
the ASSIGN-PLAN call parameter and executes the action. Due to the fact that the query
in ASSIGN-PLAN is trivial, the Flow Engine only needs to generate a service call table
consisting of a single entry newPlan(2) instantiated with Moderate - a value that is
returned after newPlan(2) has been executed by the service manager. The delete and
add lists of the considered action are performing a simple update over the Apartment
table, yielding with a new database instance where the saving plan for apartment 2
has been updated to Moderate. By analogy with the ASSIGN-PLAN execution step,
one can thoroughly follow up all the executions up to CREATE-REQUEST (inclusive)
as it is shown in Figure 5. In the case of the PROCESS-DATA action, as soon as the
corresponding CA-rule query has been evaluated and the action parameters have been
instantiated, the Flow Engine proceeds with a non-trivial effect query which result T
should consist of all the readings with a day lying in the interval between from and to.
The derived result is used in the delete and add operations which hold true (i.e., the
processed value updates to TP) if and only if the amount in every tuple of T does not
exceed the threshold defined in the DCDS constraints.

Choose 

an action α 

Evaluate 

α’s CA-rule 

Select and mark 

parameters for α 
α‘s effect

query 
evaluations

Instantiate

 α’s service calls  Service 
manager

Service calls 
tables

Perform

 α : DELETE

α : ADD 
Begin

Transaction
End

Transaction

Constraints
satisfied?

YES

∃ unmarked

parameters?

NOC
o

m
m

it

Rollback

YES

NO

Fig. 4. The action execution cycle



Leveraging Relational Technology for Data-Centric Dynamic Systems 9

id plan

1 NULL

2 NULL

id plan

1 NULL

2 Moderate

q newPlan(2) 
=Moderate

id plan

1 NULL

2 Moderate

id ap_id day amount conf. proc.

1 2 1 9 TC FP

2 2 2 11 TC FP

LOG-READING(2, 1)

q newId()=1
q readout(2,1)=9
q confirm()=TC

id plan

1 NULL

2 Moderate

CREATE-REQUEST(2)
q newId()=1
q getFromDatet(2)=1
q getToDate(2)=2

p_id ap_id from to

1 2 1 2

LOG-READING(2, 2)

q newId()=2
q readout(2,1)=11
q confirm()=TC

1
2

3

4

id plan

1 NULL

2 Moderate 5

day

…ARCHIVE(2, 1, 2)

ASSIGN-PLAN(2)

id ap_id day amount conf. proc.

1 2 1 9 TC FP

2 2 2 11 TC FP

id ap_id day amount conf. proc.

1 2 1 9 TC TP

2 2 2 11 TC TP

PROCESS-DATA(1, 2, 1, 2)

id plan

1 NULL

2 Moderate
6

Fig. 5. A simple run of the DCDS example in Section 2

5 Towards a Verification System for DCDSs

Our ultimate goal is to implement a model checker for DCDSs that allows us to verify a
DCDS against some property of interest, leveraging as much as possible the benefits and
maturity of the relational technology. The formal verification setting, in particular the
logic, has been devised in [2], to which we refer the reader for additional details. Here,
we summarize the central notions of the framework and briefly discuss how we intend to
proceed to move from an abstract setting to an actual implemented system.

The logic used to specify the properties of interest is a first-order extension of the
µ-calculus [11], with an active-domain semantics and guarded quantification. The logic
is called µLp and its formulas Φ are inductively defined as follows:

Φ ::= ϕ | ¬Φ | Φ1 ∧ Φ2 | ∃x.L(x) ∧ Φ | L(~x) ∧ 〈−〉Φ | L(~x) ∧ [−]Φ | Z | µZ.Φ,

where:
– ϕ is a (possibly open) FO formula over the relational vocabulary of the DCDS;
– L(x) holds true at a DCDS state if x occurs in the corresponding database;
– 〈−〉 and [−] are two modal operators, respectively standing for “there exists a succes-

sor such that” and “all successors are such that”;
– Z and µ are the standard 0-ary second-order variable and the least-fixpoint operator

of µ-calculus.
We do not get into further details of the logic but provide some intuitive examples below.
Notice that quantification is guarded by the predicate L, which essentially implies that
only the values that persist in the active domain along transitions are of interest.

