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Abstract. The preparation of input event data is one of the most critical
phases in process mining projects. Different frameworks have been devel-
oped to offer methodologies and/or supporting toolkits for data prepa-
ration. One of these frameworks, called OnProm, relies on sophisticated
semantic technologies to extract event logs from relational databases.
The toolkit consists of a series of general steps, meant to work on arbi-
trary, legacy databases. However, in many settings, the input database
is not a legacy one but is structured with conceptually understandable
object types and relationships that can be effectively employed to sup-
port business users in the extraction process. This is, for example, the
case for document-driven enterprise systems. In this paper, we focus on
this class of systems and propose a guided approach, erprep, to support a
group of business and technical users in setting up OnProm with minimal
effort. We demonstrate the approach in a real-life use case.

Keywords: Data preparation · event log extraction · ERP systems ·
Ontology-based event modeling

1 Introduction

Many business processes are supported by an information system, recording large
amounts of data about the underlying process. Extracting useful knowledge and
insights from this process data is the purpose of the field of process mining.
Process mining has brought forward various algorithms and techniques that are
used to discover, analyze, and improve business processes. A process mining
project requires the availability of event data in a standardized format, the IEEE
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XES standard. Although the standard is a good format to represent process logs,
different perspectives on the data can be taken, and it is often hard to understand
how to identify and extract events from legacy data sources. Hence, different
event logs can be extracted from the same system [8]. Once a perspective has
been chosen, the extraction is typically handled via coding, e.g., through ETL-
scripts for relational databases. This is error-prone, does not directly reflect the
taken perspective, and requires to write new code from scratch whenever one
wants to change perspective when analyzing the data (e.g., when changing the
case notion).

To mitigate these issues, a novel approach, called OnProm, has recently
been put forward to facilitate and semi-automate this log extraction process in
the case of relational databases [4,5], leveraging the ontology-based data access
paradigm [21]. Event data extraction in OnProm consists of three phases: (1)
creating a domain ontology to conceptually capture the relevant concepts and
relations of the domain of interest, (2) mapping this domain ontology to the
underlying database structure, and (3) annotating the domain ontology to indi-
cate where to find cases, events, and their attributes. While these three phases
are free of procedural code, they may still be very demanding as they intensively
rely on human knowledge and expertise, due to the intrinsic complexity of the
extraction process, and the complete generality of the approach, which does not
make any assumption on how data is structured in the underlying relational
database.

The goal of this work is to study these three phases in the setting where
the underlying database is a so-called document-driven enterprise system, like
an ERP-system. In such systems, the database is organized around conceptually
understandable document objects and their mutual relationships, with specific
modeling structures to store events. This leads to the following research ques-
tion: how can one simplify the definition of an OnProm pipeline in the case of
document-driven enterprise systems?

We answer this question by introducing the erprep guided approach, which
supports domain and IT experts in the incremental, semi-automated definition
of a suitable domain ontology and the corresponding mappings, and helps them
in easily defining case- and event-annotations depending on the perspective of
interest. We show through a case study in the manufacturing domain that, by
applying erprep, we can indeed smoothly (in terms of procedure) and feasibly (in
terms of performance) extract multiple XES event logs that, together, provide a
suitable basis to conduct process mining analyses.

2 Related Work

To guide projects aiming to improve process performance or compliance to rules
and regulations, the PM2 methodology has been developed [7]. This method-
ology defines the stages that a successful process mining project entails and it
describes the accompanied activities to these stages. Stages 1, 2, and 3 (Plan-
ning – Extraction – Data processing) represent the labor-intensive preparation of
the core project (which starts at Stage 4). Although these stages are presented
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as clear-cut different stages in the PM2 methodology, it is difficult to disentangle
the activities related to these stages. With much less research conducted on these
stages, important research problems remain unaddressed, like how to effectively
extract and process your data as event log [8].

The availability of a (high-quality) event log in a standardized format is
essential for every process mining project, but most information systems are
currently not capable of automatically producing the required kind of event logs.
Hence it is paramount to identify novel methods for improving the log extraction
process. Some work has been done on the topic of extracting event logs in the
context of specific environments (like SAP) or domains (like accounting) [10,16].

