
Report from Dagstuhl Seminar 13211

Automated Reasoning on Conceptual Schemas
Edited by
Diego Calvanese1, Sven Hartmann2, and Ernest Teniente3

1 Free University Bozen-Bolzano, IT, calvanese@inf.unibz.it
2 TU Clausthal, DE, sven.hartmann@tu-clausthal.de
3 UPC – Barcelona, ES, teniente@essi.upc.edu

Abstract
This report documents the outcomes of the Dagstuhl Seminar 13211 “Automated Reasoning on
Conceptual Schemas”. The quality of an information system is largely determined early in the
development cycle, i.e., during requirements specification and conceptual modeling since errors
introduced at these stages are usually much more expensive to correct than errors made during
design or implementation. Thus, it is desirable to prevent, detect, and correct errors as early as
possible in the development process by assessing the correctness of the conceptual schemas built.
The high expressivity of conceptual schemas requires to adopt automated reasoning techniques
to support the designer in this important task.

Research in this area can be classified according to two different dimensions. On the one hand,
according to the language used to specify the conceptual schema. On the other hand, according
to whether reasoning is performed on the structural schema alone, or also on its dynamic aspects.
We find interesting and promising results from all these communities which have usually worked
isolatedly. Therefore, the aim of this seminar was to allow them to communicate with each other
to avoid duplicate effort and to exploit synergies. The research questions that were pursued in
the seminar included, among others: (i) Does it make sense to renounce to decidability to be
able to handle the full expressive power of the language used with and without textual integrity
constraints? (ii) Which is the current state of the achievements as far as reasoning on the
behavioral part is concerned? (iii) Are the existing techniques and tools ready to be used in an
industrial environment? (iv) Which are the new challenges for automated reasoning on conceptual
schemas?

Seminar 19–24 May, 2013 – www.dagstuhl.de/13211
1998 ACM Subject Classification D.2.4 [Software Engineering] Software/Program Verification,

F.3.1 [Logics and meanings of programs] Specifying, Verifying and Reasoning about Programs
Keywords and phrases Automated Reasoning, Conceptual Schema of an Information System,

Validation, Verification
Digital Object Identifier 10.4230/DagRep.3.5.43
Edited in cooperation with Xavier Oriol

1 Executive Summary

Diego Calvanese
Sven Hartmann
Ernest Teniente

License Creative Commons BY 3.0 Unported license
© Diego Calvanese, Sven Hartmann, and Ernest Teniente

This Dagstuhl Seminar brought together 37 researchers from 16 countries across disciplines
related to automated reasoning on conceptual schemas. The participants’ expertise covered

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Automated Reasoning on Conceptual Schemas, Dagstuhl Reports, Vol. 3, Issue 5, pp. 43–77
Editors: Diego Calvanese, Sven Hartmann, and Ernest Teniente

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13211
http://dx.doi.org/10.4230/DagRep.3.5.43
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

44 13211 – Automated Reasoning on Conceptual Schemas

Monday Tuesday Wednesday Thursday Friday
08:30 Reasoning

about the
Dynamics09:00

Opening
Reasoning on
Structural
Schemas (I)

Break Out
Session

Break Out
Session

Group
Conclusions

10:00 Coffee Break

10:30
Reasoning on
Structural

Schemas (II)

New
Challenges

Break Out
Session

Break Out
Session

Group
Conclusions

12:00 Lunch

14:00
Reasoning on
Structural

Schemas (III)

Reasoning
about

Mappings Excursion

Reports of
the Break

Out Sessions
15:30 Coffee Break Coffee Break

16:00 Extensions
Reasoning
about De-
pendencies

Discussion

18:00 Dinner

Figure 1 Timetable of the seminar.

the three most popular languages used to specify the conceptual schema, i.e., Entity-
Relationship (ER), Unified Modeling Language (UML) and Object-Role Modeling (ORM);
either addressing reasoning only on the static (i.e., structural) schema alone or reasoning also
on the elements of a conceptual schema that capture the dynamic (i.e., behavioral) aspects
of a system.

Monday and Tuesday were devoted to short presentations from the participants of their
most recent achievements in the field.

On Wednesday and Thursday morning the participants were allocated to three different
groups, in parallel break out sessions, each one of them addressing a different aspect related
to the topic of the workshop:

On the practical applicability of current techniques for reasoning on the structural schema;
Reasoning about the conceptual schema components capturing dynamic aspects;
New challenges for automated reasoning on conceptual schemas.

The organizers asked each group to share the experiences of their participants and to
try to identify the most pressing and challenging research issues or open problems for the
aspect it addressed. Each group presented a summary of their results on Thursday afternoon.
Thursday evening and Friday morning were devoted to a discussion about the outcomes
of each group aiming at trying to come up with a roadmap for automated reasoning on
conceptual schemas, something which was shown to be harder than expected.

The concrete timetable of the seminar is shown in Figure 1.

Diego Calvanese, Sven Hartmann, and Ernest Teniente 45

2 Table of Contents

Executive Summary
Diego Calvanese, Sven Hartmann, and Ernest Teniente 43

Overview of Talks
Reasoning over Conceptual Data Models: The Description Logic Approach
Alessandro Artale . 48

UML class diagrams – decision, identification and repair of correctness and quality
problems
Mira Balaban . 49

A Problem Statement: Representation of Instance-Derivations Based on Dependen-
cies
Joachim Biskup . 50

Employing Automatic Reasoning on Conceptual Schemas
Joachim Biskup . 50

Incremental inconsistencies detection with low memory overhead
Xavier Blanc . 51

Modeling@SAP: Why Class Models Are Rarely Used
Achim D. Brucker . 51

Reasoning over Secure Business Processes
Achim D. Brucker . 52

Modeling and Reasoning over Processes and Data
Diego Calvanese . 52

Preliminary Report on an Algebra of Lightweight Ontologies
Marco A. Casanova . 53

OCL2FOL: Using SMT solvers to automatically reason on conceptual schemata
with OCL constraints
Carolina Dania . 53

Metrics for visual notations
Sophie Dupuy-Chessa . 54

“Automating Reasoning on Conceptual Schemas” in FamilySearchT M – a Large-
Scale Reasoning Application
David W. Embley . 54

Constraints on Class Diagrams
Ingo Feinerer . 54

ORM2: formalisation and encoding in OWL2
Enrico Franconi . 55

Reasoning over Order Dependencies for Relational Schema
Parke Godfrey . 55

Exploring UML and OCL Model Properties with Relational Logic
Martin Gogolla . 56

13211

46 13211 – Automated Reasoning on Conceptual Schemas

Armstrong Instances as a Reasoning Aid
Sven Hartmann . 56

Automated Design of Updateable Database Views: a Framework for Possible
Strategies
Stephen J. Hegner . 57

An ontology-driven unifying metamodel for UML Class Diagrams, EER, and ORM2
C. Maria Keet . 57

Temporal Extended Conceptual Models
Roman Kontchakov . 58

ProB: Solving Constraints on Large Data and Higher-Order Formal Models
Michael Leuschel . 59

A Declarative Approach to Distributed Computing
Jorge Lobo . 59

Reasoning on conceptual schemas of spatial data
Stephan Maes . 60

On BDD, Finite controllability and the BDD/FC conjecture
Jerzy Marcinkowski . 61

On the Relationship Between OBDA and Relational Mapping
Marco Montali . 61

Reasoning about the Effect of Structural Events in UML Conceptual Schemas
Xavier Oriol . 61

Information and dependency preserving BCNF decomposition algorithm via attrib-
ute splitting
Elena V. Ravve . 62

Semantic-based Mappings
Guillem Rull . 63

The Curse of Restructuring in Dependency Theory
Klaus-Dieter Schewe . 63

AuRUS: Automated Reasoning on UML Schemas
Ernest Teniente . 64

Visual reasoning with (functional) dependencies
Bernhard Thalheim . 64

Validation of Complex Domain-Specific Modeling Languages
Dániel Varró . 65

Reasoning about Dependencies in Schema Mappings
Qing Wang . 65

Working Groups
On the Practical Applicability of Current Techniques for Reasoning on the Structural
Schema
Ernest Teniente . 66

Reasoning about the Conceptual Schema Components Capturing Dynamic Aspects
Diego Clavanese . 69

Diego Calvanese, Sven Hartmann, and Ernest Teniente 47

New Challenges for Automated Reasoning on Conceptual Schemas
Sven Hartmann . 71

Seminar program . 75

Participants . 77

13211

48 13211 – Automated Reasoning on Conceptual Schemas

3 Overview of Talks

3.1 Reasoning over Conceptual Data Models: The Description Logic
Approach

Alessandro Artale (Free University of Bozen-Bolzano, IT)

License Creative Commons BY 3.0 Unported license
© Alessandro Artale

Joint work of Artale, Alessandro; Calvanese, Diego; Kontchakov, Roman; Ryzhikov, Vladislav; Zakharyaschev,
Michael;

Main reference A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, “Reasoning over
extended ER models,” in: Conceptual Modeling – ER 2007, LNCS, Vol. 4801, pp. 277–292,
Springer, 2007.

URL http://dx.doi.org/10.1007/978-3-540-75563-0_20

In this talk we show how reasoning techniques developed in the field of knowledge rep-
resentation (Description Logics, in particular) can be used to check quality properties of
Conceptual Models [4], i.e., schema consistency, class consistency, instance checking and
model checking [6, 5, 3, 1]. We consider various fragments of the language of Extended
Entity-Relationship (EER) diagrams, which includes a number of constructs: ISA between
entities and relationships, disjointness and covering of entities and relationships, cardinality
constraints for entities in relationships and their refinements as well as multiplicity constraints
for attributes.

The main results are obtained by mapping ER constructs to, so called, DL-Lite [7, 2]
logics, thus showing the usefulness of such languages for reasoning over conceptual models
and ontologies. The talk will also emphasise the difference between the database and the
ontology point of view of Conceptual Models.

References
1 A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Reasoning

over extended ER models. In Proc. of the 26th International Conference on Conceptual
Modeling (ER’07), volume 4801, Auckland, New Zealand, Nov. 2007. Lecture Notes in CS,
Springer.

2 A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. Journal of Artificial Intelligence Research (JAIR), 36:1–69, 2009.

3 A. Artale, D. Calvanese, and A. Ibáñez-García. Full satisfiability of uml class diagrams. In
Proc. of the 29th International Conference on Conceptual Modeling (ER-10), 2010.

4 C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design, an Entity-Relationship
Approach. Benjamin and Cummings Publ. Co., 1992.

