Appeared in Proc. of KR’94

A Unified Framework for
Class-Based Representation Formalisms

Diego Calvanese, Maurizio Lenzerini, Daniele Nardi

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

e-mail: {calvanese,lenzerini,nardi}@assi.dis.uniromal.it

Abstract

The notion of class is ubiquitous in Com-
puter Science and is central in many knowl-
edge representation languages. In this pa-
per we propose a representation formalism in
the style of concept languages, with the aim
of providing a unified framework for class-
based formalisms. The language we consider
is quite expressive and features a novel com-
bination of constructs including number re-
strictions, inverse roles and inclusion asser-
tions with no restrictions on cycles. We are
able to show that such language is power-
ful enough to model frame systems, object-
oriented database languages and semantic
data models. As a consequence of the es-
tablished correspondences, several significant
extensions of each of the above formalisms
become available. The high expressivity of
the language and the need for capturing the
reasoning in different contexts forces us to
distinguish between unrestricted and finite
model reasoning. A notable feature of our
proposal is that reasoning in both cases is de-
cidable. For the unrestricted case we exploit
a correspondence with propositional dynamic
logic and extend it to the treatment of num-
ber restrictions. For the finite model case we
develop a new method based on the use of lin-
ear programming techniques. We argue that,
by virtue of the high expressive power and of
the associated reasoning techniques on both
unrestricted and finite models, our language
provides a unified framework for class-based
representation formalisms.

1 INTRODUCTION

In many fields of Computer Science we find formalisms
for the representation of objects and classes [MM92].
Generally speaking a class denotes a subset of the do-

109

main of discourse, and a class-based representation for-
malism allows one to express several kinds of relation-
ships and constraints (e.g. subclass constraints) hold-
ing among classes. Moreover, class-based formalisms
aim at taking advantage of the class structure in order
to provide various information, such as whether an el-
ement belongs to a class, whether a class is a subclass
of another class, and more generally, whether a given
constraint holds between two classes.

Three main families of class-based formalisms can be
identified. The first one comes from knowledge repre-
sentation and in particular from the work on semantic
networks and frames (see for example [Leh92, Sow91]).
The second one originates in the field of databases and
in particular from the work on semantic data mod-
els (see for example [HK87]). The third one arises
from the work on types in programming languages and
object-oriented systems (see for example [KL89]).

In the past there have been several attempts to estab-
lish relationships among class-based formalisms. In
[BHRI0] and [LNS91] a comparative analysis and an
attempt to provide a unified view of class-based lan-
guages are carried out. The analysis makes it clear
that several difficulties arise in identifying a common
framework for the formalisms developed in different
areas. Some recent papers address this problem. For
example, an analysis of the relationships between con-
cept languages and types in programming languages
has been carried out in [Bor92], while in [BS92, PSS92]
concept languages are used to enrich the deductive ca-
pabilities of semantic and object-oriented data models.

The proposed solutions are not fully general and a for-
malism capturing both the modeling constructs and
the reasoning techniques for all the above families is
still missing. In this paper we provide a solution to
this problem by proposing a class-based representation
formalism, called ALUNT, which main characteristics
are:

1. it is quite expressive and features a novel combina-
tion of constructs including number restrictions,
inverse roles and inclusion assertions with no re-

strictions on cycles;

it is equipped with suitable techniques for both
unrestricted and finite model reasoning, since it is
designed for capturing the reasoning in different
contexts;

sound and complete reasoning in both unre-
stricted and finite models can be done in worst-
case exponential time.

The first characteristic allows us to show that ALUNT
is powerful enough to provide a unified framework for
frame systems, object-oriented languages and seman-
tic data models. We show this by establishing a precise
correspondence with the Entity Relationship model
[Che76] model and with an object-oriented language
in the style of [AK89]. Moreover, we demonstrate that
the formalism proposed in this paper provides impor-
tant features that are currently missing in each family,
although their relevance has often been stressed. In
this sense, the work reported here may also contribute
to significant developments for the languages belong-
ing to all the three families.

With regard to the second point, the two cases of rea-
soning in unrestricted and finite models are solved by
means of different techniques. For unrestricted satis-
fiability, we exploit the correspondence with dynamic
logic [Sch91], by extending it to the treatment of num-
ber restrictions, which have no direct counterpart in
dynamic logics. For finite satisfiability we develop a
new method based on linear programming techniques
by extending the approach proposed in [CL94]. It
is worth noting that the problem of finite reason-
ing, which arises mainly in the field of databases, has
never been considered in knowledge representation lan-
guages, although it seems quite relevant for practical
applications.

As for the third point, the expressive power of ALUNT
makes reasoning hard, but nonetheless decidable. We
consider this feature very important, because it makes
this language an actual knowledge representation lan-
guage and not simply a formal framework for compar-
ing apparently different approaches. Obviously, there
are a number of sublanguages of ALUNT, where, by
giving up some of the expressivity, one gains on the
computational complexity. However, this issue is out-
side the scope of the present paper.

Summarizing, our framework provides an adequate ex-
pressive power to account for the most significant fea-
tures of the major families of class-based formalisms.
Moreover, it is equipped with suitable techniques
for reasoning in both finite and unrestricted models.
Therefore, ACUNT and the associated reasoning ca-
pabilities represent the essential core of the class-based
representation formalisms belonging to all three fami-
lies mentioned above.

The paper is organized as follows. In the next sec-

110

tion we present our formalism and discuss its rela-
tionships with frame languages, semantic data mod-
els and object-oriented languages. Section 3 describes
the technique for unrestricted model satisfiability and
Section 4 the technique for finite model satisfiability.
The final section contains some concluding remarks.

2 A UNIFYING CLASS-BASED
REPRESENTATION LANGUAGE

In this section, we present ALUNT, a class-based for-
malism in the style of concept languages, and show
that it can be used to formalize knowledge represented
with formalisms developed in different fields.

The basic elements of concept languages are con-
cepts and roles, which denote classes and binary re-
lations, respectively. In ALUNTZ, concepts and roles
are formed by means of the following syntax (A de-
notes an atomic concept, P an atomic role, C' and D
arbitrary concepts, R an arbitrary role and m and n
positive integers):

C,D — T|L|A|-A|CnND|CUD |
VR.C'| (>mR) | (<nR)*
R — P|P!

