
Aggregate Queries over Ontologies

Diego Calvanese, Evgeny Kharlamov, Werner Nutt, Camilo Thorne
Free University of Bozen-Bolzano

Piazza Domenicani, 3
39100 Bozen-Bolzano, Italy

{calvanese,kharlamov,nutt,cthorne}@inf.unibz.it

ABSTRACT
Answering queries over ontologies is an important issue for
the Semantic Web. Aggregate queries were widely studied
for relational databases but almost no results are known
for aggregate queries over ontologies. In this work we in-
vestigate the latter problem. We propose syntax and se-
mantics for epistemic aggregate queries over ontologies and
study query answering for MAX, MIN, COUNT, CNTD, SUM,

AVG queries for the ontology language DL-LiteA.

Categories and Subject Descriptors
H.2.3 [Languages]: Query languages; H.4 [Information
Systems Applications]: Miscellaneous

General Terms
Algorithms, Languages, Theory

Keywords
Aggregate Queries, Incomplete Information, Ontology Lan-
guages, Description Logic

1. INTRODUCTION
In ontology-based data access (OBDA), typical of the Se-

mantic Web [13], Enterprise Information Integration, and
Data Integration [15], ontologies are used to provide a con-
ceptual view over data repositories, and to mediate the ac-
cess to the information stored therein. Typically, in OBDA,
the data stored in the databases (DBs) is assumed to provide
only an incomplete account of the domain of interest, and
the ontology can be used to overcome such incompleteness.
Indeed, an ontology does not only provide the terms through
which the information can be accessed, but may also express
various forms of constraints over the domain. By means of
logical inference over such constraints, new information can
be deduced from the explicitly given one, and contribute to
the answers to queries posed to the DB through the ontol-
ogy [8, 9, 12, 18].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ONISW’08, October 30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-60558-255-9/08/10 ...$5.00.

Hence, the OBDA setting is profoundly different from that
of ordinary DBs, where information is assumed to be com-
plete, and constraints expressed over the DB schema (e.g.,
keys and foreign keys) are used only for validating data, but
not for query answering. Instead, query answering in OBDA
is tightly related to query answering under constraints over
incomplete DBs interpreted under the open-world assump-
tion [6, 5]. In both cases, query answering amounts to com-
puting the so-called certain answers, i.e., those answers that
hold in all possible DB states compatible with the data ex-
plicitly stored in the DB and with the constraints (in the
ontology or in the DB schema).

Recently, the problem of answering queries over ontologies
has been intensively investigated under various assumptions
on the language used to express the ontology. One line of
research has considered very expressive languages, i.e., sig-
nificant fragments of OWL-DL1, aiming at determining the
decidability of query answering, and establishing its compu-
tational complexity [9, 10, 12, 16]. Of special interest has
been characterizing the data complexity of the problem, i.e.,
the complexity measured solely in the size of the DB, which
typically dominates the size of the intensional level of the
ontology. It has been shown that for expressive ontology
languages such as SHIQ, answering unions of conjunctive
queries (UCQs) is coNP-complete in data complexity [12,
16]; actually, the coNP lower bound already holds for much
simpler languages due to the presence of disjunction [11].
This has motivated the interest in simpler ontology lan-
guages, for which query answering has low data complexity.
Specifically, the DL-Lite-family of ontology languages has
been identified recently [8, 17], which provides an interest-
ing trade-off between expressive power and data complexity
of query answering. On the one hand, DL-Lite (and its vari-
ants) have sufficient expressive power to capture conceptual
modeling languages, such as the Entity-Relationship model
or UML Class Diagrams. On the other hand, answering
UCQs under the certain answer semantics over a DL-Lite
ontology is LogSpace in data complexity, and can be re-
duced to standard query evaluation over the DB storing the
extensional information [8, 17]. This makes it possible to
leverage on standard relational technology, not only for stor-
ing the data, but also for query evaluation, thus achieving
full scalability w.r.t. the size of the data.

Regarding the query language, it is worth noticing that
most research so far has considered just conjunctive queries
(CQs) or unions thereof (UCQs), corresponding to the
(UNION)-SELECT-PROJECT-JOIN fragment of SQL. An excep-

1http://www.w3.org/2007/OWL/

HasChild

HasCar

Parent

Car

ChildCTR

Figure 1: The family ontology.

(a) What is the maximum per child tax reduction explicitly
recorded in the data?

(b) How many parents own cars?
(c) What is the total tax reduction of each parent?

Table 1: Example questions involving aggregations.

tion is [7], which allows for “closing” information through
the use of an epistemic operator, and then performing first-
order operations. However, such kinds of queries do not
allow one to express many natural and interesting informa-
tion requests, such as those expressed by aggregate queries,
like SQL queries using the aggregation functions COUNT, SUM,
or AVG. An important aspect of such queries is that the mul-
tiplicities of tuples in the answer set over which the aggre-
gation is performed are of importance2.

Example 1.1. The ontology shown in Figure 1, rendered
as an ER-diagram, models (part of) the information regard-
ing tax payments for families, where the HasChild (resp.,
HasCar) relation associates Parents with their Children (resp.,
Cars), and CTR is an attribute representing the per-child
tax reduction that a parent has right to (e.g., in Italy, this
amount depends on the yearly income). Examples of typical
questions over such an ontology are shown in Table 1.

