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Abstract

Current object-oriented data models lack several impor-
tant features that would allow one to express relevant
knowledge about the classes of a schema. In particu-
lar, there is no data model supporting simultaneously
the inverse of the functions represented by attributes, the
union, the intersection and the complement of classes,
the possibility of using nonbinary relations, and the pos-
sibility of expressing cardinality constraints on attributes
and relations. In this paper we define a new data model,
called CAR, which extends the basic core of current
object-oriented data models with all the above mentioned
features. A technique is then presented both for checking
the consistency of class definitions, and for computing
the logical consequences of the knowledge represented in
the schema. Finally, the inherent complexity of reason-
ing in CAR is investigated, and the complexity of our
inferencing technique is studied, depending on various
assumptions on the schema.

1 Introduction

Many recent research efforts have been devoted to the
definition of object-oriented database models. These
are data models based on the notions of object, class,
attribute, and method, where classes and attributes are
used to describe the structural aspects of objects, while
methods are used to represent their dynamic aspects.
The analysis developed in this paper concentrates on
the structural part of object-oriented data models, and
starts with the observation that most of these models do
not support several important features that would allow
one to express relevant knowledge about the classes
of a schema. In particular, there is no data model
supporting simultaneously the inverse of the functions

represented by attributes, the union, the intersection
and the complement of classes, the possibility of using
nonbinary relations, and the possibility of expressing
cardinality constraints on attributes and relations.

In this paper, we address the problem of adding all
these constructs to an object-oriented data model, with
the goal of devising suitable reasoning techniques (for
subtyping and consistency checking) on schemas.

The main results of our work can be summarized as
follows: First, a new data model is defined, called CAR
(for Classes, Attributes, Relations), supporting inheri-
tance, disjointness between classes, union of classes, in-
verse attributes, n-ary relations, and cardinality con-
straints. Second, a technique is presented for both
checking the consistency of a class definition, and for
computing the logical consequences of the knowledge
represented in the schema. Third, the inherent com-
plexity of reasoning in CAR is investigated, and the
complexity of our reasoning technique is studied, de-
pending on various assumptions on the schema.

With regard to the first aspect, our model can be
seen as an extension of a basic core which is present
in most of the object-oriented data models proposed in
the literature. Such core usually includes classes, isa-
relationships between classes as the basis for represent-
ing inheritance, and attributes as a means to establish
the properties of classes (see [Kim90]). First of all, we
add to the basic core the possibility of referring to the
complement of a class, in the spirit of [AP86, DL93], and
the possibility of denoting the union and the intersec-
tion of classes (see [LR89, AK89]). Then, we introduce
both the inverse of an attribute, which is rarely consid-
ered in the object-oriented framework, and the notion
of n-ary relations, similarly to [AK89, AGO91]. Finally,
we make available the use of cardinality constraints,
which impose restrictions on the number of links of a
certain type (attribute or relation) involving every in-
stance of a given class. Note that, although cardinality
constraints appear in various forms in most conceptual
and semantic database models, they are rarely present
in the object-oriented setting. It is worth noting that
the use of cardinality constraints allows us to represent
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several forms of existence and functional dependencies,
and is very common in structured knowledge represen-
tation languages (semantic networks and frame-based
languages), as pointed out, for example, in [FK85].

With regard to the second aspect, reasoning about
a schema comprising all types of constructs mentioned
above appears to be significantly harder than reason-
ing about the various constructs separately. It is
clear, for example, that the interaction between isa-
relationships and cardinality constraints may cause a
database schema to exhibit undesirable properties. In
particular, it may happen that there exists a class in
the schema that is necessarily empty (i.e. has no in-
stances) in all finite database states. It follows that
we need to develop suitable techniques for checking the
satisfiability of a class in a schema, and, more gener-
ally, for checking if a certain property is a logical con-
sequence of the schema. The interaction between car-
dinality constraints and the other modeling constructs
of our model makes the nature of the problem differ-
ent with respect to the context of relational theory (see
[CK86, GM84]), conceptual and semantic data models
[LS83, Tha92, LN90, CL94], or knowledge representa-
tion languages [DLNN91, BDS93, Neb88]. Indeed, the
work on relational databases rarely considered cardinal-
ity constraints of the form allowed in CAR, whereas the
work on conceptual and semantic data modeling usu-
ally does not take into account complex class expres-
sions (e.g. union and complement of classes). Finally,
the knowledge representation community does not re-
strict the reasoning process to finite structures, as done
in databases in general, and in CAR in particular.

For this reason, we extend and improve the technique
proposed in [CL94] in order to deal with the constructs
of the CAR data model. In the method we propose,
the reasoning process is split into two phases, where the
first one deals with the logical information regarding
the mutual relationships between classes, attributes and
relationships in the schema, and the second one is based
on the idea of representing the cardinality constraints
in terms of a special system of linear disequations.
We show that the technique can be turned into a
correct and terminating algorithm for checking both
class satisfiability and logical implication, thus proving
that the reasoning problem for the CAR data model is
decidable.

With respect to the third aspect, we study the
computational complexity of the problem of reasoning
on a CAR schema, showing EXPTIME-hardness in the
general case, and singling out meaningful cases where
our method can be implemented efficiently.

The paper is organized as follows. In Section 2, we
define the CAR data model. In Section 3, we describe
our technique for reasoning on a CAR schema in order
to check consistency of definitions and to compute

class Person

attributes name: String;
date of birth: String

endclass

class Professor

isa Person

attributes teaches: Course

endclass

class Student

isa Person

attributes student id: String

endclass

class Grad Student

isa Student

endclass

class Course

attributes taught by: Professor

endclass

class Adv Course

isa Course

endclass

class Enrollment

attributes enrolls: Student;
enrolled in: Course

endclass

Figure 1: An object-oriented schema

logical consequences. In Section 4, we analyze the
computational complexity of the reasoning problems
and techniques, discussing upper and lower bounds in
the general case, as well as efficiency in special cases.

