
Inconsistency Tolerance in
OWL 2 QL Knowledge and Action Bases

Statement of Interest

Diego Calvanese, Evgeny Kharlamov, Marco Montali, and Dmitriy Zheleznyakov

KRDB Research Centre, Free University of Bozen-Bolzano, lastname@inf.unibz.it

1 From Classical to Data Centric Business Processes
A Business Process (BP) is constituted by (i) data that describes the state of affairs and
(ii) a set of activities (to be performed) over this data. The activities, when combined
in what is usually referred to as an execution flow, achieve some business goal. When
analyzing BPs, one is usually interested in querying possible execution flows to extract
useful information and verifying dynamic properties over them.1 To this effect, BPs
are typically modeled via high-level specifications of activities [17], which are later
compiled into an executable code. Since the logics of business processes is captured
by these specifications, tools for querying and analyzing possible execution flows are
extremely valuable for companies [11,12,16]. Fully taking into account the presence of
data significantly complicates the analysis of execution flows since it makes the system
to be an infinite state one in general. On the other hand, it is often assumed that the data
is simple enough and does not significantly impact on the analysis of possible execution
flows. For these reasons, in the classical modeling paradigm of BPs, the data part is
typically abstracted away, and the analysis is carried out under this simplification.

In knowledge-intensive applications, however, where a crucial aspect of BPs is to
properly represent the allowed evolutions of the data component, the classical modeling
paradigm is not appropriate and one has to take fully into account data in the specifica-
tion of BPs [14,13,20,1]. For example, in healthcare systems, an electronic record of a
patient is the “data” to be manipulated by a process, and “activities” determine how to
modify the patient’s information (e.g., the registration of patient examination results).
In this application scenario it is inappropriate to abstract away from patient records in
process specifications. Thus, there is a need for developing and studying formalisms in
which both the data component and the process component are first-class citizens. A
number of recent proposals follow this approach [9,3,2], which is commonly referred
to as Data-Centric Business Processes (DCBPs).

The dynamic properties one is interested to verify are typically expressed in some
variant of temporal logic, such as LTL, CTL, or the (first-order) µ-calculus [18,19], a
very expressive temporal logic subsuming most of the other temporal formalisms. In
the traditional BP setting, the verification of temporal properties is based on finite-state
model checking [8]. However, in DCBPs, the presence of data makes the number of dif-
ferent states of the system potentially infinite. Hence, the verification of dynamic prop-

1 Note that this task is not trivial since, for instance, a given BP may have a large, possibly
infinite, number of possible execution flows.



erties over DCPBs is complicated and represents a significant research challenge. In-
deed, neither finite-state model checking nor most of the current techniques for infinite-
state model checking [5] can be directly applied to DCBPs, and verification turns out to
be undecidable in general [14,20,3].

In the following, we will present a simplified form of a DCPBs specification lan-
guage that is based on OWL 2 QL and that has been first introduced and studied in [2].

2 (OWL 2 QL) Knowledge and Action Bases
A Knowledge and Action Base (KAB) is a triple K = (T , S0, Γ ), where

(i) T is a so-called TBox, i.e., a set of schema-level constraints representing the
intensional-level knowledge about the domain of interest,

(ii) S0 is a so-called ABox, i.e., a set of facts representing the initial information – the
initial state of the system, and

(iii) Γ is a set of actions that specifies how the states of the system should evolve.
An action γ ∈ Γ is a set of effect specifications of the form qi(x̄) ; Si(x̄),
where qi(x̄) is a query with output variables x̄ expressed over (the alphabet of)
T , and Si(x̄) is a set of atoms over (the alphabet of) T and x̄. The actions might
acquire external information by means of service calls, which are modeled through
function symbols.

We illustrate KABs on the following example.

Example 1. Consider the KAB Ke = (Te, S0, Γe) with Γe = {γ1, γ2} and

Te = {(funct marriedTo), De v ¬It},
S0 = {Married(Mariano)},
γ1 = CA ∪ {Married(x) ; {marriedTo(x, roG(x)), De(roG(x))}},
γ2 = CA ∪ {Married(x) ; {marriedTo(x, roI(x)), It(roI(x))}}.

where CA (which stands for “copy all”) is an operator that copies all the atoms of the
current state to the new one. Intuitively, Te says that a person cannot have more than
one spouse (the relation marriedTo is functional) and that Germans are not Italians (and
vice-versa); the initial state S0 states that Mariano is married. Finally, Γe says that if a
person, say x, is married (i.e., if Married(x) is satisfied) then one should explicitly add
in the new state a fact about (i) the marriage of x , i.e., add marriedTo(x, ·) atom to the
new state, where the name of his/her spouse can be found via a service call in a registry
office in Germany (by calling a service roG(x) as in γ1), or in Italy (by calling a service
roI(x) as in γ2); and (ii) the nationality of the x’s wife, i.e., the wife is either German,
according the action γ1, or italian, according the action γ2.

