
D2I
Integrazione, Warehousing e Mining di sorgenti eterogenee

Programma di ricerca (cofinanziato dal MURST, esercizio 2000)

Methodology and Tools to Reconcile Data

Diego Calvanese, Domenico Lembo, Maurizio Lenzerini

D1.R11 30 novembre 2001

Sommario

A data integration system (DIS) provides access to a set of heterogeneous data sources through
a so-called global schema. There are basically two approaches for designing a DIS. In the
global-as-view (GAV) approach, one defines the elements in the global schema as views over the
sources, whereas in the local-as-view (LAV) approach, one characterizes the sources as views
over the global schema. In this paper we propose methodologies to reconcile data, both for LAV
and GAV. For LAV, we propose to declaratively specify reconciliation correspondences to be
used to solve conflicts among data in different sources, and define an algorithm that rewrites
queries posed on the global schema in terms of both the source elements and the reconciliation
correspondences. For GAV, it is a common opinion that query processing is much easier than
in LAV, where query processing is similar to query answering with incomplete information.
However, we show that, when constraints are expressed over the global schema, the problem of
incomplete information arises in GAV as well. We provide a general semantics for a GAV DIS,
and specify algorithms for query answering in the presence of both incompleteness of the sources
and inconsistencies between the data at the sources and the constraints on the global schema.

Tema Tema 1: Integrazione di dati provenienti da sorgenti eterogenee

Codice D1.R11

Data 30 novembre 2001

Tipo di prodotto Rapporto Tecnico

Numero di pagine 35

Unità responsabile RM

Unità coinvolte RM

Autore da contattare Domenico Lembo
Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italia
lembo@dis.uniroma1.it



Methodology and Tools to Reconcile Data

Diego Calvanese, Domenico Lembo, Maurizio Lenzerini

30 novembre 2001

Abstract

A data integration system (DIS) provides access to a set of heterogeneous data sources
through a so-called global schema. There are basically two approaches for designing a DIS.
In the global-as-view (GAV) approach, one defines the elements in the global schema as
views over the sources, whereas in the local-as-view (LAV) approach, one characterizes the
sources as views over the global schema. In this paper we propose methodologies to reconcile
data, both for LAV and GAV. For LAV, we propose to declaratively specify reconciliation
correspondences to be used to solve conflicts among data in different sources, and define
an algorithm that rewrites queries posed on the global schema in terms of both the source
elements and the reconciliation correspondences. For GAV, it is a common opinion that query
processing is much easier than in LAV, where query processing is similar to query answering
with incomplete information. However, we show that, when constraints are expressed over
the global schema, the problem of incomplete information arises in GAV as well. We provide a
general semantics for a GAV DIS, and specify algorithms for query answering in the presence
of both incompleteness of the sources and inconsistencies between the data at the sources
and the constraints on the global schema.

1 Introduction

Data integration is the problem of combining the data residing at different sources, and providing
the user with a unified view of these data, called global (or, mediated) schema [42]. The
interest in data integration systems has been continuously growing in the last years. Many
organizations face the problem of integrating data residing in several sources. Companies that
build a Data Warehouse, a Data Mining, or an Enterprise Resource Planning system must
address this problem. Also, integrating data in the World Wide Web is the subject of several
investigations and projects nowadays. Finally, applications requiring accessing or re-engineering
legacy systems must deal with the problem of integrating data stored in pre-existing sources.

The typical architecture of an integration system is described in terms of two types of mod-
ules: wrappers and mediators [56, 53]. The goal of a wrapper is to access a source, extract
the relevant data, and present such data in a specified format. The role of a mediator is to
collect, clean, and combine data produced by different wrappers (or mediators), so as to meet a
specific information need of the integration system. In the design of an integration system, one
of the core problems is the specification and the realization of mediators. Such activity is a very
complex task, which comprises several different issues [38].

An important aspect is the specification of the mapping between the global schema, which
provides the interface by which users issue their queries to the system, and the sources, which
contain the data needed to answer such queries. By exploiting such a mapping the system can
access the appropriate sources and answers the queries, thus freeing the user from the knowledge
on where data are, and how data are structured at the sources. Two basic approaches have been
used to specify the mapping between the sources and the global schema [42, 43, 45]. The first
approach, called global-as-view (or simply GAV), requires that the global schema is expressed
in terms of the data sources. More precisely, to every element of the global schema, a view over

1



the data sources is associated, so that its meaning is specified in terms of the data residing at
the sources. The second approach, called local-as-view (LAV), requires the global schema to
be specified independently from the sources. In turn, the sources are defined as views over the
global schema. The relationships between the global schema and the sources are thus established
by specifying the information content of every source in terms of a view over the global schema.
Intuitively, the GAV approach provides a method for specifying the data integration system
with a more procedural flavor with respect to the LAV approach. Indeed, whereas in LAV the
designer of the data integration system may concentrate on specifying the content of the source
in terms of the global schema, in the GAV approach, one is forced to specify how to get the data
of the global schema by queries over the sources.

A further issue is the choice of the method for computing the answer to queries posed in
terms of the global schema, which is one of the most important problems in the design of a data
integration system. For this purpose, the system should be able to reformulate the query in
terms of a suitable set of queries posed to the sources. In this reformulation process, the crucial
step is deciding how to decompose the query on the global schema into a set of subqueries on the
sources, based on the meaning of the mapping. The computed subqueries are then shipped to
the sources, and the results are assembled into the final answer. It is well known that processing
queries in the local-as-view approach is a difficult task [49, 53, 32, 1, 30, 16, 18]. Indeed, in
this approach the only knowledge we have about the data in the global schema is through the
views representing the sources, and such views provide only partial information about the data.
Therefore, extracting information from the data integration system is similar to query answering
with incomplete information, which is a complex task [54]. On the other hand, query processing
is considered much easier in the global-as-view approach, where in general it is assumed that
answering a query basically means unfolding its atoms according to their definitions in terms
of the sources [34]. The reason why unfolding does the job is that the global-as-view mapping
essentially specifies a single database satisfying the global schema, and evaluating the query over
this unique database is equivalent to evaluating its unfolding over the sources.

Independently of the mapping between the sources and the global schema, and the method
used to answer queries, one needs to take into account that the necessary data are provided by
different, autonomous, and heterogeneous sources, and hence need to be interpreted, combined,
and reconciled. Interpreting data can be regarded as the task of casting them into a common
representation. Moreover, the data returned by the various sources need to be combined to
provide the information requested to the integration system. The complexity of this step is due
to several problems [28], such as

• possible representation mismatches between data referring to the same real world object;

• possible errors in the data stored in the sources;

• possible incompleteness in the data stored in the sources;

• possible inconsistencies between values representing the properties of the real world objects
in different sources.

As a consequence, it becomes necessary to provide means to reconcile and merge the data coming
from different sources, so as to resolve the inconsistencies among values, and also to make use
of all the information available globally to possibly overcome incompleteness and lack of data
from the sources.

In commercial environments for design and management of integration systems, the above
tasks are taken care of through ad hoc components [40, 34]. In general, such components
provide the user with the capability of specifying the mapping between the sources and the
global schema by browsing through a meta-level description of the relations of the sources. In
addition, they generally provide both for automatic code generators and for the possibility of

2



attaching procedures to accomplish ad hoc transformations and filtering of the data. Even
though there are powerful and effective environments with the above features, their nature is
inherently procedural, and they typically require ad-hoc intervention on a query-by-query basis.

Several recent research contributions address these problems from a more formal perspec-
tive [39, 35, 55, 33, 58, 59, 48, 29]. Generally speaking, these works follow the global-as-view
approach. Research projects concerning the local-as-view approach have concentrated on the
problem of reformulating a query in terms of the source relations [44, 50, 52, 3, 25, 6, 32, 26, 22,
31, 1, 30, 15, 16, 17]. However, none of them addresses both the problem of data reconciliation
at the instance level, and the problem of reformulating queries posed to an integration system
via a global schema, properly taking into account not only the mapping between the global
schema and the sources, but also the constraints imposed by the global schema itself, and the
inconsistencies and mismatches between data in different sources.

In this paper we present different methodologies for data integration and reconciliation,
suitable for the local-as-view and the global-as-view approach, respectively. In both cases we
adopt a framework in which the information content of the integration system, represented in
the global schema, is expressed in an Entity-Relationship formalism. As a consequence, such a
global schema may express several forms of constraints at the global level.

• For the local-as-view approach, we propose to declaratively specify various types of recon-
ciliation correspondences between data in different sources. Three types of Reconciliation
Correspondences are taken into account, namely Conversion, Matching, and Merging Cor-
respondences. Such correspondences are used to support the task of specifying the correct
mediators for the integration system. For this purpose, we propose a methodology that
relies on a query rewriting algorithm, whose role is to reformulate queries posed to the
integration system in terms of both the source relations and the Reconciliation Corre-
spondences. The characteristic feature of the algorithm is that it takes into account the
constraints imposed by the global schema, and uses the Reconciliation Correspondences
for cleaning, integrating, and reconciling data coming from different sources.

• For the global-as-view approach, we show that during query processing, one needs to take
into account the semantics of the global schema to reconcile the answers coming from
different sources with the global constraints holding for the integration system. Indeed,
the presence of constraints on the global schema makes query processing more involved
than in the simplified framework usually considered in the literature. In particular, we
show that the semantics of a data integration system is best described in terms of a set
of databases, rather than a single one, and this implies that, even in the global-as-view
approach, query processing is intimately connected to the notion of querying incomplete
databases. We then formalize the notion of correct answer in a data integration system in
which the global schema contains constraints. We also present, for the case at hand (i.e.,
where the global schema is expressed in the Entity-Relationship model) a query processing
strategy that is able to provide all correct answers to a query posed to the system.

When we consider also functional attributes in the global schema, the problem arises of
reconciling data coming from different sources that violates functionality. For this case,
we propose to formalize the answer to a query by weakening the first-order semantics,
and show how the query answering algorithm can be encoded in disjunctive datalog.
We show also that in this case the data complexity of computing the answer is no longer
polynomial but coNP-complete.

The paper is organized as follows. In Section 2, we present the conceptual model, which is
at the basis of the integration framework adopted in the paper. Such a framework is introduced
in Section 3. The problem of data reconciliation is addressed in Section 4 in the local-as-views
setting, and in Section 5 in the global-as-view setting. Section 6 concludes the paper.

3



2 The Conceptual Data Model

The conceptual model, which is at the basis of the integration framework introduced in the
next section, is the basic Entity-Relationship (ER) model [21], extended with various forms of
constraints [4].

Formally, an ER schema is a collection of entity, relationship, and attribute definitions over
an alphabet A of symbols. Entities, relationships and attributes are called the concepts of the ER
schema. An entity set (or simply entity) denotes a set of objects, called its instances, that have
common properties. Properties that are due to relations to other entities are modeled through
the participation of the entity in relationships. A relationship set (or simply relationship) denotes
a set of tuples (also called its instances), each of which represents an association among a
different combination of instances of the entities that participate in the relationship. Since each
entity can participate in a relationship more than once, the notion of ER-role is introduced,
which represents such a participation and to which a unique name is assigned. The arity of a
relationship is the number of its ER-roles. We do not use names for referring to ER-roles, rather,
we simply use the numbers corresponding to their positions in the relationships. Cardinality
constraints can be attached to an ER-role in order to specify the number of times each instance
of an entity is allowed to participate via that ER-role in instances of the relationship. In
particular, such constraints can be used to indicate that instances of an entity must necessarily
participate in instances of a certain relationship in which the entity is involved (in this case
the minimum cardinality is 1). We call these constraints mandatory participation constraints.
Elementary properties are modeled through attributes, whose values belong to one of several
predefined domains, such as Integer, String, or Boolean, or abstract domains that allow the
designer to distinguish between the different meanings that values of concrete domains may
have. Notice that in our model each attribute is associated to a unique entity or relationship,
i.e., different entities and relationships have disjoint sets of attributes. Furthermore, cardinality
constraints can be attached to an attribute in order to indicate the number of times each instance
of an entity (relationship) has associated a value for such attribute. In particular, a cardinality
constraint can indicate that an attribute A of an entity E is mandatory, i.e., each instance of
E must necessarily be associated to a value of A (in this case the minimum cardinality is 1), or
functional, i.e., an instance of E cannot be associated to more than one value of A (in this case
the maximum cardinality is 1).