5 D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams. Artificial
Intelligence, 168(1–2):70–118, 2005.

6 D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation formalisms.
J. of Artificial Intelligence Research, 11:199–240, 1999.

7 D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity
of query answering in description logics. In Proc. of the 10th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR 2006), pages 260–270, 2006.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-540-75563-0_20
http://dx.doi.org/10.1007/978-3-540-75563-0_20
http://dx.doi.org/10.1007/978-3-540-75563-0_20
http://dx.doi.org/10.1007/978-3-540-75563-0_20

Diego Calvanese, Sven Hartmann, and Ernest Teniente 49

3.2 UML class diagrams – decision, identification and repair of
correctness and quality problems

Mira Balaban (Ben Gurion University – Beer Sheva, IL)

License Creative Commons BY 3.0 Unported license
© Mira Balaban

Joint work of Balaban, Mira; Maraee Azzam; Sturm Arnon; Kifer Michael; Khitron Igal
Main reference M. Balaban, A. Maraee, “Finite satisfiability of UML class diagrams with constrained class

hierarchy,” ACM Trans. on Software Engineering and Methodology (TOSEM), 22(3), 24pp., ACM,
2013.

URL http://dx.doi.org/10.1145/2491509.2491518

We have developed efficient methods for analysis of correctness and quality problems in UML
class diagrams. The ultimate goal is to have a rich support for static analysis of models, so
to enable the development of advanced model level IDEs. Our methods are implemented in
our FiniteSatUSE tool and its associated catalog of correctness anti-patterns. The methods:
1. Detection of Finite Satisfiability problems.
2. Identification of the cause for a Finite Satisfiability or a Consistency problem.
3. Repair – for typical problems. Based on the catalog.
4. Simplification of diagrams – remove redundant constraints.
5. Completion of diagrams – discover hidden constraints.

Most methods apply to subsets of UML class diagrams – depending on included constraints
and structure of the diagram. Some methods are complete for certain subsets, but become
incomplete when new constraints are added.

Various questions arise from this research:
1. The need for abstraction means in class diagrams – Our Pattern Class Diagram language

is a start.
2. Efficient discovery of patterns in a class diagram.
3. Creation of a benchmark of class diagrams, for evaluation of analysis algorithms – Metric

directed class diagram constructor; e.g., construct a class diagram that satisfies a structure
metric of presence of association- cycles, or a size-metric of proportion of classes and
associations.

4. Integration of (1) a UML tool; with (2) a reasoning underlying module (our F-OML
project), and with (3) the above methods.

All relevant material is in: http://www.cs.bgu.ac.il/ modeling/

References
1 M. Balaban and A. Maraee Finite Satisfiability of UML Class Diagrams with Constrained

Class Hierarchy. TOSEM, to appear. ACM (2013).
2 M. Balaban and A. Maraee Inter-association Constraints in UML2: Comparative Analysis,

Usage Recommendations, and Modeling Guidelines. MoDELS (2012).
3 M. Balaban and M. Kifer Logic-based Model-Level Software Development with F-OML.

MoDELS (2011).
4 M. Balaban and A. Maraee and A. Sturm A Pattern-Based Approach for Improving Model

Quality. submitted (2013).

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2491509.2491518
http://dx.doi.org/10.1145/2491509.2491518
http://dx.doi.org/10.1145/2491509.2491518
http://dx.doi.org/10.1145/2491509.2491518

50 13211 – Automated Reasoning on Conceptual Schemas

3.3 A Problem Statement: Representation of Instance-Derivations
Based on Dependencies

Joachim Biskup (TU Dortmund, DE)

License Creative Commons BY 3.0 Unported license
© Joachim Biskup

A relational database schema is specified by a set of relation names with attributes and a set
of dependencies that constrain the possible instance relations. Regarding the dependencies,
mostly two kinds of derivations have been investigated, namely deciding on implications and
verifying satisfaction.

In this talk, we will study another kind of derivations, namely: whether and how a user
who has an incomplete view on the instance relations can derive further nontrivial details of
the instance relations based on the dependencies. More specifically, we would like to obtain
a concise representation of all options for such derivations. Our interest is motivated by
applications in the field of inference control; it might also be relevant for avoiding redundancy
when designing a database.

Intuitively, given the dependencies we would like find a collection of “derivation-skeletons”
such that the following properties are achieved: correctness for all instances, completeness
for all instances, and neither local nor global redundancy.

Having no substantial results so far, we basically only have the following conjecture: A
set of dependencies (having some nice properties like being “full” (not embedded)), admits
a finite collection of “derivation-skeletons” with the required properties iff the given set is
some sense “acyclic” (still to be made precise).

3.4 Employing Automatic Reasoning on Conceptual Schemas
Joachim Biskup (TU Dortmund, DE)

License Creative Commons BY 3.0 Unported license
© Joachim Biskup

Joint work of Biskup, Joachim; Hartmann, Sven

We suggest the following classication of how automatic reasoning on conceptual schemas is
employed:

1. At design time:
– prove assurances for given schema:

* assurances for a single state:
...
* assurances for sequences of states:
...

– transform given schema into “better” one (satisfying more useful assurances)
– exhibit inherent conflicts/tradeoffs to achieve useful assurances
– integrate new aspects or independently specified aspects
– generate “closed” views from specification of informational needs
– generate “representative” instances for illustrating practical consequences
– estimate future costs (runtime, space, communication, ...)

2. At run time, continued employment using the assurances proven at design time:
– improve quality of answers to queries

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Diego Calvanese, Sven Hartmann, and Ernest Teniente 51

– supply/suggest missing inputs for updates of data (instances)
– ensure meaningful results of complex data manipulations
– support prediction and optimization of operational requests
– support schema consolidation
– assist in enforcing assurances during evolvement of informational needs
– enable interoperation/communication with other agents, in particular for complex
querying

3.5 Incremental inconsistencies detection with low memory overhead
Xavier Blanc (University of Bordeaux, FR)

License Creative Commons BY 3.0 Unported license
© Xavier Blanc

As ensuring models’ consistency is a key concern when using a model-based development
approach, model inconsistency detection has received significant attention over the last years.
To be useful, inconsistency detection has to be sound, efficient and scalable. Sound means
that inconsistencies detected by a tool should be correct, and not mislead the developers
in their design tasks. Efficient means that detection has to be executed as fast as possible
because developers always want to know the impact of their modification immediately after
having performing them. Scalability is however a little more complex as a concern and
usually defines specific requirements that are deemed important depending on the context.
In this talk, we presented a new incremental inconsistency detection approach that emphasis
on scalability as it only consumes a small and model size-independent amount of memory.

3.6 Modeling@SAP: Why Class Models Are Rarely Used
Achim D. Brucker (SAP Research – Karlsruhe, DE)

License Creative Commons BY 3.0 Unported license
© Achim D. Brucker

In 1999, SAP started to combine the Unified Modeling Language (UML) and the Funda-
mental Modeling Concepts (FMC) language (for details, see http://www.fmc-modeling.org/
fmc-and-tam/). The result is an SAP internal standard for modeling, called Technical Archi-
tecture Modeling (TAM). TAM comprises block diagrams, component diagrams, package
diagrams, class diagrams, activity diagrams, sequence diagrams, state diagrams, and use case
diagrams. TAM is used for both conceptual modeling as well as design modeling.

While many works on reasoning on conceptual schemas focus on class diagrams and state
diagrams, the most often used diagram type used for conceptual modeling at SAP is the
block diagram. For example, class models are used rarely, as they are “too close to real
code.” In general, developers and architects prefer high-level structural diagrams (e.g., block
diagrams), thus we need to ask ourselves the questions, if we can reason over such models
and what kind of properties help to improve the software development.

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.fmc-modeling.org/fmc-and-tam/
http://www.fmc-modeling.org/fmc-and-tam/

52 13211 – Automated Reasoning on Conceptual Schemas

3.7 Reasoning over Secure Business Processes
Achim D. Brucker (SAP Research – Karlsruhe, DE)

License Creative Commons BY 3.0 Unported license
© Achim D. Brucker

Enterprise systems are often process-driven. In such systems, high-level process-models play
an important role both for communicating business requirements between domain experts and
system experts as well as for system implementation. Since several years, enterprise systems
need to fulfill an increasing number of the security and compliance requirements. Thus, there
is an increasing demand for integrating high-level security and compliance requirements into
process models.

In general, we present an approach for reasoning over secure process-models, i.e., process-
models containing high-level security and compliance requirements. In particular, this
approach helps to detect non-compliant or inconsistent process-models early during both the
modeling of business processes as well as during system development.

References
1 A.D. Brucker and I. Hang. Secure and compliant implementation of business process-driven

systems. In Marcello La Rosa and Pnina Soffer, editors, Joint Workshop on Security in
Business Processes (SBP), volume 132 of Lecture Notes in Business Information Processing
(LNBIP), pages 662–674. Springer-Verlag, 2012.

2 A.D. Brucker, I. Hang, G. Lückemeyer, and R. Ruparel. SecureBPMN: Modeling and en-
forcing access control requirements in business processes. In ACM symposium on access
control models and technologies (SACMAT), pages 123–126. ACM Press, 2012.

3 L. Compagna, P. Guilleminot, and A.D. Brucker. Business process compliance via security
validation as a service. In Manuel Oriol and John Penix, editors, Testing Tools Track of
International Conference on Software Testing, Verification, and Validation (Tools@ICST).
IEEE Computer Society, 2013.

3.8 Modeling and Reasoning over Processes and Data
Diego Calvanese (Free University of Bozen-Bolzano, IT)

License Creative Commons BY 3.0 Unported license
© Diego Calvanese

Joint work of Calvanese, Diego; Bagheri Hariri, Babak; Montali, Marco; Santoso, Ario; De Giacomo, Giuseppe;
Deutsch, Alin

Main reference B. Bagheri Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, M. Montali, “Verification of
relational data-centric dynamic systems with external services,” arXiv:1203.0024v1 [cs.DB], 2012.

URL http://arxiv.org/abs/1203.0024v1

Data and processes are just two sides of the same coin, and for several activities related
to the analysis and design of systems it is therefore important to capture both static and
dynamic aspects in a uniform way. Data-centric dynamic systems (DCDSs) are systems
where both the process controlling the dynamics and the manipulation of data are equally
central, and are captured in a pristine way, abstracting from specific features of concrete
models. DCDSs allow one to capture commonly adopted models for data and processes, such
as artifact systems modeled as finite state machines or through the Guard-Stage- Milestone
(GSM) model. Hence, they are well suited for the formal analysis and verification of temporal
properties over the evolution of such systems. In the talk we present DCDSs and discuss
the results on decidadibility of verification of first-order variants of µ-calculus over such

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1203.0024v1
http://arxiv.org/abs/1203.0024v1
http://arxiv.org/abs/1203.0024v1

Diego Calvanese, Sven Hartmann, and Ernest Teniente 53

systems. We also point to extensions of DCDSs with a semantic level, allowing one to capture
properties at a higher level of abstraction, and taking into account semantic constraints
during verification.