There are only few results related to aggregate queries in
a setting of incomplete information [3, 4, 14], and none of
them addresses properly the recently introduced ontology
languages able to capture conceptual data models, such as
those of the DL-Lite family. The main aim of this paper is
to fill this gap, by providing the following contributions:

• We show that standard certain answer semantics is not
appropriate in general for aggregate queries or for condi-
tional aggregate queries, where part of the query is used
to express a condition that should not account for multi-
plicities in the answer (see Section 4).

• We introduce (conditional) epistemic aggregate queries,
and provide for them an alternative, epistemic, semantics
that is better suited in the presence of incomplete infor-
mation (see Section 5).

• For the ontology language DL-LiteA [17], the most signif-
icant representative of the DL-Lite family, we investigate
conditions on the epistemic aggregate query and the ontol-
ogy that ensure that certain answers will not necessarily
be empty; we develop an algorithm for computing such
answers that relies on known algorithms for computing
certain answers for non-aggregate queries (see Section 6).

Preliminaries on aggregate queries and on the DL-LiteA
ontology language are given in Sections 2 and 3, respectively.

2Note that in queries expressible in the language of [7], mul-
tiplicities are not properly taken into account.

2. AGGREGATE QUERIES OVER DBs
In this section we first recall basic notions on conjunctive

and aggregate queries in SQL (see also [1] for details). We
then recall nested conditional SQL queries, and introduce
an extension of rule-based notation to capture such queries.

2.1 Databases and Conjunctive Queries
We assume as given a countably infinite domain ∆ :=

∆O ∪∆V , partitioned into a domain ∆O of object constants
and a domain ∆V of values (containing numbers, e.g., N).
We call tuple any finite sequence c̄ of domain elements. We
will denote the empty tuple as ().

A term (like t) is either a variable (like v, w, x, y, z) or a
constant (like c). A relation name R is a predicate symbol
of some arity n (a nonnegative integer). A DB schema R
is a finite set of relation names. An atom is an expression
of the form R(t̄), where R is a relation name of arity n and
t̄ is a sequence of n terms. An atom is ground when all its
terms are constants.

A condition φ over R is a conjunction of atoms with rela-
tion names from R, written in the form of a list. We denote
by Var(φ) the set of variables occurring in condition φ.

A conjunctive query (CQ) over R is an expression

q(x̄)← φ,

where q is a relation of some arity n that does not occur
in R, called head relation, and φ is over R. The variables
in x̄ are called distinguished and φ is called condition of q.
Distinguished variables should occur in φ. A CQ is boolean
when the sequence x̄ is empty. As usual, we denote a CQ
through its head relation.

A DB instance, or simply DB, D of R is a pair (∆, ·D)
where ∆ is the domain and ·D is an interpretation function
over R, that is, a function mapping each relation name R of
arity n in R to a subset RD of ∆n, i.e., to a relation instance.
Observe that a DB is a first order logic interpretation of R.
We notice that we allow DBs to be infinite, although we
consider only finite representations, by means of an ontology
(see Section 3), of (sets of) such possibly infinite DBs.

Example 2.1. Consider the DB schema with relations
from Figure 1, Rf := {Parent,CTR,HasCar,HasChild},
where f in Rf stands for “family”. A DB Df of Rf is

Parent
Name
Luisa

Anna

CTR
PName Amount
Luisa 100
Anna 150

HasCar
PName CType
Anna VwGolf

Anna FiatUno

HasChild
PName CName
Anna Mario

Luisa Beppe

Anna Paolo

For convenience, in examples we use attribute names to de-
note relation positions.

An assignment γ over a condition φ is a function that
maps Var(φ) to ∆ and each constant in φ to itself. Assign-
ments are extended to complex syntactic objects like atoms
and conditions in the usual way. Whenever γ(x̄) = c̄ we say
that x̄ is bound to c̄. An assignment γ satisfies φ over a DB

D if, for each atom R(t̄) in φ, we have γ(t̄) ∈ RD. We denote
by SatD(φ) the set of satisfying assignments of φ over D.

The set of answers qD of a CQ q(x̄)← φ over a DB D is
defined as qD := {c̄ | c̄ = γ(x̄), γ ∈ SatD(φ)}.

2.2 Aggregate Queries
We enrich our syntax by considering now the standard

SQL aggregation functions max, min, count, cntd, sum, and
avg, in the following denoted by α. We call an aggregation
term any expression of the form count or α(y), where y is
called an aggregation variable. We use α(ȳ) to denote both
cases.

An aggregate query (AQ) over R is a query of the form:

q(x̄, α(ȳ))← φ,

where x̄ is a (possibly empty) sequence of grouping variables,
α(ȳ) is an aggregation term and φ is a condition containing
x̄ and ȳ. Moreover, ȳ does not occur in x̄.

Example 2.2. Question (a) in Table 1 gives rise to the
following max-query q1 over Rf from Example 2.1:

q1(max(y))← Parent(x),CTR(x, y).

The same query in SQL notation is:

SELECT MAX(CTR.Amount)

FROM Parent, CTR

WHERE Parent.Name = CTR.PName

There is no GROUP BY clause, which reflects the fact that
in q1 there are no grouping variables.

