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Abstract. Process mining aims at discovering, monitoring, and improv-
ing business processes by extracting knowledge from event logs. In this
respect, process mining can be applied only if there are proper event
logs that are compatible with accepted standards, such as extensible
event stream (XES). Unfortunately, in many real world set-ups, such
event logs are not explicitly given, but instead are implicitly represented
in legacy information systems. In this work, we exploit a framework and
associated methodology for the extraction of XES event logs from rela-
tional data sources that we have recently introduced. Our approach is
based on describing logs by means of suitable annotations of a conceptual
model of the available data, and builds on the ontology-based data access
(OBDA) paradigm for the actual log extraction. Making use of a real-
world case study in the services domain, we compare our novel approach
with a more traditional extract-transform-load based one, and are able
to illustrate its added value. We also present a set of tools that we have
developed and that support the OBDA-based log extraction framework.
The tools are integrated as plugins of the ProM process mining suite.

Keywords: Process mining · Ontology-based data access · Event log
extraction · Relational database management systems

1 Introduction

Contemporary organizations are increasingly recognizing the importance of ana-
lyzing how their business processes are conducted in the real world, towards
quality assurance, optimization, and continuous improvement. Process mining
[1] is emerging as one of the most promising and effective framework to tackle
this need. Process mining stands at the intersection of model-driven engineer-
ing and data science: insights are automatically extracted from event data that
represent the footprint of process executions inside the company, and used to dis-
cover and enrich process models, provide operational support, check compliance,
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analyze bottlenecks, compare process variants, and suggest improvements [2]. A
plethora of process mining techniques and technologies have been developed and
successfully employed in several application domains1.

The applicability of process mining depends on two crucial factors:

– the availability of high-quality event data, that is, logs containing correct and
complete data about which cases (process instances) have been executed,
which events occurred for each case, and when they did occur;

– the representation of such data in a format that is understandable by process
mining algorithms, such as the IEEE XML-based standard eXtensible Event
Stream (XES) [3].

In this respect, two main situations typically arise in an industrial setting.
In the first situation, the company explicitly adopts a business process or enter-
prise management system that logs cases, events and corresponding attributes
explicitly, facilitating the extraction of an event log and its conversion into XES.

The literature abounds of techniques and tools to handle the log extraction
in this setting, such as, e.g., XESame [4] and ProMimport [5]. Additionally, com-
mercial tools like Disco2, Celonis3, and Minit4 support the conversion from CSV
or spreadsheet files into XES. Worth mentioning are also [6,7], the first because
it tackles the extraction of event logs from redo-logs of relational databases,
the second because it is one of the few approaches that leverages the relational
technology to access the event log directly, instead of materializing it into XML.

In the second situation, the company adopts a more general management
system, configuring it for its own specific needs, and combining it with domain-
specific databases and other legacy data sources. In this setting, cases and events
may not be explicitly stored in dedicated data structures, but instead implicitly
present inside the company information system. In addition, there is typically
not a single notion of “case” and related “events”, but they change depending
on the perspective of interest, and on which aspects of the company one wants
to focus on. For example, in an order-to-cash process, one could focus on the
flow of orders, to understand why sometimes orders take too much time to be
delivered, or on the flow of operations conducted by a warehouse employee, to
check whether it complies with internal regulations. Depending on which notion
of case is selected, also the relevant events change. E.g., the payment of an order
is important when analyzing the flow of orders, but may be irrelevant when
focusing on the warehouse.