3.9 Preliminary Report on an Algebra of Lightweight Ontologies
Marco A. Casanova (PUC – Rio de Janeiro, BR)

License Creative Commons BY 3.0 Unported license
© Marco A. Casanova

Joint work of Casanova, Marco A.; Sacramento, Eveline R.; Macêdo, José A. F.: Pinheiro, Ângela M. A.; Vidal,
Vânia M. P.; Breitman, Karin K.; Furtado, Antonio L.

Main reference M.A. Casanova, J.A.F. de Macêdo, E.R. Sacramento, Â.M.A. Pinheiro, V.M.P. Vidal, K.K.
Breitman, A.L. Furtado, “Operations over lightweight ontologies,” in: On the Move to Meaningful
Internet Systems (OTM’12), LNCS, Vol. 7566, pp. 646–663, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-33615-7_14

We argue that certain familiar ontology design problems are profitably addressed by treating
ontologies as theories and by defining a set of operations that create new ontologies, including
their constraints, out of other ontologies. Such operations extend the idea of namespaces to
take into account constraints.

Consider first the problem of designing an ontology to publish data on the Web. If the
designer follows the Linked Data principles, he must select known ontologies, as much as
possible, to organize the data so that applications can dereference the URIs that identify
vocabulary terms in order to find their definition. We argue that the designer should go further
and analyze the constraints of the ontologies from which he is drawing the terms to construct
his vocabulary. Furthermore, he should publish the data in such a way that the original
semantics of the terms is preserved. To facilitate ontology design from this perspective, we
introduce three operations on ontologies, called projection, union and deprecation.

Consider now the problem of comparing the expressive power of two ontologies, O = (V,
Σ) and O’ = (V’, Σ’). If the designer wants to know what they have in common, he should
create a mapping between their vocabularies and detect which constraints hold in both
ontologies, after the terms are appropriately mapped. The intersection operation answers
this question. We argued elsewhere (Casanova et al., 2010) that intersection is also useful to
address the design of mediated schemas that combine several export schemas in a way that
the data exposed by the mediator is always consistent.

On the other hand, if the designer wants to know what holds in O = (V, Σ), but not
in O’ = (V’, Σ’), he should again create a mapping between their vocabularies and detect
which constraints hold in the theory of Σ, but not in the theory of Σ’, after the terms are
appropriately mapped. The difference operation answers this question.

3.10 OCL2FOL: Using SMT solvers to automatically reason on
conceptual schemata with OCL constraints

Carolina Dania (IMDEA Software Institute, ES)

License Creative Commons BY 3.0 Unported license
© Carolina Dania

In this talk we present a mapping from a rich subset of OCL expressions into first order logic,
and discuss how this mapping can be used to automatically check, using SMT solvers, the

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33615-7_14
http://dx.doi.org/10.1007/978-3-642-33615-7_14
http://dx.doi.org/10.1007/978-3-642-33615-7_14
http://dx.doi.org/10.1007/978-3-642-33615-7_14
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

54 13211 – Automated Reasoning on Conceptual Schemas

satisfiability of conceptual schemata with OCL constraints. We also present our OCL2FOL
tool, which implements our mapping and generates, for each conceptual schema and OCL
constraints, the corresponding satisfiability problem for Z3 or Yices.

3.11 Metrics for visual notations
Sophie Dupuy-Chessa (LIG – Grenoble, FR)

License Creative Commons BY 3.0 Unported license
© Sophie Dupuy-Chessa

Joint work of Le Pallec, Xavier; Mandran, Nadine; Genon Nicolas

The maturity of Model Driven Engineering facilitates the development of domain specific
languages. The creation of the languages relies on the definition of metamodels, but also
on their corresponding visual notations. But one can wonder what is the quality of a new
language. It can result in inunderstandable diagrams with inappropriate notations. Then our
goal is to evaluate the quality of metamodels and notations by metrics, which are integrated
in a (meta)modeling environment. In particular, we are studying metrics for visual notations
in order to automate the measure of quality for a notation and its derived diagrams.

3.12 “Automating Reasoning on Conceptual Schemas” in
FamilySearchT M – a Large-Scale Reasoning Application

David W. Embley (Brigham Young University, US)

License Creative Commons BY 3.0 Unported license
© David W. Embley

Among its many other projects, FamilySearch.org has scanned and OCRed 85,000 books
filled with family-history information—an estimated 4.25 × 1012 “facts” of interest. We wish
to extract and organize these facts for semantic search with respect to a conceptual model.
Reasoning applies in several ways: (1) traditional satisfiability checks over potentially more
expressive constraints, (2) inference with large sets of assertions—about half of the facts are
inferred; (3) constraint violation search —unlike many database applications, it’s almost
certain that the facts will not satisfy the constraints of the conceptual model, so finding the
myriad of discrepancies is of interest; and (4) uncertainty —both facts and constraints are
uncertain, so probabilistic description logics are of interest. The presentation will likely have
more questions than answers, and in that sense, could lead to interesting discussion and
possible directions for future work.

3.13 Constraints on Class Diagrams
Ingo Feinerer (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Ingo Feinerer

We give a short overview of our approach for encoding UML class diagrams for checking
satisfiability and for computing minimal instances. We aim for efficient and lightweight

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Diego Calvanese, Sven Hartmann, and Ernest Teniente 55

techniques, like integer linear programming and flow networks, that scale well also in
industrial-scale application domains. As open problems for discussion we highlight a few
constraints, typically expressed via OCL, that we found relevant in industrial settings but
which are still challenging from a research perspective, like association chains or equations
over them.

3.14 ORM2: formalisation and encoding in OWL2
Enrico Franconi (Free University of Bozen-Bolzano, IT)

License Creative Commons BY 3.0 Unported license
© Enrico Franconi

Joint work of Franconi, Enrico; Mosca, Alessandro
Main reference E. Franconi, A. Mosca, D. Solomakhin, “ORM2: Formalisation and encoding in OWL2,” in: On the

Move to Meaningful Internet Systems (OTM’12), LNCS, Vol. 7567, pp. 368–378, Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-33618-8_51

The introduction of a provably correct encoding of a fragment of ORM2 (called ORM2zero)
into a decidable fragment of OWL2, opened the doors for the definition of dedicated reasoning
technologies supporting the quality of the schemas design.

3.15 Reasoning over Order Dependencies for Relational Schema
Parke Godfrey (York University – Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Parke Godfrey

Dependency theory has played important roles for relational databases, with functional
dependencies (FDs) as a hallmark. Structural constraints provide a framework for formalizing
good design, as by normalization and decomposition, and for reasoning over schemas. Much
has been studied on how to reason effectively over dependencies. Armstrong’s Axioms provide
a sound and complete axiomatization for FDs, which led to insights for efficient inference
procedures. Such “reasoners” are easier to understand and prove much more efficient that
general reasoning from first principles.

Dependencies have also played a critical role on the physical side of database systems.
They are used within query optimization extensively. For instance, FDs can be used to
convert one group-by specification as stated within an SQL query into a logically equivalent
one, but one more amenable to an efficient query plan. Thus, query optimizers incorporate
limited reasoners for dependencies.

Order dependencies (ODs) generalize functional dependencies. ODs are to FDs as order
by is to group by. An OD tells that when data is sorted with respect to one specification,
it then must also be sorted with respect to another. We have been studying ODs in depth
recently, and we know much more about them now. We have devised a sound and complete
axiomatization for them as Armstrong’s Axioms are for FDs. From this, we are developing
efficient inference procedures for them. We know much about the complexities of inference
tasks for ODs. We have shown a proper hierarchy for OD classes. Our motivation for this
endeavor has been, in large part, to use ODs effectively within query optimization. ODs offer
a powerful means to exchange one interesting order on a data stream (within the runtime of

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33618-8_51
http://dx.doi.org/10.1007/978-3-642-33618-8_51
http://dx.doi.org/10.1007/978-3-642-33618-8_51
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

56 13211 – Automated Reasoning on Conceptual Schemas

the query plan) for another (when it is known the second implies the first), which broadens
the space of possible plans.

However, ODs could also play a vital role in design, as do FDs. We do not understand
yet how ODs can be viewed as structural constraints, and what roles they might play in
schemas and reasoning over schemas. This is a worthwhile topic to explore.

3.16 Exploring UML and OCL Model Properties with Relational Logic
Martin Gogolla (Universität Bremen, DE)

License Creative Commons BY 3.0 Unported license
© Martin Gogolla

Joint work of USE Development Team
Main reference M. Kuhlmann, M. Gogolla, “From UML and OCL to relational logic and back,” in: Model Driven

Engineering Languages and Systems, LNCS, Vol. 7590, pp. 415–431, Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-33666-9_27
URL http://sourceforge.net/apps/mediawiki/useocl/index.php

Modeling Languages like UML or EMF employ OCL in order to precisely model systems in
terms of a conceptual schema for applications. Complex UML and OCL models therefore
represent a crucial part of model-based engineering, as they allow to formally describe central
system properties like model consistency or constraint independence, among other important
properties. We discuss a lightweight model validation and verification method based on
efficient SAT solving techniques. Our work relies on a transformation from UML class
diagrams and OCL concepts into relational logic. Relational logic in turn represents the
source for advanced SAT-based model finders. The approach allows us to explicitly benefit
from the efficient handling of relational logic and to interpret found results backwards in
terms of UML and OCL. We explain our ideas with an example from the original work by
Peter Chen on conceptual modeling with the entity-relationship model.

References
1 M. Kuhlmann and M. Gogolla. From UML and OCL to Relational Logic and Back. In

Robert France, Juergen Kazmeier, Ruth Breu, and Colin Atkinson, editors, Proc. 15th Int.
Conf. Model Driven Engineering Languages and Systems (MoDELS’2012), pages 415-431.
Springer, Berlin, LNCS 7590, 2012.

