
Modeling and In-Database Management of

Relational, Data-Aware Processes

Diego Calvanese1, Marco Montali1, Fabio Patrizi2, and Andrey Rivkin1(B)

1 Free University of Bozen-Bolzano, Bolzano, Italy
{calvanese,montali,rivkin}@inf.unibz.it

2 Sapienza Università di Roma, Roma, Italy
patrizi@dis.uniroma1.it

Abstract. It is known that the engineering of information systems usu-
ally requires a huge effort in integrating master data and business pro-
cesses. Existing approaches, both from academia and the industry, typ-
ically come with ad-hoc abstractions to represent and interact with the
data component. This has two disadvantages: (i) an existing database
(DB) cannot be effortlessly enriched with dynamics; (ii) such approaches
generally do not allow for integrated modelling, verification, and enact-
ment. We attack these two challenges by proposing a declarative app-
roach, fully grounded in SQL, that supports the agile modelling of rela-
tional data-aware processes directly on top of relational DBs. We show
how this approach can be automatically translated into a concrete pro-
cedural SQL dialect, executable directly inside any relational DB engine.
The translation exploits an in-database representation of process states
that, in turn, is used to handle, at once, process enactment with or with-
out logging of the executed instances, as well as process verification. The
approach has been implemented in a working prototype.

Keywords: Data-aware processes · Process engines ·
Relational databases

1 Introduction

During the last two decades, increasing attention has been given to the challeng-
ing problem of resolving the dichotomy between business process and master data
management [3,10,18]. Devising integrated models and corresponding enactment
platforms for processes and data is now acknowledged as a key milestone, which
cannot be reduced to implementation-level solutions at the level of enterprise IT
infrastructures [8].

This triggered a flourishing line of research on concrete languages for data-
aware processes, and on the development of tools to model and enact such
processes. The main unifying theme for such approaches is a shift from stan-
dard activity-centric business process meta-models, to a paradigm that focuses

c© Springer Nature Switzerland AG 2019
P. Giorgini and B. Weber (Eds.): CAiSE 2019, LNCS 11483, pp. 328–345, 2019.
https://doi.org/10.1007/978-3-030-21290-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21290-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-21290-2_21


Modeling and In-Database Management of Relational, Data-Aware Processes 329

first on the elicitation of business entities (and data), and then on their behav-
ioral aspects. Notable approaches in this line are artifact-centric [10], object-
centric [12] and data-centric models [19]. In parallel to these new modeling
paradigms, also BPMS based on standard, activity-centric approaches a là
BPMN, have increased the tool support of data-related aspects. Many modern
BPM platforms provide (typically proprietary) data models, ad-hoc user inter-
faces to indicate how process tasks induce data updates, and query languages to
express decisions based on data. While this approach has the main advantage of
hiding the complexity of the underlying relational database (DB) from the mod-
eler, it comes with two critical shortcomings. First, it makes it difficult to concep-
tually understand the overall process in terms of general, tool-agnostic principles,
and to redeploy the same process in a different BPMS. This is witnessed by a
number of ongoing proposals that explicitly bring forward complex mappings for
model-to-model transformation (see, e.g., [11,23]). Second, this approach cannot
be readily applied in the recurrent case where the process needs to be integrated
with existing DB tables. In fact, updating an underlying DB through a more
abstract data model is challenging and relates to the long-standing, well-known
view update problem in the database literature [9].

We approach these issues by addressing three main research questions in a
setting in which the database can be directly accessed and updated by running
processes :

RQ1 Is it possible to ground data-centric approaches based on condition-action
rules in the SQL standard, also accounting for the interaction with external
systems?

RQ2 Is it possible to develop a corresponding enactment engine running directly
on top of legacy DBMSs, and providing logging functionalities?

RQ3 Is it possible to implement the foundational techniques for the (abstract)
state-space construction of data-centric approaches based on condition-action
rules?

To answer RQ1, we propose a declarative language, called dapSL, that intro-
duces minimal changes to the SQL standard, allowing one to: (i) encapsulate
process tasks into SQL-based, parameterized actions that update the DB, pos-
sibly injecting values obtained from external inputs (e.g., ERP systems, user
forms, web services, external applications), and (ii) define rules determining
which actions are executable and with which parameter bindings, based on the
answers obtained by querying the DB. Notably, the last feature is intrinsic to
many artifact- and data-centric approaches [1,2,6,13] since the data manipual-
tion in them is handled via rules. In practice, dapSL can be used either in a
bottom-up manner, as a scripting language that enriches DBs with processes, or
in a top-down manner, as a way to complement standard, control flow-oriented
process modelling languages with an unambiguous, runnable specification of con-
ditions and tasks. From the formal point of view, dapSL represents the concrete
counterpart of one of the most sophisticated formal models for data-aware pro-
cesses [1], which comes with a series of (theoretical) results on the conditions



330 D. Calvanese et al.

Fig. 1. The travel management process and a corresponding data model

under which verification can be carried out. In fact, a wide range of founda-
tional results tackling the formalization of data-ware processes, and the identifi-
cation of boundaries for their verifiability has been obtained [3], but the result-
ing approaches never resulted in actual modeling and enactment tools. In this
sense, dapSL constitutes the first attempt to bridge the gap between such formal
approaches and concrete modeling and execution.

To address RQ2, we propose a framework, called daphne, where data-aware
processes are directly specified on top of standard relational DBs. To support
such specifications, an automatic translation of dapSL into a concrete procedural
SQL dialect is presented, in turn providing direct in-database process execution
support. The framework has been implemented within the daphne engine, whose
back-end consists of a relational storage with corresponding stored procedures to
manage the action-induced updates, and whose JAVA front-end provides APIs
and functionalities to inspect the current state of the process and its underlying
data, as well as to interact with different concrete systems for acquiring external
data.