In general, process mining requires a clear notion of a case. However,
many database systems that provide the input for process mining analyses are
document-oriented: they associate a chain of documents to one process execu-
tion. Selecting one specific document as case identifier is therefore providing only
a single perspective on the process. To avoid the problems of data divergence and
convergence that arise when forcing event data from these systems to adopt a
single case notion, artifact-centric process mining has been proposed as a more
generic solution [6,14,17]. This approach tries to solve the aforementioned prob-
lem by discovering the life-cycles of interrelated data objects (i.e., artifacts) and
their interactions. The authors of [13] take another approach and present the
eXtensible Object-Centric (XOC) event log format, which does not require a
case notion, hereby avoiding the flattening of reality into an event log.

Two key frameworks that tackle the manual, labor-intensive aspect of event
data extraction are [5,8]. The authors of [8] introduce a meta-model and tool-
chain to connect databases with processes through bridging concepts. Data from
three source environments (redo logs, SAP-style change tables, and in-table ver-
sion storage) are transformed into a common representation and missing values
are automatically inferred where possible. The authors envision this model to
assist in multi-perspective event log building in a more intuitive way and pro-
vide a solution for extracting multiple event logs without having to restart from
scratch when changing perspective. The other framework is called OnProm [4,5]
and is briefly recalled in the next section.

3 The OnProm Approach

The OnProm approach [4,5] aims at the semi-automatic extraction of event logs
from various kinds of legacy information systems, reflecting different process-
related views on the same data, and consequently supporting analysts in the
application of process mining along multiple perspectives. The approach lever-
ages the ontology-based data access (OBDA) paradigm [21] and is based on the
use of an ontology that captures the semantics of the domain of interest.

Intuitively, an ontology represents the domain of interest in terms of a set
of classes (which denote sets of objects), object properties (which connect pairs
of objects), and data properties (which connect objects to values), and captures
domain knowledge by means of suitable axioms. Ontologies in OnProm are for-
malized using the lightweight description logic DL-LiteA [2], belonging to the
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DL-Lite family [3]1. In OnProm, in order to facilitate the understanding of the
ontology and the annotation of ontology elements (see below), we rely on the
tight correspondence between the DL-Lite family and conceptual data models
(see, e.g., [2]), and actually represent DL-LiteA ontologies by means of UML
Class Diagrams. Specifically, OnProm considers a fragment of UML Class Dia-
grams that allows for specifying (i) classes and (ii) class hierarchies (specified
through ISA and generalizations), (iii) binary associations (corresponding to
object properties) with (iv) multiplicity constraints (of the form 0..1, 1, *, and
1..*), and (v) class attributes (corresponding to data properties) [4].

In OBDA, the domain ontology is linked to the underlying legacy data
through declarative (as opposed to procedural) mappings that specify how the
ontology elements (i.e., classes and properties) are to be populated from the data
in the sources. In line with the OBDA paradigm, we assume that the legacy data
sources are relational databases, typically equipped with integrity constraints,
notably keys and foreign keys. To represent database schemas, we resort here
to a simple box notation for tables, where we show the name of the table and
its columns, and where we indicate referential integrity constraints using ER
crow-foot notation (to distinguish one-to-many and one-to-one dependencies).

Considering a DL-LiteA ontology O (represented as a UML Class Diagram)
and a relational schema of data sources, consisting of a set R = {R1, . . . , Rn}
of relation schemas, an OBDA Specification is a triple S = 〈O,M,R〉, where
M is a set of (OBDA) mappings [2]. To formalize such mappings, we refer to
a (countably infinite) set V of values (i.e., strings, numbers, dates, timestamps,
etc.) that may be stored in the data source relations, and to a (countably infinite)
set F of function symbols. These are exploited to construct the identifiers of the
ontology objects, by applying a function symbol to data values extracted from
the sources through the mappings. Specifically, each such identifier is a term of
the form f(v1, . . . , vk), where f ∈ F is a function symbol of arity k and v1, . . . , vk
are values in V. We call such terms object terms. Then, each mapping in M has
the form Qsql(�x) � Φ(�y,�t), where (i) Qsql(�x) is an arbitrary SQL query over
schema R, having the (non-empty) set �x of answer variables, (ii) �y ⊆ �x, (iii) �t
is a set of object terms, each of the form f(�z), where f ∈ F and �z ⊆ �x, and (iv)
Φ(�y,�t) is a set of atoms over the variables �y and the object terms �t. Each such
atom has as predicate symbol a class or a data/object property of the ontology O.
Intuitively, each mapping creates a link between the database and the ontology,
expressing how instances of the involved classes/properties are obtained from the
answers of queries posed over the database. Function symbols from F , applied
to the values retrieved from the data sources, are used to construct the object
terms that act as identifiers of objects populating the ontology (For the formal
semantics, we refer interested readers to [2].)

