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Abstract We address the problem of query answering with ontologies over
databases. We consider first-order ontology systems playing the role of a concep-
tual model of a database represented as a classical finite relational store, either with
an open world or a closed world reading. Queries over the conceptual signature
are reformulated into queries over the database signature, so to get the same answer
directly via SQL relational database technology.We consider two distinct approaches
to reformulation, perfect and exact reformulation. We discuss advantages and disad-
vantages of each of the two approaches, and we report on some significant results
appeared in the literature.

1 Introduction

We address the problem of query answering with ontologies over databases. An
ontology provides a conceptual view of the database and consists of constraints on
a vocabulary extending the basic vocabulary of the data. Querying a database using
the terms in such a richer ontology allows for more flexibility than directly using
only the basic vocabulary of the relational database. In the proposed framework, we
analyse the case when a query expressed in ontology terms can be reformulated as a
query expressed directly in database terms, so that it can be evaluated using standard
SQL relational technology, which is very efficient in the size of the data.

We consider first-order ontology systems (that is, expressible as first-order
theories) playing the role of a conceptual model of a database represented as a clas-
sical finite relational store, called the locally-closed world [13, 14], exact views [15,
25, 26], or, in our case, a DBox [19]. A DBox is a set of ground atoms that seman-
tically behaves like a database, i.e., the interpretation of the database predicates in
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the DBox is exactly equal to the database relations. We say that the DBox predicates
are closed, i.e., their extensions are the same across all the interpretations. On the
other hand, we may have incomplete data that behaves as ground atoms in classical
first-order logic, or ABoxes in classical description logics: in this case, predicates
holding this data are open, i.e., their interpretation may be extended in different ways
across different interpretations.

As an example, consider an open ABoxA = {Person(john)} and alternatively a
closedDBoxwith the same dataD = {Person(john)}. In everymodel I of theABox
A the extension of the predicate Person includes john: namely, PersonI ⊇ {john};
instead, in every model I of the DBox D the extension of Person is exactly john:
namely PersonI = {john}.

The difference between data held as a DBox and data held as an ABox becomes
evident when querying. As an example, consider a Boolean negative query
¬Person(mary) over a given standard relational database, expressed by the DBox
D = {Person(john)}. The answer of the query to the DBox is true, because
the only specified person is john. On the other hand, if we consider the ABox
A = {Person(john)} and evaluate the query over it, the answer is false because
the ABox specifies only the necessary facts but not all of them, and, hence, mary
still may be a person in some model.

The certain answer to an open query consists of the substitutions that make the
query true in all the models of the ontology with the data (ABox or DBox): so, if
a substitution makes the query true only in some models but not in others (namely,
it would be only a possible answer), then it is not part of the certain answer. Notice
that it may indeed be the case that the answer to the query is not necessarily the
same among all the models of the ontology with the ABox or DBox. In this case, the
query is not fully determined by the given source data; indeed, given the database,
there is some answer that is possible, but not certain. For expressive ontologies and
queries, the possibility of indeterminacy of queries with respect to the data, brings
about an increase of the worst-case computational complexity of computing certain
answers. Moreover, it has been shown that computing arbitrary certain answers with
DBoxes may be strictly harder in data complexity than computing certain answers
with ABoxes [10, 17, 28]. Alternatively, to gain in efficiency, we could focus only
on queries having the same answer over all the models of the ontology with the
data, namely, when the information requested by the query is fully available from
the source data without ambiguity. In this way, the indeterminacy disappears, and
the complexity of query answering may be lower.

For example, consider an ontology stating that the classPerson is partitioned into
the classes Male and Female, and that the class Person is a subclass of the class
Animal, and assume that there is data only for Person andMale (and that such data
is closed, i.e., complete). The query asking for all the animals (for which we do not
have directly data) is not fully determined by the data, since there may be animals
who are not persons. On the other hand, the query asking for all the female persons
is fully determined by the data, since the female persons are exactly all the persons
who are not male, which we know exactly given the data.



First-Order Ontology Mediated Database Querying via Query Reformulation 171

In this chapter we are interested in answering ontologymediated queries via query
reformulation: namely the original query is reformulated as a query expressed only
in database terms, so that it can be efficiently evaluated directly over the database
using standard SQL relational technology.