Concepts are interpreted as subsets of a domain and
roles as binary relations over that domain. More pre-
cisely, an interpretation Z = (AZ,.%) consists of a set
A7 (the domain of T) and a function - (the inter-
pretation function of Z7) that maps every concept to a
subset of AT and every role to a subset of AT x AT
such that the following equations are satisfied: (#{}
denotes the cardinality of a set)

1% 0
—l—I _ AI
(—|A)I _ AI \ AI
(cnDY = c*np*
(cuDyY = c*ubp*
(VR.O)YY = {ae AT |Vb.(a,b) € RT —be C?}
(>mR)* = {acA[#{b](a,b) € R} >m}
(<nR)* = {aeAT|{b](a,b) € RT} <n}
(R°HF = {(a,b) € (AT x AT) | (b,a) € R"}

In an ACUNT knowledge base, the knowledge about
classes and relations is expressed through the use of
the so called inclusion assertions which have the form

ACC

where A is an atomic concept and C an arbitrary con-
cept. An interpretation Z satisfies the inclusion as-

sertion A C C if AZ C CZ. An interpretation Z is a

!We use the shorthand (= n R) in place of (< n R)M (>
n R)

model of a knowledge base K if it satisfies all inclu-
sion assertions in KC. A finite model is a model with
finite domain. Number restrictions, inverse roles and
inclusion assertions may interact in such a way that
a knowledge base is satisfiable only in infinite mod-
els. Therefore, it is meaningful to distinguish between
unrestricted and finite satisfiability (implication):
is said to be (finitely) satisfiable if it admits a (finite)
model, and it (finitely) implies an inclusion assertion
A C C if the inclusion is satisfied in all (finite) models
of K.

Below we discuss three families of class-based for-
malisms, namely, frame languages, semantic data
models, and object-oriented data models, and we show
that their basic features are captured by knowledge
bases in ALUNT.

2.1 FRAME LANGUAGES

Frame languages are based on the idea of expressing
knowledge by means of frames, which are structures
representing classes of objects in terms of the prop-
erties that their instances must satisfy. Such proper-
ties are defined by the frame slots, that constitute the
items of a frame definition. In Figure 1 we present
an example of a knowledge base defined by frame lan-
guages. The notation is basically the one adopted in
[FK85], which is used in the KEE? system. The cor-
responding formalization in ALUNT is given by:

VENROLLS.Student 1

(> 2ENROLLS) M (< 30 ENROLLS) I
VTAUGHTBY.(Professor LI Grad) M
(= 1 TAUGHTBY)

Course L[

AdvCourse [Course M (< 20ENROLLS) M
VENROLLS. (Grad I —Undergrad)
BasCourse [Course VTAUGHTBY.(Professor 1 —Grad)
Grad [Student 1 VDEGREE.String I
(= 1DEGREE)
Undergrad LC Student

We observe that inverse roles are not used in the for-
malization. Indeed, the possibility of referring to the
inverse of a slot has been rarely considered in frame
knowledge representation systems. However, as recent
works show (see [DLNNO1]), this is a strong limitation
in expressivity. For instance, without inverse roles we
cannot specify, in our example, that every student is
enrolled in at least 4 courses. In fact, KEE, as well as
many practical frame systems, embeds other features,
such as attachments and overriding inheritance. Such
features cannot be captured in our framework, which
is intended to deal with the structural and monotonic
aspects of these systems.

2KEE is a trademark of Intellicorp.

111

Frame: Course in KB University
Subclasses: AdvCourse, BasCourse
Memberslot: ENROLLS

ValueClass: Student
Cardinality.Min: 2
Cardinality.Max: 30
Memberslot: TAUGHTBY
ValueClass: (UNION Grad Professor)
Cardinality.Min: 1
Cardinality.Max: 1

Frame: AdvCourse in KB University
Superclasses: Course
Memberslot: ENROLLS
ValueClass: (INTERSECTION
Grad (NOT Undergrad))
Cardinality. Max: 20

Frame: BasCourse in KB University
Superclasses: Course
Memberslot: TAUGHTBY
ValueClass: (INTERSECTION
Professor (NOT Grad))

Frame: Professor in KB University

Frame: Student in KB University
Subclasses: Grad, Undergrad

Frame: Grad in KB University
Superclasses: Student
Memberslot: DEGREE

ValueClass: String
Cardinality.Min: 1
Cardinality. Max: 1

Frame: Undergrad in KB University
Superclasses: Student

Figure 1: A KEE Knowledge Base

In [FK85], several reasoning services associated with
frames are mentioned, such as: inheritance, cardinal-
ity reasoning and consistency checking. For example,
one could ask the system whether the knowledge base
implies that the filler of a given slot belongs to a certain
class. Due to the absence of inverse roles, it is possible
to show that if a frame knowledge base is satisfiable,
then it admits a finite model. Therefore, the distinc-
tion between reasoning in finite and infinite models
is not necessary, and all the above mentioned forms
of reasoning are captured by unrestricted satisfiability
and implication in ALUNT.

In the last decade, the research on frame languages
concentrated on the definition of concept languages,
which are subsets of first-order logics, introduced for
the formalization of KL-ONE languages (see [WS92]).
The only limitation of ALUNZ-knowledge bases com-
pared with some of the concept languages appeared in

AdvCourse }

DEGREE/String O—‘ Grad

Figure 2: An ER-schema

the literature is that inclusion assertions require the
left hand side to be an atomic concept. On the other
hand, we do not rule out cyclic references in the inclu-
sion assertions (see [Neb91]), as opposed to most of the
approaches to concept languages. Moreover, ALUNT
includes inverse roles, number restrictions and inclu-
sion assertions, which combination has never been ad-
dressed in the literature, and whose decidability (both
in unrestricted and finite models) was an open prob-
lem.

2.2 SEMANTIC DATA MODELS

Semantic data models were introduced primarily as
formalisms for database schema design. They provide
a means to model databases in a much richer way than
traditional data models supported by Database Man-
agement Systems, and are becoming more and more
important because they are adopted in most of the
recent Computer Aided Software Engineering tools.