2 The CAR data model

Generally speaking, object-oriented data models are
based on the notions of object, class, and attribute. A
class is an abstraction for a set of objects with common
characteristics. An attribute is a property of a class
expressed in terms of another class. The inheritance of
properties from one class to another can be realized by
establishing inclusion between classes. Figure 1 shows
an example of an object-oriented schema modeling part
of the reality at an university, in which both basic and
advanced courses are offered. Professors and students
are persons, and therefore inherit the attributes name

and date of birth. Professors teach courses, and the
enrollment of students in courses is represented by the
class Enrollment.

The expressivity provided by this basic core of con-
structs is usually not sufficient to model real world sit-
uations properly. The CAR data model we propose ex-
tends the basic core by offering the following possibili-
ties:
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• to specify more complex relations that exist between
classes, such as disjointness or the fact that one class
is a subset of the union of other classes;

• to explicitly refer to inverse attributes;

• to use (n-ary) relations with complex properties;

• to express cardinality constraints both for attributes
and for the participation of objects in relations.

In the following subsection we discuss and motivate each
of the above additions to the basic core of the data
model, and in the rest of the section we define syntax
and semantics of CAR.

2.1 Motivations

In order to permit the inheritance of properties, object-
oriented models allow to specify inclusion between
classes. To model correctly the reality, however, it is
often necessary to express more complex relations that
hold between classes. This can be accomplished by
allowing the specification of generic intersections and
unions of classes and their complements, both as su-
perclasses and as attribute domains. Referring to the
schema of Figure 1, we may want, for example, to ex-
press that the classes Person and Course are disjoint, or
that students cannot be professors. A more precise spec-
ification should also include the fact that courses can be
taught by either professors or graduate students. The
following additions to the basic schema take this into
account.

class Student

isa Person ∧ ¬Professor

attributes student id: String

endclass

class Course

isa ¬Person

attributes taught by: Professor ∨ Grad Student;
endclass

Also, most object-oriented models to not capture the
fact that an attribute of a class may be the inverse of an-
other attribute. The two attributes are actually treated
as distinct, and it is not possible to express their mu-
tual relationship in the schema. In our running example
this is the case with teaches and taught by. One fea-
ture of the CAR data model is to allow one to specify
that an attribute is actually the inverse of the function
represented by another attribute. The following exam-
ple illustrates this for the attributes of the class Course.

class Course

isa ¬Person

attributes (inv teaches): Professor ∨ Grad Student;
(inv enrolled in): Enrollment

endclass

When representing a real world situation it may hap-
pen that certain classes have been introduced in order
to represent relations that hold between other classes
that appear in the schema. This happens for example
with the class Enrollment, which represents a relation-
ship between courses and students. In such cases it is
more appropriate to include directly in the model the
possibility to define relations. A relation over a set of
predefined roles, where each role is a symbol identify-
ing one component of the relation, is an abstraction for
a set of tuples, each one mapping every role to a single
object. The following modification to our schema shows
the substitution of the class Enrollment with a relation.
It is also important to allow to express more or less com-
plex conditions about the participation of classes in the
relationship. The constraints imposed on the relation
Enrollment force it to hold just between students and
courses, and moreover they ensure that only graduate
students enroll in advanced courses. We show also the
use of a ternary relation, in this case Exam, between stu-
dents, professors and courses.

relation Enrollment(enrolled in,enrolls)
constraints

(enrolled in :Course);
(enrolls :Student);
(enrolled in :¬Adv Course) ∨ (enrolls :Grad Student)

endrelation

relation Exam(of,by,in)
constraints

(of :Student);
(by :Professor);
(in :Course)

endrelation

Another important modeling capability is provided by
cardinality constraints, which generalize both existence
and functional dependencies. They allow one to express
constraints on the number of connections that instances
of a class may have, either through attributes or through
roles of relations. Figure 2 shows the final specification
we obtain when adding all of the modifications discussed
above, together with cardinality constraints, to the
original schema of Figure 1. The precise syntax
we use and the underlying semantics are explained
in detail in the next subsections. The cardinality
constraints associated with the attribute taught by

specify that each course is taught by exactly one person
(which is either a professor or a graduate student).
The cardinality constraints about the participation of
courses in the relationship Enrollment are specified in
the participates in part of the definition of Course, and
they express that each course enrolls between 5 and 100
students. An advanced course must satisfy the stronger
constraint to enroll at most 20 students. Professors,
must teach one or two courses. Note that to express such
a constraint properly, it is necessary to use a cardinality
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class Person

attributes name : (1, 1) String;
date of birth : (1, 1) String

endclass

class Professor

isa Person

attributes (inv taught by) : (1, 2) Course
endclass

class Student

isa Person ∧ ¬Professor

attributes student id : (1, 1) String
participates in Enrollment[enrolls] : (1, 6)

endclass

class Grad Student

isa Student

attributes (inv taught by) : (0, 1) Course
participates in Enrollment[enrolls] : (2, 3)

endclass

class Course

attributes taught by : (1, 1) Professor ∨ Grad Student

participates in Enrollment[enrolled in] : (5, 100)
endclass

class Adv Course

isa Course

attributes taught by : (1, 1) Professor
participates in Enrollment[enrolled in] : (5, 20)

endclass

relation Enrollment(enrolled in,enrolls)
constraints

(enrolled in :Course);
(enrolls :Student);
(enrolled in :¬Adv Course) ∨ (enrolls :Grad Student)

endrelation

relation Exam(of,by,in)
constraints

(of :Student);
(by :Professor);
(in :Course)

endrelation

Figure 2: A CAR schema

constraint on the inverse of the attribute taught by.
Each student must be enrolled in at least one and
at most 6 courses, and such cardinality constraints
are again expressed in the participates in part of the
class definition. For graduate students these cardinality
constraints are refined, and, finally, the constraints in
the attributes part force each graduate student to teach
at most one course.