The semantics of an ER schema is formally defined by specifying when a database satisfies
all constraints imposed by the schema. For the sake of simplicity we consider only databases
defined over a fixed (infinite) alphabet Γ, disjunct from A, of symbols, each one denoting a
semantic value. A given database B assigns to each entity a subset of Γ, to each attribute of an
entity a binary relation over Γ, to each relationship R of arity n, a set of n-tuples of elements
of Γ, and to each attribute of a relationship of arity n an (n+1)-ary relation over Γ. The set of
objects assigned by B to an entity, attribute, or relationship is called the set of its instances in
B. We say that B is coherent with respect to an ER schema C if it satisfies all the constraints
in C, i.e.:

• a cardinality constraint (n,m) associated to the participation of an entity E to a rela-
tionship R via the ER-role i is satisfied if each instance of E appear at least n times and
at most m times as component i in the instances of R. In particular, if the cardinality
constraint indicates a mandatory participation of E in R, it is satisfied if each instance of
E appear at least one time as component i in the instances of R;

• a cardinality constraint (n,m) attached to an attribute A of an entity E (or relationship
R) is satisfied if each instance of E (resp. R) is associated to at least n, and at most m
values of A. In particular, if the cardinality constraint indicates that A is mandatory, it
is satisfied if each instance of E (resp. R) is associated to at least one value of A. In the

4



ssn : SSNString

(1, 1)

name : NameString

(1, 1)

(1, 1)
dob : Date

(1, 1)

income : Money

(1, 1)

(0, n)

2

Person

Female Male

1
CHILD

Figure 1: Entity-Relationship schema for parent-child relationship

case that the cardinality constraint indicates that the attribute is functional, it is satisfied
if each instance of E (resp. R) is associated to at most one value of A;

• an is-a constraint between an entity E1 (or a relationship R1) and an entity E2 (resp.
a relationship R2) is satisfied if each instance of E1 (resp. R1) is also an instance of E2

(resp. R2).

The formal semantics of an ER schema can also be defined by encoding it in a logic based
formalism called DLR [11, 10], which fully captures its semantics. DLR belongs to the family
of Description Logics, which are class-based representation formalisms that allow one to express
several kinds of relationships and constraints holding among classes. DLR enables one to capture
the basic features of the ER model and in addition to specify several forms of constraints, as
the ones described above, that cannot be expressed in the standard ER model [19, 8].

In the following example, we report a simple ER schema, and we show how to formalize it
in DLR.

Example 2.1 The schema shown in Figure 1 represents persons divided in males and females
and the parent-child relationship. The cardinality constraints attached to the attributes of the
entity Person indicate that all the attributes are functional and mandatory. The fact that the
entity Person participates twice in the relationship CHILD (either as parent or child) is specifyed
by two different ER-roles, represented by the numbers indicating their poitions. The cardinality
constraint attached to the ER-role 2 specifies the mandatory and functional participation of this
ER-role in the relationship CHILD.

The following set of DLR assertions exactly captures the ER schema in the figure.

Person ⊑ (= 1 [1]name) ⊓ ∀[1](name ⊓ (2/2:NameString)) ⊓
(= 1 [1]ssn) ⊓ ∀[1](ssn ⊓ (2/2: SSNString)) ⊓
(= 1 [1]dob) ⊓ ∀[1](dob ⊓ (2/2:Date)) ⊓
(= 1 [1]income) ⊓ ∀[1](income ⊓ (2/2:Money))

Person ≡ Female ⊔Male

Female ⊑ ¬Male

CHILD ⊑ (1/2:Person) ⊓ (2/2:Person)

Person ⊑ (= 1 [2]CHILD)

The first assertion specifies the cardinality and the domain of the attributes of Person. The
next two assertions specify that persons are partitioned in females and males. The fourth as-
sertion specifies the typing of the CHILD relationship. The last one specifies the cardinality
constraint (functional and mandatory) attached to the participation of Person as second com-
ponent of the relationship CHILD.

5



In the following we will refer to the possibility of defining views and queries over a global
schema expressed in the ER model. We call them queries over the conceptual level. We restrict
our analysis to the class of union of conjunctive queries (UCQs) [2]. A UCQ is a formula of the
form

q(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conjm(~x, ~ym)

where

• q belongs to a new alphabet Q (the alphabet of queries, that is disjoint from both Γ and
A). q(~x) is called the head of the query;

• the number of variables of ~x is called the arity of q, and is the arity of the relation denoted
by the query q (we us ~x to denote a tuple of variables x1, . . . , xn, for some n).

• conj 1(~x, ~y1) ∨ · · · ∨ bodym(~x, ~ym) is called the body of the query;

• for each i, the disjunct conj i(~x, ~yi) is a conjunction of atoms involving constants from Γ
and variables ~x = X1, . . . , Xn and ~yi = Yi,1, . . . , Yi,ni

from an alphabet of variables,

• The predicates in the atoms are concepts of the conceptual schema, i.e., its entities, rela-
tionships and attributes:

– Each entity E in G has an associated predicate E of arity 1. Intuitively, E(c) asserts
that c is an instance of entity E.

– Each attribute A for an entity E has an associated predicate A of arity 2. Intuitively,
A(c, d) asserts that c is an instance of entity E and d is the value of attribute A
associated to c.

– Each relationship R among the entities E1, . . . , En has an associated predicate R of
arity n.

– Each attribute A for a relationship R among the entities E1, . . . , En has an associated
predicate A of arity n + 1. Intuitively, A(c1, . . . , cn, d) asserts that (c1, . . . , cn) is an
instance of relationship R and d is the value of attribute A associated to (c1, . . . , cn).

In the integration framework that will be presented in Section 3, we also will consider views
that are unions of conjunctive queries expressed over relational sources, in addition to the ones
expressed over the global conceptual schema. In this case we will make use of relational queries,
whose definition is as the one presented above, with the only difference that the predicate
symbols of the atoms in the queries are relation symbols belonging to the schemas representing
the sources, rather than concepts of a conceptual schema.

Finally we define the semantics of queries: given a database DB, either a database for a
relational schema or for an ER schema, the answer of a query q of arity n over DB, denoted
qDB, is the set of n-tuples of constants (c1, . . . , cn), such that, when substituting each ci for xi,
the formula ∃~y1.conj 1(~x, ~y1) ∨ · · · ∨ ∃~ym.conjm(~x, ~ym) evaluates to true in DB.

Suitable inference techniques allow for carrying out the following reasoning services on queries
over the conceptual level by taking into account the constraints expressed in the conceptual
schema [11]:

• Query containment. Given two queries q1 and q2 (of the same arity n) over the conceptual
level, we say that q1 is contained in q2, if the set of tuples denoted by q1 is contained in
the set of tuples denoted by q2 in every database satisfying the conceptual schema.

• Query consistency. A query q over the conceptual level is consistent, if there exists a
database satisfying the conceptual schema in which the set of tuples denoted by q is not
empty.

6



• Query disjointness. Two queries q1 and q2 (of the same arity) over the conceptual level are
disjoint, if the intersection of the set of tuples denoted by q1 and the set of tuples denoted
by q2 is empty, in every database satisfying the conceptual schema.

3 A Framework for Data Integration

In this section we set up a formal framework for data integration. In particular, we describe the
main components of a data integration system, namely, the global schema, the sources, and the
mapping between the two. Finally, we provide the semantics both of the system, and of query
answering.

Formally, A data integration system I is a triple 〈G,S,M〉, where G is the global schema, S
is the source schema, andM is the mapping between G and S. We describe the characteristics
of the various components of a data integration system in our approach:

• The global schema G is expressed in terms of the ER model described in the previous
section. We denote with AG the alphabet of the conceptual symbols used to specify the
global schema.

• The source schema S is constituted by the schemas of the sources. We assume that the
sources are expressed as relational tables. This is not a strong limitation, since, in case
of sources of different type, we can assume that suitable wrappers present the data at the
sources in relational form. Each source is modeled by a set of relations and we denote
with AS the alphabet of the relational symbols of the sources. Finally, we assume that no
integrity constraint is allowed over the sources.

• M is the mapping between G and S. The mapping indicates the relationships holding
among concepts of the global schema and relations of the sources. We consider two ap-
proaches to specify the mapping:

1. The local-as-view (LAV) approach, in which the meaning of the sources is expressed
in terms of elements of the global schema. More precisely, the mapping in LAV is
given by associating to each relation R in the sources a view VR, i.e., a query, over
the global schema. The intended meaning of such an association is that the view
VR represents the best way to characterize the tuples of R using the concepts in G.
We assume that the language used to express views in LAV is union of conjunctive
queries.

2. The global-as-view (GAV) approach, in which the elements of the global schema are
described in terms of the sources. More precisely, the mapping in GAV is given by
associating to each concept C in the global schema a view VC over the sources. The
intended meaning of such an association is that the view VC represents the best way
to characterize the instances of C using the relations in S. No limitation is posed on
the language used to specify the mapping in GAV.

Note that, whereas we specify the LAV mapping in terms of queries over the conceptual
model whose predicate symbols in the atoms belong to AG , the GAV mapping is specified
by means of relational queries expressed in terms of AS .

In order to specify the semantics of a data integration system, we have to characterize, given
the set of tuples satisfying the various source relations, which are the data satisfying the global
schema. Hence, given a data integration system I = 〈G,S,M〉, we start by considering a source
database for I, i.e., a database D for the source schema S. Based on D, we now specify which
is the information content of the global schema G. We call global database for I any database
for G. A global database B for I is said to be legal for I with respect to D if:

7



• B is coherent with G;

• B satisfies the mappingM, that is its instances respect the relationships defined between
the global concepts and the source relations. In the case that the mapping is LAV, this
means that for each view VR associated to a source relation R, the set of tuples V B

R that
satisfies the view wrt B is coherent with set of tuples RD that D assign to R, i.e., RD ⊆ V B

R .
On the contrary, in the case that the mapping is GAV, satisfying it means that for each
view VC associated to a global concept C, the set of instances CB that B assigns to C is
coherent with set of tuples satisfying view VC wrt D, i.e., V D

C ⊆ CB.

The above definition implies that views are considered sound, i.e., that sources store only,
but not necessary all, the tuples that satisfy the global schema. Another possibility would be
to consider them exact. When views are exact, the mapping between the global schema and
the sources is defined in such a way that, for every source database D, in the LAV approach
it holds that RD = V B

R for every relation R of S, whereas in the GAV approach it holds that
V D
C = CB for every concept C of G. Finally, a third way on how to interpret the data stored

at the sources with respect to the data that satisfies the global schema, is to consider the views
complete. The fact that the views are complete implies that the sources store all the tuples that
satisfy the global schema, i.e., for every source database D, in the LAV approach it holds that
RD ⊇ V B

R for every relation R of S, whereas in the GAV approach it holds that V D
C ⊇ CB for

every concept C of G. In the following we only refer to sound views.
Given a source database D for I, the semantics of I wrt D, denoted sem(I,D), is defined

as follows:
sem(I,D) = { B | B is a legal global database for I wrt D }

From the above definitions, it is easy to see that given a legal source database D, in general
several global coherent databases exist. In specific cases, no global coherent database may exist,
for example if the set of constraints of the global schema is inconsistent, or exactly one coherent
database may exist.

We conclude the section by defining the notion of query posed to the data integration system.
A query Q to a data integration system I = 〈G,S,M〉 is a query over the conceptual level, whose
atoms have symbols in G as predicates, as illustrated in Section 2. Our goal here is to specify
which are the tuples that form the answer to a query posed to a data integration system I. The
fact that, given a source database D, several global databases may exist that are legal for I
with respect to D complicates this task. In order to address this problem, we follow a first-order
logic approach: a tuple (c1, . . . , cn) is considered an answer to the query only if it is a certain
answer, i.e., it satisfies the query in every database that belongs to the semantics of the data
integration system. Formally, the set of certain answers QI,D to Q with respect to I and D is
the set of tuples (c1, . . . , cn) such that (c1, . . . , cn) ∈ QB, for each B ∈ sem(I,D).

Notice that, in a data integration system I, either a LAV or a GAV system, answering
queries is essentially an extended form of reasoning in the presence of incomplete information [54].
Indeed, when we answer the query, we know only the extensions of the sources, and this provides
us with only partial information on the global database. Moreover, since the query language
may admit various forms of incomplete information (due to union, for instance), there are in
general several possible databases coherent with I.

4 Reconciliation in LAV

When the mapping between the global schema and the sources is specified following the local-
as-view approach, a query over the conceptual level is associated to each source relation. In this
section we first summarize the framework at the basis of data integration in the LAV setting, and
we describe how to specify the integration system at the logical level. We address the problem

8



of data reconciliation by specifying suitable Reconciliation Correspondences, and then present
a method for the synthesis of mediators that takes such correspondences into account.