Unfortunately, the literature lacks techniques, methodologies and tools to sup-
port domain experts and process analysts in the extraction of event logs from
legacy information systems, and reflecting multiple perspectives. The result is that
logs are extracted manually, adopting ad-hoc procedures that are based on extract-
ing a copy of the data and transforming it according to specific requirements. This
process, which resembles the extract-transform-load (ETL) approach taken for
data warehousing, creates redundancy, and is labor intensive and error prone.
1 http://tinyurl.com/ovedwx4.
2 https://fluxicon.com/disco/.
3 http://www.celonis.de/en/.
4 http://www.minitlabs.com.
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In this paper, we tackle this open challenge. Leveraging the technique first
presented in [8], we propose an approach based on conceptual modeling to semi-
automatize the extraction of event logs from legacy information systems. In our
approach, called onprom, humans only focus on the conceptual issues involved
in the extraction: (i) Which are relevant concepts and relations? (ii) How do
such concepts/relations map to the underlying information system? (iii) Which
concepts/relations relate to the notion of case, event, and event attributes?

Once this information is provided, the log extraction process is handled in
a fully automatized way, leveraging the paradigm of ontology-based data access
(OBDA) [9–11]. In OBDA, a high-level representation of the domain of inter-
est, in our case provided in terms of a conceptual schema, is linked to the data
sources using a declarative specification, called mappings. In this way, informa-
tion about the event logs can be extracted from the sources by exploiting both
the conceptual schema and the mappings.

In the following, we describe a real process mining use case that has been
initially handled using an ad-hoc, ETL-like methodology. Employing this use case
as a running example, we then introduce our onprom methodology, discussing
its different phases and how conceptual models are used both as documentation
and computational artifacts. We then show how the preliminary implementation
reported in [8] has now been transformed into a complete chain of tools, fully
integrated with the well-known ProM process mining framework.

2 Case Study and Motivation

To provide a concrete motivation and explanation for our framework, we intro-
duce the problem of extracting event logs from legacy information systems in a
real case study. The case study has been carried out by EBITmax5, an innovative
SME from South Tyrol, Italy. EBITmax provides consultancy services in pro-
gram management and business process management for a number of small and
large enterprises, operating within the territory and abroad. Recently, EBIT-
max incorporated process mining to complement its standard consultancy ser-
vices, enriching and comparing models with fine-grained insights automatically
extracted from data, and accounting for how business processes are executed in
reality. In particular, a pilot project in process mining is currently run by EBIT-
max on the service provisioning and financial processes of Markas6, a company
with more than 7 000 employees providing a multitude of services for large estab-
lishments operating in Italy, Austria, and Romania. Specifically, the pilot consists
in the analysis of the Accounts Payable Process (App), used by Markas to handle
payments to external suppliers, and their corresponding invoices. To support the
internal management of the App, Markas does not employ a workflow manage-
ment system, but relies on shared guidelines on how to handle payments, and
on an Enterprise Resource Planning (ERP) system to track the executed opera-
tions. In this setting, Markas management would like to understand whether the
5 http://www.ebitmax.it.
6 http://www.markas.com/en/home.html.

http://www.ebitmax.it
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Fig. 1. Traditional methodology for data preparation for process mining

App is executed as expected and, if not, where do deviations appear, considering
all the orders created in 2015.

2.1 Understanding the Problem

The first step followed by EBITmax has been to understand the details of the
App, both conceptually and in terms of IT support. On the one hand, this
resulted in the creation of a model for the expected App that is expressed in
the Business Process Model and Notation7 (BPMN) standard. The model has
been obtained following a traditional interview-based approach. On the other
hand, this resulted in the annotation of the BPMN model, so as to know which
tasks are executed manually, and which are performed through the ERP system,
and are consequently logged. Among the logged tasks, we mention the following,
key ones:

• SubmitOrder: an order is inserted into the ERP and submitted to a supplier.
• GetTD: Markas receives the ordered material; this is traced in the ERP when

the transport document (TD) attached to the material is inserted into the
system.

• RegisterInvoice: the invoice for the payment is inserted into the ERP, reflecting
what is listed in the TD.

• PaySupplier: the payment is confirmed.

Normally, the management expects that the invoice of an order is not registered
(and, consequently, not paid) unless the official TD is obtained and inserted into
the ERP. Within the pilot project, the general question of the alignment between
the expected and the actual App boiled down to check whether the business
constraint “no invoice unless TD” is indeed respected by the actual App.