Example 1. Consider the portion of the domain ontology in Fig. 6 consisting of
the class SalesDoc and its subclass Order. Consider further just the VBAK table

1 The DL-Lite family provides the formal counterpart of the lightweight ontology
language OWL2 QL, standardized by the W3C [15].
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in the database schema in Fig. 1, storing sales documents identified through the
combination of the columns MANDT and VBELN, and where entries with AUART
= ’ZOR’ denote orders. Taking this into account, we can use the following two
mappings to link the VBAK table to SalesDoc and Order, respectively:

SELECT MANDT, VBELN FROM VBAK � SalesDoc(sd(MANDT, VBELN))

SELECT MANDT, VBELN FROM VBAK
WHERE AUART=‘ZOR’ � Order(sd(MANDT, VBELN))

Notice that in both mappings, in the right-hand side we have chosen to use the
binary function symbol sd, applied to the answer variables MANDT and VBELN of
the SQL query in the left-hand side, to construct object terms denoting sales
documents. The mappings specify that these sales documents become instances
of the SalesDoc and Order classes. For example, if the VBAK table contains the
two tuples (c25, d362, ZCN) and (c25, d571, ZOR), the mappings generate the
two instances sd(c25, d362) and sd(c25, d571) of SalesDoc, of which the latter
is also an instance of Order. �

As mentioned, OnProm relies on the availability of a domain ontology and
of the mappings to the underlying data. Producing these two artifacts might be
very time-consuming, as they encode human knowledge and expertise about the
underlying data sources. However, one can make use of well-established method-
ologies for ontology design [9] and of sophisticated tools that facilitate the con-
struction of mappings even in complex real-world scenarios2.

Finally, in OnProm, the domain ontology is graphically annotated to sin-
gle out, among all possible alternatives, which classes and properties define the
desired notions of case object, events, and their relevant attributes. This method
aims to let domain experts focus solely on the high-level process characteristics,
while the connection with the underlying data is handled by the OBDA system.
Notably, the OnProm approach is particularly effective for multi-perspective pro-
cess mining, since changing the notion of case only requires changing the (graph-
ical) annotation of the domain ontology, without the need to revise the entire
extraction process. Case and event annotations follow the OnProm notation [4],
as shown in Fig. 6 for our running example (and discussed in Step 4 in the next
section).

4 The erprep Guided Approach

The erprep guided approach provides a series of steps for a group of experts
collaborating in a process mining project. The approach is inspired by the pro-
cedure in [11] and systematically explores it as an intermediate layer between
the group of users and OnProm, providing guidance in taking decisions on the
log structure in a conscious manner [12]. Following the PM2 methodology [7],
we assume the group contains people covering three main roles/competencies:

2 See, e.g., the tools developed by Ontopic, https://ontopic.ai/.

https://ontopic.ai/
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(i) domain expertise of the organizational domain and the main questions to be
answered through process mining; (ii) data engineering to access and query the
information systems used by the organization to (implicitly) store events and
process-related data; (iii) analytics/process mining expertise regarding analysis
techniques and tools.

The main purpose of erprep is to drive extracting event data from document-
driven enterprise systems in agreement with the questions the group wants to
find an answer for, thus relieving the group from manual, ad-hoc data prepa-
ration procedures. We therefore need to better clarify what a document-driven
enterprise system is. It is a relational database tracking the evolution of docu-
ments and related objects, obeying to three assumptions.