2.2 Syntax

A CAR schema S is a collection of class and relation
definitions over an alphabet B, which is a set of symbols
partitioned into the set C of class symbols, the set A of
attribute symbols, the set R of relation symbols, and

the set U of role symbols. Elements of these sets are
denoted respectively with C, A, R and U with possible
subscripts. In the following we make use of the notions
of class-literal, class-clause, and class-formula, for which
we use respectively L, γ and F with possible subscripts
as meta-symbols. A class-literal is either a class symbol
C or an expression of the form ¬C. A class-clause is an
expression of the form L1 ∨ · · · ∨ Lm (where each Li is
a class-literal), and a class-formula is an expression of
the form γ1 ∧ · · · ∧ γn (where each γj is a class-clause).

A class definition is given in terms of a set of
properties. There are three types of properties, namely,
isa, attributes, and relation participation.

The form of a class definition is:

class C

isa F

attributes att1 : (u1, v1)F1;...
attp : (up, vp)Fp

participates in R1[U1] : (x1, y1);...
Rq[Uq] : (xq, yq)

endclass;

where

• C is the class to be defined;

• each atti is either an attribute symbol Ai ∈ A, or an
expression of the form (inv Ai); we assume that each
atti appears at most once in each class definition;

• ui, xi are nonnegative integers, and vi, yi are either
nonnegative integers or the special value ∞.

Let us discuss the informal meaning of a class
definition. The isa part of the definition of C contains
information about the logical relationship that exists
between the set of instances of C and the sets of
instances of other classes that appear in the schema.
Intuitively, isa F in the definition of C means that,
in every database state, every instance of C is also an
instance of the class-formula F . Given a set of objects
and an assignment of elements of this set to each class
symbol, the instances of a class-formula are determined
inductively in the intuitive way. For example, an
instance of a class-clause L1 ∨ · · · ∨ Lm is simply an
instance of the class obtained as union of the instances
of each Li.

The attributes part of the definition of C defines
the attributes of C, constraining both their type and
the allowed cardinalities. In particular, the attribute
specification atti : (ui, vi)Fi specifies that every instance
c̃ of C is related to instances of Fi by means of the
function represented by atti, and, moreover, there are
at least ui and at most vi instances of Fi associated to
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c̃ by atti. In the case where atti is of the form (inv Ai),
the function represented by atti is the inverse of the
function represented by Ai.

The participates in part of the definition of C specifies
the cardinality constraints for the participation in
relations that the instances of C must satisfy. More
precisely, the relation participation specification Ri[Ui] :
(xi, yi) constraints every instance c̃ of C to participate
in at least xi and at most yi tuples of Ri in the role Ui.

A relation definition specifies both the set of roles
associated to the relation and the constraints that hold
for the classes participating in it. We make use of the
notions of role-literal, which is an expression of the form
(U : F ), and role-clause (for which we use the meta-
symbol ρ with possible subscripts), which has the form
(U1 : F1) ∨ · · · ∨ (Us : Fs). We may assume without
loss of generality that the role symbols U1, . . . , Us in a
role-clause are pairwise distinct.

The form of a relation definition is:

relation R(U1, . . . , UK)
constraints ρ1;...

ρt

endrelation;

where

• R is the relation to be defined;

• U1, . . . , UK are pairwise distinct role symbols;

• all role symbols that appear in ρ1, . . . , ρt are con-
tained in {U1, . . . , UK}.

Intuitively, the definition of R specifies that U1, . . . , UK

are the roles of R (the set of such roles is denoted by
rol(R)); moreover, each role-clause (Uk1

: F1) ∨ · · · ∨
(Uks

:Fs) in the constraints part of the definition speci-
fies that for every database state and for every tuple r̃

that is an instance of R, there is at least one role Uki

such that the value associated with the Uki
-component

of r̃ is an instance of Fi.

2.3 Formal semantics and reasoning

We specify the formal semantics of a CAR schema
as follows. An interpretation (corresponding to a
database state) I = (∆I , ·I) for a CAR schema S
over an alphabet B, consists of a nonempty finite
set ∆I (the universe of I), and a function ·I (the
interpretation function of I) that maps every class
in B to a subset of ∆I , every attribute to a subset
of ∆I × ∆I , and every relation to a set of labeled
tuples over ∆I . In particular, if R is a relation such
that rol(R) = {U1, . . . , UK}, then RI is a set of
labeled tuples of the form 〈U1: c̃1, . . . , UK : c̃K〉, where
c̃1, . . . , c̃K ∈ ∆I . A labeled tuple over a generic set D is
a function from a subset of U to D, and is denoted with

〈U1: d1, . . . , Uk: dk〉. We write t[U ] to denote the value
associated with the U -component of the labeled tuple t.

Given an interpretation I, the extension of class-
literals, class-clauses and class-formulae in I is:

(¬C)I = ∆I \ CI

(L1 ∨ · · · ∨ Lm)I = LI
1 ∪ · · · ∪ LI

m

(γ1 ∧ · · · ∧ γn)I = γI
1 ∩ · · · ∩ γI

n .

Also, the extension of the inverse of an attribute A is:

(inv A)I =
{

(ã, b̃)
∣

∣

∣
(b̃, ã) ∈ AI

}

.