2.2 Process Mining via Manual Event Log Extraction

To answer the research question through process mining, EBITmax needed to
tackle the difficult issue of data preparation, which is considered one of the
most challenging, open problems in process mining [1]. In this specific case, the

7 http://www.bpmn.org/.

http://www.bpmn.org/
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Fig. 2. Excerpt of the data model for App

concrete problem was to identify the semantics of tables/columns of the ERP,
and the whereabouts of relevant data for orders, TDs, invoices, and payments. To
this end, EBITmax devised and documented the methodology shown in Fig. 1.

Fig. 3. Manual construction of views

Conceptual data modeling. The first
step of the methodology consists in the cre-
ation of a conceptual model that accounts
for the data maintained in the ERP at a
higher level of abstraction, on the one hand
making it possible to discuss with managers
and domain experts about the semantics of
such data, and on the other hand providing
the basis to understand where and how they
are stored within the ERP. The UML class
diagram in Fig. 2 depicts a small excerpt of
the resulting model, showing the key con-
cepts of PO (purchase order), TD (transport
document), and Invoice. ActivePO repre-
sents a PO that has been submitted, conse-
quently triggering the execution of an App
instance.

Choosing perspective. The second step
consists in combining the research question
with the data model, so as to choose a per-
spective for the analysis, and in particular:
(i) the “subject” of the analysis, i.e., which
notion of case to adopt; (ii) which relevant
events should be considered in the evolution
of cases; and (iii) which event attributes should be included.
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Manual data preparation. Building on this guideline, EBITmax started a
fine-grained analysis of the ERP system and its underlying database, towards
the extraction of the desired information. The extraction is executed manually
in an ETL-like fashion, and is organized in four incremental phases: (i) iden-
tification of the relevant tables; (ii) creation of “filter views” that maintain,
and clean up, the relevant information present in such tables (e.g., selection of
interesting attributes for purchase orders); (iii) merging of filter views into “com-
posite views” that provide a higher level of abstraction, and group together data
belonging to the same conceptual classes/relations (e.g., all data referring to a
transport document); and (iv) creation of a single “log view” that coherently
rearranges the information present into composite views in accordance with the
chosen perspective for case, events, and attributes. Figure 3 shows the selected
tables and views constructed by EBITmax on top of Markas ERP.

2.3 Log Extraction and Process Mining

Finally, EBITmax converted the “log view” into a CSV file, and exploited
the Disco process mining toolkit8 for the analysis. Some interesting deviations
departing from the expected App were consequently detected, and discussed
with the Markas management. One of the most interesting, and quite common,
deviations was represented by orders that are submitted and paid without regis-
tering the transport document at all. Looking at the data, Markas realized that
this deviation is due to a recent “drift” in the management of the App, caused
by the introduction of digital invoices in the Italian market. In fact, at some
point suppliers equipped with e-invoicing started to digitally send the billing
information related to submitted purchase orders. The information contained in
the e-invoice mirrors all the TD data needed to execute the payment, and obvi-
ously is received by Markas before the ordered material and the corresponding
TD. This allows one to speed-up the process, by paying as soon as the e-invoice
is received. When the payment is executed, the ERP forbids further changes to
the order and its related information, thus making it impossible to register the
TD once it is received. Markas appreciated the findings obtained from the pilot,
and recently accepted to continue the project at a bigger scale.