Example 1. We consider two properties of interest in the electricity consumption process
of Section 3. A property of interest is that whenever a processing request is created for a



10 Calvanese, Montali, Patrizi, Rivkin

given selected period in days, it will be eventually used by an agent in order to check
and update the logged readings within that period. This can be expressed as follows:

νX.
(
∀d1, d2, id, ap.PRequest(id, ap, d1, d2)→
(µY.(∀id′, d, a.Reading(id′, ap, d, a, TC, TP) ∧ d1 ≤ d ∧ d ≤ d2)

∨ [−](PRequest(id, ap, d1, d2) ∧ Y )
)
∧ [−]X

Another property of interest is

νX.¬
(
∃id, ap, d, a, c, p.Reading(id, ap, d, a, c, p) ∧Apartment(ap, null)

)
∧ [−]X

It is a safety property ensuring that it is not possible to register readings for an apartment
that is not associated to any saving plan.

The semantics of µLp formulas is defined in terms of a transition system (TS) ΥS
capturing the execution semantics of a DCDS [2]. Intuitively, such a TS models all the
executions of the process layer on the data layer, starting from the initial state. The
states of ΥS represent the possible snapshots of the DCDS, i.e., database instances, while
the transitions capture the execution of actions. Since not needed to evaluate the logic,
transitions carry no information about the corresponding action. Notice that, in general,
ΥS is infinite-state. This is a consequence of the fact that a DCDS can have infinitely
many snapshots, as interpreted over infinite domains.

The state-infiniteness of ΥS precludes the possibility of resorting to (adaptations of)
standard model checking techniques. In fact, it can be shown that, in the general case,
verification of µLp formulas is undecidable [2]. Nonetheless, a notable class of DCDSs
for which verification is decidable has been isolated, namely that of state-bounded
systems [2,3]. A DCDS is said to be state-bounded if all of its snapshots contain only a
bounded number of distinct individuals. Notice that even under this assumption, a DCDS
can be infinite-state, as the snapshots contain values taken from an infinite interpretation
domain. Interestingly, for such systems one can derive a faithful abstraction in the form
of a finite-state TS that can thus be used to perform the verification. More precisely, for
every µLp formula Φ, the formula is satisfied by the original system iff it is satisfied by
its finite abstraction.

There exists an easy way to build the abstraction, which essentially amounts to
apply the procedure sketched above for ΥS , but using a finite interpretation domain
of appropriate cardinality [2]. Interestingly, once it is known that the DCDS is state-
bounded, this cardinality needs not to be given as input, but can be implicitly discovered
by the RCYCL algorithm in [2]. The algorithm is based on two observations:
1. When a service is issued, it is not really important to consider the returned value,

but only how the result relates to the other returned values, and the values currently
present in the database.

2. The µLp logic is not able to distinguish whether the result returned by a service call
is globally fresh (i.e., it has never been seen in the past), or only locally fresh (i.e., it
is different from all values currently present in the database).

The algorithm exploits observation (1) by considering, for each service call to be issued,
only a bounded number of representative results. It then exploits observation (2) by
recycling, along a run, previously encountered values that are locally fresh, instead



Leveraging Relational Technology for Data-Centric Dynamic Systems 11

of considering globally fresh ones. The transition system ΛS so obtained enjoys the
following two key properties:

– ΛS is a faithful abstraction of ΥS , for all µLp properties;
– when S is state-bounded, ΛS is finite-state.

This algorithm is apt to be directly implemented on top of the architecture discussed in
Section 4, by just changing the behavior of the service manager (cf. Figure 3) according
to the description above. In particular, recycling can be efficiently realized by employing
an ordered domain for freshly introduced values, taking the minimum value that is locally
fresh whenever a fresh service call result must be considered.

By considering that ΛS is defined on a finite interpretation domain, instead of
evaluating the original formula Φ, one can equivalently use a “propositionalized” version
of it, simply obtained by quantifier elimination. The resulting problem ends up being a
standard model checking problem for which existing techniques and tools can be applied.

Our next step will consist in extending our prototype system with the capability to
build the finite abstraction ΛS , maintaining it in the DBMS, and exploiting state-of-the-
art model checking techniques to perform verification.

6 Conclusion and Future Work

In this paper we have presented an implementation of Data-Centric Dynamic Systems
based on the use of a Relational Database Management System, exploited to handle
all the aspects of a DCDS, including specification and execution. We have shown the
implementation at work on a running example and have provided some details about our
next steps. In particular, we have discussed how we intend to extend our system with
verification functionalities. In this respect, we add that while the verification framework
can deal with very general specifications expressible in a FO variant of the µ-calculus,
we plan to first deal with more specific classes of formulas, obtained as FO variants of
CTL and LTL. On the one hand, this calls for a careful analysis on how to compactly
represent, inside the RDBMS, the relational state (or set of states) needed by the model
checking algorithm at each step. On the other hand, a plethora of model checking tools
are available for the verification of propositional CTL/LTL, such as NuXMV [9]. We
plan to explore an alternative way of model checking DCDSs, by plugging them in
on top of the architecture presented in this paper. In this respect, our ultimate goal
is to integrate, with a minimal effort, state-of-the-art techniques developed in formal
verification towards the model checking of DCDSs.