The most common semantic data model is the Entity-
Relationship (ER) model introduced in [Che76]. Fig-
ure 2 shows the ER-schema for the same state of affairs
represented by the KEE knowledge base in Figure 1.
In the ER notation, classes are called entities and are
represented as boxes, whereas relationships between
entities are represented as diamonds. Arrows between
entities, called ISA relationships, represent inclusion
assertions. The links between entities and relation-
ships represent the ER-roles, to which number restric-
tions are associated. Dashed links are used whenever
such restrictions are refined for more specific entities.
Finally, elementary properties of entities are modeled
by attributes (DEGREE in Figure 2).

The ER model does not provide constructs for express-
ing negation and disjunction, although several recent
papers stress their importance in database specifica-
tion [CL93, CHS91]. Referring to our example, the
absence of negation and disjunction makes it impossi-
ble to specify that courses are taught by either profes-
sors or graduate students. For this purpose, the new
entity Teacher has been introduced as an abstraction
of professor and graduate student.

112

An ALUNT knowledge base that captures exactly the
semantics of the schema of Figure 2 is given by the
following set of inclusion assertions:

TEACHING L VTof.Course (= 1Tof) N
VTby.Teacher 1 (= 1 Tby)
ENROLLING LC VEin.Course (= 1Ein) N
VEof.Student 1 (= 1Eof)
Course L VTof '.TEACHING M (= 1Tof ') M
VEin~'.ENROLLING M
(> 2Ein" ") M (< 30Ein™!)
AdvCourse L[Coursel (< 20Ein™ ')
Teacher [VTby '.TEACHING
Student L[VEof '.ENROLLING I
(> 4Eof 1) M (< 6Eof ™)
Grad [C Student N VDEGREE.String I

(= 1DEGREE)

In order to prove that in general ALUNT is power-
ful enough to capture all properties of ER-schemata,
we first need formal definitions of their syntax and
semantics. In the following, for ease of presentation,
we do not consider attributes any more. We point
out, however, that their inclusion in the specification is
straightforward, and that even attributes with a prede-
fined domain of a fixed cardinality do not pose special
problems with respect to reasoning on the schema.

The definitions make use of the notion of labeled tuple
over a generic set D, which is a function from a subset
of a set U of ER-roles to D. The labeled tuple T that
maps U; € U to d; € D, for i € 1..k, is denoted with
(Uy:dy, ..., Uk:dg). We also write T[U;] to denote d;.

Definition 2.1 An ER-schema S is constituted by:

o a set Es of entity symbols, a set Rs of relationship
symbols and a set Us of role symbols;

a set Sijsq of statements of the form Ei < Es,
where E1 and Eo are entities; the reflexive tran-
sitive closure of =< is denoted with <* ;

for each relationship symbol R € Rs, a labeled
tuple over the set of entities®;

for each relationship R(Uy: Eq,...,Uy: Ey) in S,
fori € 1.k and for each entity E € Es such that
E =* E;, a non negative integer, minc(E, R, U;),
and a non negative integer or oo, maxc(E, R,U;).
If not stated otherwise, minc(E, R, U;) is assumed
to be 0 and maxc(E, R,U;) is assumed to be co.

The semantics of an ER-schema can be given by spec-

ifying which database states conform to the informa-

3In the following we write R(Ui: Ex,...,Ug: Ex) to de-
note the relationship R and to specify at the same time
that (Ur: E1,...,Us: Eg) is the labeled tuple associated to
it.

tion structure represented by the schema. Formally, a
database state B is constituted by a nonempty finite
set AB and a function -B that maps

e every entity E € Es to a subset EB of AB and

e every relationship R € R to a set R® of labeled
tuples over AB.

The elements of EB and RP are called instances of E
and R respectively.

A database state is considered acceptable if it satisfies
all integrity constraints that are part of the schema.
This is captured by the definition of legal database
state.

Definition 2.2 A database state B is said to be legal
with respect to an ER-schema S, if it satisfies the
following conditions:

e for each statement F1 <X Ey € S;sq it holds that

E C E;
e for each relationship R{Uy: E1,...,Ug: Ex) in S,
all instances of R are of the form

(Uy:€1,...,Up:éx), where & € EP foric 1..k;

e for each relationship R(U1: Ey,...,Ux: Ex) in S,
for i € 1.k, for each entity E € Es such that
E <* E; and for each instance € of E in I, it
holds that

<

minc(E, R,U;) < ﬁ{f € R* ‘ Uil = é}
< mazc(E,R,U;).

Notice that the definition of database state reflects
the usual assumption in the whole database area

that database states are finite structures (see also
[CKV90]).

Reasoning in the ER-model includes entity satisfiabil-
ity and inheritance. Entity satisfiability amounts to
checking if a given entity can be populated in some
legal database state (see [AP86, LN90]), and corre-
sponds to the notion of concept satisfiability in concept
languages. We show that all these forms of reasoning
are captured by finite satisfiability and finite implica-
tion in ALUNT knowledge bases. This is done by first
defining a mapping ® from ER-schemata to ALUNT
knowledge bases, and then proving that there is a cor-
respondence between legal database states and finite
models of the derived knowledge base.

Definition 2.3 Let S be an FER-schema. The
ALUNT knowledge base K = ®(S) is defined as fol-
lows:

e for each entity E € Es, K contains an atomic
concept ®(E);

113

e for each statement E1 = Ey € S;sq, K contains
an inclusion assertion ®(E1) C ®(Ey);

for each relationship R(Uy: E1,...,Ug: Ex) in S,
K contains an atomic concept ®(R), k primitive

roles Ur1,...,Urr and the following inclusion
assertions:
(I)(R) C vUR,l-(I)(Ewl) 1 -~‘|_|VUR7K.@(E]€) I

(: 1UR’1)F|'-~|_|(: 1UR,k)
VURL®(R), foriel.k;

M1

for each relationship R(Uy: Ey,...,Uk: Ey) in S,
for i € 1.k and for each entity E € Es such that
E <* E;, if m = minc(E,R,U;) # 0, then K
contains the assertion ®(E) C (> mUI;), and
if n = maxc(E, R,U;) # oo, then KC contains the
assertion ®(E) C (< nU];,li);

for each pair of relations Ry and Ry in S, K con-
tains the assertion ®(Ry) T = ®(Ry), and for each
relation R and each entity E it contains the as-
sertion ®(R) C -®(E).