Experienced Issues. In spite of the promising results obtained by EBITmax
during the pilot project, the company experienced several issues caused by the
manual data preparation for process mining. First of all, the manual creation
of views requires a detailed knowledge of the ERP tables, and is a demanding
and error-prone task. In addition, whenever the perspective of the analysis is
changed, it is necessary to go through all the data preparation phases again,
since there is no guarantee that the selected tables, and designed views, will also
be useful in relation with the new perspective. This contrasts with the process
mining best practices in two respects: quality assurance of the input event log,
and feasibility of quickly going through several batches of analysis by changing
perspective on the company’s data.
8 https://fluxicon.com/disco/.

https://fluxicon.com/disco/
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This experience has spawn a collaboration between EBITmax and the Free
University of Bozen-Bolzano, so as to face the next phase of the Markas project
in a more systematic way, starting from the log extraction approach first intro-
duced in [8]. In particular, the ongoing collaboration is centered around the
methodology and tool support described in the remainder of the paper.

3 The onprom Methodology

We now present our methodology for the semi-automated extraction of logs from
legacy information systems, starting from the seminal ideas proposed in [8]. The
methodology is backed up by the chain of tools described in Sect. 4.

As a starting point, we assume the existence of a legacy information system
I = 〈R,D〉, with schema R and set D of facts about the domain of interest. In the
typical case where the information system is a relational database, R accounts
for the schema of the tables and their columns, and D is a set of data structured
according to such tables. On top of I, our methodology is centered on the usage
of conceptual models in two respects. First, they are used as documentation
artifacts that explicitly capture not only knowledge about the domain of interest,
but also how legacy information systems relate to that knowledge. This facilitates
understanding and interaction among human stakeholders. Second, conceptual
models are used as computational artifacts, that is, to automatize the extraction
process as much as possible.

The overall methodology is illustrated in Fig. 4. We review the different
phases next, leveraging the App case study illustrated in Sect. 2.

high-level IS?
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data model
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mappings

Bootstrap
model +
mappings

Enrich
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mappings

Choose
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Create case
+ event
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Fig. 4. The onprom methodology

3.1 Conceptual Modeling

The first phase of our methodology consists in the creation of two concep-
tual models. The first one is the conceptual data model T , already discussed
in Sect. 2.2. It accounts for the structural knowledge of the domain of inter-
est, i.e., relevant concepts and relations, consequently providing a high-level
view of I that is closer to domain experts. More specifically, we employ UML
class diagrams as a concrete language for conceptual data modeling, and we
provide their logic-based, formal encoding in terms of the OWL2 QL ontology
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language. OWL2 QL is one of the profiles9 [12] of the W3C standard Seman-
tic Web language OWL2, and it has been specifically designed to capture the
essential features of conceptual modeling formalisms (see, e.g., [10]). In the fol-
lowing, depending on the context, we refer to T as a UML class diagram or as
the corresponding OWL2 QL ontology.

The second conceptual model, the mapping specification M, is a distinctive
feature introduced by our approach, borrowed from the area of ontology-based
data access (OBDA) [9,10]. M, which explicitly links I to T , consists of a set of
logical implications that map patterns of data over schema R to high-level facts
over T . Patterns over the data D are expressed as queries over R (e.g., SQL
SELECT statements, when R is relational), while facts over T are expressed as
logical terms involving objects.

Example 1. Consider again the App case study. In the Markas ERP,
Markas-Purchase table contains information about purchase orders, including
the primary key No to store the order number, and columns Order Date and
Posting Date to store the dates at which the order was respectively created
and submitted. In addition, by interacting with the domain experts of Markas,
EBITmax discovered the following two important facts about such a table:

– Sometimes when the order is created, the Order Date field is left unspeci-
fied10; however, it is still possible to reconstruct the orders created in 2015
(i.e., the year targeted by the analysis), as those whose order number starts
with 15.

– When the order is created, its posting date is left unspecified, and gets a value
when the order is actually submitted.

This knowledge can be made explicit by establishing dedicated mappings. In
particular, the following mapping, specified using the mapping syntax of the
ontop OBDA framework11 [11]:

order/{oid} poNo {oid} .