The mainstream research on query reformulation [21] is based on perfect rewrit-
ings with ABoxes and relatively inexpressive ontologies and queries (see, e.g., the
DL-Lite approach in [2, 8]). Given an ontology and an arbitrary query, its perfect
reformulation is a formula that, when evaluated over an arbitrary database, is guar-
anteed to return the certain answers of the original query with respect to the ontology
and the same database. In the example above, the perfect reformulation of the query
asking for all the animals is the query asking for all the persons, since those are the
individuals which for sure are in the answer of the original query. On the other hand,
we could construct a stronger reformulated query expressed in terms of database
predicates, by requiring it to be also logically equivalent to the original query with
respect to the ontology. This condition still obviously guarantees to give the same
certain answer to an arbitrary database with respect to the ontology as the original
query. In addition, these equivalent reformulations (called exact reformulations) exist
if and only if the answer of the original query itself is fully determined by the given
source data [4, 19]. So, in the case of exact reformulations we can deal with more
expressive ontologies and queries, at the cost of being able to answer only queries
determined by the data. In our example, there is no exact reformulation for the query
asking for all the animals, but there is an exact reformulation for the query asking
for all the females. It should be noticed that every exact reformulation is perfect, but
not vice-versa.

In this chapter we survey and compare within a common formal framework the
two approaches to ontology mediated query answering: via perfect reformulations
in Sect. 3, and via exact reformulations in Sect. 4. We discuss advantages and disad-
vantages of each of the two approaches, and we report on the most relevant results
appeared in the literature.

2 First-Order Ontologies and Databases

LetFOL(C,P) be a classical function-free first-order language with equality over a
signature (C,P), whereC is a countably infinite set of constants, andP is a countably
infinite set of predicates with associated arities. We consider P partitioned into a set
PD of database predicates, which intuitively we consider closed, and a set PT of
so-called TBox predicates, which intuitively we consider open. In the rest of the
paper we will use L to denote some chosen fragments of FOL(C,P).

We denote with P{ϕ1,...,ϕn} the set of all predicates and withC{ϕ1,...,ϕn} the set of all
constants occurring in the formulas ϕ1, . . . ,ϕn . For simplicity, we write Pϕ (resp.,
Cϕ) instead of P{ϕ} (resp., C{ϕ}). When we want to make the free variables X of a
(possibly open) formula ϕ explicit, we write the formula as ϕ[X ].
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A (possibly empty) finite set of closed formulas in L is called an ontology (or
knowledge base). We consider the following specific components of an ontology K:

• Thedatabase (orDBox)D is the set of groundatoms inK of the form P(c1, . . . , cn),
where P is an n-ary predicate in PD , and ci ∈ C, for i ∈ {1, . . . , n}.

• The ABoxA ofK is defined analogously to the DBox, except that its predicates are
in PT (instead of PD). Clearly, the sets of ABox and DBox predicates are disjoint.

• The TBox T is the set of formulas inK over predicates in PT only, but that are not
part of the ABox of K.

• The (sound GAV) mappingM is the set of formulas inK of the form ∀X.ϕ[X ] →
P(X), where Pϕ ⊆ PD and P ∈ PT .

• The views V is the set of formulas in K of the form ∀X.ϕ[X ] ↔ P(X), where
Pϕ ⊆ PD and P ∈ PT .

Notice that, in general, an ontologymight contain additional formulas with respect to
those in these specific five components. For a DBox, ABox, TBox, mapping, views,
or ontology B, we denote with PB the set of all predicates, and with CB the set of all
constants appearing in B.

As usual, an interpretation I = 〈ΔI, ·I〉 consists of a non-empty set, the domain
ΔI , and an interpretation function ·I defined over constants and predicates of the
signature, such that for every pair of database constants c1, c2 ∈ C, if c1 
= c2 then
cI1 
= cI2 (i.e., we assume unique names (UNA)). An interpretation I embeds a
database D, if it holds (i) cI = c for every database constant c ∈ CD (i.e., we
make the standard name assumption (SNA) on the database constants), and that
(ii) (c1, . . . , cn) ∈ PI if and only if P(c1, . . . , cn) ∈ D. We use E(D) to denote the
set of all interpretations embedding a databaseD. In other words, in every interpreta-
tion embedding a databaseD, the interpretation of every database predicate is always
the same, and it is given exactly by its content in the database; this is, in general,
not the case for the interpretation of the TBox (i.e., non-database) predicates. We
say that the database predicates are closed, while the other predicates, i.e., the TBox
predicates, are open and may be interpreted differently in different interpretations.
In an open world, an interpretation I soundly embeds a database D if it holds that
(c1, . . . , cn) ∈ PI if (but not only if) P(c1, . . . , cn) ∈ D.

As usual, an interpretation in which a closed formula is true according to the
classical FOL definitions is called a model of the formula; the set of all models of a
formula ϕ (resp., ontologyK) is denoted asMod(ϕ) (resp.,Mod(K)). A databaseD
is legal for an ontologyK if there exists a model ofK embeddingD. In the following,
we will consider only consistent non-tautological ontologies and legal databases.