3.17 Armstrong Instances as a Reasoning Aid
Sven Hartmann (TU Clausthal, DE)

License Creative Commons BY 3.0 Unported license
© Sven Hartmann

Joint work of Hartmann, Sven; Link, Sebastian; Ferrarotti, Flavio; Köhler, Henning; Le, Van; Leck, Uwe;
Thalheim, Bernhard; Trinh, Thu

In our talk we survey recent results on the structure, existence and computation of Armstrong
instances for general cardinality constraints and functional dependencies in partial databases.
Leading database design tools recommend the creation of data samples to validate, commu-
nicate, and evolve the database models they produce. Armstrong instances are perfect data
samples in the sense that they satisfy exactly those integrity constraints within a particular
constraint class that are logical consequences of the specified constraint set. They can be
queried by the data engineer to test the implication of constraints within the constraint class

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33666-9_27
http://dx.doi.org/10.1007/978-3-642-33666-9_27
http://dx.doi.org/10.1007/978-3-642-33666-9_27
http://sourceforge.net/apps/mediawiki/useocl/index.php
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Diego Calvanese, Sven Hartmann, and Ernest Teniente 57

of interest. We discuss characterizations and constructions of Armstrong instances, and list
open problems that we suggest for future research.

3.18 Automated Design of Updateable Database Views: a Framework
for Possible Strategies

Stephen J. Hegner (University of Umeå, SE)

License Creative Commons BY 3.0 Unported license
© Stephen J. Hegner

There has been substantial amount of work on the subject of how updates to database views
should be supported. However, there has been little reported on how to design views which
meet certain requirements for information content and furthermore support a certain set
U of updates. In this work, some ideas on how to automate the design of views which are
updateable via the constant-meet-complement strategy are presented. The design process
itself may require some flexibility in the choice of the view to be updated, since a larger view
will generally admit a larger set of updates. Thus, the process consists of the identification of
a pair of views (Γ,Γ′), in which Γ is the view to be updated and Γ′ is a meet complement which
supports all updates in U . The constraint on Γ is that it recapture a certain prespecified
minimal amount of information Imin from the main schema, but not more than a prespecified
upper bound Imax. Since meet complements are precisely those which admit an embedded
cover of the dependencies of the main schema, the key to an effective realization of this
approach is to find methods for the efficient identification of embedded covers.

3.19 An ontology-driven unifying metamodel for UML Class Diagrams,
EER, and ORM2

C. Maria Keet (University of KwaZulu-Natal – Durban, ZA)

License Creative Commons BY 3.0 Unported license
© C. Maria Keet

Joint work of Keet, C. Maria; Fillottrani, Pablo Rubén

Software interoperability may be achieved by using their respective conceptual data models.
However, each model may be represented in a different conceptual data modelling language
for the tool’s purpose or due to legacy issues. Several translations between small subsets of
language features are known, but no unified model exists that includes all their language
features. Aiming toward filling this gap, we designed a common and unified, ontology-driven,
metamodel covering and unifying EER, UML Class Diagrams v2.4.1, and ORM2. We present
the static, structural, components of the metamodel, highlighting the common entities
and summarizing some modelling motivations. This metamodel will be taken as the basis
for a comprehensive formalization, which afterward may be used for reasoning over the
structural components of individual and linked conceptual models represented in any of UML,
EER, or ORM2. More details of the project and the related papers are available online at
http://www.meteck.org/SAAR.html

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

58 13211 – Automated Reasoning on Conceptual Schemas

References
1 C.M. Keet, P.R. Fillottrani. Toward an ontology-driven unifying metamodel for UML

Class Diagrams, EER, and ORM2. 32nd International Conference on Conceptual Modeling
(ER’13). 11-13 November, 2013, Hong Kong. Springer LNCS (accepted).

2 C.M. Keet, P.R. Fillottrani. Structural entities of an ontology-driven unifying metamodel
for UML, EER, and ORM2. 3rd International Conference on Model and Data Engineering
(MEDI’13). September 25-27, 2013, Amantea, Calabria, Italy. Springer LNCS (accepted).

3.20 Temporal Extended Conceptual Models
Roman Kontchakov (Birkbeck College London, GB)

License Creative Commons BY 3.0 Unported license
© Roman Kontchakov

In this talk we discuss the temporal description logics [3], designed for reasoning about
temporal conceptual data models, and investigate their computational complexity. Our
formalisms are based on the DL-Lite family of description logics with three types of concept
inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans),
as well as cardinality constraints and role inclusions [4]. In the temporal dimension, they
capture future and past temporal operators on concepts, flexible and rigid roles, the operators
‘always’ and ‘some time’ on roles, data assertions for particular moments of time and global
concept inclusions. The logics are interpreted over the Cartesian products of object domains
and the flow of time (Z,<), satisfying the constant domain assumption. We prove [2] that the
most expressive of our temporal description logics (which can capture lifespan cardinalities
and either qualitative or quantitative evolution constraints) turn out to be undecidable.
However, by omitting some of the temporal operators on concepts/roles or by restricting the
form of concept inclusions we obtain logics whose complexity ranges between PSpace and
NLogSpace. These positive and encouraging results were obtained by reduction to various
clausal fragments of propositional temporal logic, which opens a way to employ propositional
or first-order temporal provers for reasoning about temporal data models.

In the second part of the talk we focus on ontology-based data access (OBDA), where
the most important technique for answering queries is to rewrite the given ontology and the
query into a single first-order query that can be evaluated directly over the data. The current
W3C standard for OBDA is OWL 2 QL which is based on the DL-Lite family of description
logics. Our aim is to extend standard atemporal OBDA to data with validity time and
ontologies that are suitable for temporal conceptual modelling. To this end, we design a
temporal description logic, TQL, that extends the standard ontology language OWL 2 QL,
provides basic means for temporal conceptual modelling and ensures first-order rewritability
of conjunctive queries for suitably defined data instances with validity time [1].

References
1 A. Artale, R. Kontchakov, F. Wolter and M. Zakharyaschev. Temporal Description Logic

for Ontology-Based Data Access. In Proceedings of IJCAI (Beijing, 3-9 August), 2013. full
version is available at arXiv:1304.5185

2 A. Artale, R. Kontchakov, V. Ryzhikov and M. Zakharyaschev. A Cookbook for Temporal
Conceptual Data Modelling with Description Logics, 2012. arXiv:1209.5571.

3 A. Artale, R. Kontchakov, V. Ryzhikov and M. Zakharyaschev. Tailoring Temporal De-
scription Logics for Reasoning over Temporal Conceptual Models. In Proc. of the 8th Inter-

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Diego Calvanese, Sven Hartmann, and Ernest Teniente 59

national Symposium on Frontiers of Combining Systems (FroCoS 2011). LNCS, vol. 6989,
pages 1-11. Springer, 2011.

4 A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev. The DL-Lite Family and
Relations. J. Artif. Intell. Res. (JAIR), 36:1-69, 2009.

3.21 ProB: Solving Constraints on Large Data and Higher-Order
Formal Models

Michael Leuschel (Heinrich-Heine-Universität Düsseldorf, DE))

License Creative Commons BY 3.0 Unported license
© Michael Leuschel

The B-method is a formal method for specifying safety critical systems, reasoning about
those systems and generate code that is correct by construction. B is based on predicate
logic, augmented with arithmetic (over integers), (typed) set theory, as well as operators for
relations, functions and sequences. As such, B provides a very expressive foundation which
is familiar to many mathematicians and computer scientists. One of our goals is to be able
to use B as a high-level and easy to use language to express constraints in wide variety of
application areas. In this talk we have presented the ProB [1] constraint solver and model
checker for the B method. In particular, we describe how a variety of other formalisms and
industrial problems can be mapped to B and how ProB can be used for automated reasoning.
For example, we have discussed the iUML tool and its integration into the Rodin toolset
and link with ProB for animation and validation. Finally, we also touch upon the various
backends [2] of ProB that can be used in practice.

References
1 D. Plagge and M. Leuschel. Seven at a stroke: LTL model checking for high-level specific-

ations in B, Z, CSP, and more. In International journal on software tools for technology
transfer. vol. 12, pages 9-21. Springer, 2010.

2 D. Plagge and M. Leuschel. Validating B, Z and TLA+ using ProB and Kodkod. In
D. Giannakopoulou and D. Méry, editors, Proceedings FM’2012, LNCS 7436, pages 372-
386. Springer, 2012.

3.22 A Declarative Approach to Distributed Computing
Jorge Lobo (Universitat Pompeu Fabra – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Jorge Lobo

Joint work of Ma, Jiefei; Le, Franck; Wood, David; Russo, Alessandra; Lobo, Jorge
Main reference A Declarative Approach to Distributed Computing: Specification, Execution and Analysis. To

appear in Theory and Practice of Logic Porgramming.

There is an increasing interest in using logic programming to specify and implement distributed
algorithms, including a variety of network applications. These are applications where data
and computation are distributed among several devices and where, in principle, all the
devices can exchange data and share the computational results of the group. In this paper
we propose a declarative approach to distributed computing whereby distributed algorithms
and communication models can be (i) specified as action theories of uents and actions;

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
A Declarative Approach to Distributed Computing: Specification, Execution and Analysis. To appear in Theory and Practice of Logic Porgramming.
A Declarative Approach to Distributed Computing: Specification, Execution and Analysis. To appear in Theory and Practice of Logic Porgramming.

60 13211 – Automated Reasoning on Conceptual Schemas

(ii) executed as collections of distributed state machines, where devices are abstracted as
(input/output) automata that can exchange messages; and (iii) analysed using existing results
on connecting causal theories and Answer Set Programming. Results on the application of
our approach to different classes of network protocols are also presented.

3.23 Reasoning on conceptual schemas of spatial data
Stephan Maes (TU Dresden, DE)

License Creative Commons BY 3.0 Unported license
© Stephan Maes

Main reference S. Maes, “Reasoning on class relations: An overview,” in: Cognitive and Linguistic Aspects of
Geographic Space, Lecture Notes in Geoinformation and Cartography, pp. 237–257, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-34359-9_13

Spatial databases require specific integrity constraints to specify restrictions on geometric and
topological relations and properties. This work focuses on integrity constraints that define
cardinality restrictions for a certain instance relation (for example a topological relation)
between all entities of the involved classes. These constraints also allow for automated
reasoning to find contradictions and redundancies and to evaluate the compliance with
application requirements. Therefore the logical properties of the applied instance relations
and those of the cardinality restrictions have to be considered, in particular symmetry
and compositions, but also other inferences. The presentation provides an overview of
the different types of integrity constraints of spatial data, summarizes research on corres-
ponding reasoning approaches and outlines possible future work. Most of the discussed
reasoning algorithms have been implemented in a research prototype that is available at
http://www.stephanmaes.de/classrelations.html .

References
1 S. Mäs, . Reasoning on class relations: an overview. In Raubal, M., Mark, D. M.,and Frank,

A. U., editors, Cognitive and Linguistic Aspects of Geographic Space – New Perspectives
on Geographic Information Research, Lecture Notes in Geoinformation and Cartography,
pages 237-257. Springer, 2013.