← SELECT No AS oid FROM Markas-Purchase WHERE No LIKE ’15%’
declares that each value oid that is stored in the No column of Markas-Purchase
and that begins with number 15, corresponds to an object term order/oid in
the ontology12, and determines relationship of type poNo between such object
and the value oid. Since relationship poNo is actually an integer attribute13 of

9 In W3C terminology, a profile is a sublanguage.
10 It is important to notice that the possible absence of an actual value for Order Date

does not contrast with the class diagram of Fig. 2, which dictates that every purchase
order has exactly one creation time. In fact, conceptual models are interpreted under
incomplete information: the absence of the creation date for an order does not mean
that the order has no creation date, but that such an order has a creation date that
is not certainly known.

11 http://ontop.inf.unibz.it/.
12 In the left-hand side of a mapping, curly brackets are used to denote answer variables

of the SQL query in the right-hand side.
13 In OWL terms, it is a data property.

http://ontop.inf.unibz.it/
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class PO in T , this mapping is implicitly declaring also that order/oid belongs
to class PO, and that its order number is oid. An example of mapping explicitly
populating a class is:

order/{oid} rdf:type ActivePO.

← SELECT No AS oid FROM Markas-Purchase
WHERE No LIKE ‘15%’ AND Posting Date IS NOT NULL

This mapping expresses that each order tuple in Markas-Purchase identi-
fied by value oid is mapped to an object order/oid of type ActivePO in T ,
whenever its posting date has a non-null value. �

When M is fully defined, it can be used for two purposes. On the one hand,
it explicitly documents how the structure of the company information system
has to be conceptually understood in terms of domain concepts and relations,
and thus constitutes an asset for the company that itself might be worth an
investment [13]. On the other hand, 〈I, T ,M〉 constitutes what is called an
OBDA system, which completely decouples end users from the details of the
information system: whenever a user poses a conceptual query Q (e.g., expressed
using the semantic web query language sparql) over T , the OBDA system (i)
leverages T and M to automatically reformulate Q as a corresponding concrete
query Q′ over I; (ii) submits Q′ to I; and (iii) automatically translates the so-
obtained answers into meaningful answers over the vocabulary of T . Notably, this
“virtual” approach is conceptually identical to the one in which the mapping M
is used a là ETL to materialize data from D as facts over T , with the advantage
that: (i) users do not need to code procedures for data extraction, (ii) data are
not replicated, and (iii) data are retrieved using the standard query engine of
the information system.

Bootstrapping. The creation of a suitable data model and mapping specifica-
tion is a labor-intensive and challenging task. As shown in Fig. 4, if the informa-
tion system has a “high-level” structure, that is, a structure that is understand-
able by domain experts, such a phase can be (partially) automatized through
bootstrapping techniques [14], which synthesize a conceptual data model that
mirrors the structure of the information system, together with suitable map-
pings. The result of bootstrapping can then be manually improved and enriched
towards the creation of the final OBDA system.

3.2 Event Data Annotations

Once the OBDA system is set up in the previous phase, our methodology allows
one to abstract away the information system. In this way, the process mining
expert is not required to manually construct views for the extraction of an event
log, as done in Fig. 1. Instead, she focuses on T only, and uses it as the basis for
discussion with the company stakeholders, in particular to decide which perspec-
tive for process mining to consider. Concretely, choosing a perspective amounts to
annotate T with a set L of event data annotations, where each annotation is used
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either to: (i) indicate which class in T (possibly with additional restrictions) rep-
resents a case, (ii) which events are present in T and to which classes they refer,
(iii) which attributes are attached to events, and where they are located in T . We
consider each type of annotation next.

Case annotation. The case annotation specifies which class constitutes the ref-
erence point for the analysis. Each object instantiating the case class represents
an instance of the process according to the chosen perspective, and provides
the basis for correlating events: the set of all events referring to the same case
object form a trace for such an object. In Fig. 2, the case annotation is shown
as a red UML note, and indicates that each purchase order is a case. Additional
restrictions on which instances to consider can be applied. E.g., one could specify
to consider only orders referring to suppliers from a given geographical area, or
orders involving at least a given amount of money.