Given an interpretation I of a language L(P,C), and P
′ ⊆ P and C

′ ⊆ C, we
denote with I|(P′,C′) the interpretation identical to I, except that the interpretation
function ·I|(P′ ,C′) is defined only for the constants and predicates of the smaller signa-
ture (P′,C′).

Let X be a set of variable symbols and S a set. A substitution is a total function
Θ : X → S assigning an element in S to each variable in X , including the empty
substitution ε when X = ∅. Domain and image (or range) of a substitution Θ are
written as dom(Θ) and rng(Θ) respectively. Given a formula ϕ[X ], an interpretation
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I, and a substitution Θ : X → C, we use I |= ϕ[X/Θ] to denote that ϕ[X ] is true
in I with its free variables substituted according to Θ : X → C. Given a formula
ϕ[X ], an interpretation I = 〈ΔI, ·I〉, and a substitutionΘ : X → ΔI (i.e., a variable
assignment), we use I,Θ |= ϕ to denote that ϕ[X ] is true in I with its free variables
interpreted according to Θ : X → ΔI .

Queries. A query is a (possibly closed) formula. The number of free variables of the
query is called its arity. When the arity is 0 (i.e., the query is a closed formula), we
call the query Boolean. The (certain) answer cert(Q[X ],K) of a query Q[X ] over an
ontology K containing a database DK is the set of substitutions with constants that
make the query true for all models of K that embed its database DK. Formally:

cert(Q[X ],K) = {Θ : X → C | for all I ∈ Mod(K) ∩ E(DK) : I |= Q[X/Θ]}

For a Boolean query Q, cert(Q,K) is either the empty set (corresponding to false),
or the empty assignment (corresponding to true).

In this chapter we are interested in the query answering problem: given an ontol-
ogyK and a query Q, compute cert(Q[X ],K). To study its computational complexity,
we consider the associated decision problem (sometimes called the recognition prob-
lem for query answering): given an ontology K, a query Q, and a substitution Θ ,
decide whether Θ ∈ cert(Q[X ],K). The combined complexity of the problem is the
complexity measured in the combined size of the ontology and the query, while the
data complexity [38] is the complexity measured only in the size of the data, i.e., the
ABox and the DBox/database.

It has been shown that it is possible to weaken the standard name assumption
for the database constants without changing the certain answers, by just assuming
unique names [19]. So, the proposed framework is entirely classical, namely it can
be completely represented in classical first-order logic with equality.

In order to capture exactly the expressivity of Relational Algebra and of core
query languages used in databases, notably SQL [1], we define now domain inde-
pendent formulas with respect to a given ontology, by adapting the classical database
definition of domain independence to our ontology based framework.

A formula Q[X ] is domain independent with respect to an ontology K if and
only if for every two models I = 〈ΔI, ·I〉 and J = 〈ΔJ , ·J 〉 ofK that agree on the
interpretation of the predicates and constants (i.e., ·I = ·J ), and for every substitution
Θ : X → ΔI ∪ ΔJ we have:

rng(Θ) ⊆ ΔI and I, Θ |= Q[X ] if and only if rng(Θ) ⊆ ΔJ and J , Θ |= Q[X ].

The above definition reduces to the database definition of domain independence
whenever the ontology is empty. The problem of checking whether a first-order logic
formula is domain independent is undecidable [1, 11]. The well known safe-range
syntactic fragment of first-order logic introduced by Codd is an equally expressive
language; indeed any safe-range formula is domain independent, and any domain
independent formula can be easily transformed into a logically equivalent safe-range
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formula. This transformation implements the idea that the range of every variable
of domain independent formula should be restricted by some "guard" bounding its
extension.

An SQL query is a domain independent first order formula [1]. A conjunctive
query (CQ) is an SQL query constructed using conjunction and existential quantifi-
cation only. A union of conjunctive queries (UCQ) is a disjunction of CQs, all of the
same arity. While in UCQs disjunction can only be used as the outermost operator,
positive queries (PQs) allow for the arbitrary use of conjunction, disjunction, and
existential quantification (but they rule out negation). In fact, PQs, which are the pos-
itive fragment of domain independent first-order queries, have the same expressive
power as UCQs, although they may be exponentially more succinct.

