
On the Interaction Between ISA and Cardinality Constraints ∗

Appeared in Proc. of ICDE’94

D. Calvanese, M. Lenzerini
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

e-mail: {calvanese,lenzerini}@assi.dis.uniroma1.it

Abstract

ISA and cardinality constraints are among the most
interesting types of constraints in data models. ISA
constraints are used to establish several forms of con-
tainment among classes, and are receiving great atten-
tion in moving to object-oriented data models, where
classes are organized in hierarchies based on a gen-
eralization/specialization principle. Cardinality con-
straints impose restrictions on the number of links of
a certain type involving every instance of a given class,
and can be used for representing several forms of de-
pendencies beteewn classes, including functional and
existence dependencies. While the formal properties
of each type of constraints are now well understood,
little is known of their interaction. The goal of this
paper is to present an effective method for reasoning
about a set of ISA and cardinality constraints in the
context of a simple data model based on the notions
of classes and relationships. In particular, the method
allows one both to verify the satisfiability of a schema
and to check whether a schema implies a given con-
straint of any of the two kinds. We prove that the
method is sound and complete, thus showing that the
reasoning problem for ISA and cardinality constraints
is decidable.

1 Introduction

Integrity constraints are used to express conditions
that the elements of the database (objects, tuples, val-
ues, etc.) must satisfy in order to plausibly represent
the underlying domain of interest. There are at least
three major problems when dealing with integrity con-

∗This work has been partially supported by the Italian Re-
search Council (CNR), Progetto Finalizzato Sistemi Informatici
e Calcolo Parallelo, Sottoprogetto 7, Linea di ricerca IBRIDI,
and by the EEC Esprit Basic Research Action N.6810 (COM-
PULOG 2).

straints, namely: (a) how to express them, (b) how to
use them during schema construction, and (c) how to
ensure that they are satisfied by the database. In this
paper we are mainly concerned with problem (b).

Two main approaches to problem (a) have been ad-
vocated: either using a very general language to ex-
press, in principle, all kinds of constraints, or singling
out interesting classes of constraints, and adding cor-
responding ad hoc constructs to the data model.

Problem (b) is related to the idea of reasoning
about a collection of constraints in order to derive rel-
evant properties during database schema design. No-
table examples of such properties are satisfiability (or
consistency) and implication. A set of integrity con-
straints are said to be satisfiable if there exists at least
one database state that satisfies them. A set of con-
straints is said to imply a given constraint if every
database state that satisfies the former satisfies the
latter too. Notice that when adopting a general lan-
guage for expressing constraints, problem (b) becomes
very hard: the more powerful the constraint language,
the more difficult to devise suitable reasoning meth-
ods. On the contrary, using ad hoc constructs for ex-
pressing specific classes of constraints often makes it
possible to develop specialized reasoning methods, as
demonstrated by the large body of research in depen-
dency theory within the relational model (see [1]).

The work reported in this paper has been carried
out in the context of the second approach to prob-
lem (a) (ad hoc constructs for special classes of con-
straints), and is concerned with the problem of reason-
ing about a set of constraints belonging to interesting
classes. In particular, we deal with two classes of con-
straints, namely, ISA and cardinality ratio constraints.

ISA constraints are used to establish several forms
of containment between the instances of two or more
classes of objects in a database schema. They have
always received great attention both in database
modeling and in knowledge representation, since
they are the basics for representing both general-

ization/specialization abstractions and inheritance of
properties. Recently, they are becoming even more
important in moving to object-oriented data models,
where classes are organized in hierarchies based on a
containment relation. Formal properties of this type
of constraints have been the subject of a lot of research
efforts in various contexts, ranging from the relational
model to conceptual and semantic data models (see
for example [2, 3]).

Cardinality ratio constraints (or simply cardinal-
ity constraints) are used to impose restrictions on the
number of links of a certain type involving every in-
stance of a given class. They appear in many forms in
most of the database models proposed in the last two
decades. Functional and existence dependencies are
examples of cardinality constraints in the relational
model. In [4], a binary data model, that inspired most
of the conceptual models subsequently proposed, is
presented where cardinality constraints can be stated
for binary relationships. Cardinality constraints have
always been considered as natural constraints to ex-
press in Entity-Relationship (ER) schemas. For exam-
ple, the ER model proposed in [5, 6, 7, 8] as the target
model used in the phase of conceptual database design,
includes cardinality constraints in various ways. In
[9], a relationship mechanism, together with a form of
cardinality constraints, is introduced in the context of
the object oriented data model. The use of cardinality
constraints is also very common in structured knowl-
edge representation languages (semantic networks and
frame-based languages), as pointed out, for example,
in [10].

Formal properties of cardinality constraints are
studied in several papers. We already mentioned the
work on functional and existence constraints in the re-
lational theory (see [11]). In [12], a general form of car-
dinality constraints (called numerical dependencies),
which limit the maximum number of associations be-
tween two given sets of attributes, is analyzed in the
context of the relational model. Due to the expres-
sive power of such constraints, it turns out that in the
general case there is no finite set of inference rules for
reasoning about them. In [13], a uniform framework is
proposed for expressing cardinality constraints in the
ER model, later extended in [14]. In [15], a method
is proposed for reasoning about an ER model with
cardinality constraints, but without any form of in-
clusion dependencies. Finally, cardinality constraints
in the context of knowledge representation languages
are studied in [16, 17, 18].