The mapping demonstrates that both inverse roles and
number restrictions are necessary in order to capture
the semantics of ER-schemata. We observe that binary
relations could be treated in a simpler way by mapping
them directly to ALUNZ-roles. Notice also that the
assumption of acyclicity of inclusion assertions is unre-
alistic when representing ER-schemata. The following
theorem ensures that reasoning in the ER-model can
be reduced to finite satisfiability and finite implication
in ALCUNT knowledge bases.

Theorem 2.4 An entity E € Es is satisfiable in an
ER-schema S if and only if ®(S) admits a finite model
T in which ET # ().

2.3 OBJECT-ORIENTED DATA MODELS

Object-Oriented (OO) data models have been pro-
posed with the goal of devising database formalisms
that could be integrated with OO-programming sys-
tems (see [Kim90]). They are the subject of an active
area of research in the database field, and are based
on the following features: (a) in contrast to traditional
data models which are value-oriented, they rely on the
notion of object identifiers at the extensional level, and
on the notion of class at the intensional level; (b) the
structure of the classes is specified by means of typing
and inheritance.

Figure 3 shows the OO-schema corresponding to a
fragment of the KEE knowledge base of Figure 1. The
formalization in ALUNT is given by:

Course L AbstractClass (= 1VALUE)
VVALUE. (RecType N VENROLLS.SetStud 1
(= 1ENROLLS) I
VTAUGHTBY.Teacher I
(= 1 TAUGHTBY))
SetStud [SetType N VMEMBER.Student
Teacher [AbstractClass [l (Grad Ll Professor)
Grad LC AbstractClass[1Student (= 1VALUE) M
VVALUE.(RecType N VDEGREE.String M
(= 1DEGREE))
SetType L —AbstractClassl1-—RecType
RecType L —AbstractClass

The example shows that both classes and type struc-
tures of the OO-schema are translated into ALUNT
concepts. We analyze now this correspondence more
in detail by providing both the formal definition of the
language used for specifying OO-schemata, and the
mapping from OO-schemata to ALUNT knowledge
bases. The OO-language is in the style of most popu-
lar models featuring complex objects and object iden-
tity. In particular, we follow [AK89], although with a
slightly different syntax.

An OO-schema S is constituted by a set of class names,
a set of attribute names, and a set of class declarations.
Class declarations make use of type expressions over
S, which are built according to the following syntax
(where C denotes a class name, A; an attribute name,
and T, T; type expressions):
TT,...T, — C|
Union 71, ..., T} |

Set-of T |

Record Ay:Th;...; Ag: Ty, End
The meaning of an OO-schema is given by specifying
the characteristics of an instance of the schema. The
definition of instance makes use of the notions of object

Class Course Type-is
Record
ENROLLS: Set-of Student;
TAUGHTBY: Teacher

End

Class Teacher Type-is
Union Professor, Grad

End

Class Grad Is-a Student Type-is
Record
DEGREE: String

End

Figure 3: An Object-Oriented data schema

114

identifiers and values. Given an OO-schema S and a
finite set O of object identifiers denoting real world
objects, the set V of values over § and O is inductively
defined as follows:

e OCV;
o ifvy,...,u €V then {vy,..., v} € V;
o if vy,...,ur €V then [Aj:vy,..., Ap:v] €V

e nothing else is in V.

A database instance Z of a schema S is constituted
by a finite set O of object identifiers, a mapping
that assigns to each class name a subset of O, and a
mapping p assigning a value in V to each object in O.
The interpretation of type expressions in Z is defined
through an interpretation function - that assigns to
each type expression a subset of V as follows:

ct = 7(0)
(Union 71, ..., Tx)f = Tf U -~ UTE
(Set-of TV = {{vi,...,v} | k>0,
v, €Tt icl.k }
(Record A1:Ty;...; Ag: Ty, End)? =

{[A1:v1,..., Apivp] | h > kv, € TE i € 1.k,

v, eV, jEk+1.h}

The set of class declarations of an OO-schema is used
to specify the structure of the objects in an instance
of the database. Each declaration has the form

Class C' Is-a C1,...,C, Type-is T.

The Is-a part of such a declaration allows to specify
inclusion between the sets of instances of the involved
classes, while the Type-is part specifies the structure
allowed for the values assigned to the objects that are
instances of the class. This justifies the following def-
inition:

Definition 2.5 Let S be an OO-schema. A database
instance T is said to be legal with respect to S if for
each declaration

Class C Is-a C4,...,C, Type-is T
in S, it holds that CT C C’iI for each i € 1.n, and
p(C*) C T7.

The relationship between ALUNZ and the OO-
language presented above is provided by means of a
mapping from OO-schemata into ALUNT knowledge
bases. Since the interpretation domain for ALUNT
knowledge bases consists of objects without structures
whereas the instances of OO-schemata refer to a struc-
tured universe (see the definition of V), we need to
explicitly represent some of the notions that underlie
the OO-language. In particular, while there is a cor-
respondence between concepts and classes, one must
explicitly account for the type structure of each class.

This can be accomplished by introducing the atomic
concepts AbstractClass to represent the classes in the
0OO-schema, and RecType and SetType to represent
the corresponding types. The associations between
classes and types induced by the class declarations, as
well as the basic characteristics of types, are modeled
by means of atomic roles: the (functional) role VALUE
models the association between classes and types, and
the role MEMBER is used for specifying the type of the
elements of a set. Moreover, the concepts represent-
ing types are assumed to be mutually disjoint, and
disjoint from the concepts representing classes. These
constraints are expressed by the following assertions
that will be part of the ALUNT knowledge base K
derived from the schema

C
(-

SetType —AbstractClass 1 —RecType

RecType —AbstractClass

We now define the function ¥ that maps each type
expression into an ALUNT concept expression as fol-
lows:

e every class C' is mapped into an atomic concept
v (C);

every type expression Union 77, ..
into O(Ty) U --- U U (Tg);

every type expression Set-of 7" is mapped into the
concept SetType M VYMEMBER.U(T).

every attribute A is mapped into
an atomic role ¥(A), and every type expression
Record A1:T7;...; Ag: Ty, End is mapped into the
concept

RecType MVU(A;).¥(T1) N (=1¥(Ay))M---
YU (Ag). O (T) N (= 19(Ty));

., Tx is mapped

M

Definition 2.6 The ALUNT knowledge base ¥(S)
corresponding to an OO-schema S is constituted by

e the 1inclusion assertions that express mutual
disjointness of AbstractClass, RecType, and
SetType;

e an inclusion assertion
U(C) LC AbstractClass [l
T(Cy) N - Ny, N
VVALUE.¥(T') M (= 1 VALUE)
for each class declaration

Class C Is-a C4,...,C, Type-is T

mnS.