4.1 LAV Framework

In the LAV approach we explicitly model the data managed by the integration system at different
levels of abstraction [12, 13, 14]. We refer to the abstract framework introduced in Section 3.

• At the conceptual level, the global schema contains a conceptual representation of the data
managed by the integration system, including a conceptual representation of the data
residing in sources, and of the global concepts and relationships that are of interest for the
application. As detailed in the previous section, the global schema is expressed in terms of
the ER model. In the rest of the section, we will use the term “conceptual level” instead
of “global schema” to emphasize that the global schema contains a representation of the
reality of interest at the conceptual level.

• At the logical level, the source schema provides a representation of the sources in terms of
a logical data model, in our case the relational model. If the integration system maintains
also materialized integrated data (e.g., in the case of a Data Warehouse), the logical level
contains also a representation of such data in terms of the logical model; we call such a
representation the materialized view schema.

The relationship between the conceptual level and the logical level, is represented explicitly
by specifying a mapping between corresponding objects of the two levels. More precisely, in the
local-as-view approach the link between the logical representation and the conceptual represen-
tation of the sources is formally defined by associating each source relation with a query that
describes its content in terms of a query over the conceptual level (as defined in Section 2). In
other words, the logical content of a source relation is described in terms of a view over the
virtual database represented by the conceptual level.

We remind that we assume that physical structures are mapped to logical structures by means
of suitable wrappers, which encapsulate the sources. The wrapper hides how the source actually
stores its data, the data model it adopts, etc., and presents the source as a set of relations.
In particular, we assume that all attributes in the relations are of interest to the information
integration application (attributes that are not of interest are hidden by the wrapper). Relation
attributes are thus modeled as either entity attributes or relationship attributes in the conceptual
level.

The materialized view schema (if present at all), which expresses the logical content of the
materialized views, is provided in terms of a set of relations. Similarly to the case of the sources,
each relation of the materialized view schema is described in terms of a query over the conceptual
level.

In the following, we will also consider queries whose body may contain special predicates
that do not appear in the conceptual level.

4.2 Source and Materialized Views Logical Schema Descriptions

As mentioned above, we express the relational tables constituting both the source schema and
the materialized views schema in terms of queries over the conceptual level. Such queries are a
powerful tool for modeling the logical level of the sources and the materialized views. To take
into account that at the conceptual level we deal with (conceptual) objects, while at the logical
level the relations store values (rather than conceptual objects), queries over the conceptual level
have the following characteristics:

9



• Relational tables are composed of tuples of values, which are the only kind of objects at
the logical level. Therefore, each variable in the head of the query represents a value (not
a conceptual object).

• Each variable appearing in the body of the query either denotes a conceptual object or a
value, depending on the atoms in which it appears. Since, in each database that satisfies
the conceptual level, conceptual objects and values are disjoint sets, no query can contain
a variable which can be instantiated by both a conceptual object and a value.

• Each conceptual object is represented at the logical level by a tuple of values. Thus, a
mechanism is needed to express this kind of correspondence between a tuple of values and
the conceptual object it represents. This is taken into account by the notion of adornment
introduced below.

4.2.1 Source Schema Description

The query associated with a source relation provides the glue between the conceptual and the
logical representation. However, to capture in a precise way the data in the sources, more
information is needed in order to describe the actual structure of the data in the relation. This
is done by the adornment associated to the relation, whose role is to declare the domains of
the columns of the table, and which are the attributes of the table that are used to identify the
objects of the conceptual level. In other words, the adornment is used to make explicit how the
objects of the conceptual representation are coded into values of the logical representation.

An adorned query is an expression of the form

Q(~x) ← body(~x, ~y) | α1, . . . , αn

where Q(~x) ← body(~x, ~y) is a query over the conceptual level and α1, . . . , αn constitutes the
adornment in which each αi is an annotation on variables appearing in ~x. In particular:

• For each X ∈ ~x, we have an annotation of the form

X :: V

where V is a domain expression. Such an annotation is used to specify how values bound
to X are represented in the table at the logical level.

• For each tuple of variables ~z ⊆ ~x that is used for identifying in Q a conceptual object
Y ∈ ~y mentioned in q(~x, ~y), we have an annotation of the form

Identify([~z], Y )

where we have grouped the variables ~z into a single argument [~z]. Such an annotation
makes it explicit that the tuple of values ~z is a representation of the conceptual object Y .

We illustrate by means of an example how adorned queries are used to specify the information
content of source tables. We use X1, . . . , Xk :: V as an abbreviation for X1 :: V, . . . , Xk :: V .

Example 4.1 Suppose we store in two sources S1 and S2 parent-child relationships, according
to the conceptual level shown in Figure 1. Source S1 contains the information about fathers
and their children, in terms of a relational table FATHER1 which stores all such pairs. Similarly,
source S2 contains the information about mothers and their children in terms of a relational table
MOTHER2. We assume that in source S1 persons (both fathers and children) are identified by
their name and date of birth, while in source S2 persons are identified by their social security

10



number. Hence, we can specify the information content of the two tables by the following
adorned queries:

FATHER1(Nf , Df , Nc, Dc) ← Male(F ) ∧ Person(C) ∧ CHILD(F,C) ∧
name(F,Nf ) ∧ dob(F,Df ) ∧ name(C,Nc) ∧ dob(C,Dc)

| Nf , Nc :: NameString,
Df , Dc :: Date,
Identify([Nf , Df ], F ), Identify([Nc, Dc], C)

MOTHER2(Sm, Sc) ← Female(M) ∧ Person(C) ∧ CHILD(M,C) ∧
ssn(M,Sm) ∧ ssn(C, Sc)

| Sm, Sc :: SSNString,
Identify([Sm],M), Identify([Sc], C)

Example 4.2 Referring again to the conceptual level shown in Figure 1, we want to model two
sources storing the information about the income of persons. Source S1 stores the income per
month of males in a table INCOME1, while source S2 stores the income per year of females in a
table INCOME2, and the content of the tables is specified by the following adorned queries:

INCOME1(Sm, I) ← Male(M) ∧ ssn(M,Sm) ∧ income(M, I)

| Sm :: SSNString,
I :: IncomePerMonth,
Identify([Sm],M)

INCOME2(Sf , I) ← Female(F ) ∧ ssn(F, Sf ) ∧ income(F, I)

| Sf :: SSNString,
I :: IncomePerYear,
Identify([Sf ], F )

The adorned query associated to a table in a source contains a lot of information that can
be profitably used in analyzing the quality of the integration system design process. Indeed, the
adorned query precisely formalizes the content of a source table in terms of a query over the
conceptual level, the domains of each attribute of the table, and the attributes used to identify
entities at the conceptual level. One important check that we can carry out over the logical
specification of a source is whether the adorned query associated with a table in a source is
consistent or not. Let Q be an adorned query and let B be its body. The query B is said to
be inconsistent with respect to the conceptual level G, if for every database DB coherent with
G, the evaluation of B with respect to DB is empty. An adorned query Q may be inconsistent
with respect to the conceptual level G because the body B of Q is inconsistent with respect
to G. Inference techniques allow us to check for these forms of inconsistency [13]. Another
reason for inconsistency in specifying a table may be due to annotations that are incoherent
with respect to what specified in G. In particular, domain expressions used in the adornment
can be inconsistent with respect to the constraints on domains specified at the conceptual
level. Standard propositional reasoning tools [5, 57, 23] can be adopted to detect such forms of
inconsistency.

4.2.2 Materialized Views Schema Description

Similarly to the case of source relations, the views to be materialized are described as adorned
queries over the conceptual level.

11



Note that the adorned query associated to a table in a source is the result of a reverse engi-
neering analysis of the source, whereas in this case the adorned query is a high-level specification
of what we want to materialize in views, and thus of the mediator for loading such a materialized
view. Since we express the semantics of the tables to materialize in terms of the conceptual level,
also the materialized views are seen as views of such a conceptual level.

Example 4.1 (cont.) Suppose we want materialize (e.g., in a Data Warehouse) all pairs of
male-female with a child in common. The pairs have to be stored in a table COMMONCHILDDW,
identifying each person by its social security number. We can specify the content of the table
wrt the conceptual level by the following adorned query:

COMMONCHILDDW(Sf , Sm) ← Male(F ) ∧ ssn(F, Sf ) ∧ CHILD(F,C) ∧
Female(M) ∧ ssn(M,Sm) ∧ CHILD(M,C)

| Sf , Sm :: SSNString,
Identify([Sf ], F ), Identify([Sm],M)

Example 4.2 (cont.) Suppose we want to store in the materialized views pairs of persons with
the same income. The pairs, together with the common income per year, have to be stored in a
table SAMEINCOMEDW, identifying each person by its social security number. We can specify
the content of the table wrt the conceptual level by the following adorned query:

SAMEINCOMEDW(S1, S2, I) ← Person(P1) ∧ ssn(P1, S1) ∧ income(P1, I) ∧
Person(P2) ∧ ssn(P2, S2) ∧ income(P2, I)

| S1, S2 :: SSNString,
I :: IncomePerYear,
Identify([S1], P1), Identify([S2], P2)

The reasoning services provided at the logical level make it possible to automatically generate
the correct mediators for the loading of the materialized views. As illustrated in Section 4.4,
this is realized by means of a query rewriting technique which uses query containment as its
basic reasoning service.

4.2.3 Schematic Differences

The mechanism used in our framework for specifying adorned queries is able to cope with
schematic differences [51]. The example below illustrates a case where there are various schematic
differences, both among the sources, and between the sources and the conceptual level.

Example 4.3 Suppose that the conceptual level contains an entity Service with three attributes,
date, type, and price, specifying respectively the date, the type, and the cost of the service.
Suppose that source S1 represents information only on services of type t1 and t2, by means of
two relations: t1 and t2, where t1(D,P ) means that service t1 costs P Italian Lira at date D, and
t2(D,P ) means that service t2 costs P Italian Lira at date D. Suppose that source S2 represents
information only on services t3 and t4 by means of a relation Serv2, where Serv3,4(D,P3, P4)
means that services t3 and t4 cost P3 and P4 Euro respectively at date D. Finally, suppose that
source S3 represents the information only for a certain date d by means of another relation Servd.
The various relations in the three sources can be specified by means of the following adorned
queries:

t1(D,P ) ← Service(S) ∧ date(S,D) ∧ type(S, ‘t1’) ∧ price(S, P )
| D :: Date, P :: ItalianLira, Identify([‘t1’, D], S)

12



t2(D,P ) ← Service(S) ∧ date(S,D) ∧ type(S, ‘t2’) ∧ price(S, P )
| D :: Date, P :: ItalianLira, Identify([‘t2’, D], S)

Serv3,4(D,P3, P4) ← Service(S3) ∧ date(S3, D) ∧ type(S3, ‘t3’) ∧ price(S3, P3) ∧
Service(S4) ∧ date(S4, D) ∧ type(S4, ‘t4’) ∧ price(S4, P4)
| D :: Date, P3 :: Euro, P4 :: Euro,
Identify([‘t3’, D], S3), Identify([‘t4’, D], S4)

Servd(T, P ) ← Service(S) ∧ date(S, ‘d’) ∧ type(S, T ) ∧ price(S, P )
| T :: TypeString, P :: Euro, Identify([T, ‘d’], S)

4.3 Reconciliation Correspondences

Assume that the integration system requires to compute a query, and that an adorned query
Q specifies, in terms of the conceptual level, how the data to compute the query has to be
obtained. This can be either because the query Q is required to compute the answer to a user
query posed to the integration system, or because Q results from the decision on which data
to materialize in the integration system. One crucial task is to design the mediator for Q, i.e.,
the program that accesses the sources to obtain the correct data for computing Q. Designing
the mediator for Q requires first of all to reformulate the query associated with Q in terms
of the source relations. However, such a reformulation is not sufficient. The task of mediator
design is complicated by the possible heterogeneity between the data in the sources. We have
already mentioned the most important ones, namely, mismatches between data referring to the
same real world object, errors in the data stored in the sources, inconsistencies between values
representing the properties of the real world objects in different sources.

Our proposal to cope with this problem is based on the notion of Reconciliation Correspon-
dence. Indeed, in order to anticipate possible errors, mismatches and inconsistencies between
data in the sources, our approach allows the designer to declaratively specify the correspon-
dences between data in different schemas (either source schemas or materialized views schema).
Such specification is done through special assertions, called Reconciliation Correspondences.

Reconciliation Correspondences are defined in terms of relations, similarly to the case of the
relations describing the sources and the materialized views at the logical level. The difference
with source and materialized views relations is that we conceive Reconciliation Correspondences
as non-materialized relations, in the sense that their extension is computed by an associated
program whenever it is needed. In particular, each Reconciliation Correspondence is specified
as an adorned query with an associated program that is called to compute the extension of the
virtual relation. Note that we do not consider the actual code of the program but just its input
and output parameters.