It is interesting to observe that, while each type of
constraints mentioned above is now quite well under-

C
(2,∞)

D
(0,1)

R©©©

HHH

HHH

©©©

6

Figure 1: A finitely unsatisfiable ER-diagram

stood, we know very little of the interaction between
ISA and cardinality constraints. In particular, a sound
and complete method for satisfiability and implication
checking in the presence of constraints of the two kinds
is still missing.

Notice that reasoning about a schema comprising
both types of constraints appears to be significantly
harder than reasoning about the two types of con-
straints separately. It is clear, for example, that the
interaction between ISA and cardinality constraints
may cause a database schema to exhibit undesirable
properties. In particular, it may happen that there ex-
ists a class in the schema that is necessarily empty (i.e.
has no instances) in all finite database states. We show
an example of this in Figure 1, where the schema is ex-
pressed in the ER notation (classes of objects as boxes
and relationships among classes as diamonds). The
cardinality constraints in the schema (represented by
pairs (min-card, max-card) associated with the con-
nections between classes and relationships) force the
number of instances of class D to be twice the number
of instances of class C, while the inclusion dependency
(represented by the arrow) forces the extension of D
to be a subset of the extension of C. Obviously, this
schema admits no finite database state.

The goal of this paper is to present an effective
method for reasoning about a set of ISA and cardinal-
ity constraints in the context of a data model based on
the notions of classes and relationships. In particular,
the method allows one both to verify the satisfiability
of a schema and to check whether a schema implies
a given constraint of any of the two kinds. We show
that the method is sound and complete, thus proving
that the reasoning problem for ISA and cardinality
constraints is decidable.

Our decision procedure is based on the idea of rep-
resenting the cardinality constraints in terms of a spe-
cial system of linear disequations, similarly to what
is done in [15]. However, the presence of ISA con-

205

straints makes the problem much harder than the one
addressed in [15], and requires a different technique
for deriving a suitable system of disequations from the
schema.

The result presented in this paper provides a so-
lution to a long standing problem in the ER model.
However, we point out that the method is not merely
confined to this model. Indeed, it is possible to show
that we can specialize our technique in order to deal
with most of the data models proposed in the liter-
ature. For example, by interpreting relationships as
attributes, we directly derive a method applicable to
object oriented data models. Similarly, by interpret-
ing classes as frames and relationships as slots, we
obtain a corresponding decision procedure for several
knowledge representation formalisms. We have cho-
sen an abstract simple data model simply because it
offers the basic notions for studying the interaction
between ISA and cardinality constraints, which is the
main focus of our investigation.

The paper is organized as follows. In Section 2, we
describe the basic characteristics of the data model we
use. In Section 3 we present the method for checking
the satisfiability of a schema expressed in this model.
In Section 4 we show how to exploit the method in or-
der to check implication. Finally, Section 5 concludes
the paper with some remarks about both the proposed
method and future related research.

2 The data model

In this section we describe the main characteristics
of the data model we use in our investigation, called
CR. The basic concepts in this model are those of class
and relationship (see [19, 5]).

A class denotes a set of individuals, called its in-
stances, representing objects of the domain of interest
with common properties.

A relationship represents associations between in-
dividuals. An instance of a relationship denotes an
association between instances of classes connected to
the relationship. Since each class can be connected
to a relationship more than once, the concept of role
is introduced to distinguish between different connec-
tions of the same class to a relationship.

More precisely, we associate to each relationship R
a set of roles, denoted with role(R), such that each role
is specific for one relationship. For each relationship
R, a particular class is associated to each role U ∈
role(R). This class is called the primary class for U in
R. Intuitively, the fact that C is the primary class for

U in R means that the U -component of every instance
of R is an instance of C.

In the proposed model we make use of the following
types of integrity constraints:

• ISA constraints between classes, also called is-a
relationships, force the set of instances of a class
to be contained in the set of instances of another
class. This implies that the contained class inher-
its all relevant properties of all its ancestors, in-
cluding possible connections to relationships and
cardinality constraints.

• Cardinality constraints specify for a class C, for
a relationship R and for a role U ∈ role(R), the
minimum and maximum number of instances of
R having the same instance of C in the role U .

We show in Figure 2 an example of CR-schema
(represented as diagram, where classes are boxes and
relationships are connected to their primary classes),
where we model a meeting constituted by a number of
talks. For each talk there is exactly one speaker and
at least one discussant. Each discussant can partici-
pate to at most one talk, whereas there is no limita-
tion on the number of talks a speaker can hold. We
further require that each discussant must also be a
speaker. Since we do not want to exhaust speakers
that are also discussants, they are not allowed to hold
more than two talks. This last property is modeled
by means of the cardinality constraints between the
class Discussant and the relationship Holds, which
are a refinement of the cardinality constraints between
Speaker (the primary class for Holds in the role U1)
and Holds. This kind of refinement is represented by
means of the dashed edge connecting Discussant and
Holds, labeled with the new constraints.

We observe that the possibility of associating to a
class a refinement of the cardinality constraints de-
fined for the superclasses, greatly enhances the ex-
pressive power of the model, and is coherent with the
notion of property refinement in those data models
supporting inheritance.