2 S. Mäs, and W. Reinhardt. Categories of geospatial and temporal integrity constraints. In
International Conference on Advanced Geographic Information Systems and Web Services,
GEOWS 2009, pages 146-151. IEEE Computer Society, 2009.

3 S. Mäs. Reasoning on spatial relations between entity classes. In Cova, T. J., Miller, H. J.,
Beard, K., Frank, A. U., and Goodchild, M. F., editors, Geographic Information Science,
5th International Conference, GIScience 2008, Proceedings, volume 5266 of Lecture Notes
in Computer Science, pages 234-248. Springer, 2008.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-34359-9_13
http://dx.doi.org/10.1007/978-3-642-34359-9_13
http://dx.doi.org/10.1007/978-3-642-34359-9_13

Diego Calvanese, Sven Hartmann, and Ernest Teniente 61

3.24 On BDD, Finite controllability and the BDD/FC conjecture
Jerzy Marcinkowski (University of Wroclaw, PL)

License Creative Commons BY 3.0 Unported license
© Jerzy Marcinkowski

Main reference T. Gogacz, J. Marcinkowski, J., “On the BDD/FC conjecture,” in Proc. of the 32nd Symposium
on Principles of Database Systems (PODS ’13), pp. 127–138, ACM, 2013.

URL http://dx.doi.org/10.1145/2463664.2463668

FC (Finite controllability) and BDD (the Bounded Derivation Depth property) are two
properties of Datalog/TGD programs (or of TBoxes, if this is how you wish to call them).

BDD is equivalent to Positive First Order rewritability – the very useful property that
allows us to use (all the optimizations of) DBMS in order to compute the certain answers to
queries in the presence of a theory.

Finite Controllability of a theory/TBox T means that if the certain answer to a query Q,
for a database instance/ ABox D , in the presence of T is ’no’ then this ’no’ is never a result
of an unnatural assumption that the counterexample can be infinite.

We conjecture that for any theory T the property BDD implies FC. We prove this
conjecture for the case of binary signatures (which in particular means that it holds true for
the Description Logics scenario).

3.25 On the Relationship Between OBDA and Relational Mapping
Marco Montali (Free University of Bozen-Bolzano, IT)

License Creative Commons BY 3.0 Unported license
© Marco Montali

A position talk highlighting connections, similarities and differences between the framework
of Ontology-Based Data Access, and the one of Object-Relational Mapping. Despite some
key differences, such as the fact that OBDA works with incomplete information and under
the assumption that there is an impedance mismatch between the conceptual model and
the underlying database, while Object-Relational Mapping works with complete information
and assuming a lossless connection between these two layers, we advocate the need for
cross-fertilization between the two settings.

3.26 Reasoning about the Effect of Structural Events in UML
Conceptual Schemas

Xavier Oriol (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Xavier Oriol

Joint work of Oriol, Xavier; Teniente, Ernest; Tort, Albert

In this talk, we propose an approach which is aimed at providing feedback regarding the
dynamic behaviour of the schema when some set of structural events (i.e. insertion or deletion
of instances) happens simultaneously in a consistent information base state.

In this way, given a conceptual schema and an IB state for that schema, we answer
how can we insert or delete concrete instances of classes/associations without violating

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2463664.2463668
http://dx.doi.org/10.1145/2463664.2463668
http://dx.doi.org/10.1145/2463664.2463668
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

62 13211 – Automated Reasoning on Conceptual Schemas

any integrity constraint. Concretely, we answer the minimal sets of structural events that,
combined with the desired insertions/deletions, lead the IB state to a new consistent one.

3.27 Information and dependency preserving BCNF decomposition
algorithm via attribute splitting

Elena V. Ravve (ORT Braude College – Karmiel, IL)

License Creative Commons BY 3.0 Unported license
© Elena V. Ravve

Joint work of Ravve, Elena V.; Makowsky Johann A.
Main reference J. Makowsky, E. Ravve, “BCNF via attribute splitting,” in: Conceptual Modelling and Its

Theoretical Foundations, LNCS, Vol. 7260, pp. 73–84, Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-28279-9_7

Databases are designed in an interactive way between the database designer and his client.
Application driven design uses the language of Entity-Relationship modeling. Another
approach consists in collecting the attributes U of all the application, and requires from the
client that he specifies the functional dependencies F holding between those attributes. After
several iterations this results in a big relation R[U] and a set F of functional dependencies.
In the remaining design process, R[U] is decomposed using criteria such as avoiding null
values, insertion, deletion and modification anomalies, redundancies, and achieving optimal
storage, while keeping U fixed. Boyce-Codd-Heath Normal Form for relational databases
was introduced to formulate all these properties in terms of F and the key dependencies
derivable from F. We add one more characterization in terms of hidden bijections. We also
note that for certain standardized translations of the Entity-Relationship Model into the
relational model, the resulting relation schemes are always in BCNF. The classical approach
to design is based on iteratively decomposing R[U] using projection, while keeping U fixed
and preserving information and the functional dependencies. Unfortunately, BCNF cannot
always be achieved in this way. As a compromise 3NF was formulated, which can always be
achieved, while preserving information and the functional dependencies. However, not all
the FD’s follow from the key dependencies. We introduce an additional way of restructuring
databases by splitting attributes: The relation scheme is expanded by new attributes, whose
interpretation is in bijection with previous attributes. The latter can be expressed using
functional dependencies between new and old attributes. The expanded relation scheme
then is decomposed into BCNF, preserving information and dependencies up to renaming.
Design theory for relational databases fell out of fashion twenty years ago and few papers
were published on the topic. However, with the fashionable trend of XML-driven databases,
renewed interest in normal forms emerged. Hopefully, our approach can be used to formulate
design criteria for XML based databases.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-28279-9_7
http://dx.doi.org/10.1007/978-3-642-28279-9_7
http://dx.doi.org/10.1007/978-3-642-28279-9_7

Diego Calvanese, Sven Hartmann, and Ernest Teniente 63

3.28 Semantic-based Mappings
Guillem Rull (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Guillem Rull

Joint work of Mecca, Giansalvatore; Rull, Guillem; Santoro, Donatello; Teniente, Ernest
Main reference G. Mecca, G. Rull, D. Santoro, E. Teniente, “Semantic-Based Mappings,” in Proc. of the 32nd Int’l

Conf. on Conceptual Modeling (ER’13), pp. 11–13, Hong Kong, November, 2013.
URL http://www.essi.upc.edu/~grull/papers/MRST13.pdf

In classical data exchange, where data is to be transferred from a source into a target, schema
mappings are specified at the database level. However, in many cases, there is a conceptual
schema available for the target database, so we propose to map the source into the target
conceptual schema instead of the target database. In this way, the abstraction on the details
of how the data is stored in the database provided by the conceptual schema allows for
a simpler mapping, which, in turn, makes easier the mapping design task. The challenge
is that mappings that target a conceptual schema are not directly executable under the
current techniques, so we propose an automatic rewriting algorithm that transforms the
given database-to-conceptual schema mapping into a classical database-to-database one.

3.29 The Curse of Restructuring in Dependency Theory
Klaus-Dieter Schewe (Software Competence Center – Hagenberg, AT)

License Creative Commons BY 3.0 Unported license
© Klaus-Dieter Schewe

Joint work of Schewe, Klaus-Dieter; Attila, Sali
Main reference A. Sali, K.-D. Schewe, “Weak Functional Dependencies on Trees with Restructuring,” Acta Cybern.

20(2), pp. 285–329, 2011.
URL http://www.inf.u-szeged.hu/actacybernetica/edb/vol20n2/Sali_2011_ActaCybernetica.xml

The talk addresses the problem that restructuring in complex value databases (used as a
broad term to capture any post-relational database structures) is unavoidable, in particular,
if disjoint union is permitted as a constructor. However, the consequences for dependency
theory are dramatic. For instance, for (weak) functional dependencies on database structures
built from record, lists, sets and multisets a nice axiomatisation can be found, whereas the
addition of the union constructor leads to a vast amount of additional structural axioms
for wFDs and even non-axiomatisability for FDs. However, the core of the axiomatisation
remains the same in the sense that the additional axioms merely cover the properties of
coincidence ideals, i.e. the set of subattributes, on which two complex values coincide. This
raises the open question, whether it is possible to parameterise dependency theory by isolating
such structural properties.

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.essi.upc.edu/~grull/papers/MRST13.pdf
http://www.essi.upc.edu/~grull/papers/MRST13.pdf
http://www.essi.upc.edu/~grull/papers/MRST13.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.inf.u-szeged.hu/actacybernetica/edb/vol20n2/Sali_2011_ActaCybernetica.xml
http://www.inf.u-szeged.hu/actacybernetica/edb/vol20n2/Sali_2011_ActaCybernetica.xml
http://www.inf.u-szeged.hu/actacybernetica/edb/vol20n2/Sali_2011_ActaCybernetica.xml

64 13211 – Automated Reasoning on Conceptual Schemas

3.30 AuRUS: Automated Reasoning on UML Schemas
Ernest Teniente (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Ernest Teniente

Joint work of Rull, Guillem; Farré, Carles; Queralt, Anna; Urpí, Toni
Main reference G. Rull, C. Farré, A. Queralt, E. Teniente, T. Urpí, “Aurus: explaining the validation of

UML/OCL conceptual schemas,” Software and Systems Modeling, 28pp., 2013.
URL http://dx.doi.org/10.1007/s10270-013-0350-8

The validation and the verification of conceptual schemas have attracted a lot of interest
during the last years, and several tools have been developed to automate this process as
much as possible. This is achieved, in general, by assessing whether the schema satisfies
different kinds of desirable properties which ensure that the schema is correct. In this talk
we describe AuRUS, a tool we have developed to analyze UML/OCL conceptual schemas
and to explain their (in)correctness. When a property is satisfied, AuRUS provides a sample
instantiation of the schema showing a particular situation where the property holds. When
it is not, AuRUS provides an explanation for such unsatisfiability, i.e., a set of integrity
constraints which is in contradiction with the property.

