
D2I
Integrazione, Warehousing e Mining di sorgenti eterogenee

Programma di ricerca (cofinanziato dal MURST, esercizio 2000)

Survey on methods for query rewriting and
query answering using views

Diego Calvanese, Domenico Lembo, Maurizio Lenzerini

D1.R5 30 aprile 2001

Sommario

A Data Integration System is constituted by three main components: source schemas, a global
schema and a mapping between the two. There exist two main approaches for specifying the
mapping: in the local-as-view (LAV) approach the source structures are defined as views over
the global schema; on the contrary in the global-as-view (GAV) approach each global concept
is defined in terms of a view over the source schemas. The problem of query processing is to
find efficient methods for answering queries posed to the global schema on the basis of the data
stored at sources. In LAV there exist two approaches to query processing: by query rewriting,
in which one tries to compute a rewriting of the query in terms of the views and then evaluates
such a rewriting, and by query answering, in which one aims at directly answering the query
based on the view extensions. In GAV, existing systems deal with query processing by simply
unfolding each global concept in the query with its definition in terms of the sources. In this
paper, we survey the most important query processing algorithms proposed in the literature
for LAV, and we describe the principal GAV data integration systems and the form of query
processing they adopt.

Tema Tema 1: Integrazione di dati provenienti da sorgenti eterogenee

Codice D1.R5

Data 30 aprile 2001

Tipo di prodotto Rapporto Tecnico

Numero di pagine 25

Unità responsabile RM

Unità coinvolte RM

Autore da contattare Domenico Lembo
Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italia
lembo@dis.uniroma1.it



Survey on methods for query rewriting and

query answering using views

Diego Calvanese, Domenico Lembo, Maurizio Lenzerini

30 aprile 2001

Abstract

A Data Integration System is constituted by three main components: source schemas,
a global schema and a mapping between the two. There exist two main approaches for
specifying the mapping: in the local-as-view (LAV) approach the source structures are defined
as views over the global schema; on the contrary in the global-as-view (GAV) approach each
global concept is defined in terms of a view over the source schemas. The problem of query
processing is to find efficient methods for answering queries posed to the global schema
on the basis of the data stored at sources. In LAV there exist two approaches to query
processing: by query rewriting, in which one tries to compute a rewriting of the query in
terms of the views and then evaluates such a rewriting, and by query answering, in which
one aims at directly answering the query based on the view extensions. In GAV, existing
systems deal with query processing by simply unfolding each global concept in the query with
its definition in terms of the sources. In this paper, we survey the most important query
processing algorithms proposed in the literature for LAV, and we describe the principal GAV
data integration systems and the form of query processing they adopt.

1 Introduction

Information integration is the problem of combining the data residing at different sources, and
providing the user with a unified schema of these data, called global schema. The global schema
is therefore a reconciled view of the information, which can be queried by the user. It can be
thought as a set of virtual relations, in the sense that their extensions are not actually stored
anywhere. A data integration system frees the user from having to locate the sources relevant
to a query, interact with each source in isolation, and manually combine the data from different
sources.

The interest in this kind of systems has been continuously growing in the last years. Many
organizations face the problem of integrating data residing at several sources. Companies that
build a Data Warehouse, a Data Mining, or an Enterprise Resource Planning system must
address this problem. Also, integrating data in the World Wide Web is the subject of several
investigations and projects nowadays. Finally, applications requiring accessing or re-engineering
legacy systems must deal with the problem of integrating data stored in different sources.

The design of a data integration system is a very complex task, which comprises several
different issues, including the following:

1. heterogeneity of the sources,

2. mapping between the global schema and the sources,

3. limitations on the mechanisms for accessing the sources,

4. materialized vs. virtual integration,

1



5. data cleaning and reconciliation,

6. how to process queries expressed on the global schema.

Problem (1) arises because sources are typically heterogeneous, meaning that they adopt
different models and systems for storing data. This poses challenging problems in specifying
the global view. The goal is to design such a view so as provide an appropriate abstraction
of all the data residing at the sources. One aspect deserving special attention is the choice
of the language used to express the global schema. Since such a view should mediate among
different representations of overlapping worlds, the language should provide flexible and powerful
representation mechanisms.

With regard to Problem (2), two basic approaches have been used to specify the mapping
between the sources and the global schema. The first approach, called global-as-view (or query-
based), requires that the global schema is expressed in terms of the data sources. More precisely,
to every concept of the global schema, a view over the data sources is associated, so that its
meaning is specified in terms of the data residing at the sources. The second approach, called
local-as-view (or source-based), requires the global schema to be specified independently from
the sources. The relationships between the global schema and the sources are established by
defining every source as a view over the global schema. Thus, in the local-as-view approach,
we specify the meaning of the sources in terms of the concepts in the global schema. It is clear
that the latter approach favors the extensibility of the integration system, and provides a more
appropriate setting for its maintenance. For example, adding a new source to the system requires
only to provide the definition of the source, and does not necessarily involve changes in the global
view. On the contrary, in the global-as-view approach, adding a new source may in principle
require changing the definition of the concepts in the global schema. Recently, [36] proposed a
new approach to specify the mapping between the global schema and the source schemas, called
the global-local-as-view (GLAV) approach, since it combines the expressive power of both LAV
and GAV. In the following we do not discuss the GLAV approach, and concentrate on the LAV
and GAV approaches.

Problem (3) refers to the fact, that, both in the local-as-view and in the global-as-view
approach, it may happen that a source presents some limitations on the types of accesses it
supports. A typical example is a web source accessible through a form where one of the fields
must necessarily be filled in by the user. Such a situation can be modeled by specifying the
source as a relation supporting only queries with a selection on a column. Suitable notations
have been proposed for such situations [71], and the consequences of these access limitations on
query processing in the integration systems have been investigated in several papers [71, 64, 35,
84, 83, 62, 63].

Problem (4) deals with a further criterion that one should take into account in the design
of a data integration system. In particular, with respect to the data explicitely managed by
the system, one can follow two different approaches, called materialized and virtual. In the
materialized approach, the system computes the extensions of the concepts in the global schema
by replicating the data at the sources. In the virtual approach, data residing at the sources
are accessed during query processing, but they are not replicated in the integration system.
Obviously, in the materialized approach, the problem of refreshing the materialized views in
order to keep them up-to-date is a major issue [46]. In the following, we only deal with the
virtual approach.

Whereas the construction of the global schema concerns the intentional level of the data
integration system, Problem (5) refers to a number of issues arising when considering integration
at the extensional/instance level. A first issue in this context is the interpretation and merging
of the data provided by the sources. Interpreting data can be regarded as the task of casting
them into a common representation. Moreover, the data returned by various sources need to
be converted/reconciled/combined to provide the data integration system with the requested

2



information. The complexity of this reconciliation step is due to several problems, such as
possible mismatches between data referring to the same real world object, possible errors in the
data stored in the sources, possible inconsistencies between values representing the properties
of the real world objects in different sources [37]. The above task is known in the literature as
Data Cleaning and Reconciliation, and the interested reader is referred to [37, 11, 7] for more
details on this subject.

Finally, Problem (6) is concerned with one of the most important issues in a data integration
system, i.e., the choice of the method for computing the answer to queries posed in terms of the
global schema. The main issue is that the system should be able to re-express such queries in
terms of a suitable set of queries posed to the sources.

In the rest of the paper, we concentrate on Problem (6), namely, query processing in a
data integration system specified by means of the LAV or the GAV approach. We first provide a
logical formalization of the problem in terms of a general framework for data integration systems,
comprising several source schemas, a global schema, and a mapping between the two. Then we
discuss the problem of query processing, i.e., compute the answer to a query over the global
schema only on the basis of the data residing at the sources, both in LAV and in GAV:

• In LAV, most of the proposed solutions are based on query answering by query rewriting.
The problem of query rewriting (using views) consists in reformulating the query into a
(possibly) equivalent expression, called rewriting, that refers only to the source structures.
Once the rewriting of the query has been computed, it can be directly evaluated over the
source to obtain the answer to the query. We observe that, besides data integration, the
problem of query rewriting is relevant in several fields, including data warehousing [80],
query optimization [22], and supporting physical data independence [75]. A more direct
approach is that of query answering using views, in which besides the query and the
mapping definitions, we are also given the extensions of the views over the global schema.
The goal is to compute the set of tuples that are the answer set of the query in all databases
that are consistent with the information on the views. For the LAV approach we survey
the most important query processing algorithms proposed in the literature.

• In GAV, most of the solutions proposed in the literature essentially reduce to unfolding
the query over the global schema by substituting each global relation with its definition
in terms of the sources. We describe some GAV data integration systems, the specific
assumptions they introduce upon the general framework, and the form of query processing
they adopt.