From the modeling point of view, the effort described in this paper constitutes the
specification and execution core towards more sophisticated approaches dealing on
the one hand with distributed control [17,6], and on the other hand with incomplete
information and inconsistency management [7,8].
Acknowledgments. This research has been partially supported by: the EU IP project
Optique (Scalable End-user Access to Big Data), grant agreement n. FP7-318338; the
UNIBZ internal project KENDO (Knowledge-driven ENterprise Distributed cOmput-
ing); and Ripartizione Diritto allo Studio, Università e Ricerca Scientifica of Provincia
Autonoma di Bolzano–Alto Adige, under project VeriSynCoPateD (Verification and
Synthesis from Components of Processes that Manipulate Data).



12 Calvanese, Montali, Patrizi, Rivkin

References

1. Abiteboul, S., Vianu, V., Fordham, B., Yesha, Y.: Relational transducers for electronic com-
merce. J. of Computer and System Sciences 61(2), 236–269 (2000)

2. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of
relational data-centric dynamic systems with external services. In: Proc. of the 32nd ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2013) (2013)

3. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact systems. J. of
Artificial Intelligence Research 51, 333–376 (2014)

4. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. In: Proc. of the 5th Int. Conference on Business Process
Management (BPM 2007) (2007)

5. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process analysis: A
database theory perspective. In: Proc. of the 32nd ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS 2013) (2013)

6. Calvanese, D., Delzanno, G., Montali, M.: Verification of relational multiagent systems with
data types. In: Proc. of the 29th AAAI Conf. on Artificial Intelligence (AAAI 2015). AAAI
Press (2015)

7. Calvanese, D., Kharlamov, E., Montali, M., Santoso, A., Zheleznyakov, D.: Verification of
inconsistency-aware knowledge and action bases. In: Proc. of the 23rd Int. Joint Conference
on Artificial Intelligence (IJCAI 2013). AAAI Press (2013)

8. Calvanese, D., Montali, M., Santoso, A.: Verification of generalized inconsistency-aware
knowledge and action bases. In: Proc. of the 24th Int. Joint Conference on Artificial Intelli-
gence (IJCAI 2015). AAAI Press (2015)

9. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S.,
Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Proc. of the 26th Int. Conf.
on Computer Aided Verification (CAV 2014). LNCS, vol. 8559, pp. 334–342. Springer (2014)

10. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web applications.
J. Comput. Syst. Sci. 73(3), 442–474 (2007)

11. Emerson, E.A.: Model checking and the Mu-calculus. In: Immerman, N., Kolaitis, P. (eds.)
DIMACS Symposium on Descriptive Complexity and Finite Model. American Mathematical
Society Press (1997)

12. Hull, R.: Artifact-centric business process models: Brief survey of research results and
challenges. In: Proc. of the 7th Int. Conf. on Ontologies, DataBases, and Applications of
Semantics (ODBASE 2008) (2008)

13. Karel, R., Richardson, C., Moore, C.: Warning: Don’t assume your business processes use
master data – Synchronize your business process and master data strategies. Report, Forrester
(Sep 2009)

14. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fundamental require-
ments and their support in existing approaches. Int. J. of Information System Modeling and
Design 2(2), 19–46 (2011)

15. Martin, D.L., Burstein, M.H., McDermott, D.V., McIlraith, S.A., Paolucci, M., Sycara, K.P.,
McGuinness, D.L., Sirin, E., Srinivasan, N.: Bringing semantics to web services with OWL-S.
In: Proc. of the 16th Int. World Wide Web Conf. (WWW 2007) (2007)

16. Meyer, A., Smirnov, S., Weske, M.: Data in business processes. Tech. Rep. 50, Hasso-Plattner-
Institut for IT Systems Engineering, Universität Potsdam (2011)

17. Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware commitment-based
multiagent system. In: Proc. of the Int. Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS ’14). pp. 157–164. IFAAMAS (2014)

18. Reichert, M.: Process and data: Two sides of the same coin? In: Proc. of OTM (2012)


	Leveraging Relational Technology for Data-Centric Dynamic Systems
	Diego Calvanese, Marco Montali, Fabio Patrizi, Andrey Rivkin