Description logics ontologies. Description logics are relevant fragments of first-
order logic with good computational properties. We consider here the expressive
description logic ALCHOIQ as a fragment of FOL(C,P). In ALCHOIQ, only
unary and binary predicates are allowed, called respectively concepts and roles,
together with constants and the equality predicate. ALCHOIQ formulas ϕ (also
called DL axioms), concepts C , and roles R are defined according to the following
syntax:

ϕ =⇒ C � C ′ | R � R′ | C(c) | R(c1, c2)

C,C ′ =⇒ A | ¬C | C � C ′ | C � C ′ | {c1, . . . , cn} |
∃R.C | ∀R.C | ≥ k R.C | ≤ k R.C

R, R′ =⇒ S | S−

where A denotes a concept name (a unary TBox predicate), S a role name (a binary
TBox predicate), c, c1, . . . , cn constants (also called individuals), and k a positive
integer. Other constructs in the language are defined as shortcuts: � ≡ A � ¬A
for some A; ⊥ ≡ ¬�; ∃R ≡ ∃R.�; ≥ n R ≡ ≥ n R.�; ≤ n R ≡ ≤ n R.�. A DL
ontology is a set of DL axioms, where the DL axioms of the form C � C ′ and
R � R′ constitute the DL TBox, and the DL axioms of the form C(c) and R(c1, c2)
constitute the DL ABox.

We introduce also some significant sublanguages ofALCHOIQ. The description
logic ALCHOI is the fragment of ALCHOIQ without the cardinality operators
≥ k R.C and≤ k R.C , whileALCHOQ is the fragment ofALCHOIQwithout the
inverse operator for roles P−.

The lightweight logics of the DL-Lite family [2, 8] are description logics specif-
ically tuned for accessing large amounts of data. Here we adopt the simple variant
DL-LiteR presented in [8], but all our considerations can be extended also to some
of the more expressive variants of DL-Lite that are studied in [2] (specifically, those
for which query answering is first-order rewritable, see Sect. 3). We use simply DL-
Lite when our statements apply in general to such logics. In DL-LiteR, DL axioms,
concepts, and roles are defined according to the following syntax:
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Fig. 1 Mapping ·† from an
ALCHOIQ ontology to a
first-order ontology

(C1 C2)† = ∀x.C1
†(x) → C2

†(x)
(R1 R2)† = ∀x, y.R1

†(x, y) → R2
†(x, y)

(C(c))† = C†(c)
(R(c1, c2))† = R†(c1, c2)

A† = λx.A(x)
S† = λx, y.S(x, y)

(¬C)† = λx.¬C†(x)
(C1 C2)† = λx.C1

†(x) ∧ C2
†(x)

(C1 C2)† = λx.C1
†(x) ∨ C2

†(x)
(∃R.C)† = λx.∃y.R†(x, y) ∧ C†(y)
(∀R.C)† = λx.∀y.R†(x, y) → C†(y)

(≥ k R.C)† = λx.∃≥ky.R†(x, y) ∧ C†(y)
(≤ k R.C)† = λx.∃≤ky.R†(x, y) ∧ C†(y)

{c1, . . . , cn}† = λx.x = c1 ∨ · · · ∨ x = cn

(S−)† = λx, y.S(y, x)

ϕ =⇒ B � B ′ | B � ¬B ′ | R � R′ | R � ¬R′ | A(c) | S(c1, c2)

B, B ′ =⇒ A | ∃R
R, R′ =⇒ S | S−

Here, B, B ′ are called basic concepts, and they denote either an atomic concept A,
or the projection of a role S on its first component (∃S) or on its second component
(∃S−). We observe that in TBox axioms, negation is used only on the right-hand
side of inclusions, i.e., to express disjointness between concepts and between roles.
Moreover, DL-LiteR restricts ABox axioms to use concept and role names only, as
opposed to complex concept expressions allowed in ALCHOIQ.

We observe that, despite its simplicity, DL-LiteR is able to capture the essential
features of most conceptual modeling formalisms, such as UML Class Diagrams or
Entity-Relationship schemata (see, e.g., [7]).

Description logics versus first-order ontologies. A DL ontology can be translated
into first-order logic formulas by means of a mapping function ·†. In this transla-
tion, concept and role names correspond respectively to unary and binary predicate
symbols in PT , and individuals corresponds to constant symbols in C. Specifically,
the mapping ·† from anALCHOIQ ontology to a first-order ontology is defined in
Fig. 1. In our translation, we have made use of first-order logic with counting quan-
tifiers [31], but such quantifiers are just syntactic sugar that can be easily translated
away with just a linear blowup in the size of the formula (assuming numbers are
represented in unary).

Notice that, since aDLontology is constructed over TBox (i.e., open) predicates of
PT only, the translation of a DL ontology to first-order, results in the TBox and ABox
part of a first-order ontology. These are obtained respectively from the translation of
the DL TBox and the DL ABox. We may then combine such a first-order ontology
with additional axioms that also make use of database predicates in PD , e.g., a
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database (or DBox) part consisting of ground atoms over PD , a sound GAVmapping
part, a view part, or additional more general formulas.