3.31 Visual reasoning with (functional) dependencies
Bernhard Thalheim (Universität Kiel, DE)

License Creative Commons BY 3.0 Unported license
© Bernhard Thalheim

Joint work of Bernhard Thalheim; Ove Sörensen
Main reference O. Sörensen, B. Thalheim, “Semantics and pragmatics of integrity constraints,” in: Semantics in

Data and Knowledge Bases, LNCS, Vol. 7693, pp. 1–17, Springer, 2013.
URL http://dx.doi.org/10.1007/978-3-642-36008-4_1

Logical reasoning is main basis for axiomatisation of constraints. Often first-order predicate
calculus is used. Human reasoning is however often spatial. Any child knows the meaning of
notions such as “behind”, “far”. Graphical presentation is used for reasoning and explanation
before we learn to write. Most classes of database constraints are however expressed by
logical formulas. Typical simple calculi have been developed for functional dependencies
or inclusion constraints. The axiomatisation for multivalued dependencies is more difficult
to understand and to use. Already the class of cardinality constraints demonstrates that
numerical calculi support reasoning far simpler.

We show however that graphical reasoning is far simpler for most classes of database
constraints. For instance, functional dependencies can be represented by directed graphs.
These graphs allow to reason on sets of functional dependencies. The classical Armstrong
axiomatisation can be extended to such graphs. These graphs allow to reason on functional
and on negated functional dependencies.

These graphs can also be used for constraint acquisition. It is possible to reason on
functional, negated functional and underivable functional dependencies in a simple and
powerful fashion. Since normalisation assumes that all valid functional dependencies are
known and this problem is exponential of the set of attributes we need more sophisticated
approaches.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10270-013-0350-8
http://dx.doi.org/10.1007/s10270-013-0350-8
http://dx.doi.org/10.1007/s10270-013-0350-8
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-36008-4_1
http://dx.doi.org/10.1007/978-3-642-36008-4_1
http://dx.doi.org/10.1007/978-3-642-36008-4_1

Diego Calvanese, Sven Hartmann, and Ernest Teniente 65

3.32 Validation of Complex Domain-Specific Modeling Languages
Dániel Varró (Budapest Univ. of Technology & Economics, HU)

License Creative Commons BY 3.0 Unported license
© Dániel Varró

Despite the wide range of existing generative tool support, constructing a design environment
for a complex domain-specific language (DSL) is still a tedious task as the large number
of derived features and well-formedness constraints complementing the domain metamodel
necessitate special handling. Incremental model queries as provided by the EMF-IncQuery
framework can (i) uniformly specify derived features and well-formedness constraints and (ii)
automatically refresh their result set upon model changes. However, for complex domains,
such as avionics or automotive, derived features and constraints can be formalized incorrectly
resulting in incomplete, ambiguous or inconsistent DSL specifications.

To detect such issues, we propose an automated mapping of EMF metamodels enriched
with derived features and well-formedness constraints captured as graph queries in EMF-
IncQuery into an effectively propositional fragment of first-order logic which can be efficiently
analyzed by the Z3 SMT-solver. Moreover, overapproximations are proposed for complex
query features (like transitive closure and recursive calls). Our approach will be illustrated
on analyzing DSL being developed for the avionics domain.

We further aim to address to reason about the evolution of models (along potentially
infinite state spaces by a combined validation technique based upon shape analysis). Concrete
graph based models are abstracted into different kind of shapes to represent the context of
model elements in an abstract way. Formal validation is supported on the level of shapes
is by a combined use of (a) SMT-solvers to derive potentially relevant context of shape
elements, (b) incremental instance-level model queries to filter irrelevant context and (c)
some dedicated abstract libraries.

3.33 Reasoning about Dependencies in Schema Mappings
Qing Wang (Australian National University – Canberra, AU)

License Creative Commons BY 3.0 Unported license
© Qing Wang

Schema mappings have been extensively studied in the past decades from a variety of aspects,
including high-level specification languages, computational properties, optimization, etc. To
discover logical consequences among source constraints, target constraints and mapping
constraints of a schema mapping, we develop a graph-based framework that captures the
inter-relationship between attributes of different relations. User feedback can be incorporated
into the framework to minimize ambiguity in designing schema mappings. In doing so, we
can characterize the class of sources instances that have a corresponding target instance
under a given schema mapping, and conversely can also capture properties that all target
instances for a given source instance must have.

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

66 13211 – Automated Reasoning on Conceptual Schemas

4 Working Groups

4.1 On the Practical Applicability of Current Techniques for Reasoning
on the Structural Schema

Ernest Teniente

License Creative Commons BY 3.0 Unported license
© Ernest Teniente

There has been plenty of promising results for providing automated reasoning on the structural
part of the conceptual schema and several prototype tools have been developed with this
purpose. However, most of these results have remained at the academical level and the
industry is not aware of them or it does not consider them relevant enough since it is not
using them in software development. With the aim of reducing the gap between academy
and industry, the discussion of the participants in this group was aimed at providing an
answer to the following questions:

1. What do we need to convince the industry that this technology is useful?
2. Can we come up with a common vocabulary for the various research disciplines that work

on this topic?
3. Can we come up with a research agenda of the problems we have to solve?

The first part of the discussion was devoted to identify the most relevant topics that
should be addressed to be able to provide an answer to those questions. In particular, there
was an agreement on five different topics: identifying the relevant properties, coming up with
a common agreement on the formalization (i.e. definition) of the properties, the need for
explanations, the need for benchmarks, and showing the scalability of the tools developed so
far. The second part of the discussion went into digging down for each topic and trying to
identify the most relevant issues that should require a proper answer to make the results in
this area applicable in practice.

The outcome of the discussions for each topic is summarized in the following:

Properties

Two different kinds of properties were identified: those related to reasoning only at the
schema level and properties involving both the schema and the data. The first kind of
properties are aimed at detecting whether the schema being defined is correct. So, whenever
one such property is not satisfied by the schema, or its results do not correspond to the
ones expected by the designer, it means that the schema is not properly defined and it must
be necessarily changed. The second kind of properties, i.e. those involving data, should
be understood more as services provided by the system at run-time rather than properties
denoting that the schema is ill-specified at design-time. In general, all the properties arising
from the discussions are well-known problems in the area. The most relevant properties for
each group are the following:

1. Properties related only to the schema
Schema satisfiability. There was an agreement that the empty state should not be
accepted as a solution. It was also clear the need to distinguish between finite and
infinite satisfiability.
Class and association satisfiability

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Diego Calvanese, Sven Hartmann, and Ernest Teniente 67

Constraints and class redundancy, in the sense that they are entailed by the rest of
the schema.
User-defined property verification, aimed at allowing the designer to determine whether
the state satisfies the requirements of the domain. One possible way to achieve it is by
showing the satisfiability of a partially specified state envisaged by the designer.

2. Services involving data
Model checking, i.e. whether a set of instances satisfies a set of constraints (aka integrity
checking). This should be combined with techniques to “restore” consistency when the
constraints are violated (or to handle with the “inconsistent” data). It is also worth
noting that the database view of data should be taken for this purpose, i.e. closed
world assumption: the data is a model of the constraints
Satisfiability checking over the data. A special effort should be devoted to deal with
incomplete databases (e.g. nulls or disjunctive values). Model generation (aka integrity
maintenance) is a must. In this case, the open world assumption is needed in the sense
that you can invent new things.
Query processing
View updating
Materialized view maintenance
Impact analysis of an update
Test-data generation

Definition of the properties

There was an agreement that one of the difficulties with convincing the industry about the
usefulness of these properties relies on the lack of agreement in the literature about the
precise definition of most of such properties. Therefore, one of the first things the community
should do is to agree with their formal definition. There was not enough time for doing this
during the break out sessions but the working group identified some issues to be taken into
account:

There is a need to clarify whether finite or infinite interpretations are considered
There is a need to clarify whether the definition uses the database view or the “open-world”
view
There is also a need to clarify which is the semantics used

Explanations

Having tools to show that all of this works was considered to be the most important general
concern for showing that the previous properties can be useful in practice. In addition to
being able to check these properties, these tools should also explain the results of performing
automated reasoning on the conceptual schema. Specifically, it would be interesting to know
what kind of explanations would the industry like to have, what is an explanation and in
which language should they be shown to the designer. Moreover, explanations should abstract
away from whatever logic is used underneath and they should be given regarding to the
model the user is referred to. Facilities for what-if scenarios could also be interesting for the
industry. The working group identified also some possible kinds of explanations, making a
distinction when the property under validation is satisfied or it is not.

The property is satisfied
Instance or snapshot or witness (generated example)

13211

68 13211 – Automated Reasoning on Conceptual Schemas

An abstraction of the proof (wrt the terminology of the model)
The property is not satisfied

Providing the (minimal) set(s) of constraints that give raise to the violation
An abstraction of the proof (wrt the terminology of the model)
Causal reasoning, i.e. suggestions about how to repair the violation

Benchmarks

Benchmarks are very important for industry. However, little attention has been paid to them
in the area. In fact, there is not yet an agreement on what a benchmark for automated
reasoning on conceptual schemas should be. The working group considered that such
benchmarks should at least include a motivation underlying the benchmark (i.e., why is this
benchmark for); the schema (and the data, if necessary) under consideration; the properties
to be checked by the benchmark and their expected output. The definition language of
the benchmark (EER, UML/OCL, ORM, etc.) and the semantics used in the benchmark
should also be clearly stated. Additionaly, some questions and ideas arised as a result of the
discussions:

How many benchmarks do we need?
It depends on the purpose of the benchmark. Scalability vs language expressivity, for
instance.
Could we come up with a repository of benchmarks?

Benchmarks for education seem interesting
Establishing fair benchmarks

Separation of concerns and avoiding conflict of interests are important issues
Having a contest for this community could be interesting

Evaluation criteria are also needed

Scalability

There was a clear agreement that scalability has to be necessarily addressed to convince the
industry. Moreover, there seemed to be a common understanding that it would probably be
already covered if properties and benchmarks were correctly defined. Other aspects arising
from the short discussion we had on this topic were:

Large data sets vs large complex schemata
Scalability is not only performance
Visualizing large-schemas properly

Conclusions

The working group agreed that there is still a lot of things to do for convincing the industry
about the practical applicability of current techniques for reasoning on the structural schema.
Most of these things have been summarized along this section. However, the promising
results achieved so far and the existence of several prototype tools that can be applied in
practice allow us to be optimistic about the achievement of this ambitious goal. Having
practical tools to show that all of this works was agreed to be a necessary condition for this
purpose.