The following definition formalizes the notion of
CR-schema.

Definition 2.1 A CR-schema S is constituted by:

• a set C of class symbols, a set R of relationship
symbols and a set U of role symbols

• a set Sisa of statements of the form C1 ¹ C2,
where C1 and C2 are classes. The reflexive tran-
sitive closure of ¹ is denoted with ¹∗ ;

206

Speaker
(1,∞)

Holds©©©©

HHHH

HHHH

©©©©

U1 U2

Discussant
(1,1)

Participates©©©©

HHHH

HHHH

©©©©

U3 U4

Talk

(1,∞)

(1,1)

(0,2)

6

Figure 2: A CR-diagram

• for each relationship R ∈ R, a set of roles, de-
noted by role(R), and for each role U ∈ role(R)
an associated class, called the primary class for U
in R. The cardinality of role(R) is greater than
or equal to 2, and implicitly determines the arity
of R. We assume that each role is specific for one
relationship, i.e. for any two relationships R and
R′, role(R) ∩ role(R′) = ∅;

• for each relationship R ∈ R, for each role U ∈
role(R) and for each class C ∈ C such that
C ¹∗ CU , where CU is the primary class for U in
R, a non negative integer, minc(C,R, U), and a
non negative integer or ∞, maxc(C, R,U). If not
stated otherwise, minc(C, R,U) is assumed to be
0 and maxc(C, R,U) is assumed to be ∞.

We define a labeled tuple over a generic set D
as a function from a subset of U to D, denoted as
〈U1: d1, . . . , Uk: dk〉, where Ui ∈ U and di ∈ D, for
i = 1, . . . , k. If T = 〈U1: d1, . . . , Uk: dk〉 is a labeled
tuple, we write T [Ui] to denote di, where i ∈ 1..k. No-
tice that a relationship R can be characterized by a
labeled tuple over the set C of classes. We will write
R = 〈U1: C1, . . . , UK :CK〉 to specify that R is a rela-
tionship with role(R) = {U1, . . . , UK} and that Ck is
the primary class for Uk in R, where k = 1, . . . , K.

Figure 3 shows the schema corresponding to the
CR-diagram of Figure 2.

An instance of a CR-schema, corresponding to the
notion of database state, is a finite collection of in-
stances of the involved classes and relationships, and
is considered acceptable if it satisfies a set of rules in-
herent in the model and all integrity constraints that
are part of the schema. More formally, the semantics
of a CR-schema is based on the notion of interpre-
tation. An interpretation I = (∆I , ·I) consists of a
set ∆I (the domain of I), and a function ·I (the in-
terpretation function of I), that maps

C = {Speaker, Discussant, Talk};
R = {Holds, Participates};
U = {U1, U2, U3, U4};
Sisa = {Discussant ¹ Speaker};
Holds = 〈U1: Speaker, U2: Talk〉;
Participates = 〈U3: Discussant, U4: Talk〉;
minc(Speaker, Holds, U1) = 1;
maxc(Discussant, Holds, U1) = 2;
minc(Talk, Holds, U2) = 1;
maxc(Talk, Holds, U2) = 1;
minc(Discussant, Participates, U3) = 1;
maxc(Discussant, Participates, U3) = 1;
minc(Talk, Participates, U4) = 1.

Figure 3: The CR-schema corresponding to the CR-
diagram shown in Figure 2

• every class C ∈ C to a subset CI of ∆I and

• every relationship R ∈ R to a set RI of labeled
tuples over ∆I .

The elements of CI and RI are called instances of
C and R respectively.

Definition 2.2 An interpretation I of a CR-schema
S, is said to be a model of S if it satisfies the following
conditions:

(A) For each statement C1 ¹ C2 ∈ Sisa it holds that
CI1 ⊆ CI2 .

(B) For each relationship
R = 〈U1: C1, . . . , UK :CK〉 ∈ R, all instances of R
are of the form 〈U1: c̃1, . . . , UK : c̃K〉, where c̃k ∈
CIk , for k = 1, . . . , K.

(C) For each relationship
R = 〈U1: C1, . . . , UK :CK〉 ∈ R, for k = 1, . . . , K,
for each class C ∈ C such that C ¹∗ Ck and for
each instance c̃ of C in I, it holds that

minc(C, R,Uk) ≤
∣∣∣
{

r̃ ∈ RI
∣∣∣ r̃[Uk] = c̃

}∣∣∣ ≤

≤ maxc(C, R, Uk),

where |·| denotes the cardinality of a set.

3 Satisfiability in CR

A CR-schema is said to be satisfiable if it has a
nonempty model, and is called finitely satisfiable if it
has a finite model, i.e. a model with finite domain.
Since in both databases and knowledge representation
we are generally interested in finite models, in the rest

207

of the paper we refer only to finite satisfiability, and
we simply use the term satisfiability for that. More-
over, when we talk about interpretations and models,
we implicitly refer to finite interpretations and finite
models.