We distinguish among three types of correspondences, namely Conversion, Matching, and
Merging Correspondences.

4.3.1 Conversion Correspondences

Conversion Correspondences are used to specify that data in one table can be converted into
data of a different table, and how this conversion is performed. They are used to anticipate
various types of data conflicts that may occur in loading data coming from different sources into
the materialized views.

Formally, a Conversion Correspondence has the following form:

convertC([~x1], [~x2]) ← Equiv([~x1], [~x2]) ∧ conj (~x1, ~x2, ~y)
| α1, . . . , αn

through program(~x1, ~x2, ~y)

13



where: convertC is the conversion predicate defined by the correspondence; Equiv is a special
predicate whose intended meaning is that ~x1 and ~x2 actually represent the same data1; conj is
a conjunction of atoms, which specifies the conditions under which the conversion is applicable;
α1, . . . , αn is an adornment of the query; program denotes a program that performs the conver-
sion. In general, the program needs to take into account the additional parameters specified in
the condition to actually perform the conversion. The conversion has a direction. In particular,
it operates from a tuple of values satisfying the conditions specified for ~x1 in conj and in the
adornment to a tuple of values satisfying the conditions specified for ~x2. This means that the
conversion program receives as input a tuple ~x1, and returns the corresponding tuple ~x2, possibly
using the additional parameters ~y to perform the conversion. Notice that we will have to take
into account that the conversion has a direction also when we make use of the correspondence
for populating the materialized views.

Example 4.1 (cont.) Since we know that persons in the materialized views are identified by
their social security number, while in source S1 they are identified by their name and date
of birth, we have to provide a mean to convert the name and date of birth of a person to his
social security number. Let name dob to ssn be a suitable program that performs the conversion,
taking as input name and date of birth, and returning the social security number. To give a
declarative account of this ability, we provide the following Conversion Correspondence:

convertperson([N,D], [S]) ← Equiv([N,D], [S]) ∧ Person(P ) ∧
name(P,N) ∧ dob(P,D) ∧ ssn(P, S)

| N :: NameString, D :: Date, S :: SSNString,
Identify([N,D], P ), Identify([S], P )

through name dob to ssn(N,D, S)

The Conversion Correspondence specifies the condition under which a name N and date of birth
D can be converted to a social security number S, by requiring the existence of a person with
name N , date of birth D, and social security number S. Notice that the predicates in the body
of the Conversion Correspondence play a fundamental role in restricting the applicability of the
conversion to the proper attributes of persons.

In the example above we have used a correspondence that converts between different rep-
resentations of the same object. Since a representation may consist of a tuple of values (e.g.,
[N,D]) this is a typical situation in which we compare tuples, possibly of different arity. Our
approach requires indeed that, in order to compare tuples, we have a common underlying object,
which is used to make explicit the relationship between the components of the two tuples. In
the case where we do not have such an underlying object, we still allow to compare single values
in different domains, as shown in the following example.

Example 4.2 (cont.) To translate incomes per month to incomes per year we define the
following Conversion Correspondence:

convert income([Im], [Iy]) ← Equiv([Im], [Iy])
| Im :: IncomePerMonth, Iy :: IncomePerYear

through income month to year(Im, Iy)

1Equiv plays a special role during the construction of the rewriting for the synthesis of the mediator, as
explained in Section refsec-mediator.

14



4.3.2 Matching Correspondences

Matching Correspondences are used to specify how data in different source tables, typically
referring to different sources, can match. Formally, a Matching Correspondence has the following
form:

matchM ([~x1], . . . , [~xk]) ← Equiv([~x1], [~x2]) ∧ . . . ∧ Equiv([~xk−1], [~xk]) ∧
conj (~x1, . . . , ~xk, ~y)
| α1, . . . , αn

through program(~x1, . . . , ~xk, ~y)

where matchM is the matching predicate defined by the correspondence, Equiv is as before, conj
specifies the conditions under which the matching is applicable, α1, . . . , αn is again an adornment
of the query, and program denotes a program that performs the matching. The program receives
as input k tuples of values satisfying the conditions (and possibly the additional parameters in
the condition) and returns whether the tuples match or not.

Example 4.1 (cont.) To compare persons in source S1 with persons in source S2, we have
to provide a mean to compare persons identified by their name and date of birth with persons
identified by their social security number. Let name dob matches ssn be a suitable program
that, given name, date of birth, and the social security number as input, returns whether they
correspond to the same person or not. To give a declarative account of this program, we provide
the following Matching Correspondence:

matchperson([N,D], [S]) ← Equiv([N,D], [S]) ∧ Person(P ) ∧
name(P,N) ∧ dob(P,D) ∧ ssn(P, S)

| N :: NameString, D :: Date, S :: SSNString,
Identify([N,D], P ), Identify([S], P )

through name dob matches ssn(N,D, S)

Notice that the Matching Correspondence matchperson and the Conversion Correspondence
convertperson look the same. However there are fundamental differences between them. The
associated programs behave differently. In particular, name dob to ssn(N,D, S) is used to gen-
erate the social security number S of the person with name N and date of birth D, whereas
name dob matches ssn(N,D, S) is used to verify that N and D, and S refer to the same person.
Consequently, when the Matching Correspondence and the Conversion Correspondence are used
as atoms in a query Q, they have to be used according to different binding patterns of the vari-
ables occurring in the atoms. In particular, in the Matching Correspondence all variables have
to be bound, and therefore cannot occur in the head of the query Q. Instead, in the Conversion
Correspondence, the variables in the first tuple need to be bound, while the ones in the second
tuple are free. Hence the variables in the second tuple can occur in the head of Q.

4.3.3 Merging Correspondences

Merging Correspondences are used to assert how we can merge data in different sources into
data that contributes to the answer to a query. Formally, a Merging Correspondence has the
following form:

mergeR([~x1], . . . , [~xk], [~x0]) ← Equiv([~x1], [~x0]) ∧ . . . ∧ Equiv([~xk], [~x0]) ∧
conj (~x, . . . , ~xk, ~x0, ~y)
| α1, . . . , αn

through program(~x1, . . . , ~xk, ~x0, ~y)

where mergeR is the merging predicate defined by the correspondence, Equiv is as before, conj
specifies the conditions under which the merging is applicable, and program is a program that

15



performs the merging. Such correspondence specifies that the k tuples of values ~x1, . . . , ~xk

coming from the sources are merged into the tuple ~x0. Therefore, the associated program
receives as input k tuples of values (and possibly the additional parameters in the condition)
and returns a tuple which is the result of the merging. Example 4.5 below illustrates the use of
a Merging Correspondence.

4.3.4 Methodological Guidelines

The task of specifying suitable Reconciliation Correspondences is a responsibility of the designer.
Once such Reconciliation Correspondences are specified, they are profitably exploited to auto-
matically generate mediators, as described in Section 4.4. In the task of specifying Reconciliation
Correspondences, the system can assist the designer in various ways.

First of all, since each Reconciliation Correspondence is declaratively specified as an adorned
query, all reasoning tasks available for such queries can be exploited to check desirable properties
of the correspondence. In particular, the system can check the consistency of queries, rejecting
inconsistent ones and giving the designer useful feedback. Also, the system can automatically
detect whether the adorned queries associated with different correspondences are contained
in each other (or are equivalent). This is an indication for redundancy in the specification.
However, to determine whether a correspondence is actually redundant, one has to consider also
the types of the correspondences and the programs associated with them. E.g., a less general
query, thus specifying stricter conditions for applicability, may still be useful in the case where
the associated program takes advantage of the specialization and operates more efficiently.

In practice, the system automatically asserts several correspondences by default, thus sim-
plifying the task of the designer.

• Several of the Reconciliation Correspondences that must be specified will have a very
simple form, since they will correspond simply to equality. In particular, for each domain
D in the conceptual level, the following Reconciliation Correspondences are asserted by
default:

convertD([X], [Y ]) ← Equiv([X], [Y ])
| X,Y :: D
through identity(X,Y )

matchD([X], [Y ]) ← Equiv([X], [Y ])
| X,Y :: D
through none

mergeD([X], [Y ], [Z]) ← Equiv([X], [Z]) ∧ Equiv([Y ], [Z])
| X,Y, Z :: D
through identity(X,Y, Z)

where identity is the program that computes the identity function for values of domain D,
and the matching correspondence has no associated program. When the designer provides
an Reconciliation Correspondence referring to a domain D, then the automatic generation
of the default correspondences for D is inhibited.

• Similarly, for each annotation of the form Identify([X1, . . . , Xk], X) appearing in the
adornment of a query q defining a source or materialized views table Q, and such that
X1 :: D1, . . . , Xk :: Dk are the annotations in q specifying the domains associated with
X1, . . . , Xk, the following Reconciliation Correspondences are asserted by default:

convertD1,...,Dk
([~x], [~y]) ← Equiv([X1], [Y1]) ∧ . . . ∧ Equiv([Xk], [Yk])

| X1, Y1 :: D1, . . . , Xk, Yk :: Dk

through identity([~x], [~y])

16



matchD1,...,Dk
([~x], [~y]) ← Equiv([X1], [Y1]) ∧ . . . ∧ Equiv([Xk], [Yk])

| X1, Y1 :: D1, . . . , Xk, Yk :: Dk

through none

mergeD1,...,Dk
([~x], [~y], [~z]) ← Equiv([X1], [Z1]) ∧ Equiv([Y1], [Z1]) ∧ . . . ∧

Equiv([Xk], [Yk]) ∧ Equiv([Yk], [Zk])
| X1, Y1, Z1 :: D1, . . . , Xk, Yk, Zk :: Dk

through identity([~x], [~y], [~z])

where ~x abbreviates X1, . . . , Xk, ~y abbreviates Y1, . . . , Yk, and ~z abbreviates Z1, . . . , Zk.

• For each Conversion Correspondence convert i asserted by the designer, the system auto-
matically asserts the Matching Correspondence

matchi([~x1], [~x2]) ← convert i([~x1], [~y]) ∧ Equiv(~x2, ~y)
through identity(~x2, ~y)

Observe that a new tuple ~y in the body of the correspondence is necessary to respect the
binding pattern for convert i. The program associated with convert i instantiates ~y, and
identity compares the obtained value with ~x2.

• For each Conversion Correspondence convert i asserted by the designer and for each Match-
ing Correspondence matchj asserted by the designer or by default, the system automati-
cally asserts the Merging Correspondence

mergei,j([~x1], [~x2], [~x0]) ← matchi([~x1], [~x2]) ∧ convert j([~x1], [~x0])
through none

Example 4.1 (cont.) For the domain SSNString the system automatically asserts, e.g., the
Conversion Correspondence

convertSSNString([S1], [S2]) ← Equiv([S1], [S2])
| S1, S2 :: SSNString
through identity(S1, S2)

Similarly, since the adornment of the query defining the table FATHER1 contains the annotations
Identify([Nf , Df ], F ), Nf :: NameString, and Df :: Date, the system automatically asserts, e.g.,
the Matching Correspondence

matchNameString,Date([N1, D1], [N2, D2]) ← Equiv([N1], [N2]) ∧ Equiv([D1], [D2])
| N1, N2 :: NameString, D1, D2 :: Date
through none

In addition, the designer may use already specified Reconciliation Correspondences to define
new ones.

Example 4.4 The designer may want to define a Matching Correspondence between two tu-
ples by using two already defined Conversion Correspondences, which convert to a common
representation, and then by comparing the converted values. In this case, she could provide the
following definition of the Matching Correspondence:

matchX,Y ([~x], [~y]) ← convertX,Z([~x], [~z1]) ∧ convertY,Z([~y], [~z2]) ∧ Equiv([~z1], [~z2])
through identity([~z1], [~z2])

Observe that, in this case, the program associated with the Matching Correspondence is used
only to check whether the converted values are identical.

17



Similarly, the designer could define a Merging Correspondence by reusing appropriate Con-
version or Matching Correspondences that exploit a common representation, as shown in the
following example.