Thanks to a sophisticated encoding of the dapSL process state and related
data into SQL, daphne seamlessly accounts for three key usage modalities: enact-
ment with and without logging of historical data, and state space construction
for formal analysis. The third modality is fully addressed within the scope of
RQ3. Relying on daphne, we propose a solution that constructs the state space
invoking the same mechanism used for enactment. This ensures that the analysis
is carried out on the exact same model that is enacted, differently from usual
approaches in formal verification, where an abstract version of a concrete model
is constructed in ad-hoc way for verification purposes.

daphne is available at https://bit.ly/2KIbMvN.

2 Data-Aware Process Specification Language

We approach RQ1 by introducing a declarative, SQL-based data-aware process
specification language (dapSL) to describe processes operating over relational
data. dapSL can be seen as a SQL-based front-end language for specifying data-
centric dynamic systems (DCDSs) [1]. A dapSL specification consists of two
main components: (i) a data layer, representing the structural aspects of the
domain, and storing corresponding extensional data; (ii) a control layer, which
queries and evolves the data of the data layer.

https://bit.ly/2KIbMvN


Modeling and In-Database Management of Relational, Data-Aware Processes 331

Example 1. As a running example, we consider a travel reimbursement pro-
cess inspired by [7], whose control flow is depicted in Fig. 1. The process starts
(StartWF) by checking pending employee travel requests in the DB. Then, after
selecting a request, the system examines it (ReviewRequest), and decides whether
to approve it or not. If approved, the process continues by calculating the max-
imum refundable amount, and the employee can go on her business trip. On
arrival, she is asked to compile and submit a form with all the business trip
expenses (FillReimb). The system analyzes the submitted form (ReviewReimb)
and, if the estimated maximum has not been exceeded, approves the refunding.
Otherwise the reimbursement is rejected. ⊳

Data Layer. The data layer is a standard relational DB, consisting of an inten-
sional (schema) part, and an extensional (instance) part. The intensional part is
a DB schema, that is, a pair 〈R, E〉, where R is a finite set of relation schemas,
and E is a finite set of integrity constraints over R. To capture a DB schema,
dapSL employs the standard SQL data definition language (DDL). For presen-
tation reasons, in the remainder of the papers we refer to the components of
a DB schema in an abstract way, following standard definitions. dapSL tackles
three fundamental types of integrity constraints: a primary key for a relation R

is denoted pk(R); a foreign key from attributes B of relation S to attributes A of
R is denoted S [B] → R[A]; a domain constraint enumerates the values assigned
to a relation attribute. Note that such constraints are expressed in dapSL by
using the standard SQL DDL. The extensional part of the data layer is a DB
instance (DB for short). dapSL delegates the representation of this part to the
relational storage of choice. We always assume that a DB is consistent, that is,
satisfies all constraints in E . While the intensional part is fixed in a dapSLmodel,
the extensional part starts from an initial DB that is then iteratively updated
through the control layer, as dictated below.

Example 2. The dapSL DB schema for the process informally described in
Example 1 is shown in Fig. 1. We recall of the relation schemas: (i) requests under
process are stored in the relation CurrReq, whose components are the request
UID, which is the primary key, the employee requesting a reimbursement, the trip
destination, and the status of the request, which ranges over a set of predefined
values (captured with a domain constraint); (ii) maximum allowed trip budgets
are stored in TrvlMaxAmnt , whose components are the id (the primary key), the
request reference number (a foreign key), and the maximum amount assigned for
the trip; (iii) TrvlCost stores the total amount spent, with the same attributes
as in TrvlMaxAmnt . ⊳

Control Layer. The control layer defines how the data layer can be evolved
through the execution of actions (concretely accounting for the different process
tasks). Technically, the control layer is a triple 〈F , A, ρ〉, where F is a finite set
of external services, A is a finite set of atomic tasks (or actions), and ρ is a
process specification.



332 D. Calvanese et al.

Each service is defined as a function signature that indicates how externally
generated data can be brought into the process, abstractly accounting for a
variety of concrete data injection mechanisms, e.g., user forms, web services,
external ERP systems, internal generation of primary keys etc. Each service
comes with a signature indicating the service name, its formal input parameters
and their types, as well as the output type.

Actions are the basic building blocks of the control layer, and represent trans-
actional operations over the data layer. Each action comes with a distinguished
name and a set of formal parameters, and consists of a set of parameterized SQL
statements that inspect and update the current state of the dapSL model (i.e.,
the current DB), using standard insert-delete SQL operations. operations are
parameterized so as to allow referring with the statements to the action param-
eters, as well as to the results obtained by invoking a service call. Both kind
of parameters are substituted with actual values when the action is concretely
executed. Hence, whenever a SQL statement allows for using a constant value,
dapSL allows for using either a constant, an action parameter, or a placeholder
representing the invocation of a service call. To distinguish service invocations
from action parameters, dapSL prefixes the service call name with @.

Formally, a dapSL action is an expression α(p1, . . . , pn) : {e1; . . . ; em}, where:
(i) α(p1, . . . , pn) is the action signature, constituted by action name α and the
set {p1, . . . , pn} of action formal parameters; (ii) {e1, . . . , em} is a set of param-
eterized effect specifications, which are SQL insertions and deletions performed
on the current DB. We assume that no two actions in A share the same name,
and then use the action name to refer to its corresponding specification.

A parameterized SQL insertion has the form INSERT INTO R(A1, . . . , Ak)
VALUES (t1, . . . , tk), where R ∈ R, and each tj is either a value, an action formal
parameter or a service call invocation (which syntactically corresponds to a scalar
function call in SQL). Given a service call @F with parameters p, an invocation
for F is of the form @F(x1, . . . , xp), where each xj is either a value or an action
formal parameter. VALUES can be substituted by a complex SQL inner selection
query, which in turn supports bulk insertions into R by using all answers obtained
by evaluating the inner query.