An interpretation I is said to be a model (correspond-
ing to a legal database state) of S if it satisfies every
definition in S, where I satisfies a definition δ if the
following conditions hold:

• if δ is a class definition (say of class C), then

– for the class-formula F in the isa part of δ, it holds
that CI ⊆ F I ;

– for every atti : (u, v)Fi in the attributes part of δ,
for every c̃ ∈ CI , for every (c̃, c̃′) ∈ attIi , it holds
that c̃′ ∈ F I

i , and there are least u and at most v

pairs (c̃, d̃) in attIi ;

– for every R[U ] : (x, y) in the participates in part of
δ, for every c̃ ∈ CI , it holds that there at least x

and at most y tuples r̃ in RI such that c̃ = r̃[U ];

• if δ is a relation definition (say of R(U1, . . . , UK)),
then for every labeled tuple r̃ ∈ RI , and for every
role-clause (Uk1

: F1) ∨ · · · ∨ (Uks
: Fs) in the

constraints part of δ, there exists at least one role-
literal (Uki

:Fi) such that r̃[Uki
] ∈ F I

i .

The combination of constructs of the CAR data
model makes this model powerful enough to capture
most of the object-oriented and semantic data models
presented in the literature. In particular, it is possible
to show that the data schemas expressed in object-
oriented models encompassing the notion of type (e.g.
record and set, as in [AK89]) can be reformulated
in terms of the CAR data model. It is worth
noting that IRIS [LV87] is one example of data model
that is more powerful than CAR in the specification
of cardinality constraints. Indeed, IRIS allows one
to impose cardinality constraints holding between a
class and a projection of a relation, while CAR does
not provide any means for referring to projections
of relations. However, observe that no complete
inferencing mechanism is known for IRIS, while we
present in the next section a sound and complete
reasoning method for CAR.

It is easy to see that every CAR schema is satisfied
by any interpretation that assigns the empty set of
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instances to every class, every relationship and every
attribute. It may happen, however, that cardinality
constraints, isa relationships or their interaction force
a class to be empty in every model. This observation
leads us to introduce the concept of class satisfiability,
intended to capture the intuition that we should be able
to populate a class in a schema without violating any of
the constraints represented in the schema. In particular,
a class C is said to be satisfiable in a CAR schema
S, if S admits a model I such that CI is nonempty.
A CAR schema S logically implies a definition δ if
every model of S satisfies δ. Class satisfiability and
logical implication are the basis for reasoning about
a schema, and the solution of these problems has
many applications, like schema validation, inheritance
computation, type checking and type inference.

3 Reasoning in CAR

In this section we present a method for verifying
the satisfiability of a class in a CAR schema. This
method can also be extended to solve the logical
implication problem in the CAR model, but, due to
space limitations, we do not deal with this aspect in the
present paper.

The method for class satisfiability extends the tech-
nique proposed in [CL94] in order to cope with the
higher expressivity of the CAR data model. Moreover,
the class satisfiability algorithm is divided into two sep-
arate phases: In the first one we neglect all cardinality
constraints and take only into account the knowledge
that derives from the other aspects of the schema. In
the second one we consider the cardinality constraints
present in the schema, and we use them to build a sys-
tem of linear disequations whose solutions are strictly
related to the models of the schema. The way in which
we perform this second phase represents an improve-
ment over the algorithm proposed in [CL94], and works
in worst case deterministic exponential time (compared
to the double exponential time algorithm suggested in
[CL94]).

The unknowns in the system ΨS derived from a
CAR schema S are intended to represent the number of
instances of each class, each relation and each attribute
in a possible model of S, while the disequations
take into account the constraints on the number of
instances deriving from the cardinality constraints in
S. Unfortunately, because of classes that may have
common instances, it is not possible to adopt the most
natural approach, which would be to use one unknown
for each class, attribute and relation, as done in [LN90]
for a simple data model that assumes that all classes
are pairwise disjoint. We will overcome this problem by
introducing the notion of expansion of a CAR schema.

Subsection 3.1 introduces such a notion, while sub-
section 3.2 describes how to derive a system of linear

disequations with the desired properties, thus setting
up a method for deciding the satisfiability of a class in
a CAR schema.

3.1 Expansion of a CAR schema

In order to define the expansion of a CAR schema S,
we introduce the notions of compound class, compound
attribute and compound relation (relative to S).

A compound class C̄ is a subset of C. Intuitively it
represents those objects that are instances of all classes
in C̄ and are not instances of the classes in C \ C̄. Each
compound class C̄ induces a truth assignment ΦC̄ for
the classes in C: the value assigned by ΦC̄ to a class
C is true if C ∈ C̄ and is false otherwise. This truth
assignment can be extended in the obvious way to class-
literals, class-clauses and class-formulae. Given a class-
formula F , if ΦC̄(F ) = true then we say that C̄ realizes
F . A compound class C̄ is said to be consistent (with
respect to S), if for every class C in C̄, C̄ realizes FC ,
where FC is the class-formula in the isa part of the
definition of C.

For each attribute A ∈ A, in the expansion of S
we represent explicitly the association with all possible
pairs of compound classes. This can be accomplished by
defining a compound attribute corresponding to A as an
indexed pair 〈C̄1, C̄2〉A, where C̄1 and C̄2 are compound
classes. A compound attribute Ā = 〈C̄1, C̄2〉A is said to
be consistent (with respect to S) if

• C̄1 and C̄2 are consistent;

• for every class C ∈ C̄1, if A : (u, v)F is in the
attributes part of the definition of C, then F is
realized by C̄2;

• for every class C ∈ C̄2, if (inv A) : (u, v)F is in
the attributes part of the definition of C, then F is
realized by C̄1.

With Ā(A) we denote the set of all consistent compound
attributes corresponding to attribute A.