As pointed out in [15], the notion of satisfiability
is not sufficient for capturing the relevant properties
of a CR-schema. In fact, it is easy to see that every
schema is satisfied by any interpretation that assigns
an empty set of instances to every class and every rela-
tionship. It may happen, however, that the cardinality
constraints or the interaction of cardinality constraints
and is-a relationships forces a class to be empty in ev-
ery interpretation. An example of this was shown in
Figure 1. The above observation leads us to introduce
the concept of class satisfiability, intended to capture
the intuition that we should be able to populate a class
in a schema without violating any of the constraints.
In particular, a class C is said to be satisfiable in a
CR-schema S, if S admits a model I such that CI is
nonempty.

In this section we present a method for verifying the
satisfiability of a class C in a CR-schema. Following
[15], we model the cardinality constraints that appear
in a CR-schema S by means of an associated system
ΨS of linear disequations. The system is defined in
such a way that the existence of a model of S where C
is nonempty is reflected into the existence of particular
solutions of ΨS .

The unknowns in ΨS are intended to represent the
number of instances of each class and each relation-
ship in a possible model of S, while the disequations
take into account the constraints on the number of
instances deriving from the cardinality constraints in
S. Unfortunately, because of classes that may have
common instances, it is not possible to simply use one
unknown for each class and relationship, as done in
[15]. We will overcome the problem by introducing
the notion of expansion of a CR-schema.

The rest of the section is structured as follows. In
paragraph 3.1 we introduce the notion of expansion
of a CR-schema; in paragraph 3.2 we use this notion
to derive a system of linear disequations with the de-
sired properties; finally, in paragraph 3.3 we present
a method for deciding the satisfiability of a class in a
CR-schema.

3.1 Expansion of a CR-schema

In order to define the expansion of a CR-schema
S, we introduce the notions of compound class and
compound relationship (relative to S).

A compound class C̄ is a nonempty subset of C.
Intuitively it represents those individuals that are in-
stances of all classes in C̄ and are not instances of all
classes in C \ C̄ 1. A compound class C̄ is said to be
consistent if for any two classes C1, C2 ∈ C such that
C1 ¹ C2 ∈ Sisa, C1 ∈ C̄ implies C2 ∈ C̄.

A compound relationship is a labeled tuple over
the set of compound classes. In particular, if
R = 〈U1: C1, . . . , UK : CK〉 ∈ R is a relationship,
a compound relationship corresponding to R is a la-
beled tuple of the form 〈U1: C̄1, . . . , UK : C̄K〉R, where
C̄1, . . . , C̄K are compound classes. A compound rela-
tionship is consistent if all compound classes associ-
ated to its roles are consistent and contain the primary
class for their specific role. A consistent compound re-
lationship represents explicitly for each role the associ-
ation to a consistent compound class that contains the
primary class for that role. With R̄R we denote the set
of all compound relationships 〈U1: C̄1, . . . , UK : C̄K〉R,
obtained by associating in all possible ways to each
role Uk ∈ role(R) a compound class C̄k.

It is easy to see that whether a compound class or
a compound relationship is consistent can be checked
in polynomial time with respect to its size and the size
of Sisa.

Definition 3.1 The expansion S̄ of a CR-schema S
is constituted by:

• the set of all compound classes, denoted with C̄,
and its subset C̄c of consistent compound classes

• the set of all compound relationships, denoted
with R̄, obtained as the union of all R̄R, where
R ∈ R, and its subset R̄c of consistent compound
relationships

• for each relationship R = 〈U1: C1, . . . , UK :CK〉 ∈
R, for k = 1, . . . , K, and for each consistent com-
pound class C̄ ∈ C̄c that contains Ck, a non neg-
ative integer, minc(C̄, R, Uk), and a positive in-
teger or ∞, maxc(C̄, R, Uk), obtained in the fol-
lowing way:

minc(C̄, R, Uk) = max
{
m | ∃C ∈ C̄.

minc(C, R, Uk) = m}
maxc(C̄, R, Uk) = min

{
n | ∃C ∈ C̄.

maxc(C, R, Uk) = n} .

Figure 4 shows the expansion corresponding to the
CR-schema of Figure 3, where we abbreviate each class
and relationship with its initial letter.

1The symbol “\” denotes set difference.

208

C̄ = {C̄i | 1 ≤ i ≤ 7}, where
C̄1 = {S}, C̄2 = {D}, C̄3 = {T},
C̄4 = {S, D}, C̄5 = {S, T}, C̄6 = {D, T},
C̄7 = {S, D, T};

C̄c = {C̄1, C̄3, C̄4, C̄5, C̄7};
R̄ = {H̄ij , P̄ij | 1 ≤ i, j ≤ 7}, where

H̄ij = 〈U1: C̄i, U2: C̄j〉H,
P̄ij = 〈U3: C̄i, U4: C̄j〉P;

R̄c = {H̄ij | i ∈ {1, 4, 5, 7} ∧ j ∈ {3, 5, 7}} ∪
{P̄ij | i ∈ {4, 7} ∧ j ∈ {3, 5, 7}};

minc(C̄1, H, U1) = minc(C̄4, H, U1) = 1;
minc(C̄5, H, U1) = minc(C̄7, H, U1) = 1;
maxc(C̄4, H, U1) = maxc(C̄7, H, U1) = 2;
minc(C̄3, H, U2) = minc(C̄5, H, U2) = 1;
minc(C̄7, H, U2) = 1;
maxc(C̄3, H, U2) = maxc(C̄5, H, U2) = 1;
maxc(C̄7, H, U2) = 1;
minc(C̄4, P, U3) = minc(C̄7, P, U3) = 1;
maxc(C̄4, P, U3) = maxc(C̄7, P, U3) = 1;
minc(C̄3, P, U4) = minc(C̄5, P, U4) = 1;
minc(C̄7, P, U4) = 1;

Figure 4: The expansion of the CR-schema shown in
Figure 3

In order to capture the intuitions given above, we
specify the formal semantics of compound classes and
compound relationships by extending interpretations
to the expansion of a CR-schema. Let S be a CR-
schema, I an interpretation of S and S̄ the expansion
of S.