– Every document type is represented as a pair of tables, respectively storing
information about the main (material) documents of that type, and the parts
of those documents. A typical example is that of order and order lines, which
typically coexist in the same material document (but may later be altered
in different moments, through different activities). The document-part table
points to the document table via a foreign key.

– Every document table is linked, directly or indirectly, to the other (document
and non-document tables), hence navigational queries can be expressed to
retrieve related documents and objects.

– Timestamps are used to denote the evolution of documents and other objects.
Given a table C denoting an object or document type, a timestamp can be
added in one of the two following ways:

• Column timestamp, added directly as one or more columns of C to mark
the transition of its instances from one phase to another; different times-
tamp columns (or groups of columns) can be used to mark different phase
transitions of instances of C.

• History-table timestamp, where the timestamp belongs to a separate
history-table (or bundle of history-tables) listing all the changes applied
to instances of C, indicating which column was affected, how, and when.3

Document-driven enterprise systems abstractly characterize the typical structure
of ERP systems, such as SAP.

Example 2. Consider the database schema of Fig. 1, showing a fragment of the
order-to-cash tables of SAP, which are used by the international company subject
of the real case study reported in Sect. 5. The structure of the schema is a
typical structure similarly adopted in other ERP systems, and uses 6 tables
and 4 referential integrity constraints to capture the evolution of sales/billing
documents and their lines. Specifically, VBAK and VBAP store sales documents
and their lines, related via Ref1; VBRP stores billing document lines; VBFA stores
document flows, where each entry relates a sales document line with its next
document, which sometimes is indeed a billing document (this depends on the
complex join condition attached to Ref3).
3 History-tables closely relate to the notion of redo logs in databases, previously studied

within process mining in [8].
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Fig. 1. Excerpt of the SAP order-to-cash database schema, in a Belgian installment.
Naming is kept as in the original schema.

Both column and history-table timestamps are present. For example, the
creation of a sales order line is traced via the combination of the ERDAT (date)
and ERZET (time) columns of the VBAP table (cf. Figure 1), which is in fact the
same table used to store order lines. The additional columns ERNAM, NETWR, and
KWMENG in the same table respectively indicate the person who created the line,
and its initial price and quantity.

The fact that a customer changes the quantity of a line is instead sepa-
rately traced in the CDHDR and CDPOS history-tables from Fig. 1. Each entry in
CDHDR indicates that change number CHANGENR occurred at date UDATE and time
UTIME for the concept OBJECTCLAS, and in particular for its entry identified by
OBJECTID. A corresponding entry in table CDPOS (where the correspondence is
given by table, entry identifier, and change number) indicates the specifics of
the change, in particular that the change is about modifying the value for the
column FNAME from VALUEOLD to VALUENEW for table TABNAME. �

With this premise at hand, the four steps of the erprep procedure are:

1. Data Understanding: definition of the process mining questions/cornerstones
and decision of which relevant tables to use for the procedure;

2. Conceptual Understanding: identification and documentation of which docu-
ment/object/relationship types are represented in these tables;

3. Activity Elicitation: elicitation of the main activities of interest;
4. Perspective, Granularity, and Scoping: identification of a suitable notion of

case and of the relevant events pertaining the elicited activities.

These steps are depicted in Fig. 2, together with their relationship to the OnProm
approach. The first three steps are used to semi-automatically generate the
domain ontology and mappings required by OnProm, whereas the last one guides
the user in the semi-automatic generation of annotations used by OnProm to
generate the desired XES log. We next detail the four steps of erprep, using a
running example that covers an excerpt of the use case reported in Sect. 5.
Step 1: Data Understanding. This step corresponds to the classical initial-
ization step of any process mining project [7]. The domain expert narrates in
own words the process steps that are perceived as the cornerstones of the pro-
cess. These are often a combination of activities and statuses. At the same time,
the domain expert needs to explicitly formulate the key questions driving the
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Fig. 2. The four steps of the erprep procedure and their relationship to OnProm.

process mining analysis. The data engineer then assists in identifying the tables
that capture the timestamps of the cornerstones. These tables, the foreign keys
between them, and the relevant fields are displayed in a relational schema so as
to understand the underlying relations. This step provides the anchor for select-
ing out of thousands of tables of the database the set R of relevant tables that
are part of the OBDA Specification 〈O,M,R〉 to be provided (together with
annotations) as input to OnProm.
Step 2: Conceptual Understanding. This step focuses on the conceptual
understanding of the selected documents and related concepts. The purpose
is to understand how the following key concepts are stored therein: (i) doc-
uments and their parts; (ii) document flows, mutually linking documents in a
logical sequence; (iii) other relevant classes and associations. The focus here is on
structural aspects (classes, attributes, and associations), while dynamic aspects
related to activities executed on these structural elements are handled later.