The paper is organized as follows. Section 2 presents the basic notions about the relational
model, which is the one we adopt. Section 3 illustrates the problem of modeling a data integration
system in LAV (subsection 3.1) and GAV (subsection 3.2). Section 4 presents view-based query
processing in LAV (subsection 4.1) and GAV (subsection 4.2). Section 5 concludes the paper.

2 The relational model: basic notions

Since we assume to work with relational databases, we illustrate here the basic notions of the
relational model that will be used in our framework. In the relational model, predicate symbols
are used to denote the relations in the database, whereas constant symbols denote the objects
and the values stored in relations. We assume to have a fixed (infinite) alphabet Γ of constants,
and we consider only databases over such an alphabet. We adopt the so-called unique name
assumption, i.e., we assume that different constants denote different objects.

A relational schema C is constituted by:

3



• An alphabet A of predicate (or relation) symbols, each one with an associated arity de-
noting the number of arguments of the predicate (or attributes of the relation).

• A set of integrity constraints, i.e., assertions on the symbols of the alphabet A that are
intended to be satisfied in every database coherent with the schema.

A relational database (or simply, database, DB) DB over a schema C is simply a set of
relations with constants as atomic values. We have one relation of arity n for each predicate
symbol of arity n in the alphabet A. The relation rDB in DB corresponding to the predicate
symbol Ri is constituted by a set of tuples of constants, those that satisfy the predicate Ri. A
database DB over a schema C is said to be legal if every constraint of C is satisfied by DB. The
notion of satisfaction depends on the type of constraints defined over the schema.

A relational query is a formula that specifies a set of data to be retrieved from a database.
In this work, we restrict our analysis to the class of unions of conjunctive queries. A union of
conjunctive queries (called simply query) q of arity n over the schema C is written in the form

Q(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conjm(~x, ~ym)

where

• q belongs to a new alphabet Q (the alphabet of queries, that is disjoint from both Γ and
A),

• for each i, conj i(~x, ~yi) is a conjunction of atoms involving the variables ~x = X1, . . . , Xn

and ~yi = Yi,1, . . . , Yi,ni , and constants from Γ,

• the predicate symbols of the atoms are in C, and

• the number of variables of ~x is called the arity of q, and is the arity of the relation denoted
by the query q.

Given a database DB, the answer of q over DB, denoted qDB, is the set of n-tuples of
constants (c1, . . . , cn), such that, when substituting each ci for xi, the formula

∃~y1.conj 1(~x, ~y1) ∨ · · · ∨ ∃~ym.conjm(~x, ~ym)

evaluates to true in DB.

3 Modeling the Data Integration System

In this section we set up a logical framework for data integration. The main components of a
data integration system are the sources, the global schema and the mapping between the two.
Formally, a data integration system I is a triple 〈G,S,M〉, where:

• S is the source schema, constituted by the schemas of the various sources that are part
of the data integration system. We assume that the sources are relational. Such an
assumption is not restrictive since we can assume that suitable wrappers present the data
at the sources in a relational form. Each source is modeled by a set of relations and we
denote with AS the alphabet of the relational symbols of the sources.

• G is the global schema, expressed in the relational model in the global language LG over
the alphabet AG . Obviously, AG is disjoint from the alphabet of the source schemas AS .
The language LG determines the expressiveness allowed for specifying the global schema,
i.e., the set of constraints that can be defined over it.

4



• M is the mapping between the sources and the global schema. The precise form of the
mapping depends on the approach adopted for integration, and will be discussed later.

Intuitively, to specify the semantics of a data integration system, we have to start with a set
of data at the sources, and, given such data at the sources, we have to specify which are the
data satisfying the global schema. Thus, for assigning semantics to a data integration system
I = 〈G,S,M〉, we start by considering a legal source database for I, i.e., a database D for the
source schema S that satisfies all integrity constraints of S. Based on D, we now specify which
is the information content of the global schema G. We call global database for I any database
for G. If G is constituted by the constraints {C1, . . . , Cn}, we say that a global database satisfies
G if it satisfies C1, . . . , Cn.

A global database B for I = 〈G,S,M〉 is said to be coherent with I wrt D, if:

• B satisfies G.

• B satisfies the mappingM, that is its tuples respect the relationships defined between the
global relations and the source structures. The precise meaning of satisfying a mapping
depends on the specific form of the mapping and will be explained later when we will
introduce the different approaches proposed to define such a mapping.

We denote with coh(I,D) the set of all databases for G coherent with I wrt to D.
From the above definitions, it is easy to see that given a legal source database D, in general

several global coherent databases exist. In specific cases, no global coherent database may exist,
for example if the set of constraints of the global schema is inconsistent. Also, there may be
exactly one coherent database. We will give some examples in Subsections 3.1 and 3.2, where
we discuss the specific forms of the mapping.

Finally we consider queries posed to a data integration system and define their semantics.
Each query is issued over the global schema, and is expressed in a query language LQ over the
alphabet AG . A query is intended to provide the specification of which data to extract from
the global database represented in the integration system. In general, if Q is a query of arity
n and DB ∈ coh(I,D), we denote with ans(Q,DB) the set of n-tuples that satisfy Q in DB.
Since several coherent databases may exist, we are interested in computing the set of tuples that
satisfy Q in all databases in coh(I,D). Formally, we call certain answers of Q wrt I,D the set
cert(Q, I,D) of n-tuples t such that t ∈ ans(Q,DB) for every database DB ∈ coh(I,D).

A tuple is said a possible answer if it is an answer only for some coherent database. For-
mally, we call possible answers of Q wrt I,D, the set poss(Q, I,D) of n-tuples t such that
t ∈ ans(Q,DB) for some database DB ∈ coh(I,D).

In a data integration system I, answering queries is essentially an extended form of reasoning
in the presence of incomplete information [78]. Indeed, when we answer the query, we know
only the extensions of the sources, and this provides us with only partial information on the
global database. Moreover, since the query language may admit various forms of incomplete
information (due to union, for instance), there are in general several possible databases coherent
with I.

We did not explain, until now, the way in which the mapping between the sources and the
global schema is specified. There are two main approaches proposed to define such a mapping,
namely the local-as-view (LAV) approach, and the global-as-view (GAV) approach. In the
following we discuss both scenarios more in detail.

3.1 Local-as-view framework

In the LAV approach, the meaning of the sources is specified in terms of the concepts of the
global schema. More exactly the mapping M between the sources and the globals schema is

5



provided in terms of a set of views V = {V1, . . . , Vm} over the global schema, one for each source.
Associated to each view Vi we have:

• A definition def (Vi) in terms of a query Vi(~x) ← vi(~x, ~y), where vi(~x, ~y) is expressed in
the language LV over the alphabet AG . The arity of ~x determines the arity of the view Vi.

• The extension V D
i over a given legal source database D, which is a set of tuples of constants

providing information about the content of the source. The arity of each tuple is the same
as that of Vi.

• A specification as(Vi) of which assumption to adopt for the view Vi, i.e., how to interpret
the content V D

i of the source with respect to the actual set of tuples in a global database
DB that satisfy the view definition, i.e., (def (Vi))

DB. We describe below the various
possibilities that we consider for as(Vi).

The following three assumptions have been considered in the literature [1, 38, 52, 13] 1:

• Sound Views. When a view Vi is sound (denoted with as(Vi) = sound), its extension
provides any subset of the tuples satisfying the corresponding definition. In other words,
from the fact that a tuple is in V D

i one can conclude that it satisfies the view, while from
the fact that a tuple is not in V D

i one cannot conclude that it does not satisfy the view.
Formally, a database DB is coherent with the sound view Vi, if V D

i ⊆ (def (Vi))
DB.

• Complete Views. When a view Vi is complete (denoted with as(Vi) = complete), its
extension provides any superset of the tuples satisfying the corresponding definition. In
other words, from the fact that a tuple is in V D

i one cannot conclude that such a tuple
satisfies the view. On the other hand, from the fact that a tuple is not in V D

i one can
conclude that such a tuple does not satisfy the view. Formally, a database DB is coherent
with the complete view Vi, if V D

i ⊇ (def (Vi))
DB.

• Exact Views. When a view Vi is exact (denoted with as(Vi) = exact), its extension is
exactly the set of tuples satisfying the corresponding definition. Formally, a database DB
is coherent with the exact view Vi, if V D

i = (def (Vi))
DB

Such a definition of satisfaction of the mappingM completes the definition of global coherent
database for the LAV approach. In general there can be many global coherent databases, for
example when some views are sound, as demonstrated by the following example.

Example 3.1 Consider a data integration system I comprising two sources s1(Name,City),
which stores information about people and cities in which they reside and s2(City ,Country),
which stores information about countries where cities are located.