Similarly, we define compound relations, which rep-
resent explicitly for each role the association to a com-
pound class. A compound relation is a labeled tuple
over the set of compound classes. In particular, if
R is a relation with rol(R) = {U1, . . . , UK}, a com-
pound relation corresponding to R is a labeled tuple of
the form 〈U1: C̄1, . . . , UK : C̄K〉R, where C̄1, . . . , C̄K are
compound classes. It is said to be consistent if all com-
pound classes associated to its roles are consistent, and
if for each role-clause (Uk1

:F1) ∨ · · · ∨ (Uks
:Fs) in the

constraints part of the definition of R, for at least one
i ∈ 1..s, the class-formula Fi is realized by C̄ki

. With
R̄(R) we denote the set of all consistent compound re-
lations 〈U1: C̄1, . . . , UK : C̄K〉R corresponding to relation
R.

It is easy to see that whether a compound class,
compound attribute or compound relation is consistent
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can be checked in polynomial time with respect to its
size and the size of the schema.

Definition 3.1 The expansion S̄ of a CAR schema S
is constituted by:

• the set of all consistent compound classes, denoted
with C̄;

• the set of all consistent compound attributes, denoted
with Ā, obtained as the union of all Ā(A), where
A ∈ A;

• the set of all consistent compound relations, denoted
with R̄, obtained as the union of all R̄(R), where
R ∈ R;

• the set Natt of cardinality constraints between com-
pound classes and attributes obtained as follows:
for each attribute or inverse attribute att and for
each consistent compound class C̄, if for some class
C ∈ C̄ and some u (nonnegative integer) and v

(nonnegative integer or ∞), att : (u, v)F is in the
attributes part of the definition of C, then C̄ ⇒att :
(umax, vmin) is in Natt, where

umax = max{u | ∃C ∈ C̄ such that att : (u, v)F

is in the definition of C}, and

vmin = min{v | ∃C ∈ C̄ such that att : (u, v)F

is in the definition of C};

• the set Nrel of cardinality constraints between com-
pound classes and relations obtained as follows: for
each relation R with rol(R) = {U1, . . . , UK}, for
k ∈ 1..K, and for each consistent compound class C̄,
if for some class C ∈ C̄ and some x (nonnegative in-
teger) and y (nonnegative integer or ∞), R[U ] : (x, y)
is in the participates in part of the definition of C,
then C̄⇒R[U ] : (xmax, ymin) is in Nrel, where

xmax = max{x | ∃C ∈ C̄ such that R[U ] : (x, y)
is in the definition of C}, and

ymin = min{y | ∃C ∈ C̄ such that R[U ] : (x, y)
is in the definition of C}.

In order to capture the intuitions given above, we
specify the formal semantics of compound classes, com-
pound attributes and compound relations by extending
interpretations to the expansion of a CAR schema. Let
S be a CAR schema, I an interpretation of S and S̄ the
expansion of S.

If C̄ is a compound class relative to S, then its
extension C̄I is defined as follows:

C̄I =
{

c̃ ∈ ∆I
∣

∣

∣
(∀C ∈ C̄.c̃ ∈ CI) ∧

(∀C ∈ C \ C̄.c̃ 6∈ CI)
}

.

If Ā = 〈C̄1, C̄2〉A is a compound attribute correspond-
ing to an attribute A, then its extension ĀI is defined
as follows:

ĀI =
{

(c̃1, c̃2) ∈ AI
∣

∣

∣
c̃i ∈ C̄I

i , i = 1, 2
}

.

If R̄ = 〈U1: C̄1, . . . , UK : C̄K〉R is a compound relation
corresponding to a relation R, then its extension R̄I is
defined as follows:

R̄I =
{

〈U1: c̃1, . . . , UK : c̃K〉 ∈ RI
∣

∣

∣
c̃i ∈ C̄I

i , i ∈ 1..K
}

.

Conversely, given the extensions of all compound
classes, compound attributes and compound relations
of S̄, we can immediately derive the extensions of the
classes, attributes and relations of S as follows:

CI =
⋃

C̄|C∈C̄

C̄I AI =
⋃

Ā∈Ā(A)

ĀI RI =
⋃

R̄∈R̄(R)

R̄I

Notice that the way we interpret compound classes
(attributes, relations) forces their extensions to be
pairwise disjoint in all interpretations. This is crucial
for deriving from the expansion of the schema a suitable
system of disequations, as shown later. However, the
price we have to pay for this property is the worst
case exponential number of different compound classes
(attributes, relations) that form the expansion.

A model of a CAR schema S will also be called a
model of the expansion S̄ of S. The following lemma
states the conditions for an interpretation I of S to be
a model of S̄.

Lemma 3.2 An interpretation I of a CAR schema S
is a model of the expansion S̄ of S, if and only if it
satisfies the following conditions:

(A) For each compound class, compound attribute or
compound relation X̄ that is not consistent, and
therefore not in the expansion, it holds that X̄I =
∅.

(B) For each attribute or inverse attribute att, for each
consistent compound class C̄ and for each c̃ ∈ C̄I ,
if C̄ ⇒ att : (u, v) is in Natt, then it holds that
u ≤

∣

∣

{

(c̃, c̃′) ∈ attI
}
∣

∣ ≤ v.

(C) For each relation R with rol(R) = {U1, . . . , UK},
for k ∈ 1..K, for each consistent compound class C̄

and for each c̃ ∈ C̄I , if C̄⇒R[Uk] : (x, y) is in Nrel,
then it holds that x ≤

∣

∣

{

r̃ ∈ RI | r̃[Uk] = c̃
}∣

∣ ≤ y.

3.2 Characterization of class satisfiability

Lemma 3.2 guarantees that, in order to check the
satisfiability of a class C in S it is sufficient to verify
if S̄ admits an interpretation satisfying conditions (A),
(B) and (C), and in which the extension of at least
one compound class containing C is nonempty. This
suggests us to perform the class satisfiability check in
two phases:
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(1) we construct the expansion S̄ of S;

(2) we derive from S̄ a system ΨS of linear disequations
and search for particular solutions of ΨS which
guarantee the satisfiability of C.