Example 4.5 Suppose we want to merge prices in Italian Lira and Deutsche Mark into prices
in US Dollars, and we have programs that allowed us to define the Conversion Correspondences
convertL,E from Italian Lira to Euro, convertM,E from Deutsche Mark to Euro, and convertE,D

from Euro to US Dollar. Then we can obtain the desired Merging Correspondence as follows:

mergeL,M,D([L], [M ], [D]) ← convertL,E([L], [E1]) ∧ convertM,E([M ], [E2]) ∧
Equiv([E1], [E2]) ∧ convertE,D([E1], [D])
through identity([E1], [E2])

4.4 Specification of Mediators

As we said before, our goal is to provide support for the design of the mediator for Q, i.e., the
program that accesses the sources and loads the correct data into the relation Q. In general,
the design of mediators requires a sophisticated analysis of the data, which aims at specifying,
for every relation to be computed, how the tuples of the relation should be constructed from
a suitable set of tuples extracted from the sources. Mediator design is typically performed by
hand and is a costly step in the overall design process of an integration system. The framework
presented here is also based on a detailed analysis of the data and of the information needs.
However, the knowledge acquired by such an analysis is explicitly expressed in the description
of source and materialized views relations, and in the Reconciliation Correspondences. Hence,
such a knowledge can be profitably exploited to support the design of the mediators associated
to relations.

Suppose we have decided to compute a new relation Q, and let q be the adorned query
associated to Q. Our technique requires to proceed as follows.

1. We determine how the data in Q can be obtained from the data stored in already defined
materialized views (if present), the data stored in source relations, and the data returned
by the programs that perform conversion, matching, and merging associated to the Rec-
onciliation Correspondences. This is done by looking for a rewriting of q in terms of the
available adorned queries, i.e., a new query q′ contained in q whose atoms refer to (i) the
already available materialized views, (ii) the source relations, (iii) the available conversion,
matching, and merging predicates.

2. We specify how to deal with tuples computed by the rewriting and possibly representing
the same information. Typically we will have to combine tuples coming from different
sources to obtain the tuples that contribute to Q.

The resulting query, which will be a disjunction of conjunctive queries, is the specification
for the design of the mediator associated to Q. The above steps are discussed in more detail
below.

4.4.1 Construction of the Rewriting

The computation of the rewriting is the most critical step of our method. Compared with other
approaches, our query rewriting algorithm is complicated by the fact that we must consider both
the constraints imposed by the conceptual level, and the Reconciliation Correspondences.

We describe now a rewriting algorithm suitable for our framework, that takes into account
the above observation. First of all, we assume that the designer can specify an upper bound
on the size of the conjunctive queries that can be used to compose the automatically generated

18



query defining the mediator. Such an assumption is justified by considering that the size of the
query directly affects the cost of computing the associated relation, and such a cost has to be
limited due to several factors (e.g., the available time windows for loading and refreshment of a
materialized view, in case the query is used to compute such a view).

The rewriting algorithm is based on generating candidate rewritings that are conjunctive
queries limited in size by the bound specified by the designer, and verifying for each candidate
rewriting

• whether the binding patterns for the correspondence predicates are respected;

• whether the rewriting is contained in the original query.

Each candidate rewriting that satisfies the conditions above contributes as a disjunct to the
rewriting.

Checking whether the binding patterns are respected can be done in a standard way [50, 53].
On the other hand, verifying whether the rewriting is contained in the original query requires
more attention, since we have to take into proper account the need of exploiting Reconciliation
Correspondences in comparing different attribute values.

First of all, we have to pre-process the original adorned query as follows:

1. By introducing explicit equality atoms, we re-express the query (and the adornment) in
such a way that all variables in the body and the head (excluding the adornment) are
distinct. Then we replace each equality atom X = Y between variables X and Y denoting
attribute values with Equiv([X], [Y ]). In this way we reflect the fact that we want to
compare attribute values modulo representation in the relations. Notice that the case of
an equality atom between two variables, one denoting an object and one denoting a value,
can be excluded, since in this case the query would be inconsistent wrt the conceptual
level.

2. We add to the query the atoms resulting from the adornment, considering each annotation
as an atom: X :: V is considered as the atom V (X), and Identify is considered as a binary
predicate that will be treated in a special way.

Also, when constructing the candidate rewriting, we have to take into account that the only
way to compare attributes is through Reconciliation Correspondences. Therefore we require
that in a candidate rewriting all variables are distinct, with the exception of those used in
Reconciliation Correspondences, which may coincide with other variables. Notice that this is
not a limitation, since the system provides by default the obvious Reconciliation Correspondences
for equality.

We expand each atom in the candidate rewriting with the body of the query defining the
predicate in the atom, including the adornment, as specified above. We have to take into
account that atoms whose predicate is a correspondence predicate defined in terms of other
correspondences, have to be expanded recursively, until all correspondence predicates have been
substituted. We call the resulting query the pre-expansion of the candidate rewriting.

Then we add to the pre-expansion additional atoms derived by combining Equiv and Identify
predicates as follows:

1. We add the symmetric and transitive closure of the Equiv atoms in the pre-expansion, i.e.,
we recursively add for each Equiv([~x], [~y]) its symmetric Equiv([~y], [~x]), and for each pair
Equiv([~x], [~y]) and Equiv([~y], [~z]) the transitive composition Equiv([~x], [~z]). This reflects
the fact that Equiv represents equality modulo representation in different relations.

2. We add Equiv([X], [X]) for each variable X denoting an attribute value. This is necessary
to take into account that in the expanded query we have substituted equality atoms be-
tween variables denoting attribute values with Equiv atoms. Note that for tuples ~x we do
not need to consider atoms of the form Equiv([~x], [~x]).

19



3. We introduce equality atoms between variables denoting conceptual objects (not val-
ues) by adding X = Y whenever we have either Identify([~x], X) and Identify([~x], Y ),
or Identify([~x], X), Identify([~y], Y ) and Equiv([~x], [~y]). Indeed, Equiv reflects equality
modulo representation, and Identify maps representations to the conceptual objects.

4. We propagate Identify through Equiv , by adding Identify([~x1], X) whenever all variables
in ~x appear in the head and we have Equiv([~x1], [~x2]) and Identify([~x2], X). This reflects
the fact that ~x1 and ~x2 are two different representations of the same conceptual object X.

We call the resulting query the expansion of the candidate rewriting.
Then, to decide whether the candidate rewriting is correct and hence can contribute to the

final rewriting, we check if its expansion is contained in the pre-processed query, taking into
account the conceptual level [11].

The rewriting of the original query is the union of all correct candidate rewritings. It can
be shown that such a rewriting is maximal (wrt query containment) within the class of rewrit-
ings that are unions of conjunctive queries that respect the bound specified by the designer.
This rewriting can be refined by using query containment to eliminate those correct candidate
rewritings that are contained in others.

Observe that the query rewriting algorithm relies on the assumption that an upper bound
for the length of the conjunctive query is defined: hence, it is possible that, by increasing the
bound, one obtains a better rewriting.2

The computational complexity of the rewriting algorithm is dominated by the complexity
of the containment test, which can be done in 2EXPTIME [11] wrt the size of the queries.
However, one has to take into account that the size of queries can be neglected wrt the size of
data at the sources (and in the materialized views, if present), and therefore the above bound
does not represent a severe problem in practice.

Example 4.1 (cont.) We would like to obtain a specification in terms of a rewriting of
the mediator that populates the relation COMMONCHILDDW. First, in the query defining
COMMONCHILDDW, we eliminate common variables denoting attribute values by introducing
Equiv atoms. We add the atoms resulting from the adornment, obtaining the pre-processed
query:

COMMONCHILDDW(Sf , Sm) ← Male(F ) ∧ ssn(F, S1f ) ∧ CHILD(F,C) ∧
Female(M) ∧ ssn(M,S1m) ∧ CHILD(M,C) ∧
Equiv([Sf ], [S1f ]) ∧ Equiv([Sm], [S1m]) ∧
SSNString(Sf ) ∧ SSNString(Sm) ∧
Identify([Sf ], F ) ∧ Identify([Sm],M)

Now, to obtain a rewriting of the above query we can exploit the queries associated to the
relations FATHER1 in source S1 and MOTHER2 in source S2, taking into account that persons
are represented differently in the two sources. Indeed, consider the following candidate rewriting:

R(Sf , Sm) ← FATHER1(Nf , Df , Nc, Dc), MOTHER2(S2m, Sc),
matchperson([Nc, Dc], Sc),
convertperson([Nf , Df ], Sf ), convertSSNString([S2m], [Sm])

To check that R is a correct rewriting, we first substitute each atom in the body of the query

2Even without a bound on the length of the conjuncts in the rewriting, unions of conjunctive queries cannot
exactly capture the original query in general. Indeed, to do so one would need to consider rewritings expressed
in a query language that is at least NP-hard in data complexity [18].

20



by its definition, considering also the adornments, obtaining:

R(Sf , Sm) ← Male(F1) ∧ Person(C1) ∧ CHILD(F1, C1) ∧
name(F1, Nf ) ∧ dob(F1, Df ) ∧ name(C1, Nc) ∧ dob(C1, Dc) ∧
NameString(Nf ) ∧ NameString(Nc) ∧ Date(Df ) ∧ Date(Dc) ∧
Identify([Nf , Df ], F1) ∧ Identify([Nc, Dc], C1) ∧

Female(M2) ∧ Person(C2) ∧ CHILD(M2, C2) ∧
ssn(M2, S2m) ∧ ssn(C2, Sc) ∧
SSNString(S2m) ∧ SSNString(Sc) ∧
Identify([S2m],M2) ∧ Identify([Sc], C2) ∧

Equiv([Nc, Dc], [Sc]) ∧
Person(P3) ∧ name(P3, Nc) ∧ dob(P3, Dc) ∧ ssn(P3, Sc) ∧
NameString(Nc) ∧ Date(Dc) ∧ SSNString(Sc) ∧
Identify([Nc, Dc], P3) ∧ Identify([Sc], P3) ∧

Equiv([Nf , Df ], [Sf ]) ∧
Person(P4) ∧ name(P4, Nf ) ∧ dob(P4, Df ) ∧ ssn(P4, Sf ) ∧
NameString(Nf ) ∧ Date(Df ) ∧ SSNString(Sf ) ∧
Identify([Nf , Df ], P4) ∧ Identify([Sf ], P4) ∧

Equiv([S2m], [Sm]) ∧ SSNString(S2m) ∧ SSNString(Sm)

Then we add to the body of the query the following atoms resulting from propagating Identify
and Equiv

F1 = P4 ∧ C1 = C2 ∧ C1 = P3 ∧ Identify([Sm],M2) ∧ Identify([Sf ], F1)

plus an atom Equiv([X], [X]), for each variable X denoting an attribute value.
It is easy to check that the expanded candidate rewriting is indeed contained in the prepro-

cessed query, which shows that the candidate rewriting is correct.

Example 4.2 (cont.) To obtain a specification of the mediator that populates the relation
SAMEINCOMEDW, we can pre-process the query defining such a relation obtaining:

SAMEINCOMEDW(S1, S2, I) ← Person(P1) ∧ ssn(P1, S3) ∧ income(P1, I1) ∧
Person(P2) ∧ ssn(P2, S4) ∧ income(P2, I2) ∧
Equiv([S1], [S3]) ∧ Equiv([S2], [S4]) ∧ Equiv([I1], [I2]) ∧
SSNString(S1) ∧ SSNString(S2) ∧ IncomePerYear(I) ∧
Identify([S1], P1) ∧ Identify([S2], P2)

A candidate rewriting in terms of the queries defining INCOME1 in source S1 and INCOME2 in
source S2 is:

R1(S1, S2, I) ← INCOME1(Sm, Im) ∧ INCOME2(Sy, Iy) ∧
match income([Im], [Iy]) ∧
convert IncomePerYear([Iy], [I]) ∧
convertSSNString([Sm], [S1]) ∧ convertSSNString([Sy], [S2])

where match income is the Matching Correspondence automatically generated from convert income ,
and the other Conversion Correspondences are automatically generated for the proper domains.
We can again check that the expansion of the rewriting is contained in the pre-processed query,
by taking into account that the schema, which the queries refers to, implies that Male and Female

are sub-entities of Person.