3 Perfect Query Reformulations

We illustrate now the approach to query reformulation based on perfect rewriting,
which was first introduced for answering UCQs over DL-Lite ontologies through
the PerfectRef algorithm [8], and then extended to several other DLs [23, 29, 33],
including also more expressive members of the DL-Lite family [2]. Such DLs share
with DL-Lite some crucial properties that are necessary to make a rewriting based
approach efficient.We illustrate first the approach for the case of UCQs over standard
DL-LiteR ontologies, constituted by a TBox and an ABox only. We come back later
to how to extend the approach to take into account the presence of a database and of
sound GAV mappings.

We recall that we are interested only in the case where the ontology is consistent.
Indeed, the case where the ontology is inconsistent is not really of interest, since then
the certain answers of every query is the set of all possible variable substitutions.
However, we address afterwards also the problem of checking consistency.

The key idea at the basis of the rewriting approach is to strictly separate the
processing done with respect to the TBox (providing the intensional level of the
ontology) from the processing done by taking into account the ABox (i.e., the exten-
sional level). More precisely, letK be a DL-LiteR ontology with TBox T and ABox
A, and let Q be a UCQ over K.

1. The query Q is first processed and rewritten into a new query Q′, by compiling
into Q′ the positive inclusion assertions of the TBox T , i.e., those inclusion
assertions that contain no negation in the right-hand side.

2. The rewritten query Q′ is then evaluated over the ABoxA, as ifAwas a (closed)
database (and not considering further the TBox).

In this way, computing the certain answers is essentially reduced to query evaluation
over a database instance. Since Q′ does not depend on the ABox, the data complexity
of the whole query answering algorithm is the same as the data complexity of eval-
uating Q′ over the ABox. A crucial property for DL-Lite is that, in the case where
Q is a UCQ, the query Q′ is also a UCQ. Hence, the data complexity of the whole
query answering algorithm is in AC0, which is the complexity of evaluating a UCQ
(or, more in general, a first-order query) over a relational database.

Canonical model. The rewriting based approach relies in an essential way on the
canonical model property, which holds forDL-Lite and for the horn variants of many
other DLs [12, 24]. Such property ensures that every satisfiable ontology K admits
a canonical model Ic that is the least constrained model among all models of K,
and that can be homomorphically embedded in all other models. This in turn implies
that the canonical model correctly represents all the models of K with respect to the
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Fig. 2 Rewriting of query
atoms in DL-LiteR

A1 A2 . . . , A2(x), . . . . . . , A1(x), . . .
∃S A . . . , A(x), . . . . . . , S(x, ), . . .

∃S− A . . . , A(x), . . . . . . , S( , x), . . .
A S . . . , S(x, ), . . . . . . , A(x), . . .
A S− . . . , S( , x), . . . . . . , A(x), . . .

∃S1 S2 . . . , S2(x, ), . . . . . . , S1(x, ), . . .
S1 S2 . . . , S2(x, y), . . . . . . , S1(x, y), . . .
S1 S−

2 . . . , S2(x, y), . . . . . . , S1(y, x), . . .
· · ·

problem of answering positive queries (and in particular, UCQs). In other words, for
every UCQ Q, we have that cert(Q,K) is contained in the result of the evaluation
of Q over the canonical model.1 Intuitively, the canonical model Ic for a DL-Lite
ontology K contains the ABox A of K, and in addition might contain existentially
implied objects, whose existence is enforced by the TBox axioms with ∃R in the
right-hand side. For example, if the TBox contains an axiom Student � ∃attends,
expressing that every student should attend something (presumably a course), and
the ABox contains the fact Student(john), then the canonical model will contain a
fact attends(john, on), where on is a newly introduced object.

First-Order rewritability. For simplicity, let us consider the case where we want
to answer a Boolean UCQ Q = ∨

i qi , where each qi is a Boolean CQ. In order for
some qi to contribute to the answer to Q, there must exist a homomorphic embedding
of all atoms of qi into facts of the canonical model Ic. We call such embedding a
match of qi into Ic. However, Ic is in general infinite, hence we cannot evaluate
qi over Ic by effectively computing Ic and then searching for a match of qi into
Ic. Instead, each CQ qi is rewritten into a UCQ Qi in such a way that, whenever
qi has a match in some portion of Ic, then there will be a CQ among those in Qi

that has a corresponding match in the ABox part of Ic. Informally, the rewriting
algorithm initializes a set Rew of CQs to