Aggregation functions in SQL are defined over bags {| · |},
called groups, of symbolic and numerical values and return
a number. Let D be a DB and c̄ a tuple. Consider an
aggregate query q(x̄, α(ȳ)) ← φ. The group Fc̄ of tuple c̄ is
defined as the bag

Fc̄ := {| γ(ȳ) | γ ∈ SatD(φ) and γ(x̄) = c̄ |}.

The set of answers qD of an ACQ q over D is defined as

qD := {(c̄, α(Fc̄)) | c̄ = γ(x̄), for some γ ∈ SatD(φ)}.

Example 2.3. Consider the max-query q1 of Example 2.2
and the DB Df of Example 2.1. There are only two sat-
isfying assignments, namely, γ1 := [x/Luisa, y/100] and
γ2 := [x/Anna, y/150]. Since q1 has no grouping vari-
ables, the only group we have is for the empty tuple ()

and F() = {| 100, 150 |}. Therefore q
Df
1 = {(max(F()))} =

{(max({| 100, 150 |}))} = {(150)}.

2.3 Conditional Aggregate Queries
The standard syntax of aggregate queries can only express

some SQL aggregate queries. For instance, Question (b)
from Table 1 corresponds to the SQL query (over Rf):

SELECT COUNT(*)

FROM Parent

WHERE EXISTS (

SELECT *

FROM HasCar

WHERE HasCar.PName = Parent.Name)

which contains an SQL (sub)query that is nested within
an EXISTS condition. Nested SQL subqueries of this kind
do not return bags, but a truth value that will be true if
and only if there is a tuple satisfying the conditions of the
subquery.

To cover this feature, we must extend accordingly the syn-
tax and semantics of aggregate queries. This nesting will be
expressed by bracketing atoms in the query’s condition.

A conditional aggregate query q (CAQ) is a query of the
form:

q(x̄, α(ȳ))← φ, [ψ],

where φ and ψ are conditions, x̄, ȳ ⊆ Var(φ) and Var(φ) ∩
Var(ψ) 6= ∅. We call ψ a nested condition. As before, we
denote queries with their head relation.

We distinguish assignments of SatD(φ, ψ) that give rise to
bags of tuples and assignments that do not, i.e., assignments
that satisfy nested conditions. We define the latter ones as

SatψD(φ) := {γ|Var(φ) | γ ∈ SatD(φ, ψ)},

where γ|Var(φ) denotes the restriction of γ to Var(φ). The
group of a tuple c̄, denoted Gc̄, is defined similarly to the
group Fc̄ but using assignments from SatψD(φ):

Gc̄ := {| γ(ȳ) | γ ∈ SatψD(φ) and γ(x̄) = c̄ |}.

We define the set of answers qD of CAQ q over DB D as

qD := {(c̄, α(Gc̄)) | c̄ = γ(x̄), for some γ ∈ SatψD(φ)}.

Example 2.4. With the new syntax we can express
Question (b) from Table 1 as the following CAQ over Rf :

q2(count)← Parent(x), [HasCar(x, y)].

For the DB Df from Example 2.1 we obtain q
Df
2 = {(2)}.

3. DL-LITEA ONTOLOGIES
We present now the ontology language on which we base

our considerations in the rest of the paper, namely the De-
scription Logic DL-LiteA. This language is one of the most
expressive variants of Description Logics (DLs) of the DL-
Lite family [8], which is a family of DLs that have been
developed specifically to handle large amounts of data, pos-
sibly stored in relational DBs [17]. DL-LiteA is also one of
the tractable fragments of the upcoming standard OWL 23.
As usual in DLs, in DL-LiteA the universe of discourse is
represented in terms of concepts, denoting sets of objects,
and roles, denoting binary relations between objects. Addi-
tionally, DL-LiteA provides mechanisms to deal both with
abstract objects (which are instances of concepts) and with
data values (such as strings, integers, . . .): value-domains
denote sets of values, while (concept) attributes4 denote bi-
nary relations between objects and values. The distinction
between objects and values is especially important in the
OBDA setting, where one needs to deal with the fact that
(abstract) objects are maintained at the level of the ontol-
ogy, while data values are stored in the underlying DB.

3http://www.w3.org/2007/OWL/
4For simplicity, we do not consider role attributes here.

3.1 The DL-LiteA Language
In providing the specification of DL-LiteA, we use the

following notation:

• A denotes an atomic concept, B a basic concept, C a gen-
eral concept, and >C the universal concept.

• E denotes a basic value-domain, i.e., the range of an at-
tribute, F a value-domain expression, and >D the univer-
sal value-domain.

• P denotes an atomic role, Q a basic role, and R a general
role. An atomic role is simply a role denoted by a name.

• U denotes an atomic attribute (or simply attribute), and
V a general attribute.

An atomic concept or an atomic value-domain is simply a
unary relation name, while an atomic role or an atomic at-
tribute is simply a binary relation name. The syntax of basic
and general concepts, value-domains, roles, and attributes
is given below. Given an attribute U , we call domain of U ,
denoted by δ(U), the set of objects that U relates to values,
and we call range of U , denoted by ρ(U), the set of val-
ues that U relates to objects. Note that δ(U) is a concept,
whereas ρ(U) is a value-domain.