Before entering in the description of the sub-steps, we describe the
two main information sources used to identify classes, associations, and
documents/document-parts, in corresponding tabs, that is, forms structured as
depicted in Fig. 3. These tabs are filled in by the data engineer, on the basis of
interaction with the domain expert. A class tab describes a relevant class whose
instances can be obtained from an underlying table, possibly using a filter on its
entries. Identifiers of objects in this class have to be consequently constructed
from one or multiple columns from the table, where the default choice is that of
selecting the primary key of the table. Also each relevant attribute of the class
is obtained by taking the value of one or more columns (in the latter case, the
semantics is that of concatenation). Sub-classes of the considered class could
also implicitly be identified from the table, by looking into a so-called discrimi-
nator column whose values indicate to which sub-class the corresponding entry
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Fig. 3. Templates of documentation tabs for document classes and other
classes/associations; the document tab uses twice the class tab (once for the main
document, once for its parts). Sections can be omitted if not needed. Symbols inside
angles indicate the entry type: 〈text〉 free text; 〈cla-name〉, 〈rel-name〉, and 〈att-name〉
class, association, and attribute names (at the conceptual level); 〈tab-name〉 and 〈col-
name〉 table and column names (at the database level); 〈sql-filter〉 and 〈sql-nav〉 “SQL
notes”, sketching filters over single tables and join/navigational queries relating multi-
ple tables; 〈min-max〉 multiplicity constraints à la UML (0..1, 1, *, 1..*).

belongs to; this tackles the common pattern where a class hierarchy is mapped
to a single database table. An example of usage is given in Fig. 4.

An association tab describes a relevant association between two classes, pre-
viously described using class tabs. Such classes are linked through a so-called
navigation expression that relates the two corresponding class tables. This is
done in two possible ways: either by defining a full-fledged query that relates
the two tables via joins and filters, or as a sequence of one or more referential
constraints of the database schema. In the former case, the participating mul-
tiplicities of the source and target classes to the association have to be defined
manually (possibly validating them using the data stored in the database). In
the latter case, the multiplicities are instead directly obtained by considering the
concatenation of the constraints: if, by moving from the source to the target, all
referential constraints indicate mandatory participation, the source multiplicity
has 1 as lower bound, 0 otherwise; similarly if, by moving from the source to the
target, all referential constraints are functional, the source multiplicity has 1 as
upper bound, ∗ otherwise. The same line of reasoning applies from the target to
the source, to define the target multiplicity.

In this phase, queries and filters have not to be thought as full SQL queries,
but more as SQL “notes” used by the data engineer.
Step 2.1: Identification of documents and their flows. The main entry point
for Step 2 is to start from the elicitation of the document classes of interest,
identifying their document- and document-part- tables. To do so, one compiles
a document tab that, as shown in Fig. 3(c), consists of three sections: (i) a main
document section, defined using a class tab as described above; (ii) a document
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Fig. 4. Document tab for sales document in our running example.

part section, also defined using a class tab; (iii) a link section, containing a
navigation expression to relate all parts of the same document to their unique,
main document. The navigation expression must induce a one-to-many associa-
tion from the main document to its parts – which can be directly checked if the
navigation expression is a sequence of referential constraints.