From the above correspondence, we can observe that
inverse roles are not necessary for the formalization of
00-data models. Indeed, the possibility of referring
to the inverse of an attribute is generally ruled out in

115

such models. However, recent papers (see for example
[AGO91]) point out that this strongly limits the ex-
pressive power of the data model. Note also that the
use of number restrictions is limited to the value 1,
which corresponds to existence constraints and func-
tionality, whereas union is used in a more general form
than in the KEE system.

The effectiveness of the mapping ¥ is sanctioned by
the following theorem.

Theorem 2.7 For every OO-schema S, there ex-
ist two correspondences «, 3 between instances of a
schema S and interpretations of its translation U(S)
such that, for each legal instance T of S, a(Z) is a
model of U(S), and, on the converse, for each model

M of U(S), B(M) is a legal instance of S.

The basic reasoning services considered in OO-
databases are subtyping (check whether a type de-
notes a subset of another type in every legal instance)
and type checking (check whether an instance is legal).
Based on theorem 2.7, it is possible to show that these
forms of reasoning are fully captured by finite satisfi-
ability and implication in ALUNZ knowledge bases.

2.4 DISCUSSION

The above subsections should clarify that the language
ALUNT and the associated reasoning capabilities rep-
resent the essential core of the class-based representa-
tion formalisms belonging to all three families men-
tioned above. On the other hand, we have shown that
the formalism proposed in this paper provides impor-
tant features that are currently missing in each family,
although their relevance has often been stressed. In
this sense, the work reported here not only provides a
common powerful representation formalism, but may
also contribute to significant developments for the lan-
guages belonging to all the three families. For this
purpose it is essential to develop adequate techniques
for reasoning in all of the above contexts. This im-
plies that we have to deal with both unrestricted and
finite satisfiability and implication. In the following
two sections we present the reasoning methods for the
two cases. Due to space limitations, in this paper we
concentrate on satisfiability only; a direct extension of
the methods provides decision procedures for logical
implication too.

3 REASONING IN
UNRESTRICTED MODELS

In order to show that the problem of checking unre-
stricted satisfiability of an ALUNT knowledge base is
decidable, we make use of a correspondence between
ALUNT and a sublanguage of deterministic converse
propositional dynamic logic (CPDL). Although this
correspondence is similar to the one established in

[Sch91], due to the presence of number restrictions,
we cannot directly make use of the known results.

The basic idea of our method is to show that standard
reasoning techniques for CPDL can still be exploited if
we perform a preliminary transformation of the knowl-
edge base that allows us to weaken the constraints im-
posed by number restrictions. We call the knowledge
base K¢ resulting from the application of the trans-
formation to a knowledge base KC, the relazation of IC,
defined as follows:

e all number restrictions (> m R), with m # 1,
and (< nR) in K are treated as new symbols for
atomic concepts in KCpey;

e for each pair of number restrictions (> m R) and
(< nR) present in K, such that m > n, the asser-
tion (> m R) C (< nR) is added to K.

e for each number restriction (> m R), with m # 1,
present in I, the assertion (> mR) C (> 1R) is
added to K.

The following lemma gives a necessary condition for
the satisfiability of an ALUNT knowledge base.

Lemma 3.1 If an ACUNT knowledge base is satisfi-
able, then its relaxation is also satisfiable.

In the rest of the section we show that the converse of
Lemma 3.1 also holds. This is done by exploiting the
model preserving transformation of /C¢; into a formula
¢re; of CPDL. Notice that since in K,.; all number re-
strictions are treated as atomic concepts, the transfor-
mation is defined in the same way as in [Sch91]. The
resulting formula belongs to a sublanguage of CPDL
which we call CPDL™. In CPDL™, programs, denoted
with p,q, and formulae, denoted with ¢,1), are built
from atomic programs P and atomic formulae A by
the following syntax rules:

p,g — P[P |p"[pUq|pq
¢, — TIA|-A|oVY[dAY]
(P)T [(P7)T | [ple.

We will use the term basic program to denote an
atomic program or the inverse of an atomic program.
The semantics of CPDL™ is derived from the seman-
tics of CPDL in a straightforward way (see for example
[KT90]).

For an example of a transformation of a knowledge
base into a CPDL™ formula, see Figure 4, showing a
knowledge base IC, describing the properties of trees in
which each node has at least two outgoing edges, the
relaxation K,;, and the CPDL~ formula correspond-
ing to K,e. Note that (> 1ARC) is transformed into
(ARC)T.

In the following, let ¢,.; be the CPDL™ formula
obtained from the relaxation KC,. of K and let M

116

K:
Root [VARC '..L M VARC.Node M (> 2ARC) M —Node
Node L VARC'.(Root LINode) VARC.Node
(> 2ARC) M (= 1ARC™Y)
Krel :
Root L[VARC™'.L MVARC.Node M (> 2ARC) M
—Node
Node L VARC™'.(Root LINode) VARC.Node 1
(> 2ARC) M (= 1ARC™Y)
(>2aRC) C (> 14RC)
¢ret = [(ARCU ARC™)™]
((—Root V ([ARCT]L A [ARC]Node A
A(22ARC) A —|Node)) A
(—Node V ([ARC™](Root V Node) A [ARC]Node A
As24RC) A
(>1ARC™) A A(g1 ARC*))) A
(mA(>2aRC) V (ARC)T))

Figure 4: An ALUNT knowledge base, its relaxation,
and the corresponding CPDL™ formula

be a model of ¢re;. Pre; will contain atomic for-
mulae A>p, gy and A<, gy for each number restric-
tion (> mR) and (< nR) present in K. We say
that a state s of M numerically satisfies A>y, gy if
jj{t | (s,t) € RM} > m. Similarly, s numerically sat-
isfies A<, gy, if #{t | (s,¢) € RM} < n. According to
these definitions, any model M of ¢, is also a model
of K if all states of M numerically satisfy all atomic
formulae corresponding to number restrictions. We
show that if ¢,.; is satisfiable then we can construct a
model in which this is indeed the case.