Formally, the syntax of DL-LiteA expressions is defined
as follows:

B ::= A | ∃Q | δ(U)
C ::= >C | B | ¬B | ∃Q.C
E ::= ρ(U)
F ::= >D | T1 | · · · | Tn

Q ::= P | P−
R ::= Q | ¬Q
V ::= U | ¬U

The semantics of DL-LiteA is specified, as usual in DLs, in
terms of first-order logic interpretations, i.e., DB instances,
over the domain ∆ = ∆O ∪ ∆V (cf. Section 2). All such
DB instances agree on the semantics assigned to each value-
domain Ti. In particular, we assume that ∆V coincides with
the union of the interpretations of all Ti. Given a DB in-
stance D = (∆, ·D) interpreting unary and binary atomic
relation symbols, the interpretation is extended to complex
expressions in the usual way. For lack of space we don’t
provide here the details of the semantics of the constructs,
and refer instead to [17].

3.2 Knowledge Bases
A DL-LiteA knowledge base (KB), or ontology, K =

(T ,A) is constituted by two components: a TBox T , repre-
senting intensional knowledge, and an ABox A, representing
extensional information. The TBox is constituted by a set
of assertions of the form:

B v C (concept inclusion assertion)
Q v R (role inclusion assertion)
E v F (value-domain inclusion assertion)
U v V (attribute inclusion assertion)

(funct Q) (role functionality assertion)
(funct U) (attribute functionality assertion)

A concept inclusion assertion expresses that a (basic) con-
cept B is subsumed by a (general) concept C. Analogously
for the other types of inclusion assertions. A role functional-
ity assertion expresses the (global) functionality of an atomic
role. Analogously for an attribute functionality assertion.

Formally, a DB instance D satisfies an inclusion assertion
X v Y if the corresponding set inclusion XD ⊆ Y D holds,
and it satisfies a functionality assertion (funct Q) (resp.,
(funct U)), if the relation QD (resp., UD) is a function.

A DL-LiteA ABox is a finite set of membership assertions
of the form

A(a), D(c), P (a, b), U(a, c)

where a and b are object constants in ∆O, and c is a value in
∆V

5. To define its semantics, we specify when a DB instance
D = (∆, ·D) satisfies a membership assertion α in A, written
D |= α. Namely, D satisfies A(a) if a ∈ AD, satisfies P (a, b)
if (a, b) ∈ PD, and satisfies U(a, b) if (a, b) ∈ UD.
D is a model of a DL-LiteA KB K or, equivalently, D

satisfies K, written D |= K iff D satisfies all assertions in
K. A KB is satisfiable if it has at least one model. A KB
K logically implies an assertion α if all models of K are also
models of α. (Similar definitions hold for a TBox T or ABox
A.)

3.3 Query Answering in DL-LiteA
A query over a KB K is a query whose predicates are

the atomic concepts, value domains, roles, and attributes
of K. The reasoning service we are interested in is query
answering : given K and a query q(x̄) over K, return the
certain answers Cert(q,K) to q(x̄) over K, i.e., all tuples c̄
of elements of ∆O ∪∆V s.t. c̄ ∈ qD for every model D of K.

Note that query answering over an ontology is a form of
reasoning over incomplete DBs, and as such, in general, a
more complex task than plain query answering over a DB.
Indeed, from the results in [8] it follows that, in general,
already answering CQs over DL-LiteA KBs as introduced
above, is PTime-hard in data complexity (i.e., the complex-
ity measured w.r.t. the size of the ABox only). As a conse-
quence, to solve query answering over such KBs, we need at
least the power of general recursive Datalog.

However, as shown in [8], the data complexity of answering
CQs (and unions thereof) in DL-LiteA drops to LogSpace,
provided a suitable restriction is imposed on the interaction
between role (resp., attribute) inclusion assertions and func-
tionality assertions. Intuitively, the restriction requires that
no functional role or attribute can be specialized, i.e., ap-
pears in the left-hand side of an inclusion assertion, when in
the right-hand side there is a non-negated role or attribute
(we refer to [8] for the details). Moreover, if this condition
is satisfied, computing the certain answers of a CQ with
respect to a satisfiable DL-LiteA KB K = (T ,A) can be re-
duced, through a process called perfect reformulation, to the
evaluation over A (now viewed as a complete DB) of a suit-
able union of CQs [8]. This query answering technique has
also been implemented in the QuOnto system [2], where the
ABox is stored directly in a relational DB, containing one re-
lation for each atomic symbol. In the following, we will also
assume that the ABox of the ontology over which queries
are answered is stored in the form of DB relations, one for
each atomic concept, attribute, and role symbol. Note that
domains need not be stored explicitly in the DB, since they
are actually used only to represent the range of attributes.

5We assume to have standard names, i.e., we identify con-
stants with domain elements.

4. LIMITATIONS OF CERTAIN ANSWER
SEMANTICS

As we discussed in the previous section, the problem of
answering queries over ontologies is a special case of the one
of answering queries over sets of DBs. This problem has not
yet been studied systematically for aggregate queries.

Lechtenbörger et al. [14] investigated aggregate queries
over conditional tables, which are a formalism to specify in-
complete DBs, and showed that in this case the answers to
an aggregate query can be represented again by a conditional
table. Arenas et al. [4] studied aggregate queries over the
set of repairs of an inconsistent DB. They introduced a so-
called range-semantics, according to which a query is evalu-
ated over each individual instance (that is, each repair), and
returns the minimal and the maximal value thus obtained.
Afrati and Kolaitis [3] gave a semantics and algorithms for
aggregate queries in data exchange, which crucially exploit
the specific characteristics of this setting.