Example 3. By applying Step 2.1 to the database schema of Fig. 1, we encode
the knowledge described in Example 2 into a document tab for sales document,
instantiating the template in Fig. 3(c) into Fig. 4. The tab shows that sales docu-
ments are identified through the combination of the columns MANDT (identifying
the SAP client) and VBELN (identifying a specific sales document within a SAP
client), and that the AUART column acts as discriminator column to identify the
three types of sales documents existing in the system; for example, VBAK entries
with AUART = ‘ZOR’ denote orders (as we had anticipated in Example 1). The
tab further captures the knowledge that only VBAP entries with FKREL = ‘a’
(sales document lines that are relevant for billing) should be included in the
event log. Each sales document line is identified by combining its MANDT and
VBELN columns (actually referencing the two corresponding VBAK columns via
Ref1) together with POSNR, which denotes the line number. Ref1 also provides
the navigation for linking sales document lines to their sales documents. �

Step 2.2: Identification of additional classes and associations. Additional, rel-
evant classes and associations can be defined similarly to documents and their
parts, until all the tables isolated in Step 1 are inspected. Notice that not all
the tables should be promoted to classes, as some of them are actually used to
establish associations. This is for example the case of the VBFA table in Fig. 1,
which is used to implicitly link different documents in a flow.
Step 2.3: Generation of core domain ontology and mappings. All the tabs filled
in Steps 2.1 and 2.2 are used to automatically generate a domain ontology O
that describes the domain of interest at a pure conceptual level, and constitutes
a further component of the OBDA Specification 〈O,M,R〉 to be used for data
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Fig. 5. Domain ontology fragment for document Doc, its parts, and related activities.

Fig. 6. Annotated domain ontology for the SAP schema fragment of Fig. 1. The green
part denotes what is obtained after Step 2, the blue part the addition obtained after
Step 3, and the annotations what done in Step 4. (Color figure online)

extraction via OnProm. Such an ontology will be later expanded with additional
components. This is done by simply fetching all classes, subclasses, attributes,
associations, and multiplicities introduced in the different documentation tabs.
The green, central part of Fig. 5 shows the generic contribution that a specific
document tab provides to the ontology O (the presence or absence of subclasses
there depends on what indicated in the tab), while the central, green part of
Fig. 6 shows the ontology generated for Example 3.

Documentation tabs also provide a basis to semi-automatically derive map-
pings M to link the database schema R isolated in Step 2 to the ontology O.
In this respect, each class tab provides the basis for generating one mapping to
populate the instances of the class, using the table as a target for the selection of
values, and what indicated in the object id entry to construct objects from the
retrieved database values. The same mechanism, using filters based on the dis-
criminator column, is used to populate the subclasses. Also, every attribute entry
leads to a dedicated mapping. In addition to the mapping for its two classes,
each document tab leads to a further mapping, used to connect document part
instances to their main document instance based on what indicated in the link
entry. Finally, similar mappings are generated based on the association tabs.

Example 4. The document tab in Fig. 4 leads to the generation of the mappings
that we have anticipated in Example 1 (where we have shown only one subclass
mapping for brevity), together with the following mapping:
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Fig. 7. Template of the activity tab for defining relevant activities; each entry depends
on whether the timestamp is retrieved by column or by history-table.

SELECT MANDT, VBELN, POSNR FROM VBAP WHERE FKREL=‘a’

� SalesDocLine(sdl(MANDT, VBELN, POSNR)), lineNo(sdl(MANDT, VBELN, POSNR), POSNR),
has(sd(MANDT, VBELN), sdl(MANDT, VBELN, POSNR))

Note how this last mapping populates at the same time the class SalesDocLine,
its data property lineNo, and the object property has, which connects instances
of SalesDoc to their sales document lines. �

Step 3: Activity Elicitation. Step 3 enriches the ontology O (and the map-
pings M) obtained at the end of Step 2 with all the relevant activities that
are executed on the documents and objects instantiating the classes mentioned
therein. This is done by iterating over all document/document-part types and
other classes that may be subject to activities. For each such class, the data
engineer identifies the relevant timestamp columns in the database schema, con-
sidering the two patterns of column and history-table timestamps. For simplic-
ity of exposition, we concentrate here on timestamps marking the completion of
activities. Timestamp attributes are used to decide, together with the domain
expert, which activities should be modeled.
Step 3.1: Turn timestamps into activities. This step singles out all relevant
activities, and populates an overall activity tab following the template in Fig. 7.
Each activity is described there by a name, the table containing the timestamp
of interest, and a selection of columns providing that timestamp (more columns
may be needed if, e.g., the date and time are stored separately, as it happens in
our running example). In addition, the target class C containing the instances
that are the subject of the activity is provided. Here, the two patterns of col-
umn and history-table timestamps have to be considered. In the case of column
timestamp, no further details need to be given, as each instance of C will go
through that activity whenever a timestamp in the selected column(s) is given.
In the case of history-table timestamp, instead, since the table contains different
changes for the same or different classes, and may be related to additional his-
tory tables, two information units have to be provided: a filter indicating under
which circumstances a change actually describes an occurrence of the activity
of interest, and a navigation expression to explain how entries in the history
table relate to instances of C. In both cases, additional attributes (such as the
resource responsible for the activity) can be declared.