Event annotations. An event annotation specifies that the annotated class
provides information about the occurrence(s) of a type of event that is relevant
for the chosen perspective. To “discover” which classes in T may be subject to
an event annotation, our methodology combines two constraints:

– Each event class has to be directly or indirectly linked to the case class.
Technically, there must be a UML association, or a chain of concatenated
associations (possibly involving IS-A generalizations), that lead to navigate
from the event class to the case class.

– Each event class has to be directly or indirectly linked to a timestamp
attribute, providing the information on “when” instances of such an event
occurred. Technically, there must be a functional attribute of the event class,
or a chain of one or more functional associations (possibly involving IS-A
generalizations), that lead to navigate from the event class to its timestamp
attribute.

Two observations are in place regarding the aforementioned navigations and
the multiplicities attached to the involved associations. For event-case naviga-
tions, we allow arbitrary multiplicities since, in general, an event may belong to
multiple cases. Consider, e.g., the economic transaction of a purchase between
two persons, in a situation where the person is marked as case class. In this
setting, the transaction may be considered as an event belonging to the trace of
the buyer and to that of the seller.

Event-timestamp navigations are of a different nature: since each event must
be unambiguously associated to a single timestamp, the navigation can only
traverse functional associations, that is, many-to-one or one-to-one associations,
and lead to a functional attribute.

In both situations, we allow for optionality, i.e., for navigations traversing
associations whose minimum multiplicity is 0. This is needed to reflect that
a trace may be incomplete (thus missing events), and that multiple traces of
the same case class may indeed contain different events. The following example
clarifies this aspect.
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Example 2. Consider again the class diagram in Fig. 2. The Invoice class may
be annotated with two event types, one for the invoice registration, and one for
its payment. The first event exists for every invoice, as it is associated to the
mandatory invCrTime timestamp attribute. The second event, instead, does
not necessarily exist for every invoice: there may be invoices that are not yet
paid, and invoices that may never be paid. This is reflected by the fact that the
payTime attribute of Invoice is optional. �

In general, there exist several possible event-case and event-timestamp navi-
gational paths. To disambiguate which ones are actually used to define an event
class, attribute annotations are used.

Attribute annotations. Attribute annotations decorate event annotations
with information about their features. Each attribute annotation consists of an
attribute and of the specification of a navigational path to (functionally) reach
its value. Mandatory attributes are: (i) case (how to reach the case class from
the event class); (ii) timestamp (how to reach the timestamp attribute for the
event class); and (iii) activity (a constant string or a navigational path specifying
which is the activity to which the event refers). Optional attributes are related
to resources, i.e., how to reach the identifier and/or the role of the resource
responsible for the event.

Example 3. Consider again the App case study. Differently from the manual
approach illustrated in Sect. 2.2, in our methodology the four event types elicited
by EBITmax in Sect. 2.1 may be elicited as shown in the orange UML notes of
Fig. 2:

– Each instance of ActivePO (directly corresponding to a case) may determine
a SubmitOrder event that occurs at the submission time (attribute subTime)
for that order.

– Each instance of TD may determine a GetTD event for the order obtained
by navigating the refers to association, and that occurs at the registration
time (attribute regTime) for that document.

– Each instance of Invoice may determine two events for the order obtained
by navigating the is for association: a RegisterInvoice event occurring at the
creation time (attribute invCrTime) for that invoice, and a PaySupplier event
occurring at the payment time (attribute payTime) for that invoice. �

3.3 Automated Event Log Extraction

Thanks to the technique introduced in [8], once the conceptual data model is
suitably annotated, it is possible to automatically extract from the legacy infor-
mation system an event log that reorganizes the data contained there according
to the specified annotations. Intuitively, this is done by combining the mapping
specification with the annotations, and by computing the answers to a series
of queries that ask for all the cases present in the information system and, for
each case, all the events referring to that case, together with the corresponding
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attribute values. The so-obtained data structure can then be represented using
the IEEE XES standard for event logs.