Diego Calvanese, Sven Hartmann, and Ernest Teniente 69

Participants:
Achim D. Brucker (SAP Re-
search – Karlsruhe, DE)
Alessandro Artale (Free Uni-
versity of Bozen-Bolzano, IT)
Alessandro Mosca (Free Uni-
versity of Bozen-Bolzano, IT)
Bernhard Thalheim (Uni-
versität Kiel, DE)

Carolina Dania (IMDEA Soft-
ware Institute, ES)

David W. Embley (Brigham
Young University, US)

Ernest Teniente (UPC – Bar-
celona, ES)

Ingo Feinerer (TU Wien, AT)

Mirco Kuhlmann (Universität
Bremen, DE)
Parke Godfrey (York Univer-
sity – Toronto, CA)
Sophie Dupuy-Chessa (LIG –
Grenoble, FR)
Xavier Blanc (University of
Bordeaux, FR)

4.2 Reasoning about the Conceptual Schema Components Capturing
Dynamic Aspects

Diego Calvanese

License Creative Commons BY 3.0 Unported license
© Diego Clavanese

The discussion in the working group started from the observation that the topic to be
addressed is quite challenging for a variety of reasons. Indeed, there is a consensus about the
key aspects that are of importance and need to be considered when modeling the structural
aspects of a system and when reasoning over such a conceptualization. Instead, there was a
consensus that when it comes to modeling and reasoning over the dynamic aspects of an
information system, and hence its evolution over time, the situation is much less clear and
not at all consolidated, both with respect to the properties to be modeled, and with respect
to the formalisms to be adopted.

After a round in which each participant briefly introduced what it considered important
aspects to be tackled in the discussion, the working group set up an ambitious agenda
comprising the following list of points and questions that it intended to address, ordered by
importance:

1. Which dynamic and/or temporal properties should be modeled? How should the structural
and dynamic components be combined?

2. Which modeling formalisms, possibly based on logic, should be adopted for capturing
the dynamic together with the static aspects of a system? In addition to the expressive
power of the formalism, also the aspects related to the computational complexity and
hence efficiency of reasoning should be taken into account, and hence discussed. Possibly,
tractable fragments should be identified.

3. Identify specific problems, use cases, and scenarios related to dynamic aspects that come
from industrial requirements (e.g., security).

4. Identify important design-time tasks where reasoning about dynamic aspects is of im-
portance (e.g., exploratory design, analysis, planning, synthesis, verification).

5. Identify important run-time tasks where reasoning about dynamic aspects is of importance
(e.g., analysis, validation, monitoring, mining).

6. Discuss the different levels of abstraction of models and their implementation.

When the group set out to discuss Item 1 of the above list, it became immediately clear
that there was a very tight connection between the dynamic/temporal properties and the
formalism to adopt for modeling them, so that Items 1 and 2 were actually discussed together.
In fact, getting a clarification on these two points was considered almost a prerequisite for

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

70 13211 – Automated Reasoning on Conceptual Schemas

addressing further issues, so that the discussion on them took up almost the whole time
available to the group. In the end, Items 3 and 6, although considered important, could not
be addressed. Items 4 and 5 dealing respectively with the design-time and run-time tasks
that could be supported by reasoning over dynamic aspects where considered and discussed
together.

We summarize below the outcome of the discussions that took place in the group.

Properties and types of formalisms

There was an agreement that a convenient and general way to characterize the semantics
of systems that evolve and change over time is by means of labeled transition systems over
first-order structures (i.e., databases). Several dimensions for characterizing the formalisms
that are able to specify and capture dynamic aspects were identified, specifically:

adoption of a linear vs. a branching time model and formalism to specify dynamic
properties;
adoption of a propositional abstraction vs. first-order formalisms that are able to quantify
over a single state of the (transition) system vs. first-order formalisms that are able to
quantify across different states;
how data should be incorporated: adoption of a pure first-order model vs. first-order
model with built-in data types vs. first-order model enriched with additional structure,
e.g., arithmetics;
adoption of a discrete vs. a real-time model;
adoption of a model based on a sequence/tree of states (i.e., databases) that are queried
independently vs. a temporal database like model, where one can query arbitrarily the
sequence/tree of states, also doing kind of complex joins across states;
consideration or not of deontic and organizational aspects

Usability was considered an important dimensions that will have a strong impact on the
choices of the formalism, but is an aspect that is orthogonal to all the ones mentioned above.

Concrete formalisms

The working group discussed also several concreted formalism that could be adopted for
modeling and reasoning over dynamic aspects. Specifically, the following was considered and
discussed:

First-order mu-calculus was identified as a very general and powerful formalism for
specifying dynamic properties.
First-order variants of temporal logics, such as LTL, CTL, PDL, TLA+, B, and LDL
were also mentioned; the availability of corresponding model checking tools (e.g., TLC)
was considered an important aspect to take into account.
Decidable fragments of the above languages should possibly be adopted. An example are
temporal description logics, where to obtain decidability of reasoning over the combination
of static and dynamic aspects (in some cases severe) restrictions on the expressive power
of the modeling formalisms are made.
Action-based languages that allow one to model processes, e.g., by means of rules were
mentioned.
It was observed that OCL, which combined with UML is already widely used to capture
structural constraints of a system, can also be adopted to specify pre- and post-conditions
of actions.

Diego Calvanese, Sven Hartmann, and Ernest Teniente 71

Interaction between the static and dynamic components

An important aspect was considered to be how the models and formalisms for the static and
for the dynamic parts of the system interact with each other.

One possibility is that the static and the dynamic aspects are part of the same conceptual
model, which becomes a so-called temporal conceptual model.
A different approach is to model the two aspects separately and then deal with their
connection, which deals results in a structural conceptual model plus a business process.
Also the form of the dynamic queries that can be posed over the evolution of the static
component over time needs to be taken into account.

Conclusions

The working group agreed that there is a lack of a reference framework encompassing all
relevant aspects. While such a reference framework on the one hand might be be too general in
practice, on the other hand it could at least provide a way to connect the different approaches.
It was also observed that when we consider models for the dynamics, there is even a lack of
understanding and agreement of when a model/formalism should be called “conceptual”, and
what the right level of abstraction for a “dynamic conceptual model” actually is. Similarly
to the case of modeling and reasoning over the structural aspects of a system, also in this
case a key aspect is the trade-off between generality and expressive power on the one hand
and decidability and complexity of inference on the other hand.

Participants:
C. Marijke Keet (University
of KwaZulu-Natal – Durban,
ZA)

Carsten Lutz (Universität
Bremen, DE)

Dániel Varró (Budapest Univ.
of Technology & Economics,
HU)

Diego Calvanese (Free Univer-
sity Bozen-Bolzano, IT)

Geri Georg (Colorado State
University, US)
Jerzy Marcinkowski (Univer-
sity of Wroclaw, PL)
Jorge Lobo (IBM TJ Watson
Research Center – Hawthorne,
US)
Marco A. Casanova (PUC –
Rio de Janeiro, BR)
Marco Montali (Free Univer-

sity Bozen-Bolzano, IT)
Martin Gogolla (Universität
Bremen, DE)
Michael Leuschel (Heinrich-
Heine-Universität Düsseldorf,
DE)
Michael Zakharyaschev (Birk-
beck College London, GB)
Xavier Oriol (UPC – Bar-
celona, ES)

4.3 New Challenges for Automated Reasoning on Conceptual Schemas
Sven Hartmann

License Creative Commons BY 3.0 Unported license
© Sven Hartmann

Our working group started with a brainstorming session where everybody contributed ideas
and opinions about emerging trends and challenges in our field of research. Soon the
discussion focussed around the following set of questions:

Which major trends are underway in database modelling and management? What will
be the trends of tomorrow? Which trends will have a lasting impact?
What challenges arise for the conceptual modelling of databases? What contributions
can the conceptual modelling community make? What new research directions emerge
for the conceptual modelling community?

13211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

72 13211 – Automated Reasoning on Conceptual Schemas

What support can automated reasoning provide to tackle these challenges? What concepts,
theories, and methods must be developed by the automated reasoning community to
enable solutions? What new research directions emerge for the automated reasoning
community?

After a lively exchange of thoughts a range of trends and issues for research were identified
as important and suggested for further discussion. These can be grouped into the following
topic areas:

1. Big data and the exploration of conceptional schemas
2. Integration of database and software engineering formalisms and methods
3. Co-evolution of schemas and views
4. Updatable views
5. Assumptions of reasonings tasks
6. Meta modelling
7. Research integration
8. Benchmarks
9. Quality assurances and cost models

During the discussion in our group it soon became apparant that some of the upcoming
research issues are extensions of established problems that have motivated research on
automated reasoning for conceptual schemas in the past and still await answers that unlock
them for uptake by database practinioneers.

Big Data and Schema Exploration

Big Data is one of today’s mega trends that leads to a multitude of new research issues. The
group shared opinions on whether and how conceptual modelling can help to understand
and process massive datasets of heterogenous data. The following items were suggested for
further investigation:

Can we use automated reasoning techniques to extract / adjust / enhance conceptual
information from big data (such as sensor data or stream data)?
How would that be different from data mining?
How can existing conceptual models be combined with data mining techniques to improve
concept models?
What formalisms are needed to capture conceptual information in big data.

Database vs software development

In view of the increasing complexity of future information systems the group found it
necessary to develop and deploy research-led strategies for integrating formalisms, methods
and practices used in database and software development.

How can constraint checking efforts in DBMS and application software be integrated?
What guarantees do software developers need about databases?
Does correctness / completeness really matter?
How can these guarantees be best communicated?
Do we need to map them to implementation code?
How to establish a global perspective on constraint enforcement?

Diego Calvanese, Sven Hartmann, and Ernest Teniente 73

Co-evolution of Schemas and Views

The group discussed challenges that arise from changing information needs in complex
information systems. There was also agreement that conceptual modelling in practice has
diverse stakeholders that require tailored views on databases during the entire life cycle.

How can conceptual changes of views be propagated to the underlying schema?
What updates can be supported?
How can schema/view mappings best evolved?
What constraints can be supported?
What criteria need to be considered?
How can automated reasoning help?
Can we understand and contribute to tools like Hibernate?

Updatable views

The discussion addressed research challenges for automated reasoning that arise when
databases are updated by diverse users and application programs through tailored views.

How can data updates on views be propagated to the underlying conceptual schema?
What updates can be supported?
What constraints can be supported?
What criteria need to be considered? (lossless, inference-proof, . . .)
How can automated reasoning help?

Assumptions of reasonings tasks

The group discussed the discrepancy between the challenges that database designers face
in practice and the answers that the research community is able to provide, and asked for
reasons.

How to bridge the mismatch between the relational model and SQL?
Can our methods handle partial information?
Can our methods handle duplicates?
How can SQL features be handled in the logic languages that we use?

Meta modelling

In view of the diversity of conceptual modelling frameworks in use the group agreed that
automated reasoning can only be successful if the underlying semantics is revealed and
formalized. The opportunities of model-based approaches and schema translations were
discussed, too.