⋃
i {qi } (i.e., to the CQs in the input query

Q), and processes each yet unprocessed query qi in Rew by adding to Rew also all
rewritings of qi . For each atom α in qi , it checks whether α can be rewritten by using
one of the positive inclusions in the TBox, and if so, adds to Rew the CQ obtained
from qi by rewriting α. The rewriting of an atom uses a positive inclusion axiom as
rewriting rule, applied from right to left, to compile away the knowledge represented
by the positive inclusion itself. For example, using the inclusion A1 � A2, an atom
of the form A2(x) is rewritten to A1(x). Alternatively, we can consider this rewriting
step as the application of standard resolution between the query and the inclusion
A1 � A2, viewed as the (implicitly universally quantified) formula A1(x) → A2(x).
Other significant cases of rewritings of atoms are depicted in Fig. 2, where each
inclusion axiom in the left-most column accounts for rewriting the atom to the left

1Note that, since the domain of the canonical model contains the individuals of the ontology, the
evaluation of a query over such model can indeed return a set of individuals.
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of � into the atom to the right of it. We have used “__” to denote a variable that
occurs only once in the CQ (counting separately occurrences as answer variable
of the CQ). Besides rewriting atoms, a further processing step applied to qi is to
consider each pair of atoms α1, α2 occurring in the body of qi that unify, and replace
them with a single atom, also applying the most general unifier to the whole of qi .
In this way, variables that in qi occur multiple times, might be replaced by an “__”,
and hence inclusion assertions might become applicable that were not so before the
atom-unification step (cf. the rewriting rules in Fig. 2 requiring the presence of “__”).

The above presented rewriting technique, realized through PerfectRef , allows us
to establish that answering UCQs over consistent DL-LiteR ontologies is first-order
rewritable, i.e., the problem of computing certain answers over a consistent ontology
can be reduced to the problem of evaluating a first-order query over the ABox of
the ontology viewed as a database (with complete information). Specifically, let
rew(Q, T ) denote the UCQ obtained as the result of applying PerfectRef to a UCQ
Q and a DL-LiteR TBox T . Then, for every ABox A such that the ontology T ∪ A
is consistent, we have that

cert(Q, T ∪ A) = eval(rew(Q, T ),A)

where eval(rew(Q, T ),A) denotes the evaluation of the UCQ rew(Q, T ) over the
ABox A viewed as a database (i.e., a first-order interpretation).

Ontology satisfiability. The rewriting of aUCQQwith respect to aTBoxT computed
by PerfectRef depends only on the set of positive inclusion axioms in T , while
disjointness axioms (i.e., inclusion axioms containing a negated basic concept on
the right-hand side) do not play any role in such a process. Indeed, the proof of
correctness of PerfectRef [8], which is based on the canonical model property ofDL-
LiteR, shows that these kinds of axioms have to be considered only when verifying
the consistency of the ontology. Once consistency is established, they can be ignored
in the query rewriting phase. In fact, inconsistency of a DL-LiteR ontology is due
to the presence of disjointness axioms and their interaction with positive inclusion
axioms. Such interaction can itself be captured by constructing a Boolean UCQ
encoding the violation of disjointness axioms, rewriting such a UCQ with respect to
the positive inclusion axioms, and checking whether its evaluation over the ABox
returns true. This in turn shows that also the problem of checking consistency of a
DL-LiteR ontology is first-order rewritable [8].

Accessing a database via sound mappings. We have so far considered only the
TBox andABox components of aDL-Lite ontology. This is coherent with the implicit
assumption that we are dealingwith systems inwhich the data is directly represented,
in terms of unary and binary ABox facts, in a form that is perfectly compatible with
the intensional layer provided by the TBox. In many real-world scenarios, however,
the data is not provided by ABox facts, but by legacy data sources, in (possibly
large) relational tables of arbitrary arity. We represent such data sources through
the database part D of an ontology. To provide access to the data sources via the
intensional level of the ontology,we can rely on the sound (GAV)mapping component
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M of an ontology. This setting is known in the literature as ontology-based data
access (OBDA), and has been investigated extensively in recent years [6, 7, 30].

We recall that, in the case of a DL ontology, the mapping M consists of axioms
of the form:

∀x .ϕA
[x] → A(x) or ∀x, y.ϕS

[x,y] → S(x, y),

where the predicate symbols in ϕA
[x] and ϕS

[x,y] in the left part of the implication are
among the database predicates PD , while A and S in the right part of the implication
are respectively a concept and a role name of the TBox. Also, we can assume without
loss of generality, that for each concept or role name N we have exactly one such
mapping axiom, where ϕN