As a preparation for the following sections, we will argue
that an approach that generalizes the standard certain an-
swer semantics to aggregate queries will not be satisfactory,
since in most cases the set of certain answers will be empty.

Example 4.1. Consider the KB K1 that has an empty
TBox and whose ABox is Df from Example 2.1. Because of
the open-world semantics of ontologies, K1 expresses that,
for instance, Luisa has at least two children, Beppe and
Paolo, and that it is unclear whether she has a car.

Recall Question (c) from Table 1. It can be expressed as

q3(x, sum(y))← CTR(x, y),HasChild(x, z). (1)

In SQL syntax, the query is

SELECT CTR.PName, SUM(CTR.Amount)

FROM CTR, HasChild

WHERE CTR.PName = HasChild.PName

GROUP BY CTR.PName

The certain answer semantics for queries over a KB re-
quires one to compute the intersection of the answer sets
over all possible DBs (models) of the KB. Since K1 does
not “know” all children of, e.g., Luisa, in different models
of K1 the numbers of her children differ and, consequently,
the total tax reductions differ. Therefore, the set of certain
answers Cert(q3,K1) is empty.

The proposition below generalizes the example to KBs
where either the Tbox or ABox are empty.

Proposition 4.2. Let K = 〈T ,A〉 be a KB and q an
aggregate query. Then Cert(q,K) = ∅ if T = ∅ or if A = ∅.

Clearly, Cert(q,K) = ∅ holds not only in the two extreme
cases of the proposition. It holds, intuitively, whenever the
TBox does not restrict the instances extending an ABox so
much that at least one group has the same aggregate value
in each instance.

5. EPISTEMIC AGGREGATE QUERIES
OVER ONTOLOGIES

We now introduce epistemic aggregate queries and give
intuitions why they solve the problems with the certain an-
swers semantics discussed above.

5.1 Motivation

Example 5.1. Reconsidering Example 4.1, we notice
that certain answer semantics does not exploit the fact that
in every instance D that is a model of K1, Luisa has two chil-
dren for sure, namely Mario and Paolo named in the ABox,
and Anna has one child for sure, namely Beppe. Conse-
quently, Luisa will receive a total tax reduction of 300 EUR
for Mario and Paolo and Anna one of 100 EUR for Beppe.
Clearly, in a specific DB instance, the total reduction for
Anna or Luisa may be higher, since the DB instance may
contain additional children to the ones explicitly listed in
the ABox. If we could tell our query engine that we only
want the sum of the known reductions for the known chil-
dren, then the engine could return as answers to query q3
the set {(Luisa, 300), (Anna, 100)}.

Note that in this case the answers to the query could be
obtained by first computing the certain answers of the con-
junctive query

q′3(x, y, z)← CTR(x, y),HasChild(x, z),

then grouping the result according to values of x, and finally
computing the aggregate sum(y) for each group (projecting
away z).

The next example shows this semantics is too restrictive.

Example 5.2. Consider a KB K2, with the following
TBox:

∃CTR v ∃HasChild, (funct HasChild), (funct CTR),

and consider a DB instance D for K2. The first constraint
is satisfied by D if every Parent, with an associated value
for the (optional) CTR attribute, has also a child in D. The
second constraint is satisfied by D if every Parent has at
most one child in D. The last constraint says that the CTR
attribute is functional. One could imagine that DBs satisfy-
ing the TBox reflect the situation of a country with a birth
control policy where only one child would give the parents
a tax reduction. Consequently, a DB instance may contain
at most one child for each parent.

Suppose the ABox of K2 is as follows:

CTR
PName Amount
Luisa 150
Anna 100

HasChild
PName CName
Anna Mario

According to the KB, there is one known child of Anna,
namely Mario, but no known child of Luisa. However, due
to the first constraint, it is known that Luisa has a child,
although it is not known who that child is.

If we want to identify the tax reductions that necessarily
hold for every DB instance that is a model of K2, it is not
sufficient to consider only the known children, as in the pre-
vious example, but also which children are known to exist
for each person.

Reasoning with the information in the ABox and in the
TBox, a query processor could determine that Luisa receives
a total reduction of 150 EUR and Anna one of 100 EUR.
Actually, in this case {(Luisa, 150), (Anna, 100)} is the set of
certain answers to the query q3 over the KB K2.

To summarize the intuitions of the semantics for aggre-
gate queries we presented in the examples, in Example 5.1,
we (1) calculated certain answers for the query q′3, the body
of which contains the same condition as q3, and the distin-
guished variables of which are Var(q3) and (2) aggregated
over the certain answers. In Example 5.2, we (1) used cer-
tain answers for the grouping variables x̄ and the aggregation
variable y and (2) applied reasoning over the ontology for
the variable z, which varies over the children of tax reduction
holders, in order to perform the aggregation.

5.2 Epistemic Aggregate Queries
In order to capture both of the above cases, we introduce

epistemic aggregate queries. An epistemic aggregate query
(EAQ) is a query of the form:

q(x̄, α(ȳ))← Kx̄, ȳ, z̄. φ, [ψ], (2)

where z̄ is a possibly empty list of distinct existential vari-
ables of φ and ψ such that z̄ is disjoint from x̄ and ȳ.