21



The above correct candidate rewriting corresponds to perform the join between relations
INCOME1 and INCOME2. Considering also the other possible joins between the two relations
we obtain the following rewriting R:

R1(S1, S2, I) ← INCOME1(Sm, Im) ∧ INCOME2(Sy, Iy) ∧
match income([Im], [Iy]) ∧
convert IncomePerYear([Iy], [I]) ∧
convertSSNString([Sm], [S1]) ∧ convertSSNString([Sy], [S2])

∨

INCOME2(Sy, Iy) ∧ INCOME1(Sm, Im) ∧
match income([Im], [Iy]) ∧
convert IncomePerYear([Iy], [I]) ∧
convertSSNString([Sm], [S1]) ∧ convertSSNString([Sy], [S2])

∨

INCOME1(Sm, Im) ∧ INCOME1(S1m, I1m) ∧
match IncomePerMonth([Im], [I1m]) ∧
convert income([Im], [I]) ∧
convertSSNString([Sm], [S1]) ∧ convertSSNString([S1m], [S2])

∨

INCOME2(Sy, Iy) ∧ INCOME2(S1y, I1y) ∧
match IncomePerYear([Iy], [I1y]) ∧
convert IncomePerYear([Iy], [I]) ∧
convertSSNString([Sy], [S1]) ∧ convertSSNString([S1y], [S2])

Observe that it may happen that no rewriting for the query exists. One reason for this may
be that the available relations do not contain enough information to populate the relation defined
by the query. In this case a further analysis of the source is required. It may also be the case that
the relations do in fact contain the information needed, but the available reconciliation programs
are not able to convert the data in a representation suitable to answer the query. Formally, this
is reflected in the fact that appropriate Reconciliation Correspondences are missing. In this
case our rewriting algorithm can be used by the designer to acquire indications on which are
the required Reconciliation Correspondences, and hence the associated programs that must be
added to generate the mediator.

4.4.2 Combining Tuples Coming from Different Sources

Since the rewriting constructed as specified above is in general a disjunction, we must address
the problem of combining the results of several queries. A similar problem arises in other ap-
proaches [28], where the result of approximate joins may require a specification of a construction
operation. In order to properly define the result of the query, we introduce the notion of combine-
clause. In particular, if the query r computed by the rewriting is constituted by more than one
disjunct, then the algorithm associates to r a suitable set of so-called merging clauses, taking
into account that the answers to the different disjuncts of the query may contain tuples that
represent the same real world entity or the same value. A combine-clause is an expression of
the form

combine tuple-spec1 and · · · and tuple-specn
such that combination-condition
into tuple-spect1 and · · · and tuple-spectm

22



where tuple-speci denotes a tuple returned by the i-th disjunct of r, combination-condition
specifies how to combine the various tuples denoted by tuple-spec1,. . . ,tuple-specn, and tuple-
spect1 ,. . . ,tuple-spectm denote the tuples resulting from the combination that are inserted in the
relation defined by the query.

We observe that the rewriting algorithm is able to generate one combine-clause template
for each pair of disjuncts that are not disjoint. Starting from such templates, the designer
may either specify the such that and the into parts, depending on the intended semantics, or
change the templates in order to specify a different combination plan (for example for combining
three disjuncts, rather than three pairs of disjuncts).

4.4.3 Refining the Rewriting

As already mentioned, the rewriting returned by the algorithm can be refined by eliminating
certain conjuncts from the union of conjunctive queries according to suitable criteria for popu-
lating relations. In particular, such criteria may be determined by factors that affect the quality
of the data in the source relations and in the materialized views, such as completeness, accuracy,
confidence, freshness, etc. In practice, a convenient way to characterize such quality factors is
by providing ad hoc information in a meta-repository [7, 36, 37].

While the goal of the present work is to provide a language to represent transformations,
thus not requiring an explicit introduction of meta-level descriptions, there are certain aspects
of the data integration process that can take advantage of a meta-information approach. More
specifically, together with the actual data stored in the source, the wrapper can provide meta-
data, both at relation-level and at tuple-level, which can be suitably exploited in refining the
rewriting. As an example, consider the case where a materialized view is available. The materi-
alized view can be described as any other source, being always preferred with respect to other
sources because of its higher accuracy and confidence.

5 Reconciliation in GAV

When the mapping is specified following the global-as-view approach, the global schema is
defined in terms of the data sources. In our framework, we associate a query over the sources to
each concept of the global schema, with the intended meaning of specifying how to retrieve the
data corresponding to such concept starting from the data at the sources. More precisely, given
a data integration system I = 〈G,S,M〉, the mappingM associates queries to the elements of
G as follows:

• The mapping associates a query of arity 1 to each entity of G.

• The mapping associates a query of arity 2 to each attribute A defined for an entity in G.
Intuitively, if the query retrieves (c, d) from the sources, this means that d is a value of
the attribute A of the entity instance c.

• The mapping associates a query of arity n to each relationship R of arity n in G. Intuitively,
if the query retrieves the tuple (c1, . . . , cn) from the sources, this means that (c1, . . . , cn)
is an instance of R.

• The mapping associates a query of arity n+1 to each attribute A defined for a relationship
R of arity n in G. Intuitively, if the query retrieves (c1, . . . , cn, d) from the sources, this
means that d is a value of the attribute A of the relationship instance (c1, . . . , cn).

Notice that, as in the DLR approach to data integration described in Section 4, the views
that define the mapping relate the conceptual representation of the global schema with the
logical representation of the sources. Thus, to specify how conceptual objects in the queries are

23



(1, n)

(0, 1)
Enrolled

Member

Student University

Organization

age

Person

Figure 2: Global schema of Example 5.1

represented by tuples of logical values, it is necessary, also in this case, to specify additional
information in the mapping assertions. We argue that this is possible by adapting to the GAV
mapping specification the mechanism introduced to cope with this problem in the DLR approach
to data integration, i.e., by adding a suitable adornment clause to each query. Nonetheless, to
keep things simple, we do not make use of adornment clauses in the GAV mapping assertions,
and actually treat entity, relationship, and attribute symbols of the conceptual global schema
as relation symbols of a relational model.

Furthermore, in the following we consider the particular case in which queries over the con-
ceptual model are conjunctive queries (CQ), rather than union of conjunctive queries. Intuitively,
a conjunctive query is a UCQ where the body consists of a single disjunct.

Example 5.1 Figure 2 shows the global schema G1 of a data integration system I1 = 〈G1,S1,M1〉,
where age is a functional attribute, Student has a mandatory participation in the relationship
Enrolled, Enrolled is-a Member, and University is-a Organization. The schema models persons
who can be members of one or more organizations, and students who are enrolled in universi-
ties. Suppose that S1 is constituted by S1, S2, S3, S4, S5, S6, S7, S8, and that the mappingM1 is
as follows:

Person(X) ← S1(X) Student(X) ← S3(X,Y ) ∨ S4(X,Z)
Organization(X) ← S2(X) University(X) ← S5(X)
Member(X,Y ) ← S7(X,Z), S8(Z, Y ) Enrolled(X,Y ) ← S4(X,Y )

age(X,Y ) ← S3(X,Y ) ∨ S6(X,Y, Z)

From the definition of the semantics of a data integration system, given in Section 3, it is
easy to see that, in our framework, given a source database D, different situations are possible:

1. Several legal global databases exist. This happens, for example, when the data at the
sources retrieved by the queries associated to the global concepts do not satisfy the is-a
relationships or the mandatory participation constraints of the global schema. In this case,
it may happen that several ways exist to add suitable objects to the elements of G in order
to satisfy the constraints. Each such ways yields a legal global database.

Example 5.2 Referring to Example 5.1, consider a source database D2, where S1 stores p1 and
p2, S2 stores o1, S5 stores u1, and S3 stores t1, and the pairs (p1, o1) and (p2, u1) are in the
join between S7 and S8. By the mapping M1, it follows that in every legal database of I1,
p1, p2 ∈ Person, (p1, o1), (p2, u1) ∈ Member, o1 ∈ Organization, t1 ∈ Student, u1 ∈ University.
Moreover, since G1 specifies that Student has a mandatory participation in the relationship
Enrolled, in every legal database for I1, t1 must be enrolled in a certain university. The key
point is that nothing is said in D2 about which university, and therefore we have to accept as
legal all databases for I1 that differ in the university in which t1 is enrolled.

2. No legal global database exists. This happens, in particular, when the data at the sources
retrieved by the queries associated to the elements of the global schema do not satisfy the
functional attribute constraints.

24



Example 5.3 Referring again to Example 5.1, consider a source database D1, where S3 stores
the tuple (t1, a1), and S6 stores the tuple (t1, a2, v1). The query associated to age by the mapping
M1 specifies that, in every legal database of I1 both tuples should belong to the extension of
age. However, age is a functional attribute in G1, and therefore no legal database exists for the
data integration system I1.

The first problem shows that the issue of query answering with incomplete information arises
even in the global-as-view approach to data integration. Indeed, the existence of multiple global
databases for the data integration system implies that query processing cannot simply reduce
to evaluating the query over a single database. Rather, we should in principles take all possible
legal global databases into account when answering a query.

It is interesting to observe that there are at least two different strategies to simplify the
setting, and overcome this problem:

1. Data integration systems usually adopt a simpler data model (often, a plain relational data
model) for expressing the global schema. In this case, the data retrieved from the sources
trivially fits into the schema, and can be directly considered as the unique database to be
processed during query answering.

2. The queries associated to the elements of the global schema are often considered as exact.
In this case, analogously to the previous one, it is easy to see that the only global database
to be considered is the one formed by the data retrieved by the source. However, when
data at the sources do not obey all semantic conditions that are implicit in the conceptual
global schema, this single database is not coherent with the global schema, and the data
integration system is inconsistent. This implies that query answering is meaningless. We
argue that, in the usual case of autonomous, heterogeneous sources, it is very unlikely that
data fit in the global schema, and therefore, this approach is too restrictive, in the sense
that the data integration system would be often inconsistent.

The fact that the problem of incomplete information is overlooked in current approaches
can be explained by observing that traditional data integration systems follow one of the above
mentioned simplifying strategies: they either express the global schema as a set of plain relations,
or consider the sources as exact (see, for instance, [20, 46, 9]). Hence, it is commonly assumed
that, in order to answer a query posed over the global schema, it is sufficient to evaluate the
query over the retrieved database, i.e. the database obtained by populating each global concept
according to the corresponding view over the sources. More formally, given a source database
D, the retrieved global database ret(I,D) is obtained by evaluating, for each concept C of
the global schema, the associated view VC over D. Evaluating the query over ret(I,D) is
equivalent to unfold each atom of the original query with the corresponding definition. On the
contrary, our framework for data integration considers the more general setting where the global
schema is expressed in terms of a conceptual model, and sources are considered sound (but not
necessarily complete). Example 5.2 shows that, in this case, we have to account for multiple
global databases, and the results described in the next subsection demonstrate that unfolding is
in general not sufficient to process a query, and show how to cope with this issue in this setting.

With regard to the second problem, we have shown that, when an attribute A of an entity
(or relationship) E is functional, and such constraint is violated in the global schema by the
data retrieved from the sources, we have that, according to the definition of semantics of a
data integration system, no legal global database exists. Intuitively, this happens because the
assumption of sound views (but this holds also for exact views) does not allow us to disregard
tuples with different values for A and the same instance for E. A more general approach would
be to provide a formalization that is able to provide the set of certain answers to a query over
the global schema even when the data at the sources are mutually inconsistent. The basic idea is

25



to consider those global databases that satisfy the integrity constraints in the global schema and
that approximate the satisfaction of the mapping M, i.e., that are as much sound as possible.
One way to formalize this idea is to distinguish between strictly-sound mappings, as the ones
considered before, and loosely-sound mappings, in which the assumption of soundness is suitably
relaxed.

In the following we first deal only with the the problem of source incompleteness, and provide
a procedure to suitably answer a user’s query in our framework, in which is-a and mandatory
participation constraints are expressed on the global schema. Data reconciliation in this case
is performed under the first-order semantics introduced in section 3, henceforth called strictly-
sound semantics. Then we also consider the problem of mutual inconsistency of the data stored
at different sources, and define a new semantics, called the loosely-sound semantics, that allows
us to reconcile data in this situation. Moreover, we provide a technique to answer user’s queries
in our framework when the functional attribute constraints defined in the global schema are
violated by the data retrieved from the sources.

5.1 Data Reconciliation under the strictly-sound semantics

In this section we present an algorithm for computing the set of certain answers to queries posed
to a data integration system in the presence of is-a and mandatory participation constraints. The
key feature of the algorithm is to reason about both the query and the conceptual global schema
in order to infer which tuples satisfy the query in all legal databases of the data integration
system. Thus, the algorithm does not simply unfold the query on the basis of the mapping, as
usually done in data integration systems based on the global-as-view approach, but takes into
account the several databases that are legal for the data integration system according to the
strictly-sound semantics. Indeed, we now show that a simple unfolding strategy does not work
in our setting.

Example 5.4 Referring to Example 5.2, consider the query Q1 to I1:

Q1(x)← Member(x, y),University(y),

and suppose we simply unfold the query Q1 in the standard way, by substituting each atom
with the query thatM1 associates to the element in the atom. Then we get the query

Q(x)← S7(x, z), S8(z, y), S5(y)

If we evaluate this query over D2, we get {p2} as result. On the other hand, it is easy to see
that the real set of certain answers to Q1 with respect to I1 and D2 is {p2, t1}, and by processing
the query via unfolding we miss the certain answer t1. Actually, although D2 does not indicate
which university t1 is enrolled in, the semantics of I1 specifies that t1 is enrolled in a university
in all legal database for I1. Since Member is a generalization of Enrolled, this implies that t1 is
in the set of certain answers to Q1 with respect to I1 and D2.