Differently from the manual extraction methodology of Sect. 2.2, this app-
roach does not only help the process mining expert in working at the concep-
tual level without coding ad-hoc views, but also facilitates multi-perspective
process mining, that is, the extraction of several event logs reflecting differ-
ent perspectives over the same information system. Each perspective, in fact,
requires to change the annotations, while the conceptual data model T and the
mapping specification M from the information system to the data model remain
unchanged.

4 Implementing the Framework: The onprom Tool

To support the various phases of the OBDA-based event log extraction frame-
work illustrated in Sect. 3, we have developed a tool suite named onprom, consist-
ing of various plug-ins of the ProM extensible process mining framework14 [4].
Specifically, onprom consists of the following components: (i) a UML Editor, used
to design the domain ontology (cf. Sect. 3.1); (ii) an Annotation Editor, allowing
domain expert to specify the event data annotations (cf. Sect. 3.2); (iii) a Log
Extractor, used to extract from the underlying database the XES event log, based
on the annotated domain ontology and the mapping specification (cf. Sect. 3.3).
The different tools are implemented as separate projects in Java. When used as
ProM plug-ins, they exchange data relying on the mechanisms built in ProM.
However, both the UML Editor and the Annotation Editor can be used also as
stand-alone tools that operate using files for input and output. We now describe
the tools in more detail, relying on the App case study for examples.

4.1 UML Editor

The log extraction framework based on OBDA makes use of a domain ontology
expressed in the OWL2 QL profile [12] of OWL2, which is the profile supported
by the OBDA system ontop. Ontologies expressed in OWL2 QL admit a natural
graphical representation in the form of UML class diagrams [10]. Hence, to pro-
vide domain experts support for the design of such ontologies, we have developed
a graphical editor for UML class diagrams. Actually, since the editor can import
standard OWL2 QL ontologies, it can also be used to modify and enhance an
already existing or independently developed OWL2 QL ontology.

To maintain the UML Editor lightweight, and to guarantee at the same time
that the designed UML class diagrams can indeed be expressed in OWL2 QL,
we have made some natural simplifying assumptions on the form of the UML
class diagrams supported by the tool:

– we do not support completeness of UML generalization hierarchies, since the
presence of such construct would fundamentally undermine the virtual OBDA
approach based on query reformulation [10];

14 http://www.promtools.org/.

http://www.promtools.org/
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– in line with Semantic Web languages, we support explicitly only associations
of arity 2, and do not support association classes currently;

– multiplicities in associations (resp., of attributes) are restricted to be either
0 or 1. Hence, we can express functionality and mandatory participation;

– we do not support ISA between associations;
– we ignore all those features of UML class diagrams that are more relevant for

the software engineering perspective, and less for the conceptual perspective
of UML, such as stereotypes, method specifications, and aggregations.

The developed UML class diagram can be saved in a proprietary JSON for-
mat for further processing and as input for the Annotation Editor. It can also
be exported as a standard OWL2 QL ontology, hence ready to be processed by
ontop. We observe that the graphical layout information, which is not part of
the OWL2 QL language, is maintained in the form of OWL2 annotations, thus
resulting in an ontology fully compliant with the W3C standard.

A screenshot of the UML Editor with the domain ontology of the App use
case is shown in Fig. 5.

Fig. 5. The UML Editor showing the domain ontology of the App use case

4.2 Annotation Editor

To provide process mining experts with the possibility of specifying in a simple,
intuitive way the over the domain-specific ontology T , we have developed an
Annotation Editor that supports the different forms of annotation.