Suppose the global schema G contains only the relation residence(Name,City ,Country) and
that the mapping M is as follows:

s1(N,C) ← residence(N,C,Co)

s2(C,Co) ← residence(N,C,Co)

and that we have an alphabet containing (among other symbols) three constants Pablo, Rome
and Italy.2

Finally consider a source legal database D in which sD1 = {(Pablo,Rome)} and sD2 =
{(Rome, Italy)}, and assume that there are no constraints imposed by a schema.

1In some papers, for example [13], different assumptions on the domain of the database are also taken into
account.

2We consider only databases over a fixed alphabet of constants (see section 2).

6



If both views are sound, there are several global databases coherent with the global schema
and the mapping, since we only know that the global relation residence contains some tuples
that have Pablo as their Name component and Rome as their City component, and some tuples
that have Rome as their City component and Italy as their Country component. Therefore,
the query Qc(x, y, z) ← residence(x, y, z) asking for all residence informations would return an
empty answer, i.e., cert(Qc, I,D) = ∅.

However, if both views are exact, we can conclude that all residence tuples have Pablo as
their Name component, Rome as their City component and Italy as their Country component.
Hence (Pablo,Rome, Italy) is the only tuple returned by the query Qc, i.e., cert(Qc, I,D) =
{(Pablo,Rome, Italy)}. Note that in this case we have exactly one database coherent with the
global schema and the mapping.

Even in the case where all views are exact we can have that several global databases exist, for
example in the case where some global relations or attributes are not mentioned in any mapping
from the sources.

When all views are exact it can happen that no global virtual database exists. This is the
case when the data at the sources do not satisfy all constraints in the global schema.

Example 3.2 Suppose now to add to our running example a source s3(Name,Country), which
stores information about people citizenship, and add a global relation citizenship(Name,Country).
Complete our mapping with the view

s3(N,Co) ← citizenship(N,Co)

and assume to define a foreign key constraint between the component Name of the relation
residence and component Name in the relation citizenship. The constraint is satisfied by a
database DB if for every tuple t1 in (residence)DB there is a tuple t2 in (citizenship)DB such
that the Name component of t1 agree with the Name component in t2. Suppose to add to our
alphabet the constants John, USA, and Spain. Consider the same source legal database D of
Example 3.1, and suppose that sD3 = {(John,USA)}. If both views are exact, no global virtual
database exists which is coherent with the global schema and the mapping, since s3 doesn’t store
Pablo’s citizenship. On the contrary, if all views are sound, we have several coherent databases,
that is all the databases that store Pablo’s citizenship. For example, consider the following
extension for citizenship:

Name Country

John USA

Pablo Spain

3.2 Global-as-view framework

The GAV approach requires that the global schema is defined in terms of the data sources. More
exactly, every relation of the global schema is expressed as a view over the sources, so that its
meaning is specified in terms of the data residing at the sources. Note that, while in the LAV
approach adding a new source to the system requires only to provide the definition of the source,
and does not necessarily involve changes in the global schema, in the GAV approach, it may in
principle requires changing the definition of the concepts in the global schema.

Formally, the mapping between the global schema and the sources is provided in terms of
a set of views V = {V1, . . . , Vm} over the source schemas, one for each relation in the global
schema. Associated to each view Vi we have:

7



• A definition def (Vi) in terms of a query Vi(~x) ← vi(~x, ~y), where vi(~x, ~y) is expressed in
the language LV over the source alphabet AS . The arity of ~x determines the arity of the
view Vi.

• A set (def (Vi))
D of tuples of constants returned from the evaluation of the view definition

over a given legal source database D. The arity of each returned tuple is the same as that
of Vi.

• A specification as(Vi) of which assumption to adopt for the view Vi, i.e., how to interpret
the actual set of tuples in a global virtual database DB that satisfy Vi, i.e., V DB

i , with
respect to (def (Vi))

D. As in the LAV approach, one can consider views that are sound,
complete, or exact :

– when as(Vi) = sound , we are specifying that all tuples retrieved by def (Vi) satisfy
Vi.

– when as(Vi) = complete, we are specifying that no tuples other than those retrieved
by def (Vi) satisfy Vi.

– when as(Vi) = exact , we are specifying that the set of tuples that satisfy Vi is exactly
the set of tuples retrieved by Vi.

Formally a global virtual database DB is coherent with

– the sound view Vi if V DB
i ⊇ (def (Vi))

D,

– the complete view Vi if V DB
i ⊆ (def (Vi))

D,

– the exact view Vi if V DB
i = (def (Vi))

D,

Even if most of the GAV data integration systems described in the literature consider a single
database for the global schema, due to the presence of integrity constraints, in general, we will
have to account for a set of global databases. Given a legal source database, several situations
are possible:

• No coherent global database exists. This happens, for example, when the data at the
sources retrieved by the view definitions do not satisfy the constraints of the global schema.

• Several coherent global databases exist. This happens, for example, when all views are
sound, and the data at the sources retrieved by the view definitions do not satisfy the
constraints of the global schema. In this case, it may happen that several ways exist to
add suitable tuples to the relations of G in order to satisfy constraints. Each such way
yields a coherent global database.

• Exactly one coherent global database exists. This happens, for example, when all views
are exact, and the data at the sources retrieved by the view definitions satisfy all the
constraints of the global schema.

The following example illustrates the above considerations for the case where foreign key
constraints are used in the global schema.

Example 3.3 Consider a data integration system I in which the source schema S, the alphabet
of constants, the global relations, and the integrity constraints are as in Example 3.2. Suppose
to have the following GAV mapping M

residence(N,C,Co) ← s1(N,C, ) ∧ s2(C,Co)

citizenship(N,Co) ← s3(N,Co)

8



and the source legal database D in which sD1 = {(Pablo,Rome)}, sD2 = {(Rome, Italy)} and
sD3 = {(Pablo,Spain)}

In such a case the data at the sources respect the foreign key constraint. So, if the views
are exact, exactly one global coherent database exists. Therefore, given the query Qc(x, y, z)←
residence(x, y, z) we have that cert(Qc, I,D) = {(Pablo,Rome, Italy)}. Consider a different situ-
ation in which s1 and s2 have the same extensions as above, but now sD3 = {(John,USA)}. Since
the data at the source does not respect the foreign key constraint, no global coherent database
exists. On the other hand, if the views are sound we can obtain coherent databases by adding
the tuple (Pablo, Spain) to the relation citizenship. Note that we still have cert(Qc, I,D) =
{(Pablo,Rome, Italy)}.

4 Query processing

In this section we deal with the problem of query processing, i.e., how to compute the answer
to a query posed over the global schema on the basis of the data stored at the sources and
exploiting the information available about the data integration system. We examine some algo-
rithms and approaches proposed in the literature for query processing both in LAV and in GAV
integration systems. For the LAV framework we distinguish between two existing approaches:
query processing by query rewriting, which aims at reformulating the query in terms of the
source relations and then evaluating the computed rewriting over the source extensions, and
query answering using views, which aims at directly answering the query on the basis of both
the view definitions and the source extensions. For the GAV framework we describe some data
integration systems in which query processing essentially amounts to unfolding.

4.1 LAV approach

The main issue for query processing in a LAV integration system is deciding how to decompose
the query on the global schema into a set of subqueries on the sources, based on the meaning of
the sources expressed in terms of the relations in the global schema. Since in LAV the mapping
between the sources and the global schema is described as a set of views over the global schema,
query processing amounts to finding a way to answer a query posed over a database using a set
of views over the same database. This problem, called answering queries using views, is widely
studied in the literature, since it has applications in many areas. In query optimization [22], the
problem is relevant because using materialized views may speed up query processing. A data
warehouse can be seen as a set of materialized views, and, therefore, query processing reduces
to query answering using views [43, 74, 82, 42]. In the context of database design, using views
provides means for maintaining the physical perspective of the data independent from its logical
perspective [75]. It is also relevant for query processing in distributed databases [47] and in
federated databases [60]. Finally, since the views provide partial knowledge on the database,
answering queries using views can be seen as a special case of query answering with incomplete
information [45, 1].

4.1.1 Query rewriting

The most common approach proposed in the literature to deal with the problem of query pro-
cessing in data integration systems is by means of query rewriting. In query rewriting, a query
and a set of view definitions over the global schema are provided, and the goal is to reformulate
the query into an expression, the rewriting, that refers only to the views, and supplies the answer
to the query. A query Q is expressed in a certain query language LQ over the global alphabet
AG , while the rewriting is expressed in a query language L′Q over the source alphabet AS . LQ
and L′Q can be different and hence of different expressive power. Query processing via query

9



rewriting is divided in two steps, where the first one consists in reformulating the query in terms
of the given query language L′Q over AS , and the second one evaluates the rewriting over the
view extensions.