If C̄ is a compound class of S̄, then its extension
C̄I is defined as follows:

C̄I =
{

d ∈ ∆I
∣∣∣ (∀C ∈ C̄.d ∈ CI) ∧

(∀C ∈ C \ C̄.d 6∈ CI)
}

.

If R̄ = 〈U1: C̄1, . . . , UK : C̄K〉R is a compound rela-
tionship corresponding to a relationship R, then its
extension R̄I is defined as follows:

R̄I =
{
〈U1: c̃1, . . . , UK : c̃K〉 ∈ RI

∣∣∣ c̃i ∈ C̄Ii , i ∈ 1..K
}

.

Conversely, given the extensions of all compound
classes and compound relationships of S̄, we can derive
the extensions of the classes and relationships of S in
an obvious way. If C ∈ C and R ∈ R, then

CI =
⋃

C̄3C

C̄I and RI =
⋃

R̄∈R̄R

R̄I .

Notice that the way we interpret compound classes
and relationships forces their extensions to be pairwise
disjoint in all interpretations. This is crucial for deriv-
ing a suitable system of disequations, as shown later.
However, the price we have to pay for this property is

the exponential number of different compound classes
and relationships that form the expansion.

A model of a CR-schema S will also be called a
model of the expansion S̄ of S. The following lemma
states the conditions for an interpretation I of S to
be a model of S̄.

Lemma 3.2 An interpretation I is a model of the ex-
pansion S̄ of a CR-schema S, if and only if it satisfies
the following conditions:

(A’) For each compound class C̄ ∈ C̄ that is not con-
sistent, it holds that C̄I = ∅.

(B’) For each compound relationship
R̄ = 〈U1: C̄1, . . . , UK : C̄K〉R ∈ R, if R̄ is con-
sistent, then all labeled tuples of R̄I are of the
form 〈U1: c̃1, . . . , UK : c̃K〉, where c̃k ∈ C̄Ik , for
k = 1, . . . , K, and if R̄ is not consistent then
R̄I = ∅.

(C’) For each relationship
R = 〈U1: C1, . . . , UK :CK〉 ∈ R, for k = 1, . . . , K,
for each consistent compound class C̄ ∈ C̄c con-
taining Ck and for each instance c̃ of C̄ in I, it
holds that

minc(C̄, R, Uk) ≤
∣∣∣
{

r̃ ∈ RI
∣∣∣ r̃[Uk] = c̃

}∣∣∣ ≤

≤ maxc(C̄, R, Uk).

3.2 System of disequations corresponding
to a CR-schema

We recall that we aim at developing a method for
checking the satisfiability of a CR-schema S. Lemma
3.2 guarantees that any interpretation I of the ex-
pansion S̄ that satisfies conditions (A’) through (C’)
is a model of S̄ and hence also of S. Therefore, in
the following we can concentrate on establishing if the
expansion of a CR-schema admits a model.

In order to check this property, we derive a system
ΨS of linear disequations from the expansion S̄ of S.
The unknowns of ΨS are obtained as follows:

• For each compound class C̄ ∈ C̄ we introduce
an unknown Var(C̄). These unknowns are called
class unknowns.

• For each compound relationship R̄ ∈ R̄ we intro-
duce an unknown Var(R̄). These unknowns are
called relationship unknowns.

The disequations of ΨS are obtained as follows:

209

Var(C̄i) = ci, 1 ≤ i ≤ 7;
Var(H̄ij) = hij , Var(P̄ij) = pij , 1 ≤ i, j ≤ 7;

ci = 0, i ∈ {2, 6};
ci ≥ 0, i ∈ {1, 3, 4, 5, 7};
hij = 0, i ∈ {2, 3, 6} ∨ j ∈ {1, 2, 4, 6};
pij = 0, i ∈ {1, 2, 3, 5, 6} ∨ j ∈ {1, 2, 4, 6};
hij ≥ 0, i ∈ {1, 4, 5, 7} ∨ j ∈ {3, 5, 7};
pij ≥ 0, i ∈ {4, 7} ∨ j ∈ {3, 5, 7};
ci ≤ hi3 + hi5 + hi7, i ∈ {1, 4, 5, 7};

2ci ≥ hi3 + hi5 + hi7, i ∈ {4, 7};
cj ≤ h1j + h4j + h5j + h7j , j ∈ {3, 5, 7};
cj ≥ h1j + h4j + h5j + h7j , j ∈ {3, 5, 7};
ci ≤ pi3 + pi5 + pi7, i ∈ {4, 7};
ci ≥ pi3 + pi5 + pi7, i ∈ {4, 7};
cj ≤ p4j + p7j , j ∈ {3, 5, 7}.