We analyze phase (1) in detail in the following section,
where we show that it can be performed in worst case
deterministic exponential time.

With respect to phase (2), the system is obtained by
introducing one unknown Var(X̄) for each consistent
compound class, compound attribute or compound
relation X̄. ΨS consists of the following disequations:

• for each unknown Var(X̄) we introduce the disequa-
tion

Var(X̄) ≥ 0;

• for each attribute or inverse attribute att and
for each consistent compound class C̄, if
C̄ ⇒ att : (u, v) ∈ Natt, then we introduce the dise-
quations

u · Var(C̄) ≤ S(att, C̄) ≤ v · Var(C̄),

where

S(A, C̄) =
∑

〈C̄,C̄2〉A∈Ā(A)

Var(〈C̄, C̄2〉A), and

S((inv A), C̄) =
∑

〈C̄1,C̄〉A∈Ā(A)

Var(〈C̄1, C̄〉A);

• for each relation R with rol(R) = {U1, . . . , UK}, for
k ∈ 1..K, and for each consistent compound class C̄,
if C̄ ⇒ R[Uk] : (x, y) ∈ Nrel, then we introduce the
disequations

x · Var(C̄) ≤
∑

R̄∈R̄(R) such
that R̄[Uk]=C̄

Var(R̄) ≤ y · Var(C̄).

The system ΨS of disequations we obtain from the
expansion of the CAR schema S is linear and admits
only nonnegative solutions. The following theorem
relates the existence of particular solutions of this
system to the satisfiability of a class in S. We
call a solution of ΨS acceptable if for all compound
attributes Ā = 〈C̄1, C̄2〉A of S̄, the value assigned to
Var(Ā) is 0, whenever the value assigned to Var(C̄1)
or Var(C̄2) is 0, and if for all compound relations
R̄ = 〈U1: C̄1, . . . , UK : C̄K〉R of S̄, the value assigned to
Var(R̄) is 0, whenever the value assigned to Var(C̄k) is
0 for some k ∈ 1..K.

We are now ready to prove the main result concerning
the satisfiability of a class in a CAR schema.

Theorem 3.3 A class Cs of a CAR schema S is
satisfiable, if and only if

Ψ′
S = ΨS

⋃







∑

C̄∈C such that Cs∈C̄

Var(C̄) ≥ 1







admits an acceptable integer solution.

In order to make use of this result and show that we
can effectively decide the satisfiability of a class in a
CAR schema, we have to guarantee that verifying the
existence of acceptable integer solutions for a system of
disequations is decidable. We show in the next section
that this is indeed the case. Summarizing the results
concerning the decidability of both points (1) and (2)
above, we can conclude this section by stating that class
satisfiability in CAR is decidable.

4 Computational complexity of

reasoning

In this section we analyze the computational complexity
of class satisfiability in a CAR schema. In subsection
4.1 we give lower bounds, both for the general case and
for restricted cases, while in subsection 4.2 we discuss
the complexity of an algorithm based on the decision
procedure described above. Subsection 4.3 contains
some considerations that allow us to improve the
performance of the algorithm, and finally, in subsection
4.4, we discuss meaningful cases where our method
works in polynomial time with respect to the size of
the schema.

4.1 Lower bounds

The problem of verifying the satisfiability of a class in
a CAR schema is inherently complex. The following
theorem shows that the general case is provably in-
tractable, even without fully exploiting the expressivity
of the model.

Theorem 4.1 Deciding if a class is satisfiable in a
CAR schema S is EXPTIME-hard with respect to the
size of S, even if no relation definition appears in S and
each number in S is either 0 or 1.

Proof (sketch). The proof is based on the reduction
of string acceptance by EXPTIME Turing Machines
(TM) to class satisfiability in a CAR schema. Since the
TM works in exponential time, both the time instants
of the computation and the tape positions of the TM
can be encoded with a polynomial number of classes
of the schema. Two attributes are used to represent
spatial and temporal successors, and their inverses
represent the spatial and temporal predecessors. There
are additional classes for encoding the input symbols,
the states of the TM and the position of the head on
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the tape. The definitions of the classes account for
the input symbols on the tape at time 0 and for the
changes induced on the tape and on the state of the
TM by the allowed transitions. It is possible to show
that the TM accepts the input string if and only if the
class corresponding to its accepting state is satisfiable
in the schema.

If we limit ourselves to an even less expressive model,
admitting only cardinality constraints and simple isa-
relationships, reasoning on the schema is still hard.
To show this, we define a negation-free schema as one
in which for every class and relation definition of the
schema, the symbol “¬” does not appear in any class-
formula in the definition. Similarly, we define a union-
free schema as one in which for every class and relation
definition, all class-clauses and role-clauses that appear
in the definition are constituted by only one class-literal
and role-literal, respectively.

Theorem 4.2 Deciding if a class is satisfiable in a
CAR schema which is both union-free and negation-free,
is NP-hard with respect to the size of the schema, even
if no relation definition appears in the schema.

Proof (sketch). The proof is based on the reduction
of Intersection Pattern (see [GJ79], problem SP9). It
exploits the fact that disjointness between classes can be
expressed introducing suitable cardinality constraints.

4.2 Upper bounds

The method proposed in the previous section splits the
process of checking the satisfiability of a class in a CAR
schema in two phases.

Phase (1) requires to determine which of the com-
pound classes, compound attributes and compound re-
lations are consistent. The most trivial way to do this
is by enumerating the exponentially many compound
classes (attributes, relations) and checking for each one
in linear time if it is consistent.