We call K an epistemic operator (where the letter “K”
stands for “known”) and the variables in the list following K
are the epistemic variables, or K-variables, of the query.

Example 5.3. We introduce query q4 as an epistemic
variant of query q3 in (1)

q4(x, sum(y))← Kx, y. CTR(x, y),HasChild(x, z),

Note that this query has no nested conditions and the only
epistemic variables are x and y.

5.3 Semantics of EAQs over Ontologies
We define the semantics of epistemic aggregate queries for

arbitrary KBs.
Consider an EAQ q as in (2) and a KB K. Let w̄ :=

x̄ ∪ ȳ ∪ z̄. A tuple of constants c̄ is a known solution for w̄
in φ, ψ over K if c̄ is a certain answer for the query

aux q(w̄)← φ, ψ (3)

over K. The semantics of q over K will be defined in such
a way that, for every model D of K, the query q is eval-
uated considering only assignments that map w̄ to known
solutions. The epistemic certain answers for q over D are
then obtained by taking the intersection of the answer sets
for all models D of K.

Formally, let w̄ := x̄ ∪ ȳ ∪ z̄ and v̄ := w̄ ∩ Var(φ), that
is, w̄ consists of all epistemic variables of q, and v̄ of all
epistemic variables of φ. For a model D of K we define
the set KSatD,K(w̄;φ, ψ) of satisfying K-assignments of φ,
ψ over D as

KSatD,K(w̄;φ, ψ) := {γ ∈ SatD(φ, ψ) | γ(w̄) ∈ Cert(aux q,K)}.

Note that all satisfying K-assignments map w̄ to known so-
lutions. Analogously to the standard semantics, we define
the set KSatψD,K(v̄;φ) of all satisfying K-assignments of φ
over D that respect ψ as

KSatψD,K(v̄;φ) := {γ|Var(φ)
| γ ∈ KSatD,K(w̄;φ, ψ)}.

We define the multiset Hd̄, which we call d̄-group, consisting
of the satisfying assignments from KSatψD,K(z̄;φ) as follows:

Hd̄ := {|γ(y) | γ ∈ KSatψD,K(z̄;φ) and γ(x̄) = d̄|}. (4)

We say that (d̄, d) is a K-answer for an EAQ q over D if

there is γ ∈ KSatψD,K(v̄;φ) such that

d̄ = γ(x̄) and d = α(Hd̄).

We denote the set of all K-answers for q over a model D of
K as q(D,K).

We define epistemic certain answers for an EAQ q over a
knowledge base K, denoted ECert(q,K), as follows:

ECert(q,K) :=
\
D∈K

q(D,K).

Example 5.4. Consider again the epistemic sum-query
q4 from the knowledge base represented by K1 as in Exam-
ple 4.1. The certain answers Cert(q′3,K1) are

{(Luisa, 100, Beppe), (Anna, 150, Mario), (Anna, 150, Paolo)}.

Then KSatD,K(w̄;φ, ψ) is {γ1, γ2, γ3} where

γ1 := [x/Luisa, y/100, z/Beppe],
γ2 := [x/Anna, y/150, z/Mario],
γ3 := [x/Anna, y/150, z/Paolo].

Since x is q4’s grouping variable, this means we get two K-
groups, the group of Luisa and the group of Anna, namely,
GLuisa = {| 100 |} and GAnna = {| 150, 150 |}. Recall that sum
returns the sum of the values of the groups. Therefore,

ECert(q4,K1) = {(Luisa, 100), (Anna, 300)}.

6. EVALUATING EAQs OVER DL-LITEA
ONTOLOGIES

As we discussed in Section 4, with the classical approach,
for an ACQ q and TBox T , the set of certain answers
Cert(q, 〈T ,A〉) may be empty for every ABox A. The
same can happen for EAQs. We say that an EAQ q is
trivial for a TBox T if for all ABoxes A it holds that
ECert(q, 〈T ,A〉) = ∅. We say that a CAQ of the form (2) is
coherent with T if the condition φ, ψ is satisfiable together
with T . Obviously, every query that is non-coherent with
T is trivial for T . In this section, we consider only coherent
pairs of queries and DL-LiteA TBoxes, and identify condi-
tions under which these queries are non-trivial for the TBox.
We also present algorithms for computing epistemic certain
answers for such queries.

In the following we consider a generic EAQ q of form (2).

6.1 General Algorithm
We introduce now an algorithm that we will use as the

basis for computing epistemic certain answers ECert(q,K)
for the various aggregation functions α. We denote the algo-
rithm GA (for General Algorithm). GA takes as input an EAQ
q and a KB K, and computes a set of tuples O = GA(q,K).

We denote the sequence of non-distinguished epistemic
variables of φ as z̄φ. In the algorithm, we denote a pred-
icate (view) of arity |x̄ ∪ ȳ ∪ z̄| that “stores” the tuples
of certain answers Cert(aux q,K) for aux q defined in (3)
as Cert(aux q,K), consequently, Cert(aux q,K)(x̄, ȳ, z̄) is an
atom with this predicate name. We also denote as q0 (resp.,
q1) a predicate (view) that “stores” outputs of q0 (resp., q1).

The algorithm GA is defined in Figure 2 and it basically ap-
plies two steps on the tuples in Cert(aux q,K): (i) it projects
them on components corresponding to epistemic variables of
φ and (ii) it aggregates over the result.