A parameterized SQL deletion has the form DELETE FROM R WHERE

〈condition〉, where R ∈ R, and the WHERE clause may internally refer to the
action formal parameters. This specification captures the simultaneous deletion
of all tuples returned by the evaluation of condition on the current DB. Following
classical conceptual modeling approaches to domain changes [17], we allow for
overlapping deletions and insertions in such a way that first all deletions, and
then all insertions are applied. This allows to unambiguously capture update
effects (by deleting certain tuples, and inserting back variants of those tuples).
Introducing explicit SQL update statements would create ambiguities on how to
prioritize updates w.r.t. potentially overlapping deletions and insertions.

The executability of an action, including how its formal parameters may be
bound to corresponding values, is dictated by the process specification ρ – a set of
condition-action (CA) rules, again grounded in SQL, and used to declaratively



Modeling and In-Database Management of Relational, Data-Aware Processes 333

capture the control-flow of the dapSL model. For each action α in A with k

parameters, ρ contains a single CA rule determining the executability of α. The
CA rule is an expression of the form:

SELECT A1, . . . , As FROM R1 , . . . ,Rm WHERE 〈condition〉 ENABLES α(An1
, . . . , Ank

),

where each Ai is an attribute, each Ri ∈ R, α ∈ A, and {An1
, . . . , Ank

} ⊆
{A1, . . . , As}. Here, the SQL SELECT query represents the rule condition, and the
results of the query provide alternative actual parameters that instantiate the
formal parameters of α. This grounding mechanism is applied on a per-answer
basis, that is, to execute α one has to choose how to instantiate the formal
parameters of α with one of the query answers returned by the SELECT query.
Multiple answers consequently provide alternative instantiation choices. Notice
that requiring each action to have only one CA rule is w.l.o.g, as multiple CA
rules for the same action can be compacted into a unique rule whose condition
is the UNION of the condition queries in the original rules.

Example 3. We focus on three tasks of the process in Example 1, showing their
encoding in dapSL. StartWF creates a new travel reimbursement request by
picking a pending requests from the current DB. We represent this in dapSL
as an action with three formal parameters, denoting a pending request id, its
responsible employee, and her intended destination:

SELECT id, emp, dest FROM Pending ENABLES StartWF(id, emp, dest);
StartWF(id, emp, dest):{DELETE FROM Pending WHERE Pending .id = id;

INSERT INTO CurrReq(id, emp, dest, status) VALUES(@genpk(), emp, dest, submitd)}

Here, a new request is generated by removing from Pending the entry that
matches the given id, then inserting a new tuple into CurrReq with the emp

and dest values of the deleted tuple, and the status set to ‘submitd’. To get a
unique id for such a tuple, we invoke the nullary service call @genpk, returning
a fresh primary key value. ReviewRequest examines an employee trip request
and, if accepted, assigns its maximum reimbursable amount. The action can be
executed only if a request in CurrReq actually exists:

SELECT id, emp, dest FROM CurrReq WHERE CurrReq .status = ‘submitd’

ENABLES RvwRequest(id, emp, dest);
RvwRequest(id, emp, dest):{DELETE FROM CurrReq WHERE CurrReq .id = id;

INSERT INTO CurrReq(id, emp, dest, status)
VALUES(id, emp, dest, @status(emp, dest));

INSERT INTO TrvlMaxAmnt(tid, tfid, tmaxAmnt)
VALUES(@genpk(), id, @maxAmnt(emp, dest))}

The request status of CurrReq is updated by calling service @status, that takes
as input an employee name and a trip destination, and returns a new status
value. Also, a new tuple containing the maximum reimbursable amount is added
to TrvlMaxAmnt . To get the maximum refundable amount for TrvlMaxAmnt ,
we employ service @maxAmnt with the same arguments as @status.

Task FillReimb updates the current request by adding a compiled form with
all the trip expenses. This can be done only when the request has been accepted:



334 D. Calvanese et al.

DB

Engine

Flow

Engine

Service

 Manager
Persistent Storage

DAPHNEsystem

DAPHNE

state

dapSL Spec.

RDBMS

.
 
.
 
.

user
input

web
service

Fig. 2. Conceptual architecture of daphne

SELECT id, emp, dest FROM CurrReq WHERE CurrReq .status = ‘acceptd’

ENABLES FillReimb(id, emp, dest);
FillReimb(id, emp, dest):

{

INSERT INTO TrvlCost(id, fid, cost)
VALUES(@genpk(), id, @cost(emp, dest))

}

Again, @genpk and @cost are used to obtain values externally upon insertion.
⊳

Execution Semantics. The semantics mimics that of DCDSs [1]. Let I be the
current DB for the data layer of the dapSL model of interest. An action α is
enabled in I if the evaluation of the SQL query constituting the condition in
the CA rule of α returns a nonempty result set. This result set is then used
to instantiate α, by non-deterministically picking an answer tuple, and use it
to bind the formal parameters of α to actual values. This produces a so-called
ground action for α. The execution of a ground action amounts to simultaneous
application of all its effect specifications, which requires to first manage the ser-
vice call invocations, and then apply the deletions and insertions. This is done
as follows. First, invocations in the ground action are instantiated by resolving
the subqueries present in all those insertion effects whose values contain invo-
cation placeholders. Each invocation then becomes a fully specified call to the
corresponding service, passing the ground values as input. The result obtained
from the call is used to replace the invocation itself, getting a fully instanti-
ated VALUES clause for the insertion effect specification. A transactional update
is consequently issued on I, first pushing all deletions, and then all insertions.
If the resulting DB satisfies the constraints of the data layer, then the update is
committed, otherwise it is rolled back.