We first introduce the notion of containment between Datalog queries whose EDB predicates
are the relations in AG . Given such a query Q and a global database DB, the answer QDB of Q
over DB is the minimal fixpoint model of Q and DB. Given two queries Q1 and Q2, we say that
Q1 is contained in Q2, denoted by Q1 ⊆ Q2, if for all databases DB we have that QDB

1 ⊆ QDB
2 .

We say that Q1 and Q2 are equivalent if Q1 ⊆ Q2 and Q2 ⊆ Q1.
The problem of query containment has been studied in various settings. In [21], NP-

completeness has been established for conjunctive queries, and in [25] a multi-parameter analysis
has been performed for the same case, showing that the intractability is due to certain types of
cycles in the queries. In [48, 77], Πp

2-completeness of containment of conjunctive queries with in-
equalities was proved, and in [72] the case of queries with the union and difference operators was
studied. For various classes of Datalog queries with inequalities, decidability and undecidability
results were presented in [23] and [77], respectively. Query containment under constraints has
also been the subject of several investigations. For example, decidability of conjunctive query
containment was investigated in [3] under functional and multi-valued dependencies, in [27] un-
der functional and inclusion dependencies, in [20, 59, 61] under constraints representing is-a
hierarchies and complex objects, and in [28] in the case of constraints represented as Datalog
programs. For queries over semistructured data, query containment for conjunctive regular path
queries, in which the atoms in the body are regular expressions over binary predicates, has been
studied in [8, 34], and EXPSPACE completeness has been established in [14].

To formally define the notion of rewriting, we consider queries and views defining the source
relations that are unions of conjunctive queries over the global schema.

Given such a query Q and set of views V = {V1, . . . , Vm} over AG , the query Qr is a rewriting
of Q using V if

• Qr ∪ V is contained in Q, and

• Qr does not refer to the predicates of AG , i.e., the relations of the global schema appear
only in the view definitions and not in the bodies of the clauses of Qr.

We illustrate the notion of rewriting with the following example, adapted from [54], in which
queries are conjunctive queries.

Example 4.1 Consider two sources, r1(Title,Year ,Director), which stores information about
movies filmed by european directors since 1960, and r2(Title,Critique), which stores information
about movie reviews since 1990.

Suppose we have the following global schema

movie(Title,Year ,Director)
european(Director)
review(Title,Critique)

and the mapping

r1(T, Y,D) ← movie(T, Y,D) ∧ european(D) ∧ Y ≥ 1960

r2(T,R) ← movie(T, Y,D) ∧ review(T,R) ∧ Y ≥ 1990

Consider the query

q(T,R) ← movie(T, 1998, D) ∧ review(T,R)

asking for reviews of movies filmed in 1998. A rewriting of such a query is

qr(T,R) ← r1(T, 1998, D) ∧ r2(T,R)

10



Indeed, the body of qr refers only to the source relations, and hence can be directly evaluated
over the source extensions. Moreover, qr together with the view definitions is equivalent to the
following query over the global schema

qr(T,R) ← movie(T, 1998, D) ∧ european(D) ∧ review(T,R)

in which we deleted the atoms 1998 ≥ 1960 and 1998 ≥ 1990, which evaluate to true. It is
immediate to verify that qr is contained in q.

In the example above, since source r1 provides only movies filmed by European directors, the
computed rewriting does not return exactly the data about reviews of movies filmed in 1998,
requested by the original query. Indeed, qr is not equivalent to q. In general, the set of available
sources may not store all the data needed to answer a query, and therefore the goal is to find a
query expression that provides all the answers that can be obtained from the views. So, whereas
in different contexts, i.e., query optimization or maintaining physical data independence [53],
the focus is on finding rewritings that are logically equivalent to the original query, in data
integration systems one is interested in maximally contained rewritings [30], formally defined as
follows.

Given a query Q, a set of views V = {V1, . . . , Vm}, and a query language LQ, the query Qm

is a maximally contained rewriting of Q using V wrt LQ if

• Qm ∪ V is a rewriting of Q

• there is no rewriting Q′ 6= Qm in LQ such that Qm ∪ V ⊆ Q′ ∪ V

There are many studies that are concerned with the problem of query rewriting using views,
under different assumptions, both for form of the queries and the views and also wrt the general
integration framework described in Section 3:

• queries are conjunctive queries [55, 71, 70]

• queries are recursive queries [30, 31, 2]

• queries are description logics queries [4, 11]

• queries for semistructured data [12, 68, 15, 17]

• queries with aggregates [39, 26]

• presence of limitations in accessing the sources [32, 71, 50, 58, 35]

• presence of functional dependencies [40, 32, 31] and inclusion dependencies [41]

Finally, it is worth noting that, since in data integration systems the relations of the global
schema are virtual and we cannot extract data from them, we are interested in rewritings that
use only the views, reflected by the definition above. In [55] such rewritings are called complete,
and in the following we refer only to complete rewritings.

In the following we present two query rewriting algorithms that have been proposed in the
literature in order to solve the query answering problem.

11



4.1.2 The bucket algorithm

The bucket algorithm [56, 57] is a query rewriting algorithm which works in the case where the
query is a union of conjunctive queries and the views are conjunctive queries.

The algorithm is based on the fact that in such a case, given a query Q, if an equivalent
rewriting of Q exists, then such a rewriting has at most as many atoms as Q [55]. Such a
result leads immediately to a nondeterministic polynomial-time algorithm for finding equivalent
conjunctive rewritings: guess a candidate rewriting and then check whether it is equivalent to
the original query. The check is done by looking for a containment mapping between the query
and the rewriting [21], which is an NP-complete problem. Note that the number of candidate
rewritings is exponential in the size of the query.

The bucket algorithm aims at computing all the rewritings that are contained in (and not
necessarily equivalent to) the original query, by pruning the space of candidate rewritings. The
algorithm was proposed in the context of the Information Manifold (IM) system [60], a project
developed at AT&T. IM handles the presence of inclusion and functional dependencies over
the global schema and limitations in accessing the sources, and uses conjunctive queries as the
language for describing the sources and querying the system.

To compute the rewriting of a query Q, the bucket algorithm proceeds in two steps:

1. for each atom g in Q, create a bucket that contains the views from which tuples of g can
be retrieved, i.e., the views whose definition contains an atom to which g can be mapped
in a rewriting of the query;

2. consider as candidate rewriting each conjunctive query obtained by combining one view
from each bucket, and check by means of a containment algorithm whether such a query
is contained in Q. If so, the candidate rewriting is added to the answer.

If the candidate rewriting is not contained in Q, before discarding it, the algorithm checks if
it can be modified by adding comparison predicates in such a way that it is contained in Q.
The proof that the bucket algorithm generates the maximal contained rewriting when the query
language is union of conjunctive queries, is given in [38].

Note that, on the basis of the results in [55], the algorithm considers only rewritings that
have at most the same number of atoms as the original query. As shown in the same paper
and in [71], the given bound on the size of the rewriting does not hold in the presence of
arithmetic comparison predicates, functional dependencies over the global schema, or limitations
in accessing the sources. In such cases we have to consider rewritings that are longer than the
original query. More precisely, let p be the number of atoms in the query Q:

• In the presence of functional dependencies, a minimal rewriting has at most p + d atoms,
where d is the sum of the arities of the atoms in Q;

• In the presence of limitations in accessing the sources, a minimal rewriting has at most
p + m atoms, where m is the number of different variables in Q;

• In the presence of comparison predicates, the size of a minimal rewriting is at most expo-
nential in the size of Q.

According to [56] the bucket algorithm, in practice, does not miss solutions because of
the length of the rewritings it considers, but other results [30, 41, 40] demonstrate that in the
presence of functional dependencies and limitations in accessing the sources, union of conjunctive
queries does not suffice to obtain the maximal contained rewritings, and one needs to resort to
recursive rewritings. We refer the interested reader to [30, 32, 50] for a more detailed treatment
of the problem.

12



4.1.3 The inverse rules algorithm

The previous algorithm searches the space of possible candidate rewritings by using buckets and
then checks whether each computed rewriting is contained in the original query. In the following
we describe a different algorithm, namely the inverse rules algorithm [30], that generates a
rewriting (query plan) in time that is polynomial in the size of the query. The algorithm was
developed in the context of the Infomaster system [29], an information integration tool of the
Standford University, based on a language for representing first order logic expressions, called
Knowledge Interchange Format. The inverse rules algorithm constructs a set of rules that invert
the view definitions and provides the system with an inverse mapping which establish how to
obtain the data of the global concepts from the data of the sources. The basic idea is to replace
existential variables in the body of each view definition by a Skolem function.

Example 4.2 Given a view definition

v(X) ← a1(X,Y ) ∧ a2(X,Y )

the set of inverse rules obtained from it is

a1(X, f(X)) ← v(X)

a2(X, f(X)) ← v(X)

Given a non-recursive Datalog query Q and a set of view definitions V, the rewriting is the
Datalog program consisting of both the query and the inverse rules obtained from V.