A screenshot of the Annotation Editor, with the domain ontology of the App
use case annotated with the case and various event elements, is shown in Fig. 6.
Specifically, the domain expert has annotated PO as the case of the log, while
four different events are defined:

1. GetTD accesses the case using the refers to association and navigating the
IS-A relationship; it has regTime in the TD class as timestamp (see Fig. 7a).
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Fig. 6. The Annotation Editor showing annotations for the App use case

(a) The GetTD event (b) The SubmitOrder event

(c) The PaySupplier event (d) The RegisterInvoice event

Fig. 7. The properties of event annotations defined for the App use case

2. SubmitOrder accesses the case directly through an ISA relationship; it has
subTime in the ActivePO class as timestamp (see Fig. 7b)

3. PaySupplier accesses the case using the is for association and IS-A; it has
payTime in the Invoice class as timestamp (see Fig. 7c).

4. RegisterInvoice also accesses the case using the is for association and IS-A,
but it has invCrTime in the Invoice class as timestamp (see Fig. 7d).

We observe that all events have a complete life-cycle.
To simplify the annotation task, the editor supports some advanced

operations:

– Properties and paths can be chosen using navigational selection over the
diagram via mouse-click operations.

– The editor takes into account multiplicities on associations and attributes;
when the user is selecting properties of the case and of events (in particular
the timestamp), the editor enables only navigation paths that are functional,
thus guaranteeing that the properties to include in the extracted log are
uniquely determined.

The annotated domain ontology can be exported using a proprietary JSON
format, that can then be imported by the log extraction plug-in.
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4.3 Log Extraction Plug-in

The two previous plug-ins support the design phase of the log extraction frame-
work (cf. Sect. 3.2). The last plug-in is deployed in the event log extraction phase
(cf. Sect. 3.3) to support the automated extraction of event logs that are com-
patible with XES. The plug-in makes use of the following inputs:

– the information system I = 〈R,D〉, with the corresponding database schema
R;

– the domain ontology T , e.g., as generated via the UML Editor;
– the mapping specification M between T and R. Currently, we assume that

M is derived (either semi-automatically or manually) using third-party tools,
such as the ontop mapping editor;

– annotations L, which are created using the Annotation Editor.

The tool exploits the query rewriting functionalities provided by ontop to gener-
ate from the above inputs a new mapping specification Mlog, which establishes
a direct correspondence between the data D in I and the elements of XES, i.e.,
trace, event, . . . , essentially bypassing the domain ontology T . An ontology cap-
turing the main elements of XES, together with Mlog and I, constitutes a new
OBDA system that is then used for the event log extraction, by relying on the
data access functionalities of ontop.

5 Conclusion

In this work, we have presented the onprom framework for the extraction of event
logs from legacy information systems, using a real case study to illustrate the
limitations of manual extraction, and to show the features of our approach. The
framework comes with a methodology centered around conceptual models to
capture domain knowledge, to link such knowledge to the underlying data, and
to annotate such knowledge with event-related information, reflecting the chosen
perspective for process mining. In addition, the framework comes with a tool-
chain to handle such conceptual models, and automatically extract a XES event
log in accordance with the chosen perspective, leveraging ontology-based data
access (OBDA) techniques. The toolchain exploits the OBDA features offered by
the ontop system, and is fully integrated with the ProM process mining frame-
work. It can be downloaded from http://onprom.inf.unibz.it.

We are currently investigating, together with the EBITmax company, the
concrete application of onprom to the Markas case study reported here, and plan
to use the results of this case study as a way to further validate the methodology,
and to conduct an extensive experimental evaluation, extending the preliminary
results obtained in [8].

In addition, we are actively working on extending the annotation editor, on
the one hand to provide more guidance to the user in discovering meaningful
event classes, and on the other hand to support more sophisticated navigational
queries. Finally, we observe that, currently, we do not offer an editor for the

http://onprom.inf.unibz.it
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specification of mappings that is fully integrated with our toolchain, but we rely
instead to what is natively offered by the ontop OBDA framework. A natural next
step is to manage the specification of mappings within our toolchain, leveraging
recent approaches on the graphical specification of mappings, developed within
the recently concluded Optique EU Project15.
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