3 The daphne System

We discuss how dapSL has been implemented in a concrete system, called
daphne, that provides in-database process enactment and state-space construc-
tion for formal analysis. In particular, the first feature is required to address
RQ2 by realizing three main functionalities: (1) indicate the executable actions
and their parameters; (2) manage the invocation of an executable action and the
corresponding update; (3) handle normal execution vs. execution with logging
of historical snapshots transparently to the user.

The core architecture of daphne is depicted in Fig. 2. The system takes as
input a representation of a dapSL specification (or model) and uses a standard



Modeling and In-Database Management of Relational, Data-Aware Processes 335

Enactment

I I
′

Enactment with history recall

t0 t1
. . . tn tn+1

State space construction

s0

s1

s2 s3

. . .

Fig. 3. The three main usage modalities for daphne, and sketch of the corresponding
data structures stored within the DBMS

database management system (DBMS) to support its execution. The DBMS
takes care of storing the data relevant to the input dapSL model and supports,
through the DB Engine of the underlying DBMS, the application of a set of
operations that jointly realize the given dapSL actions. The Flow Engine con-
stitutes the application layer of the system; it facilitates the execution of a dapSL
model by coordinating the activities that involve the user, the DBMS, and the
services. Specifically, the Flow Engine issues queries to the DBMS, calls stored
procedures, and handles the communication with external services through a
further module called Service Manager .

Next we give a detailed representation of daphne’s architecture by describ-
ing the stages of each execution step. For the moment we do not consider the
concrete encoding of dapSL inside the DBMS. At each point in time, the DBMS
stores the current state of the dapSL model. We assume that, before the execu-
tion starts, the DBMS contains an initial database instance for the data layer
of dapSL model. To start the execution, the Flow Engine queries the DBMS
about the actions that are enabled in the current state; if one is found, the engine
retrieves all possible parameter assignments that can be selected to ground the
action, and returns them to the user (or the software module responsible for
the process enactment). The user is then asked to choose one of such parameter
assignments. At this point, the actual application of the ground action is trig-
gered. The Flow Engine invokes a set of stored procedures from the DBMS that
take care of evaluating and applying action effects. If needed by the action speci-
fication, the Flow Engine interacts with external services, through the Service
Manager, to acquire new data via service calls. The tuples to be deleted and
inserted in the various relations of the dapSL model are then computed, and
the consequent changes are pushed to the DBMS within a transaction, so that
the underlying database instance is updated only if all constraints are satisfied.
After the update is committed or rolled back, the action execution cycle can
be repeated by selecting either a new parameter assignment or another action
available in the newly generated state.

3.1 Encoding a dapSL in daphne

We now detail how daphne encodes a dapSL model S = 〈L, P〉 with data layer
L = 〈R, E〉 and control layer P = 〈F , A, ρ〉 into a DBMS. Intuitively daphne

represents L as a set of tables, and P as a set of stored procedures working
over those and auxiliary tables. Such data structures and stored procedures are



336 D. Calvanese et al.

Fig. 4. Relational schemas of CurrReq and TrvlMaxAmnt , and their historical repre-
sentation in daphne via two pairs of corresponding tables: CurrReqraw and CurrReqlog,
TrvlMaxAmntraw and TrvlMaxAmntlog.

defined in terms of the native language of the chosen DBMS. These can be either
created manually, or automatically instrumented by daphne itself if the user
uses the daphne APIs to communicate the definition of S. We employ jOOQ
(https://www.jooq.org/) as the basis for the concrete input syntax of dapSL
models within daphne. An overview about how jOOQ and the APIs actually
work is given in a companion report [5].

Before entering into the encoding details, it is important to stress that
daphne provides three main usage modalities. The first modality is enactment.
Here daphne supports users in the process execution, storing the current DB,
and suitably updating it in response to the execution of actions. The second
modality is enactment with historical recall. This corresponds to enactment, but
storing all the historical DBs together with information about the applied actions
(name, parameters, service call invocations and results, and timestamps). This
provides full traceability about how the process execution evolved the initial
state into the current one. The last modality is state space construction for for-
mal analysis, where daphne generates all possible “relevant” possible executions
of the system, using abstract state identifiers instead from timestamps, and using
representative DBs to compactly represent (infinitely many) DBs from which S
wold induce the same evolution. This allows daphne to connect back to repre-
sentative states in case the execution of an action leads to a configuration of
the DB that has been already encountered before. Technically, traces of S are
folded into an abstract relational transition system (RTS) [4], which faithfully
represents not only all possible runs of S, but also its branching structure.

Data Layer. daphne does not internally store the data layer as it is specified in
L, but adopts a more sophisticated schema. This is done to have a unique homo-
geneous approach that supports the three usage modalities mentioned before. In
fact, instructing the DBMS to directly store the schema expressed in L would
suffice only in the enactment case, but not to store historical data about previ-
ous states, nor the state space with its branching nature. To accommodate all
three usages at once, daphne proceeds as follows. Each relation schema R of
L becomes relativized to a state identifier, and decomposed into two intercon-
nected relation schemas: (i) Rraw (raw data storage), an inflationary table that
incrementally stores all the tuples that have been ever inserted in R; (ii) Rlog