Note that in the skolemization phase, we just introduce function symbols in the head of the
inverse rules and never introduce a symbol within another, which leads to a finite evaluation
process. Since bottom-up evaluation of the rewriting can produce tuples with function symbols,
these need to be discarded. A polynomial time procedure to eliminate these function symbols
by adding new predicates is described in [30]. It is also shown that the inverse rules algorithm
returns a maximally contained rewriting wrt union of conjunctive queries, in time that is poly-
nomial in the size of the query3. Even if the computational cost of constructing the query plan
is polynomial, the obtained rewriting contains rules which may cause accessing views that are
irrelevant for the query. [51] show that the problem of eliminating irrelevant rules has expo-
nential time complexity. A second drawback of the inverse rules algorithm is that evaluating
the inverse rules over the source extension may invert some useful computation done to produce
the views [69]. However, the inverse rules algorithm can handle also recursive Datalog queries,
the presence of functional dependencies over the global schema, or the presence of limitations
in accessing the sources, by extending the obtained query plan with other specific rules.

Two other algorithm developed for the case where queries and views are conjunctive queries
are the MiniCon algorithm [69] and the unification-join algorithm [70]. Combining ideas both
from the bucket algorithm and from the inverse rules algorithm, MiniCon scales out and out-
performs both algorithms. Experimental results related to the performance of MiniCon, also in
presence of arithmetical comparison predicates, are reported in [69]. The unification-join algo-
rithm is an exponential-time query answering algorithm based on a skolemization phase and on
the representation of conjunctive queries by means of hypergraphs. [70] presents also a polyno-
mial time algorithm for the large and natural subclass of acyclic conjunctive queries. Finally,
[40, 41] extend the algorithm by taking into account also inclusion and functional dependencies
expressed over the schema.

3Note that from a non-recursive Datalog program one can easily obtain an equivalent union of conjunctive
queries.

13



4.1.4 Query answering

In general, in a data integration system, given a legal source database D, i.e., an extension for
the views, we are interested in computing the set of certain answers for a given query Q (see
Section 3). In the query rewriting approach, first Q is reformulated (not taking into account the
source extensions), and only in a second step the computed rewriting is evaluated over D. So,
the capability of the rewriting to retrieve the set of certain answers depends on the given query
language in which it is expressed. Such a situation can constitute a limitation on computing the
set of certain answers for Q.

A more general approach to query processing, namely view-based query answering [1, 38, 13,
15, 10], is that to consider, besides the query and the view definitions, also the extensions of
the views. In view-based query answering, we do not pose any limit to query processing, and
the only goal is to compute the set of certain answers to the query by exploiting all possible
information, in particular the view extensions.

Unfortunately, many of the papers concerning query processing do not distinguish between
query answering and query rewriting using views, and give raise to a sort of confusion between
the two notions. Part of the problem comes from the fact that when the query and the views
are conjunctive queries, there are algorithms, like the bucket or the inverse rules algorithm,
for computing the best possible rewriting as union of conjunctive queries. Therefore the best
possible rewriting (independently of the query language) is basically expressible in the same
language as the original query and views. However for other query languages this is not the
case. So, in spite of the large amount of work on the subject, the relationship between query
rewriting and query answering using views is not completely clarified yet.

According to [16, 17], to focus on this relationship we have to abstract from the language used
to express the rewriting, thus generalizing the notion of rewriting considered in the literature.
[16, 17] define a rewriting of a query Q with respect to a set V of views as a function that,
given the extensions of the views, i.e., a legal source database D, returns a set of tuples that are
contained in the certain answers of the query Q wrt V and D, i.e., in the answer set of Q for
every global database coherent with the views and D. The rewriting that returns precisely the
set of certain answers for each legal source database is called the perfect rewriting of the query
wrt the views.

Observe that, by evaluating the perfect rewriting over given view extensions, one obtains the
same set of tuples provided by query answering using views. Hence, the perfect rewriting is the
best rewriting that one can obtain, given the available information on both the definitions and
the extensions of the views.

An immediate consequence of the relationship between perfect rewriting and query answering
is that the data complexity of evaluating the perfect rewriting over the view extensions is the
same as the data complexity of answering queries using views4.

Typically, one is interested in queries that can be evaluated in PTIME (i.e., are PTIME
functions in data complexity), and hence one would like rewritings to be PTIME as well. For
queries and views that are conjunctive queries (without union), the perfect rewriting is a union
of conjunctive queries and hence is PTIME [1]. In general this is not the case. The complexity
of answering queries using views for different languages (both for the query and for the views)
is studied in [1]. The authors deal with the two assumptions that all the views are sound
(called open world assumption in the paper), or that all the views are exact (called closed
world assumption in the paper). Under open world assumption they show that in the case
where the views are conjunctive queries, the problem becomes coNP-hard already in the case
where the query is a conjunctive query with inequality. Instead, considering queries that are
conjunctive queries, the problem is already coNP-hard when the views are positive queries. As

4According to [79] the data complexity is the complexity of the problem with respect to the size of the view
extensions only. Instead the query complexity is defined with respect to the size of view definitions and the query.

14



shown in [16, 17], the problem is already coNP-hard for very simple query languages containing
union. It is also shown that characterizing which instances of query rewriting admit a perfect
rewriting that is PTIME, is a very difficult problem due to its connection with a longstanding
open problem for constraint-satisfaction problem [49, 33]. Under the different assumption that
the views are exact (closed world assumption) the problem is coNP already in the case that views
and queries are conjunctive queries [1]. Note that in the above reported results about query
rewriting, we implicitly considered the open world assumption. Finally, [1] sketch an effective
way to compute the certain answers by representing the global database by means of conditional
tables and querying them using the techniques for databases with incomplete information [45].

The problem of view-based query answering in the context where constraints over the global
schema are expressed in terms of description logics, and queries and views are unions of con-
junctive queries over the global schema is addressed in [9].

4.2 GAV approach

In a GAV integration system each relation of the global schema is expressed in terms of a view
over the source structures. Hence, to answer a query Q, formulated in terms of the global
schema, it is sufficient to unfold Q by replacing each global relation with the corresponding
view [76]. This is illustrated in the following example.

Example 4.3 Consider the same sources and the same global schema as in Example 4.1, but
suppose to have the following GAV mapping

movie(T, Y,D) ← r1(T, Y,D)

european(D) ← r1(T, Y,D)

review(T,R) ← r2(T,R)

In such a situation the query

q(T,R) ← movie(T, 1998, D) ∧ review(T,R)

asking for reviews of movies filmed in 1998, is processed by expanding the atoms according to
their definitions. Such an expansion computes the same reformulation as the one in Example 4.1

q(T,R) ← r1(T, 1998, D) ∧ r2(T,R)

Even if the process of unfolding is a simple mechanism to reformulate the original query Q in
terms of the source alphabet, defining the views, needed to expand the global concepts involved
in Q, implies to understand the precise relationships between the sources. This is generally a non
trivial task. We can say that, while in the LAV approach the query reformulation (rewriting)
process turns out to be realized at run time, in the GAV approach it is realized at design time.
As a consequence, the main issue in a GAV integration system is the definition of wrappers
and mediators [81]. As already mentioned, wrappers are software components that present data
at the sources in a suitable form adopted in the integration system, and handle the access to
the data taking into account source capabilities to answer queries posed to the sources [64, 83].
Mediators are modules that establish how to access and merge data residing at the sources, i.e.,
synthesize the view definitions associated to the global relations.

In most GAV integration systems the notion of global schema is actually missing, in the
sense that the global schema is simply the collection of relations exported by the mediators
and no rules or integrity constraints can actually be expressed over the global concepts. The

15



mediators simply realize an explicit layer between the users’ application and the data sources.
Furthermore, the systems consider only the assumption that views over source schemas are exact
(closed world assumption). In such a situation exactly one global database coherent with the
integration system and the source extensions exists (see Section 3), i.e., the database computed
by populating the views on the basis of the definitions synthesized at mediators. Wrt the general
integration framework presented in Section 3, such assumptions greatly simplify the problem of
computing the answer to a query (query processing reduces to unfolding). At the same time,
however, they make the GAV integration systems unable to properly take into account actual
constraints imposed by the application domain.

In the sequel we describe some integration systems that follow the GAV approach in the
simplified setting we have described above.