With respect to phase (2), we observe that the con-
struction of the system of disequations from the expan-
sion is immediate. The proof of the following theorem
suggests an algorithm for verifying the existence of ac-
ceptable integer solutions in polynomial time.

Theorem 4.3 Checking if the system ΨS of disequa-
tions corresponding to a CAR schema S admits accept-
able integer solutions can be done in polynomial time
with respect to the size of ΨS .

Proof (sketch). The form of ΨS guarantees that if it
admits a positive solution, then it also admits an integer
solution (see [LN90]). Moreover, it has been shown
(see for example [Pap81]) that for a system of linear
disequations, the existence of an integer solution implies

the existence of a solution in which all values assigned to
the unknowns of the system are bounded by a number
whose binary representation is polynomial in the size of
the system. This result can be used to derive suitable
disequations that can be added to ΨS , in order to obtain
a new system Ψ′

S with the following properties:

• ΨS and Ψ′
S have the same unknowns and their sizes

are polynomially correlated;

• all solutions of Ψ′
S are acceptable;

• Ψ′
S admits a solution if and only if ΨS admits an

acceptable integer solution.

Therefore, verifying the existence of an acceptable
integer solution of ΨS amounts to verifying the existence
of a generic solution of Ψ′

S . Using linear programming
techniques, this can be done in polynomial time in the
size of Ψ′

S , which means in polynomial time in the size
of ΨS .

Note, however, that in the worst case the size of ΨS

is exponential in the size of S. Summing up, we obtain
an algorithm for class satisfiability that works in worst
case exponential time.

Theorem 4.4 Class satisfiability in CAR can be de-
cided in worst case deterministic exponential time.

Since phase (2) of the proposed reasoning method can
be performed in polynomial time with respect to the
size of the system, and since it relies on well established
linear programming techniques, we will not analyze it
further in detail, and in the rest of the section we
concentrate on phase (1) above.

The complexity of constructing the system of disequa-
tions depends obviously on the size of the expansion of
the schema, but also on the time needed to construct
it, which means to determine which are the consistent
compound classes, attributes and relations. The lower
bound established in the previous subsection tells us
that there will be instances of the problem where the
whole process takes exponential time.

The size of the expansion is determined by the
number of consistent compound classes, compound
attributes and compound relationships: the number
|C̄| of consistent compound classes in general grows
exponentially with the number of classes in the schema;
the number of compound attributes is simply related to
|C̄|; with respect to compound relations, we notice that
their number depends on |C̄|, but in general grows also
exponentially with the maximum arity of relations.

In practice, the maximum arity of relations is a small
number (usually less than or equal to 3), independent
of the size of the schema, and we could assume it
to be constant. The next theorem ensures that in
many significant cases, even from a theoretical point
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of view, the arity of relations does not constitute a
problem. In these cases the exponential increase in the
number of compound relations due to this aspect can
be avoided by substituting every relation whose arity is
K with a new class and K binary relations. The newly
introduced classes are pairwise disjoint and disjoint from
the other classes in the schema, and therefore each
of them gives rise to just one compound class in the
resulting expansion.

Theorem 4.5 Let S be a CAR schema in which all
role-clauses in the definitions of all nonbinary relations
are constituted by just one role-literal. Then S can
be transformed in linear time into a CAR schema S ′

containing only binary relations and such that class
satisfiability is preserved.

In the following we concentrate only on the aspects
related to the number of compound classes in the
expansion of the schema.

4.3 Strategies for performing phase (1)

In order to propose strategies for optimizing the con-
struction of the expansion, we analyze more in detail the
factors that contribute to the complexity of reasoning.
We can distinguish between two categories of instances
of the problem:

(α) those instances where the number of compound
classes in the expansion is necessarily exponential
in the number of classes (where “necessarily” means
that it cannot be reduced without affecting the
result of the class satisfiability check);

(β) those instances corresponding to schemas where the
number of compound classes in the expansion is
polynomial in the number of classes (or can be
made polynomial without affecting the result of the
class satisfiability check).

If the schema we have to deal with falls into category
(α), any procedure for class satisfiability that is based
on the construction of the expansion is deemed to
work in exponential time. Therefore, the following
considerations are devoted to describe a strategy that,
when possible, does better than the trivial method of
checking all compound classes for consistency. This
strategy may lead to an efficient treatment of the
problem, in particular when the schema to be analyzed
falls in category (β),

A preliminary analysis shows that there will be
instances of the problem where, even if the size of
the expansion is polynomial, nevertheless it takes
exponential time to discard all inconsistent compound
classes, and there will also be instances where both
the size of the expansion and the time to construct
it can be kept polynomial. Actually, we argue that
in most practical situations, this last case is the most

likely to occur. We propose a heuristics for optimizing
the selection of consistent compound classes, which
performs this process in two steps: In the first step,
a preselection on the compound classes is performed,
using an efficient and possibly incomplete algorithm
that allows us to discard a priori as many of them
as possible. In the second step each of the remaining
compound classes is then checked for consistency, and
only the consistent ones are taken into account. Since
this test can be performed in linear time for each
compound class, the complexity of the second step
essentially depends on the number of compound classes
that remain to be considered after the preselection.

The preselection is done by considering each pair
of classes in turn, and trying to extract from the
schema as much information as possible concerning both
inclusion and disjointness for the classes in each pair.
This information is used on one hand for discarding
inconsistent compound classes, and on the other hand
for singling out those consistent compound classes that
can be ignored without influencing the correctness of
satisfiability checking. Of course there is a tradeoff
between the need to be efficient in the preselection
and the need to obtain from it as much information
as possible.