[Str82] shows that the tree model property holds for
CPDL (see [Str82] for a formal definition of tree
model). This result carries over immediately to
CPDL~, and therefore every satisfiable CPDL™ for-
mula admits a model which is a tree, if we view each
state as a node and each transition between states as
an arc labeled with the corresponding program. How-
ever, we can show that for CPDL™ an even stronger
result holds, which is based on the following definition.

Definition 3.2 A deterministic direct-inverse inter-
pretation is an interpretation T = (AZ,-T) such that
for each state s € AT and for each atomic program P,
there is at most one state t € AT such that (s,t) € P1
and at most one state 1 € AT such that (r,s) € PT.

Lemma 3.3 FEvery satisfiable CPDL™ formula ¢ ad-
mits a deterministic direct-inverse tree model.

Proof (sketch). Since ¢ is satisfiable, by the tree model
property it admits a tree model 7. Starting from 7 we
can construct a deterministic direct-inverse tree model

D, proceeding by induction on the depth of 7 and
removing for each state all but one of the arcs incident
to that state and labeled with the same basic program.
Since the only subformulae of ¢ involving (-), are of the
form (R)T, where R is a basic program, we can prove
by induction on the structure of ¢ that the root of D
still satisfies ¢. O

Notice that in any deterministic direct-inverse tree
model D all atomic formulae A<,) are already nu-
merically satisfied in all states of D and no formula
A(>m gy with m > 1 is numerically satisfied in any
state of D. The following lemma guarantees that we
can transform any such model in one in which all
atomic formulae are numerically satisfied in all states.

Lemma 3.4 Let D be a deterministic direct-inverse
tree model of the CPDL™ formula ¢re;. Then D can
be transformed into a tree model T such that all atomic
formulae in ¢, that correspond to number restrictions
are numerically satisfied in all states of T .

Proof (sketch). We can construct 7 in the following
way: Initially we set 7 equal to D and then we proceed
by induction on the depth of the tree we are construct-
ing. For each state s of 7 that we are considering and
for each basic program R appearing in ¢, we consider
the atomic formula A, gy with maximum m that is
satisfied in s but is not numerically satisfied. The as-
sertions added to IC,.; ensure that there is at least one
state t connected to s through R. We can take the
whole tree structure starting in ¢ and connected to s
through R, duplicate it m — 1 times and connect these
m — 1 trees to s via R. In this way we ensure that
A(>m r) is numerically satisfied in s. Furthermore the
assertions added to K,..; guarantee that by proceeding
in this way all atomic formulae A<,) are still nu-
merically satisfied in s. O

By combining the results of the previous lemmas we
can conclude that the relaxation of a knowledge base in
fact captures all relevant properties of the knowledge
base itself. This is stated in the following theorem.

Theorem 3.5 An ALUNT knowledge base K is sat-
isfiable if and only if its relaxation ICre; is satisfiable.

In [VW84] it has been shown that deciding if a CPDL
formula is satisfiable can be done in deterministic ex-
ponential time, which also gives the upper bound for
satisfiability in CPDL~. We have seen that K,.; can
be transformed in a straightforward way into a formula
@rer of CPDL™ whose size is polynomial in the size of
K.ei and which is satisfiable if and only if it is ICg;.
Therefore we get immediately the following corollary
of the previous theorem.

Corollary 3.6 Unrestricted satisfiability and implica-
tion for an ALUNT knowledge base can be decided in

117

deterministic exponential time.

4 REASONING IN FINITE
MODELS

In this section we sketch a method for verifying finite
satisfiability of an ALUNZ knowledge base K. This
task requires a quite different approach form the one
used for the unrestricted case, since the actual num-
bers that appear in the number restrictions of I play
a crucial role in the existence of finite models. For this
reason we model number restrictions by means of an
associated system Wi of linear disequations, defined
in such a way that the existence of a finite model for
K is reflected into the existence of particular solutions
of \Iflc.

The unknowns introduced in ¥ are intended to repre-
sent the number of instances of each concept and each
role in a possible finite model of K, while the disequa-
tions take into account the constraints on the number
of instances deriving from number restrictions in .
Because of atomic concepts that may have instances
in common, it is not possible to adopt the most natu-
ral approach which would be to use one unknown for
each atomic concept and role (see [LN90]). We will
overcome this problem by introducing the notion of
expansion of a knowledge base.

In the sequel we will use the term literal for an atomic
or negated atomic concept. A concept will be called
simple if it is of the form: L | Ly U Ls | VR.L | (>
mR) | (£ nR), where L,L; and Ly are literals. A
knowledge base whose inclusion assertions have a sim-
ple concept on the right hand side is said to be simple.
Since a generic knowledge base K can be transformed
in linear time into a simple knowledge base K’ that is
finitely satisfiable if and only if it is IC we can restrict
our attention to simple knowledge bases.

Therefore in each assertion of a knowledge base I at
most one operator appears on the right hand side. We
will denote with Kx, where X € {U,V, >, <}, the sub-
set of assertions involving operator X, and with /C;4,
those involving only literals.

Let C be the set of all atomic concepts present in K, to-
gether with the symbol T. A compound concept is de-
fined as a subset of C containing T. Intuitively a com-
pound concept C' represents exactly those elements of
the domain that are instances of all atomic concepts
in C' and are not instances of all atomic concepts not
in C. More formally, the extension C* of C'is defined
as:

Ct=({Aa"1AaecCi\|J{a"|Aec\C}.

Let R be the set of all atomic roles present in K. We
represent explicitly for each such role the association
with all possible pairs of compound concepts. This can

be accomplished by defining a compound role as an in-
dexed pair (C1, Cs) p, where C; and Cy are compound
concepts and P is an atomic role appearing in /C. It is
interpreted as the restriction of PT to pairs whose first
and second element belong to CZ and CZ respectively.

Notice that the way we interpret compound concepts
and roles forces them to be disjoint in all interpreta-
tions. This property is crucial in order to construct a
model from a solution of the system of disequations.
The price we have to pay for it is the exponential num-
ber of different compound concepts and roles. We are
now ready to give the following definition.