(state log), which is responsible at once for maintaining the referential integrity
of the data in a state, as well as for fully reconstructing the exact content of R

https://www.jooq.org/


Modeling and In-Database Management of Relational, Data-Aware Processes 337

in a state. In details, Rraw contains all the attributes A of R that are not part of
primary keys nor sources of a foreign key, plus an additional surrogate identifier
RID, so that pk(Rraw) = 〈RID〉. Each possible combination of values over A is
stored only once in Rraw (i.e., Rraw[A] is a key), thus maximizing compactness.
At the same time, Rlog contains the following attributes: (i) an attribute state

representing the state identifier; (ii) the primary key of (the original relation)
R; (iii) a reference to Rraw, i.e., an attribute RID with Rlog[RID] → Rraw[RID];
(iv) all attributes of R that are sources of a foreign key in L. To guarantee
referential integrity, Rlog must ensure that (primary) keys and foreign keys are
now relativized to a state. This is essential, as the same tuple of R may evolve
across states, consequently requiring to historically store its different versions,
and suitably keep track of which version refers to which state. Also foreign keys
have to be understood within the same state: if a reference tuple changes from
one state to the other, all the other tuples referencing it need to update their ref-
erences accordingly. To realize this, we set pk(Rlog) = 〈pk(R), state〉. Similarly,
for each foreign key S [B] → R[A] originally associated to relations R and S in L,
we insert in the DBMS the foreign key Slog[B, state] → Rlog[A, state] over their
corresponding state log relations.

With this strategy, the “referential” part of R is suitably relativized w.r.t. a
state, while at the same time all the other attributes are compactly stored in
Rraw, and referenced possibly multiple times from Rlog. In addition, notice that,
given a state identified by s, the full extension of relation R in s can be fully
reconstructed by (i) selecting the tuples of Rlog where state = s; (ii) joining
the obtained selection with Rraw on RID; (iii) finally projecting the result on the
original attributes of R. In general, this technique shows how an arbitrary SQL
query over L can be directly reformulated as a state-relativized query over the
corresponding daphne schema.

Example 4. Consider relation schemas CurrReq and TrvlMaxAmnt in Fig. 1.
Figure 4 shows their representation in daphne, suitably pairing CurrReqraw
with CurrReqlog, and TrvlMaxAmntraw with TrvlMaxAmntlog. Each state
log table directly references a corresponding raw data storage table (e.g.,
CurrReqlog[RID] → CurrReqraw[RID]), and TrvlMaxAmnt ’s state log table, due
to the FK in the original DAP, will reference a suitable key of CurrReqlog (i.e.,
TrvlMaxAmntlog[state, FID] → CurrReqlog[state, ID]). Figures 5, 6 and 7 show the
evolution of the DBMS in response to the application of three ground actions,
with full history recall. ⊳

We now discuss updates over R. As already pointed out, Rraw stores any tuple
that occurs in some state, that is, tuples are never deleted from Rraw. Deletions
are simply obtained by not referencing the deleted tuple in the new state. For
instance, in Fig. 5, it can be seen that the first tuple of Pendingraw (properly
extended with its ID, through RID) has been deleted from Pending in state 2:
while being present in state 1 (cf. first tuple of Pendinglog), the tuple is not
anymore in state 2 (cf. third tuple of Pendinglog).

As for additions, we proceed as follows. Before inserting a new tuple, we check
whether it is already present in Rraw. If so, we update only Rlog by copying the



338 D. Calvanese et al.

Fig. 5. Action application with two partial DB snapshots mentioning Pending and
CurrReq . Here, StartWF is applied in state 1 with {id = 2, empl = Kriss, dest = Rome}
as binding and, in turn, generates a new state 2.

Fig. 6. Action application with two partial DB snapshots mentioning CurrReq

and TrvlMaxAmnt . Here, RvwRequest is applied in state 2 with {id = 2, empl =
Kriss, dest = Rome} as binding and 900 resulting from the invocation of service
@maxAmnt that, in turn, generates a new state 3.

Rlog tuple referencing the corresponding RID in Rraw. In the copied tuple, the
value of attribute state is going to be the one of the newly generated state,
while the values of ID and all foreign key attributes remain unchanged. If the
tuple is not present in Rraw, it is also added to Rraw together with a fresh RID.
Notice that in that case its ID and FK attributes are provided as input, and
thus they are simply added, together with the value of state, to Rlog. In the
actual implementation, Rraw features also a hash attribute, with the value of a
hash function computed based on original R attributes (extracted from both
Rraw and Rlog). This speeds up the search for identical tuples in Rraw.

Fig. 7. Action application with three partial DB snapshots mentioning CurrReq ,
TrvlMaxAmnt and TrvlCost . Here, FillReimb is applied in state 3 with {id = 2, empl =
Kriss, dest = Rome} as binding and 700 resulting from the invocation of service @cost

that, in turn, generates a new state 4.



Modeling and In-Database Management of Relational, Data-Aware Processes 339

Finally, we consider the case of relation schemas whose content is not changed
when updating a state to a new state. Assume that relation schema S stays unal-
tered. After updating R, it is enough to update Slog by copying previous state
entries and updating the value of their state id to the actual one. If a FK, whose
left-hand side is S [B], belongs to L, the pair 〈B, state〉 will reference the most
recent versions of the previously referenced tuples. Consider, e.g., Fig. 7. While
in his current request Kriss is changing the request status when moving from
state 3 to state 4, the maximum traveling budget assigned to this request (a
tuple in TrvlMaxAmnt) should reference the latest version of the corresponding
tuple in CurrReq. Indeed, in state 4, a new tuple in TrvlMaxAmntlog is refer-
encing a new tuple in CurrReqlog that, in turn, corresponds to the one with the
updated request status.

Control Layer. Each action α of P , together with its dedicated CA rule, is
encoded by daphne into three stored procedures. The encoding is quite direct,
thanks to the fact that both action conditions and action effect specifications
are specified using SQL.