We propose to construct two data structures, one,
called disjointness table, for storing pairs of classes that
are disjoint in every model of the schema, and one,
called inclusion table, for storing pairs of classes such
that the first class of the pair is necessarily included
in the second. Basically, the preselection step consists
in filling in the entries of the two tables. We have
determined two criteria that we can follow to do this:

(a) to consider inclusion or disjointness that logically
follows from the isa part of the class definitions in
the schema;

(b) to consider inclusion or disjointness that may
be assumed without influencing the satisfiability
checking.

Regarding criterion (a), the simplest strategy is to fill
the entries of the tables simply considering inclusion and
disjointness that are explicitly present in the schema.
If, for example, the class-formula in the isa part of
the definition of a class C1 contains a class-clause
consisting only of the class-literal ¬C2, this allows us
immediately to exclude all compound classes containing
both C1 and C2. A more sophisticated method is to
consider inclusion or disjointness of two classes that are
deducible from the whole set of isa parts of definitions
of classes. However, if we pose no restrictions on the
class-formulae in the isa parts of class-definitions, the
problem of determining when inclusion or disjointness
between classes logically follows from the schema, can
easily be shown to be NP-complete. Nevertheless, since
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we are performing a preselection, it may be sufficient
to use an efficient and sound procedure that does not
guarantee completeness [Dal92].

With respect to criterion (b), we propose a simple
syntactic method that can be applied in order to in-
troduce disjointness between classes without influenc-
ing satisfiability of classes in the schema. Let GS be the
undirected graph constructed from a schema S in the
following way:

1. for each class C in S, introduce one node nC in GS ;

2. for each pair of classes C1 and C2 in S, introduce
an arc between nC1

and nC2
if at least one of the

following conditions is satisfied:

• C2 appears positively (i.e. not preceded by the
symbol “¬)” in the class-formula in the isa part
of the definition of C1;

• there is a class C in S such that both C1 and
C2 appear positively in some class-formula in the
attributes part of the definition of C;

• there is a relation R in S such that C1 appears
positively in a class-formula F1, C2 appears
positively in a class-formula F2, and F1 and F2 are
associated to the same role in some role-clauses in
the constraints part of the definition of R (note
that F1 and F2 may coincide);

3. for each pair of classes C1 and C2 in S, remove (if
present) the arc between nC1

and nC2
if C1 and

C2 have been determined to be disjoint by applying
criterion (a) above.

Theorem 4.6 Let S be a CAR schema and let GS be
the graph derived from S as stated above. Then the CAR
schema S ′, obtained from S by imposing disjointness
between each pair of classes that are not connected
through a path in GS , is satisfiable if and only if S is so.

Once we have constructed the disjointness and inclu-
sion tables, the information therein is used to cut down
the number of compound classes that have to be checked
for consistency. Each entry in the tables allows us to
exclude all compound classes that do not satisfy the in-
clusion or disjointness condition specified by the entry,
and therefore excludes three quarters of the compound
classes.

4.4 Special Cases

In the case of union-free schemas, the construction
of the inclusion and disjointness tables represents an
optimal strategy in the following sense: On one hand all
possible deductions on the isa parts of class definitions
can be computed in polynomial time, and on the other
hand, by applying the method referred to in theorem
4.6, we can complete the disjointness table in such

a way that the number of disjointness assertions is
maximized. It is possible to show that in this case
all inconsistent compound classes are determined by
using the information contained in the two tables, and,
moreover, all possible disjointness assumptions between
classes are derived, in the sense that introducing further
ones may influence the correctness of class satisfiability
checking.

A meaningful case where the number of compound
classes can be reduced dramatically, is when the
disjointness assertions induce a partition of the classes
into a number of clusters, such that classes belonging to
different clusters are disjoint. The clusters can easily be
determined by constructing a graph with one node for
each class and an arc between two nodes if and only if
the corresponding classes are not disjoint. Each cluster
corresponds to a connected component of this graph. In
such a case, all compound classes we have to consider
are formed only of classes of the same cluster, and the
set of compound classes becomes the union of the sets of
compound classes obtained separately for each cluster.
If we can ensure that for each cluster this number is
polynomial, we obtain a system of disequations whose
size is polynomial in the size of the original schema.
This is the case, for example, if the size of each cluster
is logarithmic in the total number of classes.

Another special case to be considered is that of
union-free schemas where the classes are organized in
generalization hierarchies. Generalization hierarchies
are treelike structures representing inclusion, where it
is assumed that classes in different groups are pairwise
disjoint, and within one group the same holds for all
classes at the same depth in the tree [BCN92]. In this
case, each group corresponds to one cluster, and for
each cluster the number of compound classes equals the
number of classes, since it corresponds to the number of
paths from the root of the tree to a class. It follows that
our method, when applied to schemas of this type, works
in polynomial time. This is particularly important, if
one considers that most object-oriented data models
assume, either implicitly or explicitly, an organization
of classes based on generalization hierarchies (see for
example how isa-relationships are treated in [AK89]).

5 Conclusions

We have presented the object-oriented data model
CAR, supporting several modeling constructs that en-
hance the expressive power of the structural component
of the model but are usually missing in current data
models. We believe that the main contributions of our
work are the design of the inferencing technique asso-
ciated with the model, and the characterization of the
computational complexity of both the reasoning prob-
lems and the technique. Our results show that reasoning
in CAR is decidable by a worst-case exponential time
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algorithm, and that there are significant cases where our
technique exhibits good computational properties. It is
worth noticing that one of the reasons of the high com-
plexity of the inference problem is the possibility of re-
fining cardinality constraints for subclasses. Despite the
high worst-case complexity, the presence of such con-
straints does not make the problem undecidable. By
exploiting results such as those in [GM84, LV87], one
can show that no sound and complete inference meth-
ods exist, for a data model obtained by extending CAR
with cardinality constraints imposed on projections of
relations. This supports the claim that the modeling
constructs of CAR represent an optimal compromise
between expressive power and decidability of schema
reasoning.
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