Next we illustrate our algorithm for computing all certain answers. The algorithm is able
to add more answers to those directly extracted from the sources, by exploiting the semantic
conditions expressed in the conceptual global schema.

Let I = 〈G,S,M〉 be an integration system, let D be a source database, and let Q be a
query over the global schema G. The algorithm is constituted by three major steps.

1. From the query Q, obtain a new query expG(Q) over the elements of the global schema G
in which the knowledge in G that is relevant for Q has been compiled in.

26



2. From expG(Q), compute the query unfM(expG(Q)), by unfolding expG(Q) on the basis of
the mappingM. The unfolding simply substitutes each atom of expG(Q) with the query
associated by M to the element in the atom. The resulting unfM(expG(Q)) is a query
over the source relations.

3. Evaluate the query unfM(expG(Q)) over the source database D.

The last two steps are quite obvious. Instead, the first one requires to find a way to compile
into the query the semantic relations holding among the concepts of the global schema G. Such
semantic relations can indeed be crucial for inferring the complete set of certain answers.

The basic idea to do so is that the relations among the elements in G can be captured by a
suitable rule base RG . To build RG , we introduce a new predicate P ′ (called primed predicate)
for each predicate P associated to an element P of G. Then, from the semantics of the ER
schema we devise the following rules (expressed in Logic Programming notation [47]):

• for each entity E, attribute A and relationship R in G, we have:

E′(X) ← E(X)
A′(X,Y ) ← A(X,Y )
R′(X1, . . . , Xn) ← R(X1, . . . , Xn)

• for each is-a relation between E and Ei, or between R and Ri, we have:

E′
i(X) ← E′(X)

R′
i(X1, . . . , Xn) ← R′(X1, . . . , Xn)

• for each attribute A for an entity E or a relationship R, we have:

E′(X) ← A′(X,Y )
R′(X1, . . . , Xn) ← A′(X1, . . . , Xn, Y )

• for each relationship R involving an entity Ei as i-th component, we have:

E′
i(Xi) ← R′(X1, . . . , Xi, . . . , Xn)

• for each mandatory participation of an entity E in a relationship Rj via the ER-role i, we
have:

R′
j(f1(X), . . . , fi−1(X), X, fi+1(X), . . . , fn(X)) ← E′(X)

where fi are fresh Skolem functions [47].

• for each mandatory attribute A for an entity E or a relationship R in an attribute definition
of G, we have:

A′(X, f(X)) ← E′(X)
A′(X1, . . . , Xn, f(X)) ← R′(X1, . . . , Xn)

where f is a fresh Skolem function.

Once we have defined such a rule base RG , we can use it to generate the query expG(Q)
associated to the original query Q. This is done as follows:

1. First, we rewrite Q by substituting each predicate P in the body body(Q) of Q with P ′.
We denote by Q′ the resulting query. In the following we call “primed atom” every atom
whose predicate is primed.

27



2. Then we build a partial resolution tree for Q′, i.e., a tree having each node labeled by a
conjunctive query q, with one of the atoms in body(q) marked as “selected”, obtained as
follows.

(a) The root is labeled by Q′, and has marked as selected any (primed) atom in body(Q′)
(for example the first in left-to-right order).

(b) Except if condition (2c) below is satisfied, a node, labeled by a query q having a
“selected” atom α, has one child for each rule r in RG such that there exists a most
general unifier3mgu(α, head(r)) between the atom α and the head head(r) of the
rule r, such that the variables appearing in the head of Q′ are to assigned to terms
involving Skolem functions. Each of such children has the following properties:

• it is labeled by the query obtained from q by replacing the atom α with body(r)
and by substituting the variables with mgu(α, head(r));

• it has as marked “selected” one of the primed atoms (for example the first in
left-to-right order).

(c) If a node d that is labeled by a query q and there exists a predecessor d′ of d labeled
by a query q′ and a substitution θ of the variables of q′ that makes q′ equal to q,
then d has a single child, which is labeled by the empty query (a query whose body
is false).

3. Finally we return as result the query expG(Q) formed as the union of all non-empty queries
in the leaves of the partial resolution tree and that do not contain Skolem functions.

The following three observations are crucial for characterizing both the termination and the
correctness of our algorithm:

• The termination of the construction of the tree, and thus of the entire algorithm, is guar-
anteed by the condition (2c) and by the observation that all the rules in RG have a single
atom in the body.

• By exploiting results on partial evaluation of logic programs (see [24]), it can be shown
that expG(Q) is equivalent to the original query Q with respect to the global schema G,
that is, for each database B that is legal for G, the evaluation of Q yields the same result
as expG(Q), i.e., QB = (expG(Q))B.

• The query expG(Q) returned by the algorithm is a union of conjunctive queries. Each
disjunct of expG(Q) is a conjunctive query over the predicates of the global schema, i.e.,
the elements that have an associated query over the sources by virtue of the mapping.

The above observations imply that, if we evaluate unfM(expG(Q)) over the source database
D, we get exactly the set of certain answers QI,D of Q with respect to I and D.

With regard to the characterization of the computational complexity of the algorithm, we
observe that the number of disjuncts in expG(Q) can be exponential in the number of rules in the
rule base RG (and therefore in the size of the global schema G), and in the number of variables
in the original query Q. Note, however, that this bound is independent of the size of D, i.e., the
size of data at the sources. We remind the reader that the evaluation of a union of conjunctive
queries can be done in time polynomial with respect to the size of the data. Since expG(Q)
is a union of conjunctive queries, we can conclude that, if the queries associated by M to the
elements of G can be evaluated in polynomial time in the size of the data at the sources, then
evaluating unfM(expG(Q)) over D is also polynomial in the size of the data at the sources. It
follows that our query answering algorithm is polynomial with respect to data complexity.

3We recall that given two atoms α and β the most general unifier mgu(α, β) is a most general substitution for
the variables in α and β that makes α and β equal [47].

28



Example 5.5 Referring again to Example 5.4, it is possible to see that, by evaluating the
unfolding of the query returned by the algorithm, the whole set of certain answers to Q1

with respect to I1 and D2 is obtained. In particular, t1 is obtained by processing the rule
Member′(X,Y )← Enrolled′(X,Y ), which takes into account that Member is a generalization of
Enrolled and the rule Enrolled′(X, f(X))← Student′(X), which expresses the mandatory partic-
ipation of Student in Enrolled.

5.2 Data Reconciliation under the loosely-sound semantics

Consider now the situation in which there exists no global database that both is coherent
with the global schema and satisfies the mapping wrt a given source database: in our setting,
this corresponds to a case in which the retrieved database violates the functional attribute
constraints in the global schema. Under the strictly-sound semantics, this means that given a
data integration system I = 〈G,S,M〉 and a source database D, there are no legal databases
for I wrt D.

As we already said, in order to provide the set of certain answers to a query also in this
situation, we introduce a new notion of mapping satisfaction in which the sound view assumption
is suitably relaxed. To simplify the discussion, in the following we indicate the mapping as a
set of assertions of the form 〈C, VC〉, where C is a concept of the global schema and VC is
the associated view that provides its definition in terms of the sources. Then, given a source
database D for I and a mappingM = {〈C1, V1〉 . . . 〈Cn, Vn〉}, we define an ordering between
the global databases for I.

If B1 and B2 are two databases coherent with G, we say that B1 is better than B2 wrt D,
denoted as B1 ≫D B2, iff one of the two following conditions holds:

1. there exists i ∈ {1, . . . , n} such that

- (CB1

i ∩ V D
i ) ⊃ (CB2

i ∩ V D
i ), and

- (CB1

j ∩ V D
j ) ⊇ (CB2

j ∩ V D
j ) for j = 1, . . . , n;

2. (CB1

k ∩ V D
k ) = (CB2

k ∩ V D
k ) for k = 1, . . . , n and there exists i ∈ {1, . . . , n} such that

- (CB1

i − V D
i ) ⊂ (CB2

i − V D
i ), and

- (CB1

j − V D
j ) ⊆ (CB2

j − V D
j ) for j = 1, . . . , n.

Intuitively, this means that the retrieved portion of the global database, i.e., the subset
that is computed by the views, is (1) greater in B1 than in B2, i.e., B1 approximates the sound
mapping better than B2, or (2) is the same in B1 and in B2, but the tuples that are not part of
the retrieved subset are less in B1 than in B2. In other words, B1 ≫D B2 iff B1 is “closer” to the
retrieved database than B2. It is easy to verify that the relation≫D is a partial order. With this
notion in place, we say that a global database B coherent with G satisfies the mapping, considered
now loosely-sound, if B is maximal wrt ≫D, i.e., for no other global database B′ coherent with
G, we have that B′ ≫D B. Hence, with reference to the definition given in Section 3, a global
database for I is said to be legal wrt D under a loosely-sound semantics, if B is coherent with
G and is maximal wrt ≫D.

It is immediate to verify that, if there exists a legal database for I wrt D under the strictly-
sound semantics, then the strictly-sound and the loosely-sound semantics coincide, in the sense
that, for each query Q, the set QI,D of certain answers computed under the strictly-sound
semantics coincides with the set of certain answers computed under the loosely-sound semantics.

On the other hand, in the cases in which no legal database exists under the strictly-sound
semantics, it is easy to see that there always exists a legal database for I wrt D under a loosely-
sound semantics, because we are allowed to eliminate tuples from the retrieved database ret(I,D)
in order to satisfy the constraints, and functional attribute, is-a, and mandatory participation

29



constraints can always be satisfied by suitably restricting the set of tuples in the database.
However, the semantics implies that the legal databases are the ones that are “as close as
possible” to ret(I,D), thus we have to consider only databases coherent with the constraints and
that “minimize” elimination of tuples from the ret(I,D). Since is-a and mandatory participation
constraints can be satisfied by adding new tuples in the database, elimination of tuples is only
forced by functional attribute constraints satisfaction. In fact, it can be shown that it is possible
to compute the certain answers to a query Q through the following two-step process:

1. first, identify the databases corresponding to the legal databases for I ′ wrt D, where I ′ is
obtained from I by eliminating all is-a and mandatory participation constraints in G. It
is immediate to see that each such database B′ is “contained” in ret(I,D), i.e. if t ∈ CB′

then t ∈ Cret(I,D) for each t and for each C in G;

2. t is a certain answer of Q wrt I and D iff t ∈ QB′

for each database B′ computed in the
previous step.

As for the first of the above steps, we resort to datalog¬ under stable model semantics
[41, 27], a well-known extension of datalog that allows for using negation in the body of
program rules. In particular, we define a datalog¬ program P (I,D) that allows for computing
the legal databases for I ′ wrt D. The datalog¬ program P (I,D) is obtained by adding to the
set of facts D the following set of rules:

• for each assertion 〈C, VC〉 ∈ M, with

VC = C(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conjm(~x, ~ym)

the rules

CD(~x) ← conj 1(~x, ~y1)

. . .

CD(~x) ← conjm(~x, ~ym)

• for each functional attribute A ∈ G, the rules

A(~x, Y ) ← AD(~x, Y ) , not A(~x, Y )

A(~x, Y ) ← A(~x, Z) , Y 6= Z

where ~x in a(~x, Y ) can be either a single variable X when A is an attribute of an entity E,
or an n-tuple X1, . . . , Xn when A is an attribute of a relationship R of arity n. In the first
case X corresponds to the entity E, whereas in the second case X1, . . . , Xn correspond to
the entities that participate to R.

Informally, for each concept C in G, P (I,D) contains a concept CD that represents Cret(I,D),
and for each functional attribute A, it contains (i) a further attribute A that represents a subset
of Aret(I,D) that is consistent with the fact that A is functional, and (ii) an auxiliary attribute A.
The above rules force each stable model M of P(I,D) to be such that AM is a maximal subset
of tuples from Aret(I,D) that are consistent with the constraint that makes A to be functional.

It can be shown that each stable model M for P (I,D) corresponds to a legal database B′ for
I ′ wrt D, in the sense that, for each C ∈ G, CB′

= {t | t ∈ CM}, and conversely, for each legal
database B′ for I ′ wrt D there exists a stable model M for P (I,D) such that, for each C ∈ G,
B′ = {t | t ∈ CM}.