The first stored procedure, α_ca_eval(s), evaluates the CA rule of α in state
s over the respective DB (obtained by inspecting the state log relations whose
state column matches with s), and stores the all returned parameter assignments
for α in a dedicated table α_params. All parameter assignments in α_params are
initially unmarked, meaning that they are available for the user to choose. The
second stored procedure, α_eff_eval(s,b), executes queries corresponding to all
the effects of α over the DB of state s, possibly using action parameters from
α_params extracted via a binding identifier b. Query results provide values to
instantiate service calls, as well as those facts that must be deleted from or added
to the current DB. The third stored procedure, α_eff_exec(s,b), transactionally
performs the actual delete and insert operations for a given state s and a binding
identifier b, using the results of service calls. It is worth noting that, in our
running example, stored procedures that represent an action, all together, in
average contain around 40 complex queries. We now detail the daphne action
execution cycle in a given state s. (1) The cycle starts with the user choosing one
of the available actions presented by the Flow Engine. The available actions
are acquired by calling α_ca_eval(s), for each action α in P . (2) If any unmarked
parameter is present in α_params, the user is asked to choose one of those (by
selecting a binding identifier b); once chosen, the parameter is marked, and
the Flow Engine proceeds to the evaluation of α by calling α_eff_eval(s,b).
If there are no such parameters, the user is asked to choose another available
action, and the present step is repeated. (3) If α_eff_eval(s,b) involves service
calls, these are passed to the Service Manager component, which fetches the
corresponding results. (4) α_eff_exec(s,b) is executed. If all constraints in L are
satisfied, the transaction is committed and a new iteration starts from step 1;
otherwise, the transaction is aborted and the execution history is kept unaltered,
and the execution continues from step 2.



340 D. Calvanese et al.

3.2 Realization of the Three Usage Modalities

Let us now discuss how the three usage modalities are realized in daphne. The
simple enactment modality is realized by only recalling the current information
about log relations. Enactment with history recall is instead handled as follows.
First, the generation of a new state always comes with an additional update
over an accessory 1-tuple relation schema indicating the timestamp of the actual
update operation. The fact that timestamps always increase along the execution
guarantees that each new state is genuinely different from previously encountered
ones. Finally, an additional binary state transition table is employed, so as to
keep track of the resulting total order over state identifiers. By considering our
running example, in state 4 shown in Fig. 7, the content of the transition table
would consist of the three pairs 〈1, 2〉, 〈2, 3〉, and 〈3, 4〉.

We now discuss state space construction, which is the cornerstone of RQ3
and that should be ideally realized in a way that adheres to how the enactment
engine works. In this way, we ensure that the state space is carried out on the
exact same model that is enacted. Due to the presence of external services that
may inject fresh input data, there are in general infinitely many different execu-
tions of the process, possibly visiting infinitely many different DBs (differing in
at least one tuple). In other words, the resulting transition system has infinitely
many different states. However, thanks to the correspondence between dapSL
and DCDSs, we can realize in daphne the abstraction techniques from [1,4] to
attack the verification of such infinite-state transition systems. The main idea
behind such techniques is the following. When carrying out verification, it is
not important to observe all possible DBs that can be produced by executing
the available actions with all possible service call results, but it suffices to only
consider a meaningful combination of values, representing all possible ways to
relate tuples with other tuples in the DB, in terms of (in)equality of their differ-
ent components. This is done by carefully selecting the representative values. In
[1,4], it has been shown that this technique produces a faithful representation
of the original RTS, and that this representation is also finite if the original
system is state bounded, that is, has a pre-defined (possibly unknown) bound on
the number of tuples that can be stored therein.1 Constructing the state space
is therefore instrumental towards verification of properties such as reachability
and soundness, and temporal model checking (in the style of [4]).

State space construction is smoothly handled in daphne as follows. When
executed in this mode, daphne replaces the service call manager with a mock-up
manager that, whenever a service call is invoked, returns all and only meaningful
results, in the technical sense described above. E.g., if the current DB only
contains string a, invoking a service call that returns a string may only give
two interesting results: a itself, or a string different than a. To cover the latter
case, the mock-up manager picks a representative value, say b in this example,
implementing the representative selection strategy defined in [1,4]. With this
mock-up manager in place, daphne constructs the state space by executing

1 Even in the presence of this bound, infinitely many different DBs can be encountered,
by changing the values stored therein.



Modeling and In-Database Management of Relational, Data-Aware Processes 341

the following iteration. A state s is picked (at the beginning, only the initial
state exists). For each enabled ground action in s, and for all relevant possible
results returned by the mock-up manager, the DB instance corresponding to the
update is generated. If such a DB instance has been already encountered (i.e.,
is associated to an already existing state), then the corresponding state id s’ is
fetched. Otherwise, a new id s’ is created, inserting its content into the DBMS.
Recall that s’ is not a timestamp, but just a symbolic, unique state id. The state
transition table is then updated, by inserting 〈s, s′〉, which indeed witnesses that
s’ is one of the successors of s. The cycle is then repeated until all states and
all enabled ground actions therein are processed. Notice that, differently from
the enactment with history recall, in this case the state transition table is graph-
structured, and in fact reconstructs the abstract representation of the (RTS)
system capturing the execution semantics of S. In [5] we give a few examples of
the state spaces constructed for the travel reimbursement process using a special
visualizer API implemented in daphne mainly for debugging purposes.

Table 1. Experimental results

#(F) #(States) #(Edges) avg(Time)

1 10 10 0.93

2 128 231 4.36

3 1949 5456 114.39

4 32925 128155 6575.95

We report here some initial experi-
mental results on state space construc-
tion in daphne, demonstrating the
complexity in constructing a transition
system whose states are full-fledged
relational DBs.