Intuitively, an application of an action γ to a state S returns a new state S′ defined
as follows. Starting from S′ = ∅, for each action qi(x̄) ; Si(x̄) in γ, evaluate qi over
T ∪S (using the certain answers semantics [7]) and add all elements of S′

i(ā) to S′ for
every ā ∈ cert(qi, T ∪S), where cert(qi, T ∪S) denotes the certain answers of qi over
T ∪ S and S′

i(ā) is the set of ABox assertions resulting from substituting x̄ with ā in
S′
i(x̄). We refer to [2,4] for details and illustrate the definitions with an example.



1

2

3
5

6a

4

1

2

3
5

4

rejection repair

6b

Fig. 1. A possible reject-inconsistency execution flow for Example 1

Example 2. Continuing with Example 1, the following state S1 can be obtained from
S0 by applying γ1:

S1 = {Married(Mariano), marriedTo(Mariano, roG(Mariano)),De(roG(Mariano))}.

In our study of KABs, we focus on TBoxes expressed in the DL-Lite family of
description logics [7,6] which forms the logical foundation of OWL 2 QL [10], and
allows, in particular, to express functionality of direct and inverse object properties, and
equality between constants. Note that, as in OWL 2 QL, and differently from traditional
DL-Lite, we do not assume the unique name assumption to hold.

3 Execution Flow of KABs
The execution flow associated with a KAB K = (T , S0, Γ ) is a graph G(K) whose
nodes are states, reachable from S0 by “executing” actions from Γ , and that are con-
sistent with T . More formally, (S, S′) is an edge of G(K) if and only if (i) S′ can be
obtained from S by applying some action γ ∈ Γ , and (ii) S′ ∪ T is a consistent KB.
In Figure 1, left, there is a (fragment of) G(Ke) for Ke of Example 1. State 1 is initial
and States 2-6 are reachable from it. Here we assume that States 2-5 are consistent with
Te and State 6 is not; thus, State 6 is “rejected” from G(Ke) and there is no edge from
State 3 to 6.

Example 3. Continuing with Example 2, the application of γ2 to S1 yields the state

S2 = S1 ∪ {marriedTo(Mariano, roI(Mariano)), It(roI(Mariano))}.

We have that S2 ∪ T is inconsistent and hence S2 is rejected from G(Ke). The
inconsistency comes from the fact that S2 includes both De(roG(Mariano)) and
It(roI(Mariano)), which together with De v ¬It ∈ Te leads to roG(Mariano) 6=
roI(Mariano). At the same time, S2 contains both marriedTo(Mariano, roG(Mariano))
and marriedTo(Mariano, roI(Mariano)), and due to functionality of marriedTo in Te this
yields that roG(Mariano) = roI(Mariano).

In [4,2] it was shown that even checking (simple) propositional LTL safety prop-
erties over execution flows represented by G(K) is in general undecidable. It was also
shown that a specific form of weak-acyclicity condition on the action specification of
KABs (inspired by weak-acyclicity in data-exchange [15]), is sufficient to guarantee



decidability. We argue here, however, that the way in which G(K) is defined in [4,2]
is too restrictive, since for many applications it is desirable not to immediately reject
states that are inconsistent with T . Indeed, the inconsistency may be due to a possibly
very small portion of the ABox, so in this case one might want to allow for the action
generating the inconsistent state to be executed, while “repairing” the generated incon-
sistency. Consider also that inconsistencies may arise from the information brought into
the state by calls to external services. These are out of the control of the system, so that
conflicts of knowledge may be unavoidable when the external information is integrated
with the one coming from the state in which the action was applied.

4 Repairing Inconsistent States
In Example 3, the state S2 is rejected because some person would have to be both
Italian and German, which contradicts the TBox. However, the inconsistency is caused
only by a (small) portion of the ABox, and therefore it would be desirable not to lose
the remaining consistent part and keep this state, repairing it beforehand. Indeed, it
could be the case that the wife of Mariano used to be an Italian, but then she moved to
Germany and changed her citizenship (or the other way around), while the information
in the registry offices has not been updated. We do not have control over the offices,
but we can repair the state correspondingly to the options we have, trying to remove the
inconsistency while keeping at the same time as much information as possible.