Input: epistemic aggregate query q
DL-LiteA knowledge base K

Output: set of tuples O
Do: build q0: q0(x̄, ȳ, z̄φ)← Cert(aux q,K)(x̄, ȳ, z̄)

build q1: q1(x̄, α(y))← q0(x̄, ȳ, z̄φ)

compute certain answers: D1 := Cert(aux q,K)

project on K-variables: D2 := qD1
0

aggregate: O := qD2
1

Figure 2: General algorithm

Notice that GA projects out non-epistemic variables of
Var(φ) and, consequently, GA loses multiplicity of their val-
ues. This may obviously lead to an aggregation that is wrong
according to the epistemic certain answers semantics. In the
following we show that this does not lead to wrong aggre-
gation if (1) the function α is not sensitive to multiplicities
or (2) all the projected out variables do not contribute to
multiplicities due to involvement in functional dependencies.

6.2 Queries with Restricted Variables
Let v and w be variables from Var(q) and T a DL-LiteA

TBox. We say that v directly (functionally) depends on w
in T if either

• there is R(w, v) in q and (funct R) is in T , or

• there is R(v, w) in q and (funct R−) is in T .

We say that v (functionally) depends on w in T if there
is a sequence of variables v = v1, . . . , vn = w, with each
vi ∈ Var(q), such that each vi directly depends on vi+1.
Moreover, the variable v is in bijection with w in T if v
depends on w and w depends on v in T .

We say that a variable in φ is restricted by T if (1) it is
epistemic or (2) depends in T on an epistemic variable oc-
curring in φ or (3) is in bijection in T with an epistemic
variable occurring in ψ. Finally, an epistemic aggregate
query q is restricted by T if all the variables in φ are re-
stricted by T . The intuition is that in a restricted query,
non-epistemic variables cannot give rise to additional multi-
plicities of group elements.

The following theorem states that GA computes ECert for
restricted queries.

Theorem 6.1 (Restricted Queries). Let T be a
DL-LiteA TBox and q a coherent epistemic aggregate query
for T . If q is restricted by T , then

• q is not trivial for T , and

• ECert(q, 〈T ,A〉) = GA(q, 〈T ,A〉), for every ABox A.

We conjecture that an epistemic count-query is non-trivial
if and only if it is restricted, that is, Theorem 6.1 gives a
complete characterization. For other aggregation functions,
there are further possibilities for queries to be non-trivial.

6.3 Min, Max, and Count Distinct Queries
GA computes all epistemic certain answers for min-, max-

and cntd-queries even if they are non-restricted.

Theorem 6.2 (Min, Max, Count Distinct Queries).
Let T be a DL-LiteA TBox and q a coherent epistemic
min-, max- or cntd-query for T . Then

• q is not trivial for T and

• ECert(q, 〈T ,A〉) = GA(q, 〈T ,A〉), for every A.

In fact, a more general statement holds, that is,
ECert(q,K) = GA(q,K) holds for every KB K and every EAC
q with α insensitive to multiplicities of the values for y.

6.4 Sum Queries
A non-restricted sum-query may return an answer over

some ABox, however, in this case all answers have the form
(d̄, 0) and all values in the group Hd̄ (cf. Equation 4) are 0.
For a given q and 〈T ,A〉, existence of such a group Hd̄ can
be found out by the following two queries. The first query
trash(x̄) accumulates grouping values of groups that contain
non-zero values for y:

trash(x̄)← Cert(auxq,K)(x̄, y, z̄), y 6= 0.

The second query ans(x̄, 0) drops the values returned by
trash from the set of all grouping values in Cert(aux q,K):

ans(x̄, 0)← Cert(aux q,K)(x̄, y, z̄), not trash(x̄). (5)

In the queries, inequality “6=” and negation not intuitively
work as “6=” and MINUS in SQL (see [1] for details). The
following theorem shows how to compute ECert(q,K) for
non-restricted epistemic sum-queries.

Theorem 6.3 (Sum Queries). Let T be a DL-LiteA
TBox and q a coherent epistemic sum-query that is non-
restricted for T . Then ECert(q,K) = ansCert(auxq,K), where
ans is defined in Equation 5.

When y varies over non-negative numbers only, the only
groups that do not contain non-zero values for y are those
for which the sum over y itself is 0. Hence, the computation
of ECert(q,K) can be simplified.

Proposition 6.4. Let T be a DL-LiteA TBox and q a
coherent epistemic sum query that is non-restricted for T
with the sum ranging over non-negative numbers only. Then

ECert(q,K) = {(d̄, 0) | (d̄, 0) ∈ GA(q,K)}.

6.5 Average Queries
It turns out that for the epistemic avg-queries, the com-

putation of epistemic certain answers is more involved than
in all the previous cases. The reason is that the average of
several copies of a number k is always k, independently of
the number of copies.

Let M be a multi-set and k a natural number. We denote
as k ∗M the multi-set obtained from M by duplicating k
times each element in M . For example, if M = {| 1, 1, 3 |}
then 2 ∗M = {| 1, 1, 1, 1, 3, 3 |}. We denote the average of
all the elements occurring in M as avg(M). The following
proposition says that avg is insensitive for uniform enlarge-
ments of multisets.

Proposition 6.5. Let M be a multi-set. Then

avg(M) = avg(k ∗M), for every natural number k.