[X ] is the formula in the antecedent of the implication.
The query answering technique based on perfect rewriting can be extended to

deal also with sound GAV mappings of this form, so as to rewrite the query into one
that contains only database predicates [30]. Let us denote withM(D) the set of facts
obtained by populating each concept or role name N of the TBox with precisely the
facts retrieved through themapping axiom associated to N , by evaluatingϕN overD,
i.e., with eval(ϕN ,D). Considering that the mapping formulas are all implications,
if such formulas are satisfied in a model I, then they are also satisfied in every model
I ′ that extends with respect to I the interpretation of the concept and role names in
PT , i.e., such that NI ⊆ NI ′

for every concept or role name N . It follows that for a
positive query Q formulated over the predicates of the TBox T , the certain answers
cert(Q, T ∪ M ∪ D) coincide with the certain answers computed over the TBox T
together withM(D) considered as an ABox, i.e.,

cert(Q, T ∪ M ∪ D) = cert(Q, T ∪ M(D))

To compute cert(Q, T ∪ M(D)), we can in principle follow the approach illustrated
previously: compute M(D) (which is an ordinary finite ABox), and then evaluate
over it the perfect reformulation rew(Q, T ). However, this would require a poten-
tially expensive and large materialization ofM(D) from the databaseD. Instead, we
can obtain the same result, avoiding the costly materialization step, by proceeding
as follows:

1. Compute the perfect reformulation Q′ = rew(Q, T ) of Q with respect to the
(positive) inclusion axioms in the TBox part T of K.

2. Compute the unfolding of Q′ with respect toM, denoted unf(Q′,M), by replac-
ing each (concept or role) predicate N appearing in Q′ with the corresponding
formula ϕN

[X ] in the left-hand side of the mapping axiom ∀X.ϕN
[X ] → N (X).

3. Evaluate unf(Q′,M) over the database D.

The correctness of this approach follows from the following result:

Theorem 1 ([8, 30]) Let K be a DL-LiteR ontology consisting of a TBox T , a
mapping M and a database D, and let Q be a UCQ formulated over T . Then:
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cert(Q, T ∪ M ∪ D) = eval(unf(rew(Q, T ),M),D)

Complexity of query evaluation. Summarizing the above results, and considering
that evaluating a first-order query (and hence a UCQ) over a database is in AC0 in
data complexity, one obtains that answering UCQs overDL-LiteR ontologies has the
same data complexity as evaluating UCQs in plain databases. By analyzing the over-
all rewriting-based query answering technique, and by exploiting a correspondence
between the DL-Lite family and first-order logic with unary predicates [2], we are
able obtain also tight complexity bounds in the size of the TBox (schema complexity)
and of the overall input (combined complexity).

Theorem 2 ([2, 8, 30]) Answering UCQs over DL-LiteR ontologies is in AC0 in
data complexity, NLogSpace-complete in schema complexity, and NP-complete in
combined complexity.

While the above results sound very encouraging from the theoretical point of
view, there still remain significant challenges to be addressed to make rewriting
based techniques effective also in real world scenarios, where the TBox and/or the
data underlying the ABox are very large, and/or queries have a large number of
atoms. Indeed, also in the case where one admits rewritings expressed in languages
different from UCQs (e.g., arbitrary FOL queries, or non-recursive Datalog), it has
recently been shown that the smallest rewritings can grow exponentially with the size
of the query [20]. This has led to an intensive and sustained effort aimed at developing
techniques to improve query answering over ontologies, such as alternative rewriting
techniques [29, 35], techniques combining rewriting with partial materialization of
the extensional level [22], and various optimization techniques that take into account
also extensional constraints on the underlying data, or in the mapping layer to the
relational data sources [32, 34].

4 Exact Query Reformulations

We illustrate in this section the approach to query reformulation with first-order
ontologies based on exact rewritings, which was first thoroughly analysed in [26]
by Nash, Segoufin and Vianu. They addressed the question whether a query can
be answered using a set of (exact) views V by means of an exact rewriting over a
database represented as a DBox. The authors defined and investigated the notions of
determinacy of a query by a set of views and its connection to exact rewriting. Nash,
Segoufin and Vianu also studied several combinations of query and view languages
trying to understand the expressivity of the language required to express the exact
rewriting, and, thus, they obtained results on the completeness of rewriting languages.
They investigated languages ranging from full first-order logic to conjunctive queries.

The setting considered byNash, Segoufin andVianu isweaker than the one studied
later by Franconi, Kerhet, and Ngo [18, 19], since in the former setting the ontology
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consists only of a set V of view definitions, while in the latter setting any domain
independent first-order ontology with DBox predicates is allowed. The authors also
considered the special case of exact reformulations with description logic ontologies
and DBoxes [9, 28, 36].

After Franconi, Kerhet, and Ngo, the recent work by Benedikt, ten Cate and
Tsamoura [3, 4] analyses the generation of plans to answer queries over DBoxes
in the presence of domain independent first-order ontologies, where in addition the
DBox relations may have limitations on access patterns to the data (called access
restrictions or binding patterns). This is the case when one must provide values
for one of the attributes of a relation in order to obtain tuples. In this setting, DBox
predicates in PD as defined in this chapter are fully accessible (as a regular database),
while all the other predicates inPT are not accessible at all (in fact, they do not provide
data).