4.2.1 The TSIMMIS Project

TSIMMIS (The Stanford-IBM Manager of Multiple Information Sources) is a joint project of
the Stanford University and the Almaden IBM database research group [24]. It is based on an
architecture that presents a hierarchy of wrappers and mediators, in which wrappers convert
data from each source into a common data model called OEM (Object Exchange Model) and
mediators combine and integrate data exported by wrappers or by other mediators. Hence,
the global schema G is essentially constituted by the set of OEM objects exported by wrappers
and mediators. Mediators are defined in terms of a logical language called MSL (Mediator
Specification Language), which is essentially Datalog extended to support OEM objects. OEM
is a semistructured and self-describing data model, in which each object has associated a label, a
type for the value of the object and a value (or a set of values). Users’ queries are posed in terms
of objects synthesized at a mediator or directly exported by a wrapper. They are expressed in
MSL or in a specific query language called LOREL (Lightweight Object REpository Language),
an object-oriented extension of SQL.

Each query is processed by a module, the Mediator Specification Interpreter (MSI) [67, 83],
consisting of three main components:

• The View Expander, which uses mediator specification to reformulate the query into a log-
ical plan by expanding the objects exported by the mediator according to their definitions.
The logical plan is a set of MSL rules which refer to information at the sources.

• The Plan Generator, also called Cost-Based Optimizer, which develops a physical plan
specifying which queries will be sent to the sources, the order in which they will be pro-
cessed, and how the results of the queries will be combined in order to derive the answer
to the original query.

• The Execution engine, which executes the physical plan and produces the answer.

The problem of query processing in TSIMMIS in the presence of limitations in accessing
the sources is addressed in [64] by devising a more complex Plan Generator comprising three
modules:

• a matcher, which retrieves queries that can process part of the logical plan;

• a sequencer, which pieces together the selected source queries in order to construct feasible
plans;

• an optimizer, which selects the most efficient feasible plan.

It has to be stressed that, in TSIMMIS, no global integration is ever performed. Each
mediator performs integration indipendently. As a result, for example, a certain concept may

16



be seen in completely different and even inconsistent ways by different mediators. Such form of
integration can be called query-based, since each mediator supports a certain set of queries, i.e.,
those related to the view it provides.

4.2.2 The Garlic Project

The Garlic project [18], developed at IBM’s Almaden Research Center, provides the user with an
integrated data perspective by means of an architecture comprising a middleware layer for query
processing and data access software called Query Services & RunTime System. The middleware
layer presents an object-oriented data model based on the ODMG standard [19] that allows
data from various information sources to be represented uniformly. In such a case the global
schema is simply constituted by the union of local schemas, and no integrity constraints are
defined over the OMDG objects. The objects are exported by the wrappers using the Garlic
Data Language (GDL), which is based on the standard Object Definition Language (ODL). Each
wrapper describes data at a certain source in the OMDG format and gives descriptions of source
capabilities to answer queries in terms of the query plans it supports. Note that the notion of
mediator, central in the TSIMMIS system, is missing in Garlic, and most of the mediator tasks,
as the integration of objects from different sources, are submitted to the wrappers. Users pose
queries in terms of the objects of the global schema in an object-oriented query language which
is an object-extended dialect of SQL. The Query Services & RunTime System produces a query
execution plan in which a user’s query is decomposed in a set of sub-queries to the sources, by
expanding each involved object with its definition provided by the relative wrapper. The query
execution plan is obtained by means of some sequence of parsing, semantic checking, query
reformulation and optimization, based on the information, provided by a system catalog, about
where data is stored, what wrapper it is associated with, its schema, any available statistics,
etc. Each involved wrapper translates the sub-queries into the source’s native query language
taking into account the query processing power of the source. The description of the source’s
query capabilities is used by the query optimizer to create a set of feasible plans and to select
the best for execution.

4.2.3 The Squirrel Project

In the approaches to data integration described so far, the data at the sources are not replicated
in the integration system (virtual approach). In contrast, in the materialized approach, the
system computes the extension of the concepts in the global schema and maintains it in a local
repository. Maintenance of replicated data against updates to the sources is a central aspect in
this context and the effectiveness of maintenance affects timeliness and availability of data.

The Squirrel System, developed at the University of Colorado [87, 86, 85, 44], provides a GAV
framework for data integration based on the notion of integration mediator. Integration media-
tors are active modules that support data integration using a hybrid of virtual and materialized
data approaches.

The initial work on Squirrel [87, 85] does not consider virtual views and studies the problems
related to data materialization. A key feature of Squirrel mediators, which consist of software
components implementing materialized integrated views over multiple sources, is their ability
to incrementally maintain the integrated views by relying on the active capabilities of sources.
More precisely, at startup the mediator sends to the source databases a specification of the
incremental update information needed to maintain the views and expects sources to actively
provide such information.

Integration by means of hybrid virtual or materialized views is addressed in [44] in the
context of the relational model. However, the presented techniques can also be applied in the
context of object-oriented database models. In the sequel we refer to classes and objects to
indicate data exported by mediators. The architecture of a Squirrel mediator described in [44]

17



consists of components that deal with the problem of refreshing the materialized portion of
the supported view, namely the update queue and the Incremental Update Processor (IUP),
and components related to the problem of query processing, namely the Query Processor (QP)
and the Virtual Attribute Processor (VAP). The QP provides the interface of the integrated
view to the users. When it receives a user’s query, it tries to answer the query on the basis
of the materialized portion of the view, maintained in a local store. If the QP needs virtual
data to answer the query, the VAP constructs temporary relations containing the relevant data.
To obtain temporary relations the VAP uses information provided by a Virtual Decomposition
Plan (VDP) maintained in the local store. The notion of VDP is analogous to that of Query
Decomposition Plan in query optimization. More specifically, the VDP specifies the classes that
the mediator maintains (materialized, virtual, or hybrid), and provides the basic structure for
retrieving data from the sources or supporting incremental maintenance5.

Either for the materialized version of the mediator or for the hybrid one, an automatic gen-
erator of Squirrel integrators has been developed. Such a module takes as input a specification
of the mediator expressed in a high-level Integration Specification Language (ISL). A specifica-
tion in ISL includes a description of the relevant subschemas of the source databases, and the
match criteria between objects of families of corresponding classes, in particular a list of the
classes that are matched and a binary matching predicate specifying correspondences between
objects of two classes. The output of this module is an implementation of the mediator in the
Heraclitus language, a database programming language whose main feature is the ability of
representing and manipulating collections of updates to the current database state (deltas). An
object-oriented extension of Heraclitus, called H20, is used in [86].

The problem of object matching in Squirrel mediators is addressed in [87]. In particular, a
framework is presented for supporting intricate object identifier (OID) match criteria, such as
key-based matching, lookup-table-based matching, historical-based-matching, and comparison-
based matching. The last criterion allows for both considering attributes other than keys in
object matching, and using arbitrary boolean functions in the specification of object matching.

4.2.4 The MOMIS Project

The MOMIS system [5, 6], jointly developed at the University of Milano and the University
of Modena and Reggio Emilia, provides semi-automatic techniques for the extraction and the
representation of properties holding in a single source schema (intraschema relationships), or
between different source schemas (interschema relationships), and for schema clustering and inte-
gration, to identify candidates to integration and synthesize candidates into an integrated global
schema. The relationships are both intensional (e.g., lexical relationships extracted according to
a Wordnet supplied ontology) and extensional (e.g., lexical relationships which strengthen the
corresponding intensional relationships), either defined by the designer or automatically inferred
by the system. The integration process is based on a source independent object-oriented model
called ODMI3 , used for modeling structured and semistructured data sources in a common way.
The model is described by means of the ODLI3 language. In MOMIS mediators are composed
of two modules:

1. the Global Schema Builder, which constructs the global schema by integrating the ODLI3

source descriptions provided by the wrappers, and by exploiting the intraschema and the
interschema relationships.

2. the Query Manager, which performs query processing and optimization. The Query Man-
ager exploits extensional relationships to first identify all sources whose data are needed
to answer a user’s query posed over the global schema. Then it reformulates the original
query into queries to the single sources, sends the obtained sub-queries to the wrappers,

5For a description of the update process and the relative update queue and IUP see [44].

18



which execute them and report the results to the Query Manager. Finally, the Query
Manager combines the single results to provide the answer to the original query.

Currently, the query processing aspect is in a preliminary stage of development, and still needs
further investigation.

4.2.5 The DIKE Project

The DIKE system [65], developed at the University of Calabria in collaboration with the Uni-
versity of Reggio Calabria, exploits a conceptual model called SDR-Network [66, 73] in order
to uniformly handle and represent heterogeneous data sources. Each source has an associated
SDR-Network, constituting of a set of nodes representing concepts and a set of arcs representing
relationships between pairs of concepts. DIKE provides the user with an algorithm for data
source integration which takes as input two SDR-Networks, which are either associated directly
to the sources or are derived from previously constructed SDR-Networks, and computes an out-
put global SDR-Network. The process is carried out by exploiting synonymies, and homonymies
between arcs and nodes of the SDR-Networks, and similarity relationships between sub-nets. To
each derived node (resp., arc) a mapping is associated that describes the way the node has been
obtained from one or more nodes (resp., arcs) belonging to the original SDR-Networks. Finally,
to each mapping between nodes a view is associated that allows to obtain the instances of the
target node of the mapping, from the instances of the source nodes of the mapping. At the
moment the system is under development and does not present a completely defined method to
answer queries posed over the global SDR-Networks. To answer a user’s query it simply uses
the views associated to the global nodes involved in the query to retrieve its instances from the
nodes stored at the sources.