Figure 5: The system corresponding to the expansion
shown in Figure 4

1. for each compound class or compound relation-
ship X̄ that is not consistent we introduce

Var(X̄) = 0

2. for each relationship R = 〈U1:C1, . . . , UK : CK〉 ∈
R, for k = 1, . . . ,K, and for each consistent com-
pound class C̄ ∈ C̄c that contains Ck:

• if minc(C̄, R, Uk) = m > 0, we introduce

m ·Var(C̄) ≤
∑

R̄∈R̄R | R̄[Uk]=C̄

Var(R̄)

• if maxc(C̄, R, Uk) = n 6= ∞, we introduce

n ·Var(C̄) ≥
∑

R̄∈R̄R | R̄[Uk]=C̄

Var(R̄)

3. for each consistent compound class or compound
relationship X̄, we introduce

Var(X̄) ≥ 0

Note that the resulting system ΨS of linear dise-
quations is homogeneous (i.e. all of its constant terms
are equal to 0) and has integer coefficients. Figure 5
shows the system of disequations corresponding to the
expansion of Figure 4.

3.3 Characterization of satisfiability

In order to relate the models of the expansion S̄ of
a CR-schema to particular solutions of the associated
system ΨS , we specify an additional condition which
must be satisfied by the solutions of ΨS . First, we

need a further definition. If R̄ is a compound rela-
tionship that associates a compound class C̄ to role
U , then we say that Var(R̄) depends on Var(C̄) via
role U . Also, we say that Var(R̄) depends on Var(C̄)
if it depends on Var(C̄) via some role U .

Let X be a solution of ΨS and X(y) denote the
value assigned by X to a class or relationship unknown
y. Then, X is said to be acceptable if for all relation-
ship unknowns r depending on a class unknown c such
that X(c) = 0, it holds that X(r) = 0.

We are now ready to prove the main result concern-
ing the satisfiability of a class.

Theorem 3.3 A class Cs of a CR-schema S is sat-
isfiable, if and only if

Ψ′S = ΨS
⋃





∑

C̄3Cs

Var(C̄) > 0





admits an acceptable solution.

Coming back to the example of Figure 2, suppose
we want to check whether the class Speaker is sat-
isfiable. The above theorem tells us that we can
add to the system shown in Figure 5 the disequation
c1 + c4 + c5 + c7 > 0, and check whether it admits
acceptable nonnegative integer solutions. It turns out
that one such solution, named X, is the one given in
Figure 6. The way we built the disequation system
ensures us that from this solution it is possible to con-
struct a model of the schema where the number of
instances of each compound class and compound rela-
tionship is exactly the value assigned by the solution
to the corresponding unknown. Figure 6 gives a model
derived from the solution X.

Now, consider the following additional condition:
Each speaker that is allowed to participate in a dis-
cussion, must hold at least two talks. It forces us
to add to the schema of Figure 3 the constraint
minc(Discussant, Holds, U1) = 2, that is reflected by
the disequations

2ci ≤ hi3 + hi5 + hi7, i ∈ {4, 7}.
If we add them to the system of Figure 5, together
with c1 + c4 + c5 + c7 > 0, then the system becomes
unsolvable. Intuitively, this happens because the orig-
inal constraints on the schema forced each talk to have
exactly one discussant and also each speaker to be a
discussant and to hold exactly one talk (we will see
a formal justification for this in the next section).
Therefore the number of talks, speakers and discus-
sants must be the same and the additional constraint
gives rise to a contradiction.

210

X(ci) = ĉi, 1 ≤ i ≤ 7;
X(hij) = ĥij , X(pij) = p̂ij , 1 ≤ i, j ≤ 7;

ĉ3 = ĉ4 = 2; ĉ1 = ĉ2 = ĉ5 = ĉ6 = ĉ7 = 0;
ĥ34 = 2; ĥij = 0, i 6= 3 ∨ j 6= 4;
p̂34 = 2; p̂ij = 0, i 6= 3 ∨ j 6= 4;

∆I = {John, Mary, talkJ , talkM},
SpeakerI = {John, Mary},
DiscussantI = {John, Mary},
TalkI = {talkJ , talkM},
HoldsI = {〈U1: John, U2: talkJ 〉,

〈U1: Mary, U2: talkM 〉},
ParticipatesI = {〈U3: John, U4: talkM 〉,

〈U3: Mary, U4: talkJ 〉}.

Figure 6: A solution of the system shown in Figure 5

It remains to show that it is decidable to verify
whether a system Ψ of linear homogeneous disequa-
tions admits an acceptable solution. Let VC and VR
be respectively the class and relationship unknowns of
Ψ. For a generic subset Z of VC , let ΨZ be the system
of linear disequations obtained from Ψ as follows:

ΨZ = Ψ ∪
{

c = 0
∣∣∣ c ∈ Z

}
∪

{
c > 0

∣∣∣ c ∈ VC \ Z
}

∪
{

r ≥ 0
∣∣∣ r ∈ VR

}
∪

{
r = 0

∣∣∣ r ∈ VR ∧ ∃c ∈ Z.r depends on c
}

.