Definition 4.1 The expansion K of an ALUNT
knowledge base K is constituted by

e the set C of all compound concepts of K and the
set R of all compound roles of K;

all assertions of K;sq UKL U Ky;

a set Kpum of assertions involving a compound
concept on the left hand side and a number re-
striction on the right hand side, obtained in the
following way: for each compound concept C' and
for each role R:

— if for some A € C and some positive integer m,
AC (>mR)isin K>, then C C (> Mpqq R) is
in Kpum, where

Miae =max{m | AT (>mR)eK>NAeC}

~if for some A € C and some positive integer n,
ALC (<nR)isin K<, then C T (< npn R) s
in Kpum, where

nmm:min{n|AE(§nR)€/C§ A AGC’}.

From the expansion K we can derive a system Wy of
linear disequations, with one unknown Var(C) for each
compound concept C, and one unknown Var(R) for
each compound role R. The disequations of Wi are

obtained in the following way:

e It is possible to check in polynomial time, with re-
spect to the size of the expansion, whether a com-
pound concept C'is consistent with IC;s, UK, i.e.
whether there is a model Z of K;5, UK, such that
C7? is nonempty. In a similar way, we can check
whether a compound role is consistent with KCy.
We force to be equal to 0 all those unknowns cor-
responding to compound concepts and roles that
are not consistent respectively with /C;5, UK, and
with Ky, and force to be nonnegative all the oth-
ers.

We introduce disequations that reflect the num-
ber restrictions by relating the unknown corre-
sponding to a compound concept C to the sum of
the unknowns corresponding to compound roles

118

C = {R,N,0,RN, RO, NO,RNO}, where
R = {Root}, N = {Node}, 0= {RootOrNode},
RN = {Root,Node}, RO = {Root,RootOrNode},
NO = {Node, RootOrNode},
RNO = {Root, Node, RootOrNode};

Subset of C consistent with K;sq U KL {R,N, RO, NO};

R={(C,C")pc | C,C" €C};
Consistent compound roles:
{{RO, N)sRc, (RO, NO) ARG, (NO, N) aRc, (NO,NO)pRC }5

R C (> 2ARC) 2€r <0

RO C (> 2ARC) 2ro < arcro,n + arcro,no
N C (> 2ARC) 2 <0

N C (>1ARCH) n < arcron + arcnon
N C (<14RCc7Y) n > arcron + arcnon
NO C (> 2ARC) 2no < arcno,n + arcno,no
NO C (Z 1ARC71) no < arcro,no + arcno,no
NO C (< 1ARC71) no > arcro,no + arcno,no

Figure 5: The expansion of the knowledge base shown
in Figure 4

in which C' appears. As an example, if C C (>
m P) € Kpym, where P is an atomic role, we in-
troduce m - Var(C') < > o Var((C, C2) p).

Figure 5 shows the expansion of the simple knowledge
base derived from the one of Figure 4 and the cor-
responding system of disequations. Each unknown is
given the name of the corresponding compound con-
cept or role, but in lower case (for brevity we have not
included unknowns corresponding to inconsistent com-
pound concepts and roles). The concept RootOrNode
derives from the transformation into a simple knowl-
edge base.

The system of disequations we obtain from the expan-
sion of the knowledge base is linear and homogeneous
and admits only nonnegative solutions. The following
theorem relates the existence of particular solutions of
this system to the existence of finite models for the
knowledge base from which the disequations are de-
rived.

We call a solution of Ui acceptable if it assigns a
positive value to at least one unknown, and for all
compound roles R = (C', Cs) p, the value assigned to
Var(R) is 0 whenever the value assigned to either C;
or Cy is 0.

Theorem 4.2 K is finitely satisfiable if and only if
Wi admits an acceptable integer solution.

Proof (sketch). Given an acceptable integer solution X
of Wy, it is possible to construct a model of K such that
the number of instances of each compound concept and
role is exactly the value assigned by X to the corre-

sponding unknown. Since X’ is nontrivial, the model
constructed will be nonempty. Conversely, given a fi-
nite model M of K it is possible to show that we obtain
a solution of X’ by assigning to each unknown the num-
ber of instances in M of the corresponding compound
concept or role. These can be directly deduced from
the interpretations of all concepts and roles. OJ

In order to make use of this result and show that we
can reason with respect to finite models in ALUNT
knowledge bases, we have to guarantee that verifying
the existence of acceptable integer solutions for a sys-
tem of disequations is decidable. This is indeed the
case and, by using linear programming techniques it
can be proved that it takes polynomial time in the
size of the system. Therefore we can state the follow-
ing theorem.

Theorem 4.3 Finite satisfiability and implication for
an ALUNT knowledge base can be decided in deter-
ministic exponential time.

Proof (sketch). The decidability follows immediately
from theorem 4.2 and the previous observation. The
exponential upper bound derives from the exponential
size of the system of disequations and the polinomial
time required for the search of an acceptable solution
of the system. O

5 CONCLUSIONS

We have presented a unified framework for represent-
ing information about class structures and reasoning
about them. We have pursued this goal by looking
at various class-based formalisms proposed in differ-
ent fields of computer science and trying to rephrase
them in the framework of concept languages. The re-
sulting language includes a combination of constructs
that was not addressed before, although all of the con-
structs had previously been considered separately.

The major achievement of the paper is the demonstra-
tion that class-based formalisms can be given a pre-
cise characterization by means of a powerful first-order
language where the basic reasoning problems remain
decidable, in particular EXPTIME. This has several
consequences.

First of all, any of the formalisms considered in the pa-
per can be enriched with constructs originating from
other formalisms and treated in the general framework.
For example, the usage of inverse roles in concept lan-
guages greatly enhances the expressivity of roles, while
the combination of ISA, number restrictions and union
enriches the reasoning capabilities available in seman-
tic data models.

Secondly, the comparison of class-based formalisms
emphasizes the importance of distinguishing between

119

unrestricted reasoning and reasoning in finite mod-
els. Although this aspect has seldom been considered
in the case of knowledge representation formalisms,
the assumption of finiteness seems to be appropriate
in most applications, and must be addressed when
the representation formalism becomes sufficiently pow-
erful. We have developed a novel technique for fi-
nite model reasoning. Although we did not address
the problems related to the practical behavior of the
method, we point out that, on one hand the constraints
imposed on the domain to be modeled make the worst
case complexity rarely occur in practice, and on the
other hand we can effectively exploit the technology
of linear programming for the implementation of real
systems.