Let q′ be the query that projects the certain answers of the
auxiliary query aux q on the grouping variables, i.e.,

q′(x̄)← Cert(aux q,K)(x̄, ȳ, z̄).

We say that q has a uniform grouping w.r.t. T if for every
ABox A and every d̄ ∈ q′Cert(ansq,〈T ,A〉), there exists a mul-
tiset M such that for every DB instance D compatible with
〈T ,A〉, there is a natural number k such that Hd̄ = k ∗M
(where Hd̄ defined as in Equation (4)).

Theorem 6.6 (Uniform Grouping). Let q be a co-
herent epistemic avg-query and T a DL-LiteA TBox. If q
has a uniform grouping w.r.t. T , then q is non-trivial for T .

We now identify a syntactic conditions on q and T that guar-
antees that q has a uniform grouping w.r.t. T , and, hence,
is non-trivial for T . We say that an EAQ q is decomposable
for T if φ can be partitioned into φ1, φ2 such that:

• y occurs only in φ1,

• all variables in φ1 are restricted by T ,

• Var(φ1) ∩Var(φ2) ⊆ x̄.

Theorem 6.7 (Decomposable Average Queries).
Let T be a DL-LiteA TBox and q an epistemic avg-query.
If q is decomposable for T , then

• q has uniform grouping w.r.t. T and

• ECert(q, 〈T ,A〉) = GA(q, 〈T ,A〉), for every ABox A.

7. CONCLUSIONS AND FUTURE WORK
We have investigated the problem of answering aggregate

queries, for which multiplicities in the computed answers
need to be taken into account, over ontologies, i.e., in a set-
ting of incomplete information. We have shown that stan-
dard certain answer semantics is not appropriate in this set-
ting, and have proposed an alternative semantics based on
the notion of epistemic aggregate query (EAQ). For the case
of ontologies expressed in DL-LiteA, we have provided sev-
eral conditions on the form of the EAQ and of the ontology
that guarantee that answers exist and can be computed. In
all the identified cases, the computation can be reduced to a
standard computation of certain answers for non-aggregate
queries; hence, certain answers to EAQs ca be computed in
LogSpace as is the case for CQs over DL-LiteA-knowledge
bases. As future work, we plan to extend our results to more
expressive ontology languages.

Acknowledgements
This research has been partially supported by FET project
TONES (Thinking ONtologiES), funded within the EU 6th
Framework Programme under contract FP6-7603, and by
the PRIN 2006 project NGS (New Generation Search),
funded by MIUR.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley Publ. Co., 1995.

[2] A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, M. Palmieri, and R. Rosati. QuOnto:
Querying ontologies. In Proc. of the 20th Nat. Conf.
on Artificial Intelligence (AAAI 2005), pages
1670–1671, 2005.

[3] F. Afrati and P. Kolaitis. Answering aggregate queries
in data exchange. In Proc. of the 27th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2008), 2008.

[4] M. Arenas, L. E. Bertossi, J. Chomicki, X. He,
V. Raghavan, and J. Spinrad. Scalar aggregation in
inconsistent databases. Theoretical Computer Science,
296(3):405–434, 2003.

[5] A. Cal̀ı, D. Calvanese, G. De Giacomo, and
M. Lenzerini. Data integration under integrity
constraints. Information Systems, 29:147–163, 2004.

[6] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability
and complexity of query answering over inconsistent
and incomplete databases. In Proc. of the 22nd ACM
SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS 2003), pages 260–271, 2003.

[7] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. EQL-Lite: Effective
first-order query processing in description logics. In
Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2007), pages 274–279, 2007.

[8] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Tractable reasoning and
efficient query answering in description logics: The
DL-Lite family. J. of Automated Reasoning,
39(3):385–429, 2007.

[9] D. Calvanese, G. De Giacomo, and M. Lenzerini. On
the decidability of query containment under
constraints. In Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’98), pages 149–158, 1998.

[10] D. Calvanese, G. De Giacomo, and M. Lenzerini.
Conjunctive query containment and answering under
description logics constraints. ACM Trans. on
Computational Logic, 9(3):22.1–22.31, 2008.

[11] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf.
Deduction in concept languages: From subsumption to
instance checking. J. of Logic and Computation,
4(4):423–452, 1994.

[12] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler.
Conjunctive query answering for the description logic
SHIQ. J. of Artificial Intelligence Research,
31:151–198, 2008.

[13] J. Heflin and J. Hendler. A portrait of the Semantic
Web in action. IEEE Intelligent Systems, 16(2):54–59,
2001.

[14] J. Lechtenbörger, H. Shu, and G. Vossen. Aggregate
queries over conditional tables. J. of Intelligent
Information Systems, 19(3):343–362, 2002.

[15] M. Lenzerini. Data integration: A theoretical
perspective. In Proc. of the 21st ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2002), pages 233–246, 2002.

[16] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity
of query answering in expressive description logics via
tableaux. J. of Automated Reasoning, 41(1):61–98,
2008.

[17] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to
ontologies. J. on Data Semantics, X:133–173, 2008.

[18] R. Rosati. The limits of querying ontologies. In Proc.
of the 11th Int. Conf. on Database Theory
(ICDT 2007), volume 4353 of Lecture Notes in
Computer Science, pages 164–178. Springer, 2007.