Theorem 3.4 Ψ admits an acceptable solution if and
only if for some Z ⊆ VC, ΨZ admits a solution.

Since it is well known that checking whether a sys-
tem of linear homogeneous disequations admits a so-
lution, can be done in polynomial time, the above the-
orem ensures us that satisfiability in CR is decidable.
In particular, our method can be turned into an al-
gorithm running in exponential time with respect to
the size of the schema. It is also possible to show
that the satisfiability problem in CR is polynomially
intractable. We will come back to the issues related to
computational complexity of the method in the con-
cluding section.

4 Implication in CR

The implication problem in our framework can be
stated as follows. We consider a CR-schema S, and a
constraint statement of one of the following forms:

C ¹ D

minc(C,R, U) = m

maxc(C,R, U) = n

where m is a positive and n a nonnegative integer, C
and D are classes of S, R is a relationship of S and
U ∈ role(R). An interpretation I satisfies

• C ¹ D if CI ⊆ DI ;

• minc(C, R,U) = m if for any instance c̃ of C in
I, the number of instances of R in I that assign
c̃ to U is greater than or equal to m;

• maxc(C, R, U) = n if for any instance c̃ of C in
I, the number of instances of R in I that assign
c̃ to U is less than or equal to n.

Analogously to satisfiability, we are interested in
implication in finite models. We say that a CR-schema
S implies a constraint statement K, written S |= K,
if every finite model of S satisfies K. We show that
the proposed method for satisfiability checking can be
easily adapted to solve the implication problem.

ISA constraints: To decide whether S |= (C ¹ D),
where C and D are classes of S, we take the fol-
lowing system of disequations:

Ψ′S = ΨS ∪




∑

C̄3C ∧ C̄ 63D

Var(C̄) > 0



 .

It is easy to see that S |= (C ¹ D) if and only
if Ψ′S admits no solution. In fact, if Ψ′S admits a
solution, by applying the method described above
we can construct a model I of S with at least
one instance of C that is not an instance of D.
Therefore C ¹ D does not follow from S. On the
other hand, if there is a model I of S such that
CI 6⊆ DI , for the completeness of the proposed
method, ΨS must admit a solution X in which at
least one unknown corresponding to a compound
class containing C and not containing D gets a
positive value. Therefore X is also a solution of
Ψ′S .

Cardinality constraints: To decide whether S |=
(minc(C,R, U) = m), where m > 0, we intro-
duce a new class Cexc and construct the following
CR-schema S ′:
• C′ = C ∪ {Cexc};
• R′ = R and U ′ = U ;

• S ′isa = Sisa ∪ {Cexc ¹ C};

211

S |= Speaker ¹ Discussant

S |= maxc(Talk, Participates, U4) = 1

S |= maxc(Speaker, Holds, U1) = 1

Figure 7: Inferences from the CR-diagram shown in
Figure 2

• maxc(Cexc, R, U) = (m−1) and for all other
C ′ ∈ C, R′ ∈ R and U ′ ∈ U , minc and maxc
are defined as in S.

It is easy to see that S |= (minc(C, R, U) = m) if
and only if Cexc is not satisfiable in S ′. In fact, if
Cexc is satisfiable in S ′, each instance of Cexc in
S ′ is also an instance of C in S which is assigned
by at most m−1 instances of R to role U . On the
other hand, if Cexc is not satisfiable in S ′, then
there is no model of S ′, and hence of S, with
an instance of C that is assigned by less than m
instances of R to role U , because this instance
would also have to be an instance of Cexc.

With regard to deciding whether S |=
(minc(C, R,U) = n), we can proceed similarly
to the previous case.

Referring again to the example of Figure 2, some
of the inferences that can be drawn are shown in Fig-
ure 7, where S denotes the schema of Figure 3.

5 Conclusions

Reasoning about database schemas is an important
task in database design. Typically, when the data
model is formally defined, reasoning essentially means
being able to check both satisfiability and logical im-
plication. For example, one of the most important
issues addressed in the relational theory of data has
been to devise effective methods for dependency im-
plication in order to derive interesting properties of
the schema. More recently, great attention has been
devoted to studying suitable algorithms for subtyp-
ing computation in object-oriented data models, which
is the main reasoning task to be performed in those
data models supporting inheritance. Also, some basic
reasoning capabilities are embedded in several CASE
tools, most of which are based on an ER data model.
It is important to note that, although these tools often
include some form of ISA and cardinality constraints,
they do not offer any complete method for deriving

interesting properties of schemas comprising such con-
straints.

In this paper, we have presented an effective
method for reasoning about a set of ISA and cardinal-
ity constraints in the context of a simple data model
based on the notions of classes and relationships. The
method allows one both to verify the satisfiability of a
schema and to check whether a schema implies a given
constraint of any of the two kinds, and shows that the
reasoning problem for ISA and cardinality constraints
is decidable.

There are at least three problems related to our
method that we aim at investigating in the near future.

The first problem concerns the extension of the
method in order to capture more expressive model-
ing features. Our first investigation shows that we
can directly consider an extension which takes into ac-
count disjointness statements between classes, cover-
ing constraints [20], and qualification conditions which
restrict the participation of classes in relationships.