All experiments were performed on
a MacOS machine with a 2.4 GHz Intel Core i5 and 8 GB RAM, encoding and
storing the travel management process in PostgreSQL 9.4. Table 1 shows results
for the construction of abstract RTSs on randomly generated initial DBs with
a number of facts specified in #(F). Each experiments come with a time limit
of 7200 s, which suffices to generate relatively big abstract RTSs and recognize
growth patterns in the conducted experiments. We provide full statistics on the
generated abstract RTS: #(S) represents the number of states, #(E) the num-
ber of edges, and avg(Time) the average Rcycl execution time. The most
critical measures are Time and #(E), with the latter showing the number of
successful action executions, each of which consists in the application of the cor-
responding SQL code. Such a code consists, for the travel management process,
of ∼40 complex queries per action. This gives an indication about the feasibility
of our approach, but also points out that optimizations have to be studied to
handle very large state spaces.

4 Discussion and Related Work

Our approach belongs to the line of research focused on modeling, enactment
and verification of data-centric processes. Specifically, daphne directly relates
to: (i) the declarative rule-based Guard-Stage-Milestone (GSM) language [6]
and its BizArtifact execution platform; (ii) the OMG CMMN standard for case
handling (https://www.omg.org/spec/CMMN/); (iii) the object-aware business
process management approach implemented by PHILharmonic Flows [12]; (iv)

https://www.omg.org/spec/CMMN/


342 D. Calvanese et al.

the extension of GSM called EZ-Flow [23], with SeGA [22] as an execution plat-
form; (v) the declarative data-centric process language Reseda based on term
rewriting systems [19]. These approaches emphasize the evolution of data objects
through different states, but often miss a clear representation of the control-flow
dimension. For example, GSM provides means for specifying business artifact
lifecycles in a declarative rule-based manner, and heavily relies on ECA rules
over the data to implicitly define the allowed execution flows. Other examples
in (ii)–(iv) are rooted in similar abstractions, but provide more sophisticated
interaction mechanisms between artifacts and their lifecycle components. dapSL
shares with these approaches the idea of “data-centricity”, but departs from them
since it provides a minimalistic, programming-oriented solution that only retains
the notions of persistent data, actions, and CA rules. In this respect, the closest
approach to ours is Reseda. Similarly to dapSL, a Reseda process consists of
reactive rules and behavioral constraints operating over data using the paradigm
of term rewriting. Reseda manipulates only semi-structured data (such as XML
or JSON), which have to be specified directly in the tool. dapSL focuses instead
on the standard relational model to represent data.

Differently from all such approaches, state-of-the-art business process man-
agement systems (BPMSs), such as Bizagi, Bonita BPM, Camunda, Activiti, and
YAWL, support an explicit, conceptual representation of the process control flow
and the lifecycle of activities, following conventional process modeling notations
such as the de-facto standard BPMN. However, such notations tackle only the
process logic, and do not provide any conceptual means to address the decision
and task logic. Consequently, no conceptual guidelines are given to such BPMSs
when it comes to the interplay between the process and the underlying persis-
tent data. The result is that they see the data logic as a “procedural attachment”,
i.e., a piece of code whose functioning is not captured at the conceptual level,
making it difficult to properly understand and govern the so-obtained integrated
models [3,8,18]. On the positive side, contemporary BPMSs typically adopt a
high-level representation of persistent data, e.g., in the form of object-oriented or
conceptual data models. We comment on the relationship and possible synergies
between such approaches and dapSL, considering how dapSL could be enhanced
with an explicit representation of control-flow, and/or with a conceptual layer
for representing the data.

dapSL with Explicit Control-Flow. At the modeling level, it is natural to
envision an integrated approach where the process logic (including control-flow,
event-driven behavior, hierarchical decomposition and activity lifecycle) is spec-
ified using conventional notations such as BPMN, the decision logic is specified
in standard SQL, and the task logic using dapSL actions. The main question
then becomes how the resulting approach can be enacted/analyzed. An option
is to apply a translation of the process and decision logic into dapSL rules, and
then rely on daphne for enactment and state-space construction. Thanks to the
correspondence between dapSL and DCDSs, this can be done by directly imple-
menting the existing translation procedures from process modeling notations
to DCDSs, where each control-flow pattern and step in the lifecycle of activi-



Modeling and In-Database Management of Relational, Data-Aware Processes 343

ties/artifacts becomes a dedicated CA rule. Translations have been defined for:
(i) data-centric process models supporting the explicit notion of process instance
(i.e., case) [14]; (ii) Petri nets equipped with resources and tokens with data [15];
(iii) recent variants of (colored) Petri nets equipped with a DB storage [7,16];
(iv) GSM-based business artifacts [20].

dapSL with Conceptual Data Models. It is often desirable to specify pro-
cesses at a higher level of abstraction than the database level (e.g., in the form
of an object model or ontology). However, if storage stays at the relational level,
introducing an intermediate conceptual layer poses key theoretical challenges,
not specifically related to our approach, but in general to the alignment between
the conceptual and the storage layers. In this respect, the most difficult prob-
lem, reminiscent of the long-standing view update problem in database theory
[9], is to suitably propagate updates expressed over the conceptual layer on the
actual data storage. Some recent works attacked this problem by introducing
intermediate data structures [22], or by establishing complex mappings to dis-
ambiguate how updates should be propagated [21]. This is not needed if the
conceptual layer is a “lossless view” of the data layer, ensuring that high-level
updates can always be rewritten into relational updates. This is the approach
adopted in Object-Relational Mapping (ORM), such as Hibernate. A conceptual
data layer realized as an ORM specification can be directly tackled in daphne.
In fact, dapSL can easily be reformulated by using ORM query languages (such
as Hibernate HQL) instead of SQL. Then, the back-end of daphne can be sim-
ply modified so as to invoke, when needed, the translation of high-level queries
into SQL, a functionality natively offered by ORM technologies.