4.2.6 Limitations in accessing the sources

Limitations on how sources can be accessed significantly complicate query processing also in the
GAV approach, since in this case simply unfolding the global relations in the query with their
definitions is in general not sufficient. In fact, to answer queries over such sources one generally
needs to start from a set of constants (provided e.g., by the user who fills a form, or taken
from a source without access limitations) to be used to bind attributes. Such bindings are used
to access sources and thus obtain new constants which in turn can be used for new accesses.
Hence, as shown in [62, 63], query answering in GAV in the presence of limited access patterns
in general requires the evaluation of a recursive query plan, which can be suitably expressed in
Datalog.

Since source accesses are costly, an important issue is how to minimize the number of accesses
to the sources while still being guaranteed to obtain all possible answers to a query. [62, 63]
discuss several optimizations that can be made at compile time, during query plan generation.

5 Conclusions

We have described a general framework for data integration systems, which provide access to
a set of heterogeneous sources by means of a global schema in terms of which users’ queries
are posed. The source schemas are related to the global schema by means of a mapping. The
problem of query processing in such a setting amounts to finding a way to answer a query posed
over the global schema using only the information stored at the sources. We have discussed
query processing in the context of the two relevant cases where the mapping between the global
and the local schemas is specified following either the local-as-view (LAV) or the global-as-view
(GAV) approach. While in the LAV approach each source relations is expressed in terms of a
view over the global schema, in the GAV approach each global relation is associated with a view

19



over the source relations. Since the mapping differs in the two frameworks, the problem assumes
different aspects in LAV and GAV.

In the former approach query processing has been addressed by means of either query rewrit-
ing, which tries to reformulate the original query in terms of the sources and then evaluates the
rewritten query over the data at the sources, or query answering, which aims at directly answer-
ing the query based on the view extensions. We have presented the algorithms proposed in the
literature that deal with query rewriting and query answering in the LAV approach.

Integration in the GAV approach is treated in the literature only in the simplified settings
in which no constraint is defined in the global schema. In such a setting query processing in the
GAV approach reduces to simply unfolding the global relations in the query with their definitions.
We have described some GAV integration systems that deal with the data integration problem
in such a setting. We showed also that in the presence of constraints over the global schema
unfolding is in general not sufficient.

References

[1] Serge Abiteboul and Oliver Duschka. Complexity of answering queries using materialized
views. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’98), pages 254–265, 1998.

[2] Foto N. Afrati, Manolis Gergatsoulis, and Theodoros Kavalieros. Answering queries using
materialized views with disjunction. In Proc. of the 7th Int. Conf. on Database Theory
(ICDT’99), volume 1540 of Lecture Notes in Computer Science, pages 435–452. Springer-
Verlag, 1999.

[3] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalence among relational expressions. SIAM
J. on Computing, 8:218–246, 1979.

[4] Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting queries using views
in description logics. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’97), pages 99–108, 1997.

[5] D. Beneventano, S. Bergamaschi, S. Castano, A. Corni, R. Guidetti, G. Malvezzi, M. Mel-
chiori, and M. Vincini. Information integration: the MOMIS project demonstration. In
Proc. of the 26th Int. Conf. on Very Large Data Bases (VLDB 2000), 2000.

[6] S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini. Retrieving and integrating
data from multiple sources: the MOMIS approach. Data and Knowledge Engineering,
36:251–249, 2001.

[7] Mokrane Bouzeghoub and Maurizio Lenzerini. Special issue on data extraction, cleaning,
and reconciliation. Information Systems, 2001. To appear.

[8] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidability
of query containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158, 1998.

[9] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. What can knowledge
representation do for semi-structured data? In Proc. of the 15th Nat. Conf. on Artificial
Intelligence (AAAI’98), pages 205–210, 1998.

[10] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Answering queries using
views over description logics knowledge bases. In Proc. of the 17th Nat. Conf. on Artificial
Intelligence (AAAI 2000), pages 386–391, 2000.

20



[11] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Riccardo
Rosati. Data integration in data warehousing. Int. J. of Cooperative Information Systems,
2001. To appear.

[12] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Rewrit-
ing of regular expressions and regular path queries. In Proc. of the 18th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’99), pages 194–204,
1999.

[13] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. An-
swering regular path queries using views. In Proc. of the 16th IEEE Int. Conf. on Data
Engineering (ICDE 2000), pages 389–398, 2000.

[14] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Con-
tainment of conjunctive regular path queries with inverse. In Proc. of the 7th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’2000), pages 176–185, 2000.

[15] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Query
processing using views for regular path queries with inverse. In Proc. of the 19th ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2000), pages
58–66, 2000.

[16] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-
based query processing and constraint satisfaction. In Proc. of the 15th IEEE Symp. on
Logic in Computer Science (LICS 2000), pages 361–371, 2000.

[17] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. What
is query rewriting? In Proc. of the 7th Int. Workshop on Knowledge Representation
meets Databases (KRDB 2000), pages 17–27. CEUR Electronic Workshop Proceedings,
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-29/, 2000.

[18] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, M. Flickner,
A. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. H. Williams, and E. L. Wimmers.
Towards heterogeneous multimedia information systems: The Garlic approach. In RIDE-
DOM, pages 124–131, 1995.

[19] Roderick G. G Cattell and Douglas K. Barry, editors. The Object Database Standard:
ODMG 2.0. Morgan Kaufmann, Los Altos, 1997.

[20] Edward P. F. Chan. Containment and minimization of positive conjunctive queries in
oodb’s. In Proc. of the 11th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’92), pages 202–211, 1992.

[21] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proc. of the 9th ACM Symp. on Theory of Computing (STOC’77),
pages 77–90, 1977.

[22] S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and K. Shim. Optimizing queries with
materialized views. In Proc. of the 11th IEEE Int. Conf. on Data Engineering (ICDE’95),
Taipei (Taiwan), 1995.

[23] Surajit Chaudhuri and Moshe Y. Vardi. On the equivalence of recursive and nonrecur-
sive Datalog programs. In Proc. of the 11th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’92), pages 55–66, 1992.

21



[24] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman,
and J. Widom. The TSIMMIS project: Integration of heterogeneous information sources.
In Proc. of IPSI Conf. (IPSI’94), Tokyo (Japan), 1994.

[25] Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. In
Proc. of the 6th Int. Conf. on Database Theory (ICDT’97), pages 56–70, 1997.

[26] Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate queries using
views. In Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’99), pages 155–166, 1999.

[27] Anthony C. Klug David S. Johnson. Testing containment of conjunctive queries under
functional and inclusion dependencies. J. of Computer and System Sciences, 28(1):167–
189, 1984.

[28] Guozhu Dong and Jianwen Su. Conjunctive query containment with respect to views and
constraints. Information Processing Lett., 57(2):95–102, 1996.

[29] Oliver Duschka. Query Planning and Optimization in Information Integration. PhD thesis,
Stanford University, 1997.

[30] Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using views.
In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’97), pages 109–116, 1997.

[31] Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recursive query plans for
data integration. J. of Logic Programming, 43(1):49–73, 2000.

[32] Oliver M. Duschka and Alon Y. Levy. Recursive plans for information gathering. In Proc.
of the 15th Int. Joint Conf. on Artificial Intelligence (IJCAI’97), pages 778–784, 1997.

[33] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction. SIAM J. on Computing, 28:57–104, 1999.

[34] Daniela Florescu, Alon Levy, and Dan Suciu. Query containment for conjunctive queries
with regular expressions. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’98), pages 139–148, 1998.

[35] Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. Query optimization
in the presence of limited access patterns. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 311–322, 1999.

[36] Marc Friedman, Alon Levy, and Todd Millstein. Navigational plans for data integration.
In Proc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI’99), pages 67–73. AAAI
Press/The MIT Press, 1999.

[37] Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon. An extensible frame-
work for data cleaning. Technical Report 3742, INRIA, Rocquencourt, 1999.

[38] Gösta Grahne and Alberto O. Mendelzon. Tableau techniques for querying information
sources through global schemas. In Proc. of the 7th Int. Conf. on Database Theory
(ICDT’99), volume 1540 of Lecture Notes in Computer Science, pages 332–347. Springer-
Verlag, 1999.