Finally, it is worth mentioning that the results pre-
sented in this paper can be extended to deal both with
more general inclusion assertions, and with the exten-
sional level of the knowledge base, where assertions
about the instance-of relation between individual ob-
jects and classes are specified.

Acknowledgements

This work was partly funded by the ESPRIT BRA
Compulog II, and the Italian CNR under Progetto Fi-

nalizzato Sistemi Informatici e Calcolo Parallelo, LDR
Ibridi.

References
[AGO91] A. Albano, G. Ghelli, and R. Orsini.
A relationship mechanism for strongly
typed Object-Oriented database program-
ming languages. In Proc. of the 17th Int.
Conf. on Very Large Data Bases VLDB-91,
pages 565-575, Barcelona, 1991.

S. Abiteboul and P. Kanellakis. Object
identity as a query language primitive. In
Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 159-173, 1989.

P. Atzeni and D.S. Parker Jr. Formal prop-
erties of net-based knowledge representa-
tion schemes. In Proc. of the 2nd IEEE Int.
Conf. on Data Engineering, pages 700-706,
Los Angeles, 1986.

K.H. Blasius, U. Hedstiick, and C.-R.
Rollinger, editors. Sorts and Types in Arti-
ficial Intelligence. Number 418 in Lecture
Notes in Artificial Intelligence. Springer-
Verlag, 1990.

[AK89)]

[APS6]

[BHRYO]

[Bor92] Alexander Borgida. From type systems
to knowledge representation: Natural se-
mantics specifications for description log-
ics. Journal of Intelligent and Cooperative

Inf. Syst., 1(1):93-126, 1992.

[BS92]

[CheT6]

[CHSO1]

[CKV90]

[CL93]

[CLY4]

[DLNNO1]

[FK85]

[HKS7]

[Kim90)]

[KL89)]

[KT90]

[Leh92]

Sonia Bergamaschi and Claudio Sartori.
On taxonomic reasoning in conceptual de-
sign. ACM Trans. on Database Syst.,
17(3):385—422, 1992.

P.P. Chen. The Entity-Relationship model:
Toward a unified view of data. ACM Trans.
on Database Syst., 1(1):9-36, March 1976.

C. Collet, M.N. Huhns, and W. Shen. Re-
source integration using a large knowledge
base in carnot. IEEE Computer, 24(12),
1991.

S.S. Cosmadakis, P.C. Kanellakis, and
M. Vardi. Polynomial-time implication
problems for unary inclusion dependencies.
Journal of the ACM, 37(1):15-46, January
1990.

Tiziana Catarci and Maurizio Lenzerini.
Representing and using interschema knowl-
edge in cooperative information systems.
Journal of Intelligent and Cooperative Inf.
Syst., 1993. To appear.

Diego Calvanese and Maurizio Lenzerini.
On the interaction between ISA and car-
dinality constraints. In Proc. of the 10th
IEEE Int. Conf. on Data FEngineering,
Houston, 1994. To appear.

Francesco M. Donini, Maurizio Lenzerini,
Daniele Nardi, and Werner Nutt. Tractable
concept languages. In Proc. of the 12th
Int. Joint Conf. on Artificial Intelligence
IJCAI-91, pages 458-463, Sydney, 1991.

Richard Fikes and Tom Kehler. The role
of frame-based representation in reasoning.
Communications of the ACM, 28(9):904—
920, 1985.

R.B. Hull and R. King. Semantic database
modelling: Survey, applications and re-
search issues. ACM Computing Surveys,
19(3):201-260, September 1987.

Won Kim. Introduction to Object-Oriented
Databases. The MIT Press, 1990.

Won Kim and Frederick H. Lochovsky, edi-
tors. Object-Oriented Concepts, Databases,
and Applications. ACM Press and Addison
Wesley, New York, 1989.

Dexter Kozen and Jerzy Tiuryn. Log-
ics of programs. In J. Van Leeuwen, ed-
itor, Handbook of Theoretical Computer
Science — Formal Models and Semantics,
pages 789-840. Elsevier Science Publishers
(North-Holland), Amsterdam, 1990.

Fritz Lehmann, editor. Semantic Networks
in Artificial Intelligence. Pergamon Press,
Oxford, 1992.

[LN90]

[LNS91]

[MM92]

[Neb91]

[PSS92]

[Sch91]

[Sow91]

[Str82]

[VW84]

[WS92]

120

Maurizio Lenzerini and Paolo Nobili. On
the satisfiability of dependency constraints
in entity-relationship schemata. Informa-
tion Systems, 15(4):453-461, 1990.

Maurizio Lenzerini, Daniele Nardi, and
Maria Simi, editors. Inheritance Hier-
archies in Knowledge Representation and
Programming Languages. John Wiley &
Sons, Chichester, 1991.

R. Motschnig-Pitrik and J. Mylopoulous.
Classes and instances. Journal of Intelli-
gent and Cooperative Inf. Syst., 1(1), 1992.

Bernhard Nebel. Terminological cycles: Se-
mantics and computational properties. In
John F. Sowa, editor, Principles of Se-
mantic Networks, pages 331-361. Morgan
Kaufmann, Los Altos, 1991.

Barbara Piza, Klaus-Dieter Schewe, and
Joachim W. Schmidt. Term subsumption
with type constructors. In Y. Yesha, editor,
Proc. of the Int. Conf. on Information and
Knowledge Management CIKM-92, pages
449-456, Baltimore, 1992.

Klaus Schild. A correspondence theory for
terminological logics: Preliminary report.
In Proc. of the 12th Int. Joint Conf. on Ar-
tificial Intelligence 1JCAI-91, pages 466—
471, Sydney, 1991.

John F. Sowa, editor. Principles of Seman-
tic Networks. Morgan Kaufmann, Los Al-
tos, 1991.

R.S. Street. Propositional dynamic logic of
looping and converse is elementarily decid-
able. Information and Control, 54:121-141,
1982.

M. Vardi and P. Wolper. Automata-
theoretic techniques for modal logics of
programs. In Proc. of the 16th ACM
SIGACT Symp. on Theory of Computing
STOC-84, pages 446-455, 1984.

William A. Woods and James G. Schmolze.
The KL-ONE family. In F.W. Lehmann,
editor, Semantic Networks in Artificial In-
telligence, pages 133—178. Pergamon Press,
1992. Published as a special issue of Com-
puters & Mathematics with Applications,
Volume 23, Number 2-9.