Example 5. We continue our running example by eliciting two activities for
sales document lines, following the description in Example 2. The creation of



Extracting Event Data from Document-Driven Enterprise Systems 205

a sales order line can be simply tracked by looking into the columns ERDAT and
ERZET of the VBAP table - according to the column timestamp pattern. A change
of sales order line quantity is instead tracked following the history-table pat-
tern, specifically by filtering the CDHDR table on those entries where TCODE =
‘VA02’, OBJECTCLAS = ‘VERKBELEG’, and whose corresponding entry in CDPOS
(obtained by navigating Ref4) is so that FNAME = ‘KWMENG’, with the new quan-
tity retrieved also from CDPOS by selecting VALUENEW. To link occurrences of this
activity to corresponding lines, one can define a complex navigation expression
connecting CDHDR to VBAP, using the aforementioned columns. �

Step 3.2: Extension of domain ontology and mappings. The core ontology O
obtained at the end of Step 2 is automatically extended using the activity tab
produced in Step 3.1. Specifically, every class C that has at least one activity
gets associated via a one-to-many association to a corresponding CActivity
class, denoting a generic activity, and equipped with the completion timestamp
as attribute. Every entry in the activity tab filled for C in Step 3.1 becomes a
dedicated subclass of CActivity, possibly carrying additional attributes. The
result of this extension for a generic document is shown in the blue part of Fig. 5,
whereas the result in the context of our running example is shown in the blue
part of Fig. 6 (including the two activities elicited in Example 5).

Additional mappings linking the underlying database to such activity classes
are semi-automatically devised, following again the procedure of Step 2.3.
Step 4: Perspective, Granularity, and Scoping. In this final step, the
domain and the process mining experts finally concentrate only on the domain
ontology O, without considering anymore the specific storage mechanisms pro-
vided by the underlying database. The purpose is to define the perspective and
scope of the analysis, identifying which notion of case best serves this purpose,
and which events should be included (or not). Thanks to the ontology annota-
tion mechanism provided by OnProm to identify cases and events, this final step
is performed directly using OnProm in a guided way.
Step 4.1: Perspective and granularity selection. Based on the questions elicited
in Step 1, the domain expert indicates which document provides the main angle
for the analysis. This is not enough, as one has to consequently indicate the
granularity of the analysis, either choosing the main document class, or the
class for document-parts, as case notion. Depending on this choice, there may
be convergence and divergence issues that the two experts have to be aware of
[1]. Specifically, if the main document class is selected, all events related to its
lines will be merged together in a single overall sequence, making it impossible
to distinguish which events refer to the same line. On the other hand, if the
document part class is selected, all events related to the main document will be
replicated in the traces of all its parts. Thanks to the explicit annotation scheme
provided by OnProm, and the fact that association multiplicities are explicitly
shown in the ontology, these aspects are clearly communicated to the user group.

For example, Fig. 6 indicates that the decision has been to declare the sales
document line as case class. This implies that all activities attached to the main
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sales document are replicated in each line trace, and the activities of multiple
billing documents referring to the same line are merged in the same line trace.
Step 4.2: Scoping and definition of events. The very last step consists in selecting
which activities are in the scope of the analysis, providing corresponding event
annotations for those activities that are kept. As required by OnProm, every
event must come with an event label (that is provided manually), an indication
of the associated timestamp, and a navigation expression to indicate how the
event is related to its reference case(s). The latter two information units are
instead directly defined using what produced in previous steps of erprep, in
particular by using the completion timestamps available in the abstract activity
classes, and by exploiting the associations generated in Steps 3 and 4. The latter
requires the intervention of the expert group to manually disambiguate those
cases where multiple associations exist between two classes.