As for the second of the above steps, we make use of the query reformulation algorithm
presented in the above subsection that transforms the query q into a query expG(q). By adding
this query to the program P (I,D), we obtain a datalog¬ program that allows us to compute
the certain answers to the original query.

30



Theorem 5.6 Let I = 〈G,S,M〉 be a data integration system, let Q be a query posed to I, D
be a source database for I, and t be a tuple of constants of the same arity as Q. Then, t ∈ QI,D

if and only if t ∈ qM for each stable model M of the datalog¬ program P (I,D) ∪ {expG(Q)}.

Finally, we are able to characterize the computational complexity of the problem of comput-
ing certain answers to queries in our data integration setting.

Theorem 5.7 Let I = 〈G,S,M〉 be a data integration system, let Q be a query posed to I, D
be a source database for I, and t be a tuple of constants of the same arity as Q. The problem of
deciding whether t ∈ QI,D is coNP-complete wrt data complexity.

Proof sketch. Membership in coNP follows from Theorem 5.6, and from the fact that query
answering in datalog¬ is coNP-complete in data complexity, while coNP-hardness can be
easily proven by a reduction from the validity problem in propositional logic.

6 Conclusions

In this paper we have proposed methodologies and techniques for data integration and reconcil-
iation, suitable for both the LAV and the GAV approaches. In particular, for the LAV approach
we have described a method for specifying, in a declarative fashion, a set of reconciliation cor-
respondences to be used to cope with inconsistencies among data stored in different sources.
Furthermore, we have described a query rewriting algorithm that computes the set of certain
answers to a user’s query posed on the global schema, taking into account both the Reconcil-
iation Correspondences and the constraints expressed over the global schema. For the GAV
approach, we have shown that, when the global schema is expressed in terms of a conceptual
model, the usual technique based on unfolding the query in terms of the definition of the atoms
in the global schema does not guarantee completeness of the answer to a user’s query. We have
described a technique for query processing in GAV that overcomes this difficulty. Finally, we
have defined a so-called loosely-sound semantics that supports query processing also when data
at the sources are mutually incoherent, and we have proposed a technique to effectively process
a query in this situation.

The techniques proposed in this paper have been developed separately for the LAV and
the GAV approach. Our opinion is that the framework for data integration we have described
allows one to easily adapt to the LAV setting some of the techniques we have developed for the
GAV setting, and vice-versa. In particular, we believe that reconciliation correspondences can
be easily adopted also in GAV, and that the loosely-sound semantics, introduced for the GAV
mapping, can be generalized to the LAV mapping.

References

[1] Serge Abiteboul and Oliver Duschka. Complexity of answering queries using materialized
views. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’98), pages 254–265, 1998.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison
Wesley Publ. Co., Reading, Massachussetts, 1995.

[3] Foto N. Afrati, Manolis Gergatsoulis, and Theodoros Kavalieros. Answering queries using
materialized views with disjunction. In Proc. of the 7th Int. Conf. on Database Theory
(ICDT’99), volume 1540 of Lecture Notes in Computer Science, pages 435–452. Springer,
1999.

31



[4] Carlo Batini, Stefano Ceri, and Shamkant B. Navathe. Conceptual Database Design, an
Entity-Relationship Approach. Benjamin and Cummings Publ. Co., Menlo Park, California,
1992.

[5] Roberto Bayardo and Robert Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proc. of the 14th Nat. Conf. on Artificial Intelligence (AAAI’97), pages
203–208. AAAI Press/The MIT Press, 1997.

[6] Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting queries using views
in description logics. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’97), pages 99–108, 1997.

[7] Philip A. Bernstein and Thomas Bergstraesser. Meta-data support for data transformations
using Microsoft Repository. IEEE Bull. of the Technical Committee on Data Engineering,
22(1):9–14, 1999.

[8] Alexander Borgida, Maurizio Lenzerini, and Riccardo Rosati. Description logics for data
bases. In Franz Baader, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,
editors, The Description Logic Handbook: Theory, Implementation and Applications, chap-
ter 16. Cambridge University Press, 2002. To appear.

[9] Mokrane Bouzeghoub and Maurizio Lenzerini (eds.). Special issue on data extraction,
cleaning, and reconciliation. Information Systems, 2001.

[10] Diego Calvanese and Giuseppe De Giacomo. Expressive description logics. In Franz Baader,
Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The Descrip-
tion Logic Handbook: Theory, Implementation and Applications, chapter 5. Cambridge
University Press, 2002. To appear.

[11] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidability
of query containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158, 1998.

[12] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Riccardo
Rosati. Description logic framework for information integration. In Proc. of the 6th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages 2–13, 1998.

[13] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Riccardo
Rosati. Source integration in data warehousing. In Proc. of the 9th Int. Workshop on
Database and Expert Systems Applications (DEXA’98), pages 192–197. IEEE Computer
Society Press, 1998.

[14] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Riccardo
Rosati. Schema and data integration methodology for DWQ. Technical Report DWQ-
UNIROMA-004, DWQ Consortium, September 1998.

[15] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Rewrit-
ing of regular expressions and regular path queries. In Proc. of the 18th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’99), pages 194–204,
1999.

[16] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. An-
swering regular path queries using views. In Proc. of the 16th IEEE Int. Conf. on Data
Engineering (ICDE 2000), pages 389–398, 2000.

32



[17] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Query
processing using views for regular path queries with inverse. In Proc. of the 19th ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2000), pages
58–66, 2000.

[18] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-
based query processing and constraint satisfaction. In Proc. of the 15th IEEE Symp. on
Logic in Computer Science (LICS 2000), pages 361–371, 2000.

[19] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for conceptual
data modeling. In Jan Chomicki and Günter Saake, editors, Logics for Databases and
Information Systems, pages 229–264. Kluwer Academic Publisher, 1998.

[20] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, M. Flickner,
A. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. H. Williams, and E. L. Wimmers.
Towards heterogeneous multimedia information systems: The Garlic approach. In Proc.
of the 5th Int. Workshop on Research Issues in Data Engineering – Distributed Object
Management (RIDE-DOM’95), pages 124–131. IEEE Computer Society Press, 1995.

[21] P. P. Chen. The Entity-Relationship model: Toward a unified view of data. ACM Trans.
on Database Systems, 1(1):9–36, March 1976.

[22] Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate queries using
views. In Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’99), pages 155–166, 1999.

[23] J. Crawford and L. Auton. Experimental results on the crossover point in random 3SAT.
Artificial Intelligence, 81(1–2):31–57, 1996.

[24] Giuseppe De Giacomo. Intensional query answering by partial evaluation. J. of Intelligent
Information Systems, 7(3):205–233, 1996.

[25] Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using views.
In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’97), pages 109–116, 1997.

[26] Oliver M. Duschka and Alon Y. Levy. Recursive plans for information gathering. In Proc.
of the 15th Int. Joint Conf. on Artificial Intelligence (IJCAI’97), pages 778–784, 1997.

[27] Thomas Eiter, Georg Gottlob, and Heikki Mannilla. Disjunctive Datalog. ACM Trans. on
Database Systems, 22(3):364–418, 1997.

[28] Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon. An extensible frame-
work for data cleaning. Technical Report 3742, INRIA, Rocquencourt, 1999.

[29] Cheng Hian Goh, Stéphane Bressan, Stuart E. Madnick, and Michael D. Siegel. Context
interchange: New features and formalisms for the intelligent integration of information.
ACM Trans. on Information Systems, 17(3):270–293, 1999.

[30] Gösta Grahne and Alberto O. Mendelzon. Tableau techniques for querying information
sources through global schemas. In Proc. of the 7th Int. Conf. on Database Theory
(ICDT’99), volume 1540 of Lecture Notes in Computer Science, pages 332–347. Springer,
1999.

[31] Stéphane Grumbach, Maurizio Rafanelli, and Leonardo Tininini. Querying aggregate data.
In Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’99), pages 174–184, 1999.

33



[32] Jarek Gryz. Query folding with inclusion dependencies. In Proc. of the 14th IEEE Int.
Conf. on Data Engineering (ICDE’98), pages 126–133, 1998.

[33] A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems, techniques,
and applications. IEEE Bull. of the Technical Committee on Data Engineering, 18(2):3–18,
1995.

[34] Alon Y. Halevy. Answering queries using views: A survey. Very Large Database J., 2001.
To appear.

[35] Joachim Hammer, Hector Garcia-Molina, Jennifer Widom, Wilburt Labio, and Yue Zhuge.
The Stanford data warehousing project. IEEE Bull. of the Technical Committee on Data
Engineering, 18(2):41–48, 1995.

[36] Sandra Heiler, Wang-Chien Lee, and Gail Mitchell. Repository support for metadata-based
legacy migration. IEEE Bull. of the Technical Committee on Data Engineering, 22(1):37–42,
1999.

[37] Joseph M. Hellerstein, Michael Stonebraker, and Rick Caccia. Independent, open enterprise
data integration. IEEE Bull. of the Technical Committee on Data Engineering, 22(1):43–49,
1999.

[38] Richard Hull. Managing semantic heterogeneity in databases: A theoretical perspective.
In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’97), 1997.

[39] Richard Hull and Gang Zhou. A framework for supporting data integration using the mate-
rialized and virtual approaches. In Proc. of the ACM SIGMOD Int. Conf. on Management
of Data, pages 481–492, 1996.

[40] Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis, editors. Fun-
damentals of Data Warehouses. Springer, 1999.

[41] Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fixpoint? J. of
Computer and System Sciences, 43(1):125–144, 1991.

[42] Alon Y. Levy. Answering queries using views: A survey. Technical report, University of
Washinghton, 1999.

[43] Alon Y. Levy. Logic-based techniques in data integration. In Jack Minker, editor, Logic
Based Artificial Intelligence. Kluwer Academic Publisher, 2000.

[44] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering
queries using views. In Proc. of the 14th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’95), pages 95–104, 1995.

[45] Chen Li and Edward Chang. Query planning with limited source capabilities. In Proc. of
the 16th IEEE Int. Conf. on Data Engineering (ICDE 2000), pages 401–412, 2000.

[46] Chen Li, Ramana Yerneni, Vasilis Vassalos, Hector Garcia-Molina, Yannis Papakonstanti-
nou, Jeffrey D. Ullman, and Murty Valiveti. Capability based mediation in TSIMMIS. In
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 564–566, 1998.

[47] John W. Lloyd. Foundations of Logic Programming (Second, Extended Edition). Springer,
Berlin, Heidelberg, 1987.

34



[48] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object exchange
across heterogeneous information sources. In Proc. of the 11th IEEE Int. Conf. on Data
Engineering (ICDE’95), pages 251–260, 1995.

[49] Xiaolei Qian. Query folding. In Proc. of the 12th IEEE Int. Conf. on Data Engineering
(ICDE’96), pages 48–55, 1996.

[50] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries using tem-
plates with binding patterns. In Proc. of the 14th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS’95), 1995.

[51] Amit Sheth and Vipul Kashyap. So far (schematically) yet so near (semantically). In Proc.
of the IFIP DS-5 Conf. on Semantics of Interoperable Database Systems. Elsevier Science
Publishers (North-Holland), Amsterdam, 1992.

[52] D. Srivastava, S. Dar, H. V. Jagadish, and A. Levy. Answering queries with aggregation
using views. In Proc. of the 22nd Int. Conf. on Very Large Data Bases (VLDB’96), pages
318–329, 1996.

[53] Jeffrey D. Ullman. Information integration using logical views. In Proc. of the 6th Int.
Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in Computer Science,
pages 19–40. Springer, 1997.

[54] Ron van der Meyden. Logical approaches to incomplete information. In Jan Chomicki
and Günter Saake, editors, Logics for Databases and Information Systems, pages 307–356.
Kluwer Academic Publisher, 1998.

[55] Jennifer Widom (ed.). Special issue on materialized views and data warehousing. IEEE
Bull. of the Technical Committee on Data Engineering, 18(2), 1995.

[56] Gio Wiederhold. Mediators in the architecture of future information systems. IEEE Com-
puter, 25(3):38–49, 1992.

[57] Hantao Zhang. SATO: an efficient propositional prover. In Proc. of the 14th Int. Conf. on
Automated Deduction (CADE’97), Lecture Notes in Computer Science. Springer, 1997.

[58] Gang Zhou, Richard Hull, and Roger King. Generating data integration mediators that use
materializations. J. of Intelligent Information Systems, 6:199–221, 1996.

[59] Gang Zhou, Richard Hull, Roger King, and Jean-Claude Franchitti. Using object matching
and materialization to integrate heterogeneous databases. In Proc. of the 3rd Int. Conf. on
Cooperative Information Systems (CoopIS’95), pages 4–18, 1995.

35