Example 4. The following states are possible repairs of S2 from Example 3:

S1
rep = {roG(Mariano) = roI(Mariano), Married(Mariano),

De(roG(Mariano)), marriedTo(Mariano, roG(Mariano))},
S2

rep = {roG(Mariano) = roI(Mariano), Married(Mariano),
It(roI(Mariano)), marriedTo(Mariano, roI(Mariano))}.

The repair S1
rep represents the case when Mariano’s wife is German, and S2

rep – Italian.

In Figure 1, right, we present a repair-based execution flow, where instead of re-
jecting the inconsistent State 6, we set as its successors its repairs, namely State 6a and
State 6b, and continue to execute Γ .

5 Our Goals
We are currently working on various aspects related to the specification of DCBPs and
KABs and the verification of temporal properties over them. The specific aspect that we
have discussed here, namely the adoption of a repair-based semantics to deal with the
inconsistencies arising in a state, is a particularly challenging direction. In particular, we
are interested in investigating how to extend to this new setting the decidability results
established for verification of µ-calculus properties over DCBPs [3,4] and KABs [2].

This work is carried out within the EU project ACSI2, within which we are also
studying uses-cases for KABs and implementing prototype verification tools.

2 http://www.acsi-project.eu/

http://www.acsi-project.eu/


Acknowledgements. This research has been partially supported by the EU under the
ICT Collaborative Project ACSI (Artifact-Centric Service Interoperation), grant agree-
ment n. FP7-257593.

References

1. S. Abiteboul, L. Segoufin, and V. Vianu. Modeling and verifying Active XML artifacts.
IEEE Bull. on Data Engineering, 32(3):10–15, 2009.

2. B. Bagheri Hariri, D. Calvanese, G. De Giacomo, and R. De Masellis. Verification of
conjunctive-query based semantic artifacts. In Proc. of DL 2011, volume 745 of CEUR,
ceur-ws.org, 2011.

3. B. Bagheri Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, and P. Felli. Foundations
of relational artifacts verification. In Proc. of BPM 2011, LNCS. Springer, 2011.

4. B. Bagheri Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and M. Montali. Verification
of relational data-centric dynamic systems with external services. CoRR Technical Report
arXiv:1203.0024, arXiv.org e-Print archive, 2012. Available at http://arxiv.org/
abs/1203.0024.

5. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification of infinite structures. In
Handbook of Process Algebra. Elsevier Science, 2001.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati. Linking
data to ontologies: The description logic DL-LiteA. In Proc. of OWLED 2006, volume 216
of CEUR, ceur-ws.org, 2006.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. The MIT Press, Cambridge,
MA, USA, 1999.

9. D. Cohn and R. Hull. Business artifacts: A data-centric approach to modeling business
operations and processes. IEEE Bull. on Data Engineering, 32(3):3–9, 2009.

10. B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler. OWL 2:
The next step for OWL. J. of Web Semantics, 6(4):309–322, 2008.

11. D. Deutch. Querying probabilistic business processes for sub-flows. In Proc. of ICDT 2011,
pages 54–65, 2011.

12. D. Deutch and T. Milo. Type inference and type checking for queries on execution traces.
PVLDB, 1(1):352–363, 2008.

13. A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-centric business
processes. In Proc. of ICDT 2009, pages 252–267, 2009.

14. A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web applica-
tions. J. of Computer and System Sciences, 73(3):442–474, 2007.

15. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query
answering. Theoretical Computer Science, 336(1):89–124, 2005.

16. R. Hull and J. Su. Tools for composite web services: a short overview. SIGMOD Record,
34(2):86–95, 2005.

17. IBM. Business Process Execution Language for Web Services, 2002. Available at http:
//www.ibm.com/developerworks/library/ws-bpel/.

18. D. Park. Finiteness is mu-ineffable. Theoretical Computer Science, 3:173–181, 1976.
19. C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.
20. V. Vianu. Automatic verification of database-driven systems: a new frontier. In Proc. of

ICDT 2009, pages 1–13, 2009.

ceur-ws.org
http://arxiv.org/abs/1203.0024
http://arxiv.org/abs/1203.0024
ceur-ws.org
http://www.ibm.com/developerworks/library/ws-bpel/.
http://www.ibm.com/developerworks/library/ws-bpel/.

	Inconsistency Tolerance in OWL 2 QL Knowledge and Action Bases