Figure 6 shows event annotations reflecting that the domain expert is inter-
ested in the creation and cancellation of sales lines, in the creation, blocking and
unblocking of their parent sales documents, without considering the billing flow.

At this stage, OnProm has all the necessary information to automatically
generate an XES event log from the database, reflecting the decisions taken.
Alternative logs for different perspectives and scopes can be easily obtained by
re-executing Step 4 with different annotations.

5 Case Study

To select an appropriate evaluation strategy for erprep, we applied the frame-
work for evaluation in design science of [20] and selected the ‘Human Risk &
Effectiveness’ evaluation strategy. This led to a case study evaluation of erprep in
a formative-naturalistic setting, following [18,19]. Ideally, an evaluation bench-
marks the new approach against a baseline setting where the approach has not
been followed. However, this is nearly impossible in a naturalistic setting that
involves industry, as it would require the case company to build several event logs
in the traditional, labor-intensive way first, only to redo the exercise differently.

By applying erprep, we aim to answer the following questions: (1) Can the
three envisioned phases of the OnProm approach be smoothly applied in a real-
life setting? (2) Is performance playing a role in the feasibility of erprep?

To test these, we collaborated with an international manufacturing company
that uses SAP. One of the authors interacted with the company. This researcher
has expertise in process mining and event log building, but no prior experience
with OnProm, thus representing a process mining expert that is knowledgeable
of erprep, but not of ontology nor mapping design. The lack of knowledge on
the OnProm approach by this person is key to this study. This set-up allowed us
to evaluate whether erprep is capable of employing domain knowledge on both
the process and the event data structure in its traditional form, not manipu-
lated towards the OnProm approach. Orthogonal to the OnProm steps, the same
researcher also executed the data extraction on premises of the company. The
other authors are experts in the OnProm approach and toolchain.
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The case study was conducted following the steps described in Sect. 4. In
particular, the running example covers a fragment of what was conducted during
the case study. The main difference is that, in the case study, the focus has been
on the entire order-to-cash process, which requires to consider additional tables,
and in turn a wider repertoire of documents, including documents related to
accounting and delivery. Since compliance to financial regulations is of interest
to the company, the accounting document was selected as case notion. However,
by choosing the accounting document (the invoice) as case, it was not possible to
answer some of the identified key questions, since they would require a different
view on the process. Hence, a second event log was generated by taking the sales
document perspective, which only required to repeat Step 4 of erprep a second
time. Building these logs using erprep resulted in a smooth process, with a single
workshop to gather the domain knowledge and the key questions.

The result was directly encoded into an ontology and mappings, following
erprep without the need of taking further decisions. This led to the direct gen-
eration of 21 mappings linking the database to the ontology. Using also the
annotations, OnProm automatically transformed them into 251 mappings link-
ing the database to the XES concepts of trace, event, and event attributes. Two
logs based on the result of erprep were generated on a computer with an Intel i7-
7820HQ CPU and 64 GB of RAM. The input data were stored in a PostgreSQL
database on the same machine, setting 48 GB as the maximum heap size for log
extraction. We obtained the following indicators, witnessing feasibility; (i) using
the sales document perspective, 238 806 traces, 1 345 269 events, and 10 489 169
attributes were extracted in 241 s, resulting in a log of 338 MB; (ii) using the
invoice perspective, 247 051 traces, 1 742 127 events, and 10 497 414 attributes
were extracted in 362 s, resulting in a log of 457 MB.

6 Conclusion

We have defined a guided approach, called erprep, to help expert groups in
extracting event logs from relational databases of document-driven, enterprise
information systems. The approach relies on OnProm as a technical pipeline for
data extraction, while simplifying the set up of such pipeline. We have evaluated
erprep on a real-world industrial use case, answering relevant research questions
that show feasibility in an industrial setting.

The next, natural step is to make erprep able to generate object-centric logs,
such as those conforming to the recent OCEL log format. This is directly imple-
mentable, considering a recent extension of OnProm to provide object-centric
log annotations and the capability of generating OCEL logs [22].
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