Do we need semantics for meta models?
Can we find and justify patterns for model transformations in conceptual modelling?
Are purely syntactical transformations desirable / achievable?
How can graphical and textual languages for schema declaration be used simultaneously
to provide optimal support for designers?

13211

74 13211 – Automated Reasoning on Conceptual Schemas

Research integration

There was agreement that the tackling emerging research challenges would benefit from joint
efforts of the community which requires a common understanding and extended collaboration.

Do we understand each other? Even if we know about different terminologies, are we
always aware of the one we are using?
We use different methods for constraint handling, different languages for declaring
constraints, different constraint classes – how can these efforts be integrated?
Do we need new approaches to tackle the conceptual complexity of emerging applications?
Can modelling and reasoning be combined with simulation?

Benchmarks

We discussed what ingredients would be most helpful to facilitate future collaboration in
research, and identified commonly accepted benchmarks as one important enabling tool.

Are there proper benchmarks for conceptual modelling tasks?
What qualifies them as benchmarks?
How to make test cases transparent and applicable by the community?

Quality assurances and cost models

Members of our group asked what obstacles hamper the uptake of new research achievements
into practice, and what is needed to overcome them. Quality assurances in the vein of service-
level agreements were considered as one promising approach and suggested for investigation.

Is it necessary / possible / desirable to predict the impacts of design decisions at conceptual
level on the implementation level?
What kind of cost models do we need / want?
What assurances can be provided to database users?
Is it enough to say “we do it best possible” or do we need quantitative statements?

Participants:
Elena V. Ravve (ORT Braude
College – Karmiel, IL)

Enrico Franconi (Free Univer-
sity Bozen-Bolzano, IT)

Guillem Rull (UPC – Bar-
celona, ES)

Joachim Biskup (TU
Dortmund, DE)

Klaus-Dieter Schewe (Soft-
ware Competence Center –
Hagenberg, AT)
Mira Balaban (Ben Gurion
University – Beer Sheva, IL)
Qing Wang (Australian Na-
tional University, AU)
Roman Kontchakov (Birkbeck
College London, GB)

Stephan Mäs (TU Dresden,
DE)
Stephen J. Hegner (University
of Umeå, SE)
Sven Hartmann (TU
Clausthal, DE)
Thomas Baar (Hochschule für
Technik und Wirtschaft – Ber-
lin, DE)

Diego Calvanese, Sven Hartmann, and Ernest Teniente 75

5 Seminar program

The program of the different sessions is given below.

Session 1: Reasoning on the Structural Schema (I)
UML class diagrams – decision, identification and repair of correctness and quality
problems, Mira Balaban
OCL2FOL: Using SMT solvers to automatically reason on conceptual schemata with
OCL constraints, Carolina Dania
Reasoning techniques for conceptual models, Alessandro Artale
Toward an ontology-driven unifying metamodel for UML Class Diagrams, Maria Keet

Session 2: Reasoning on the Structural Schema (II)
“Automating reasoning on conceptual schemas” in FamilySearch—a large-scale reasoning
application, David W. Embley
Incremental inconsistencies detection with low memory overhead, Xavier Blanc
Constraints on class diagrams, Ingo Feinerer
At SAP, class models are rarely used as they are “too close to real code”, Achim D. Brucker

Session 3: Reasoning on the Structural Schema (III)
Reasoning in ORM, Enrico Franconi
Exploring UML and OCL Model Properties with Relational Logic, Martin Gogolla
AuRUS: Automated reasoning on UML schemas, Ernest Teniente
ProB: Solving constraints on large data and higher-order formal models, Michael Leuschel

Session 4: Extensions
Preliminary report on an algebra of lightweight ontologies, Marco A. Casanova
Temporal extended conceptual models, Roman Kontchakov
Reasoning on conceptual schemas of spatial data, Stephan Mäs
Validation of complex domain-specific modeling languages, Dániel Varró

Session 5: Reasoning about the Dynamics
View design for updates, Stephen Hegner
Reasoning about the effect of structural events in UML conceptual schemas, Xavier Oriol
Automated reasoning for security and compliance properties of business processes, Achim
D. Brucker
Unified approaches for modeling and reasoning over processes and data, Diego Calvanese

Session 6: New Challenges
The curse of restructuring in dependency theory, Klaus-Dieter Schewe
A declarative approach to distributed computing, Jorge Lobo
On BDD, finite controllability and the BDD/FC conjecture, Jerzy Marcinkowski
Metrics for visual notations, Sophie Dupuy-Chessa

Session 7: Reasoning about Mappings
Reasoning about dependencies in schema mappings, Qing Wang
Semantic-based mappings, Guillem Rull
Relationship between approaches to ontology-based data access and object relational
techniques, Marco Montali
Armstrong instances as an aid for automated reasoning, Sven Hartmann

13211

76 13211 – Automated Reasoning on Conceptual Schemas

Session 8: Reasoning about Dependencies
Information and dependency preserving BCNF decomposition algorithm via attribute
splitting, Elena V. Ravve
Visual reasoning with (functional) dependencies, Bernhard Thalheim
Representation of instance-derivations based on dependencies, Joachim Biskup
Reasoning over order dependencies for relational schema, Parke Godfrey

Diego Calvanese, Sven Hartmann, and Ernest Teniente 77

Participants

Alessandro Artale
Free Univ. of Bozen-Bolzano, IT

Thomas Baar
Hochschule für Technik und
Wirtschaft – Berlin, DE

Mira Balaban
Ben Gurion University – Beer
Sheva, IL

Joachim Biskup
TU Dortmund, DE

Xavier Blanc
University of Bordeaux, FR

Achim D. Brucker
SAP Research – Karlsruhe, DE

Diego Calvanese
Free Univ. of Bozen-Bolzano, IT

Marco A. Casanova
PUC – Rio de Janeiro, BR

Carolina Dania
IMDEA Software Institute, ES

Sophie Dupuy-Chessa
LIG – Grenoble, FR

David W. Embley
Brigham Young University, US

Ingo Feinerer
TU Wien, AT

Enrico Franconi
Free Univ. of Bozen-Bolzano, IT

Geri Georg
Colorado State University, US

Parke Godfrey
York University – Toronto, CA

Martin Gogolla
Universität Bremen, DE

Sven Hartmann
TU Clausthal, DE

Stephen J. Hegner
University of Umeå, SE

C. Maria Keet
University of KwaZulu-Natal –
Durban, ZA

Roman Kontchakov
Birkbeck College London, GB

Mirco Kuhlmann
Universität Bremen, DE

Michael Leuschel
Heinrich-Heine-Universität
Düsseldorf, DE

Jorge Lobo
Universitat Pompeu Fabra –
Barcelona, ES

Carsten Lutz
Universität Bremen, DE

Stephan Mäs
TU Dresden, DE

Jerzy Marcinkowski
University of Wroclaw, PL

Marco Montali
Free Univ. of Bozen-Bolzano, IT

Alessandro Mosca
Free Univ. of Bozen-Bolzano, IT

Xavier Oriol
UPC – Barcelona, ES

Elena V. Ravve
ORT Braude College –
Karmiel, IL

Guillem Rull
UPC – Barcelona, ES

Klaus-Dieter Schewe
Software Competence Center –
Hagenberg, AT

Ernest Teniente
UPC – Barcelona, ES

Bernhard Thalheim
Universität Kiel, DE

Dániel Varró
Budapest Univ. of Technology &
Economics, HU

Qing Wang
Australian National Univ., AU

Michael Zakharyaschev
Birkbeck College London, GB

13211

	Executive Summary Diego Calvanese, Sven Hartmann, and Ernest Teniente
	Table of Contents
	Overview of Talks
	Reasoning over Conceptual Data Models: The Description Logic Approach Alessandro Artale
	UML class diagrams – decision, identification and repair of correctness and quality problems Mira Balaban
	A Problem Statement: Representation of Instance-Derivations Based on Dependencies Joachim Biskup
	Employing Automatic Reasoning on Conceptual Schemas Joachim Biskup
	Incremental inconsistencies detection with low memory overhead Xavier Blanc
	Modeling@SAP: Why Class Models Are Rarely Used Achim D. Brucker
	Reasoning over Secure Business Processes Achim D. Brucker
	Modeling and Reasoning over Processes and Data Diego Calvanese
	Preliminary Report on an Algebra of Lightweight Ontologies Marco A. Casanova
	OCL2FOL: Using SMT solvers to automatically reason on conceptual schemata with OCL constraints Carolina Dania
	Metrics for visual notations Sophie Dupuy-Chessa
	``Automating Reasoning on Conceptual Schemas'' in FamilySearchTM – a Large-Scale Reasoning Application David W. Embley
	Constraints on Class Diagrams Ingo Feinerer
	ORM2: formalisation and encoding in OWL2 Enrico Franconi
	Reasoning over Order Dependencies for Relational Schema Parke Godfrey
	Exploring UML and OCL Model Properties with Relational Logic Martin Gogolla
	Armstrong Instances as a Reasoning Aid Sven Hartmann
	Automated Design of Updateable Database Views: a Framework for Possible Strategies Stephen J. Hegner
	An ontology-driven unifying metamodel for UML Class Diagrams, EER, and ORM2 C. Maria Keet
	Temporal Extended Conceptual Models Roman Kontchakov
	ProB: Solving Constraints on Large Data and Higher-Order Formal Models Michael Leuschel
	A Declarative Approach to Distributed Computing Jorge Lobo
	Reasoning on conceptual schemas of spatial data Stephan Maes
	On BDD, Finite controllability and the BDD/FC conjecture Jerzy Marcinkowski
	On the Relationship Between OBDA and Relational Mapping Marco Montali
	Reasoning about the Effect of Structural Events in UML Conceptual Schemas Xavier Oriol
	Information and dependency preserving BCNF decomposition algorithm via attribute splitting Elena V. Ravve
	Semantic-based Mappings Guillem Rull
	The Curse of Restructuring in Dependency Theory Klaus-Dieter Schewe
	AuRUS: Automated Reasoning on UML Schemas Ernest Teniente
	Visual reasoning with (functional) dependencies Bernhard Thalheim
	Validation of Complex Domain-Specific Modeling Languages Dániel Varró
	Reasoning about Dependencies in Schema Mappings Qing Wang

	Working Groups
	On the Practical Applicability of Current Techniques for Reasoning on the Structural Schema Ernest Teniente
	Reasoning about the Conceptual Schema Components Capturing Dynamic Aspects Diego Clavanese
	New Challenges for Automated Reasoning on Conceptual Schemas Sven Hartmann

	Seminar program
	Participants