The second problem concerns the efficiency of the
method. Although we did not discuss this issue in the
paper, there are many possible criteria for decreas-
ing the complexity of the method. For example, the
knowledge about the structure of the schema (for ex-
ample, existence of cycles) allows several forms of sim-
plifications on the system of disequations. Also, dis-
jointness constraints between classes not only enhance
the expressive power of the model, but can also lead
to a dramatic reduction of the size of the resulting
system, by limiting the number of compound classes
and compound relationships to be considered. Taking
as an example the diagram of Figure 2, the natural
restriction that talks and speakers be disjoint leads to
a system of disequations with just a few unknowns.

Finally, we are studying an extension of the method
in order to assist the designer when a schema is found
unsatisfiable. The idea is to equip our method with a
technique that provides the designer with a minimum
number of constraints that are unsatisfiable, thus sup-
porting her in schema debugging.

References

[1] D. Maier, The Theory of Relational Databases.
Computer Science Press, Potomac, Maryland,
1983.

[2] R. Hull and R. King, “Semantic database mod-
elling: Survey, applications and research issues,”
ACM Computing Surveys, vol. 19, pp. 201–260,
Sept. 1987.

212

[3] S. Cosmadakis, P. Kanellakis, and M. Vardi,
“Polynomial-time implication problems for unary
inclusion dependencies,” Journal of the ACM,
vol. 37, pp. 15–46, Jan. 1990.

[4] J. Abrial, “Data semantics,” in Data Base Man-
agement (J. Klimbie and K. Koffeman, eds.),
pp. 1–59, North-Holland Publ. Co., Amsterdam,
1974.

[5] C. Batini, S. Ceri, and S. Navathe, Concep-
tual Database Design, an Entity-Relationship Ap-
proach. Benjamin and Cummings Publ. Co.,
Menlo Park, California, 1992.

[6] J. Ullman, Principles of Database and Knowledge
Base Systems, vol. 1. Computer Science Press,
Potomac, Maryland, 1988.

[7] H. Korth and A. Silberschatz, Database Systems
Concepts. McGraw-Hill, New York, 1986.

[8] R. ElMasri and S. Navathe, Fundamentals of
Database Systems. Benjamin and Cummings
Publ. Co., Menlo Park, California, 1988.

[9] A. Albano, G. Ghelli, and R. Orsini, “A rela-
tionship mechanism for strongly typed Object-
Oriented database programming languages,” in
Proc. of the 17th Int. Conf. on Very Large Data
Bases VLDB-91, (Barcelona), pp. 565–575, 1991.

[10] R. Fikes and T. Kehler, “The role of frame-based
representation in reasoning,” Communications of
the ACM, vol. 28, no. 9, pp. 904–920, 1985.

[11] S. Cosmadakis and P. Kanellakis, “Functional
and inclusion dependencies - a graph theoretical
approach,” in Advances in Computing Research,
Vol. 3 (P. Kanellakis and F. Preparata, eds.),
pp. 163–184, JAI Press, 1986.

[12] J. Grant and J. Minker, “Numerical dependen-
cies,” in Advances in Database Theory II (H. Gal-
laire, J. Minker, and J.-M. Nicolas, eds.), Plenum
Publ. Co., New York, 1984.

[13] M. Lenzerini and G. Santucci, “Cardinality con-
straints in the entity-relationship model,” in
Proc. of the Int. Conf. on the Entity-Relationship
Approach to Software Engineering (C. Davis and
others, eds.), pp. 529–549, North-Holland Publ.
Co., Amsterdam, 1983.

[14] B. Thalheim, “Fundamentals of cardinality con-
straints,” in Proc. of the 11th Int. Conf. on the
Entity-Relationship Approach ER-92, pp. 7–23,
Springer-Verlag, 1992.

[15] M. Lenzerini and P. Nobili, “On the satisfiability
of dependency constraints in entity-relationship
schemata,” Information Systems, vol. 15, no. 4,
pp. 453–461, 1990.

[16] F. M. Donini, M. Lenzerini, D. Nardi, and
W. Nutt, “The complexity of concept languages,”
in Proc. of the 2nd Int. Conf. on Principles of
Knowledge Representation and Reasoning KR-
91 (J. Allen, R. Fikes, and E. Sandewall, eds.),
pp. 151–162, Morgan Kaufman, Los Altos, 1991.

[17] M. Buchheit, F. M. Donini, and A. Schaerf,
“Decidable reasoning in terminological knowledge
representation systems,” in Proc. of the 13th Int.
Joint Conf. on Artificial Intelligence IJCAI-93,
(Chambery, France), pp. 704–709, Morgan Kauf-
man, Los Altos, 1993.

[18] B. Nebel, “Computational complexity of termi-
nological reasoning in BACK,” Artificial Intelli-
gence, vol. 34, no. 3, pp. 371–383, 1988.

[19] P. Chen, “The Entity-Relationship model: To-
ward a unified view of data,” ACM Trans. on
Database Syst., vol. 1, pp. 9–36, Mar. 1976.

[20] M. Lenzerini, “Covering and disjointness con-
straints in type networks,” in Proc. of the 3rd
IEEE Int. Conf. on Data Engineering, (Los An-
geles), pp. 386–393, IEEE Computer, 1987.

213