5 Conclusions

We have introduced a declarative, purely relational framework for data-aware
processes, in which SQL is used as the core data inspection and update lan-
guage. We have reported on its implementation in the daphne tool, which at
once accounts for modeling, enactment, and state space construction for veri-
fication. Since our approach is having a minimalistic, SQL-centric flavor, it is
crucial to empirically validate its usability among database and process experts.
We also intend to interface daphne with different concrete end user-oriented lan-
guages for the integrated modeling of processes and data. As for formal analysis,
we plan to augment the state space construction with native temporal model
checking capabilities. Finally, given that daphne can generate a log including
all performed actions and data changes, we aim at investigating its possible
applications to (multi-perspective) process mining.

Acknowledgments. This research has been partially supported by the UNIBZ
projects REKAP and DACOMAN.



344 D. Calvanese et al.

References

1. Hariri, B.B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. In: Proceedings
of PODS (2013)

2. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact sys-
tems. J. Artif. Intell. Res. 51, 333–376 (2014). https://doi.org/10.1613/jair.4424

3. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process
analysis: a database theory perspective. In: Proceedings of PODS (2013)

4. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: FO µ-calculus over generic
transition systems and applications to the situation calculus. Inf. Comp. 259(3),
328–347 (2018)

5. Calvanese, D., Montali, M., Patrizi, F., Rivkin, A.: Modelling and enactment of
data-aware processes. CoRR abs/1810.08062 (2018). http://arxiv.org/abs/1810.
08062

6. Damaggio, E., Hull, R., Vaculín, R.: On the Equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. In: Rinderle-
Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 396–412.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23059-2_29

7. De Masellis, R., Di Francescomarino, C., Ghidini, C., Montali, M., Tessaris, S.:
Add data into business process verification: bridging the gap between theory and
practice. In: Proceedings of AAAI. AAAI Press (2017)

8. Dumas, M.: On the convergence of data and process engineering. In: Eder, J.,
Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 19–26. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23737-9_2

9. Furtado, A.L., Casanova, M.A.: Updating relational views. In: Kim, W., Reiner,
D.S., Batory, D.S. (eds.) Query Processing in Database Systems. Topics in Informa-
tion Systems, pp. 127–142. Springer, Heidelberg (1985). https://doi.org/10.1007/
978-3-642-82375-6_7

10. Hull, R.: Artifact-centric business process models: brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp.
1152–1163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-
4_17

11. Köpke, J., Su, J.: Towards quality-aware translations of activity-centric processes
to guard stage milestone. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016.
LNCS, vol. 9850, pp. 308–325. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45348-4_18

12. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fundamen-
tal requirements and their support in existing approaches. Int. J. Inf. Syst. Model.
Des. 2(2), 19–46 (2011)

13. Li, Y., Deutsch, A., Vianu, V.: VERIFAS: a practical verifier for artifact systems.
PVLDB 11(3), 283–296 (2017)

14. Montali, M., Calvanese, D.: Soundness of data-aware, case-centric processes. Int.
J. Softw. Tools Technol. Transf. 18(5), 535–558 (2016)

15. Montali, M., Rivkin, A.: Model checking Petri nets with names using data-centric
dynamic systems. Formal Aspects Comput. 28, 615–641 (2016)

16. Montali, M., Rivkin, A.: DB-Nets: on the marriage of colored Petri Nets and rela-
tional databases. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XII. LNCS, vol. 10470, pp. 91–118.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55862-1_5

https://doi.org/10.1613/jair.4424
http://arxiv.org/abs/1810.08062
http://arxiv.org/abs/1810.08062
https://doi.org/10.1007/978-3-642-23059-2_29
https://doi.org/10.1007/978-3-642-23737-9_2
https://doi.org/10.1007/978-3-642-82375-6_7
https://doi.org/10.1007/978-3-642-82375-6_7
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-319-45348-4_18
https://doi.org/10.1007/978-3-319-45348-4_18
https://doi.org/10.1007/978-3-662-55862-1_5


Modeling and In-Database Management of Relational, Data-Aware Processes 345

17. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-39390-0

18. Reichert, M.: Process and data: two sides of the same coin? In: Meersman, R., et al.
(eds.) OTM 2012. LNCS, vol. 7565, pp. 2–19. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33606-5_2

19. Seco, J.C., Debois, S., Hildebrandt, T.T., Slaats, T.: RESEDA: declaring live event-
driven computations as reactive semi-structured data. In: Proceedings of EDOC,
pp. 75–84 (2018)

20. Solomakhin, D., Montali, M., Tessaris, S., De Masellis, R.: Verification of artifact-
centric systems: decidability and modeling issues. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 252–266. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-45005-1_18

21. Sun, Y., Su, J., Wu, B., Yang, J.: Modeling data for business processes. In: Pro-
ceedings of ICDE, pp. 1048–1059. IEEE Computer Society (2014)

22. Sun, Y., Su, J., Yang, J.: Universal artifacts: a new approach to business process
management (BPM) systems. ACM TMIS 7(1), 3 (2016)

23. Xu, W., Su, J., Yan, Z., Yang, J., Zhang, L.: An artifact-centric approach to
dynamic modification of workflow execution. In: Meersman, R., et al. (eds.) OTM
2011. LNCS, vol. 7044, pp. 256–273. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25109-2_17

https://doi.org/10.1007/978-3-540-39390-0
https://doi.org/10.1007/978-3-642-33606-5_2
https://doi.org/10.1007/978-3-642-33606-5_2
https://doi.org/10.1007/978-3-642-45005-1_18
https://doi.org/10.1007/978-3-642-25109-2_17
https://doi.org/10.1007/978-3-642-25109-2_17

	Modeling and In-Database Management of Relational, Data-Aware Processes
	1 Introduction
	2 Data-Aware Process Specification Language
	3 The daphne System
	3.1 Encoding a dapSL in daphne
	3.2 Realization of the Three Usage Modalities

	4 Discussion and Related Work
	5 Conclusions
	References