[39] Stéphane Grumbach, Maurizio Rafanelli, and Leonardo Tininini. Querying aggregate data.
In Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’99), pages 174–184, 1999.

22



[40] Jarek Gryz. An algorithm for query folding with functional dependencies. In Proc. of the
7th Int. Symp. on Intelligent Information Systems, pages 7–16, 1998.

[41] Jarek Gryz. Query folding with inclusion dependencies. In Proc. of the 14th IEEE Int.
Conf. on Data Engineering (ICDE’98), pages 126–133, 1998.

[42] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Index
selection for OLAP. In Proc. of the 13th IEEE Int. Conf. on Data Engineering (ICDE’97),
pages 208–219, 1997.

[43] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implemeting data cubes
efficiently. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 205–
216, 1996.

[44] Richard Hull and Gang Zhou. A framework for supporting data integration using the mate-
rialized and virtual approaches. In Proc. of the ACM SIGMOD Int. Conf. on Management
of Data, pages 481–492, 1996.

[45] Tomasz Imielinski and Witold Lipski Jr. Incomplete information in relational databases.
J. of the ACM, 31(4):761–791, 1984.

[46] Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis, editors. Fun-
damentals of Data Warehouses. Springer-Verlag, 1999.

[47] Arthur M. Keller and Julie Basu. A predicate-based caching scheme for client-server
database architectures. Very Large Database J., 5(1):35–47, 1996.

[48] Anthony C. Klug. On conjunctive queries containing inequalities. J. of the ACM, 35(1):146–
160, 1988.

[49] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint
satisfaction. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS’98), pages 205–213, 1998.

[50] Chung T. Kwok and Daniel Weld. Planning to gather information. In Proc. of the 13th
Nat. Conf. on Artificial Intelligence (AAAI’96), pages 32–39, 1996.

[51] Alon Levy, Richard E. Fikes, and Shuky Sagiv. Speeding up inference using relevance
reasoning: A formalism and algorithms. Artificial Intelligence, 97(1–2), 1997.

[52] Alon Y. Levy. Obtaining complete answers from incomplete databases. In Proc. of the 22nd
Int. Conf. on Very Large Data Bases (VLDB’96), pages 402–412, 1996.

[53] Alon Y. Levy. Answering queries using views: A survey. Technical report, University of
Washinghton, 1999.

[54] Alon Y. Levy. Logic-based techniques in data integration. In Jack Minker, editor, Logic
Based Artificial Intelligence. Kluwer Publishers, 2000.

[55] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering
queries using views. In Proc. of the 14th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’95), pages 95–104, 1995.

[56] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query answering algorithms for
information agents. In Proc. of the 13th Nat. Conf. on Artificial Intelligence (AAAI’96),
pages 40–47, 1996.

23



[57] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogenous information
sources using source descriptions. In Proc. of the 22nd Int. Conf. on Very Large Data Bases
(VLDB’96), 1996.

[58] Alon Y. Levy, Anand Rajaraman, and Jeffrey D. Ullman. Answering queries using limited
external query processors. In Proc. of the 15th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS’96), pages 227–237, 1996.

[59] Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language combining
Horn rules and description logics. In Proc. of the 12th Eur. Conf. on Artificial Intelligence
(ECAI’96), pages 323–327, 1996.

[60] Alon Y. Levy, Divesh Srivastava, and Thomas Kirk. Data model and query evaluation in
global information systems. J. of Intelligent Information Systems, 5:121–143, 1995.

[61] Alon Y. Levy and Dan Suciu. Deciding containment for queries with complex objects.
In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’97), pages 20–31, 1997.

[62] Chen Li and Edward Chang. Query planning with limited source capabilities. In Proc. of
the 16th IEEE Int. Conf. on Data Engineering (ICDE 2000), pages 401–412, 2000.

[63] Chen Li and Edward Chang. On answering queries in the presence of limited access patterns.
In Proc. of the 8th Int. Conf. on Database Theory (ICDT 2001), 2001.

[64] Chen Li, Ramana Yerneni, Vasilis Vassalos, Hector Garcia-Molina, Yannis Papakonstanti-
nou, Jeffrey D. Ullman, and Murty Valiveti. Capability based mediation in TSIMMIS. In
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 564–566, 1998.

[65] Luigi Palopoli, Giorgio Terracina, and Domenico Ursino. The system DIKE: Towards
the semi-automatic synthesis of cooperative information systems and data warehouses.
In Proc. of Symposium on Advances in Databases and Information Systems (ADBIS-
DASFAA 2000), pages 108–117, 2000.

[66] Luigi Palopoli, Giorgio Terracina, and Domenico Ursino. A graph-based approach for
extracting terminological properties of elements of XML documents. In Proc. of the 17th
IEEE Int. Conf. on Data Engineering (ICDE 2001), pages 330–340. IEEE Computer Society
Press, 2001.

[67] Yannis Papakonstantinou, Hector Garcia-Molina, and Jeffrey D. Ullman. MedMaker: A
mediation system based on declarative specifications. In Stanley Y. W. Su, editor, Proc. of
the 12th IEEE Int. Conf. on Data Engineering (ICDE’96), pages 132–141, 1996.

[68] Yannis Papakonstantinou and Vasilis Vassalos. Query rewriting using semistructured views.
In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, 1999.

[69] Rachel Pottinger and Alon Y. Levy. A scalable algorithm for answering queries using views.
In Proc. of the 26th Int. Conf. on Very Large Data Bases (VLDB 2000), pages 484–495,
2000.

[70] Xiaolei Qian. Query folding. In Proc. of the 12th IEEE Int. Conf. on Data Engineering
(ICDE’96), pages 48–55, 1996.

[71] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries using tem-
plates with binding patterns. In Proc. of the 14th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS’95), 1995.

24



[72] Y. Sagiv and M. Yannakakis. Equivalences among relational expressions with the union
and difference operators. J. of the ACM, 27(4):633–655, 1980.

[73] Giorgio Terracina and Domenico Ursino. Deriving synonymies and homonymies of object
classes in semi-structured information sources. In Proc. of International Conference on
Management of Data (COMAD 2000), pages 21–32. McGraw-Hill, New York, 2000.

[74] Dimitri Theodoratos and Timos Sellis. Data warehouse design. In Proc. of the 23rd Int.
Conf. on Very Large Data Bases (VLDB’97), pages 126–135, 1997.

[75] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The GMAP: A versatile tool for
phyisical data independence. Very Large Database J., 5(2):101–118, 1996.

[76] Jeffrey D. Ullman. Information integration using logical views. In Proc. of the 6th Int.
Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in Computer Science,
pages 19–40. Springer-Verlag, 1997.

[77] Ron van der Meyden. The Complexity of Querying Indefinite Information. PhD thesis,
Rutgers University, 1992.

[78] Ron van der Meyden. Logical approaches to incomplete information. In Jan Chomicki
and Günter Saake, editors, Logics for Databases and Information Systems, pages 307–356.
Kluwer Academic Publisher, 1998.

[79] Moshe Y. Vardi. The complexity of relational query languages. In Proc. of the 14th ACM
SIGACT Symp. on Theory of Computing (STOC’82), pages 137–146, 1982.

[80] Jennifer Widom. Special issue on materialized views and data warehousing. IEEE Bulletin
on Data Engineering, 18(2), 1995.

[81] Gio Wiederhold. Mediators in the architecture of future information systems. IEEE Com-
puter, 25(3):38–49, 1992.

[82] Jian Yang, Kamalakar Karlapalem, and Qing Li. Algorithms for materialized view design
in data warehousing environment. In Proc. of the 23rd Int. Conf. on Very Large Data Bases
(VLDB’97), pages 136–145, 1997.

[83] Ramana Yerneni, Chen Li, Hector Garcia-Molina, and Jeffrey D. Ullman. Computing
capabilities of mediators. In Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, pages 443–454, 1999.

[84] Ramana Yerneni, Chen Li, Jeffrey D. Ullman, and Hector Garcia-Molina. Optimizing large
join queries in mediation systems. In Proc. of the 7th Int. Conf. on Database Theory
(ICDT’99), pages 348–364, 1999.

[85] Gang Zhou, Richard Hull, and Roger King. Generating data integration mediators that use
materializations. J. of Intelligent Information Systems, 6:199–221, 1996.

[86] Gang Zhou, Richard Hull, Roger King, and Jean-Claude Franchitti. Data integration and
warehousing using H20. IEEE Bull. of the Technical Committee on Data Engineering,
18(2):29–40, 1995.

[87] Gang Zhou, Richard Hull, Roger King, and Jean-Claude Franchitti. Using object matching
and materialization to integrate heterogeneous databases. In Proc. of the 3rd Int. Conf. on
Cooperative Information Systems (CoopIS’95), pages 4–18, 1995.

25