Toman andWeddell have long advocated the use of exact reformulations for auto-
matic generation of plans that implement user queries under system constraints–a
process they called query compilation [37]. Their published work focuses on addi-
tional extra-logical considerations, such as satisfaction of binding patterns, consid-
erations of inherent ordering of data and the influence of plans on such orderings,
and the estimated cost of alternative query plans.

This framework has also been applied to devise the formal foundations of the
problems of view update and of characterising unique solutions in data exchange. In
the former problem, a target view of some source database is updatable if the source
predicates have an exact reformulation given the view over the target predicates
[16]. In the latter problem, unique solutions exist if the target predicates have an
exact reformulation given the data exchange mappings over the source predicates
[27].

DBoxes versus ABoxes. While the perfect reformulation approach works for data
represented in an ABox (or for data in a DBox “connected” to the TBox via a sound
mapping), the exact reformulation approach assumes that the data is represented in a
DBox. As we have already noticed in the introductory section, ABoxes and DBoxes
behave differently in query answering. We observe now that this difference may be
relevant for queries from legacy relational database applications.

Indeed, a query mentioning only ABox predicates may have a different answer
depending on the presence or absence of an ontology. Consider again the example
of a Boolean negative query ¬Person(mary) over a database expressed by the
DBox D = {Person(john)}. As we have said already, the answer of the query to
the DBox is true, because the only specified person is john. On the other hand,
if we consider the ABox A = {Person(john)} and evaluate the query over it, the
answer is false because the ABox specifies only the necessary facts but not all of
them, and, hence, Mary still may be a person in some model. However, if we add the
ontology {∀x, y.Person(x) ∧ Person(y) → x = y} that says that there is at most
one person, the answer to the query will be now true.

This does not happen by using DBoxes: a query mentioning just DBox predicates
can only return an answer that depends only on the DBox predicates, which are
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complete. In other words, a DBox preserves the behaviour of legacy application
queries over relational databases, also when an ontology is added on top of it.

Domain Independence. As we have seen, domain independence is an important
property of a formula that guarantees that the truth value of the formula in an inter-
pretation remains the same regardless of the underlying domain of the interpretation.

An example of a domain independent Boolean query is ∃x .Person(x): if the
answer to the query is true for someDBoxwith a specific domain, it is also true for the
same DBox and any other compatible domain. On the other hand, the Boolean query
∀x .Person(x) is not domain independent: if it is true for some DBox with some
domain, it is definitely not true for the sameDBox but with a larger domain. Consider
now the query Q(x) = ¬Person(x) over the DBox {Person(john)}: with domain
Δ1 = {john,mary} the query has the answer {x �→ mary}, while with the extended
domainΔ2 = {john,mary, sue} it has the different answer {x �→ mary, x �→ sue}.
If an infinite domain was considered, the answer would be infinite even with a finite
DBox. Indeed, the above query is not domain independent. The query can be “fixed”
with a guard restricting the range of the free variable, as in Q′(x) = Animal(x) ∧
¬Person(x). For any given database this query returns the same answer with any
compatible domain (even an infinite one). Q′(x) is domain independent.

Ontologies are also required to be domain independent. Consider the
ontology {∃x .¬Student(x), ∃x .Person(x)}, and the DBox {Student(john),

Person(john)}. This DBox with domain Δ1 = {john} is inconsistent with respect
to the ontology, while it is consistent with respect to the same ontology with domain
Δ2 = {john,mary}. This happens because the first sentence of the ontology is not
domain independent.

Determinacy and exact reformulations. The exact reformulation (also called explicit
definition by Beth [5]) of a query over some DBox predicates under the ontology is
a logically equivalent query under the ontology which uses only DBox predicates.
More formally, the exact reformulation over the database predicates PD under the
ontology K of a query Q[X ] is some formula Q̂[X ] in FOL(C,P), such that K |=
∀X.Q[X ] ↔ Q̂[X ] and PQ̂ ⊆ PD .

But how can we characterise the existence of an exact reformulation of a query?
We need to check that the query is fully determined by the data in the DBox. A
query is determined by the data in the DBox if its truth value in every model of
the ontology depends only on the finite interpretation of the DBox predicates. This
notion is formalised as follows. A query Q[X ] is finitely determined by the database
predicates PD under the ontology K if and only if for any two models I and J
of the ontology K, both with a finite interpretation to the database predicates PD ,
whenever I|PD ,C = J |PD ,C then for every substitution Θ : X → ΔI we have:

I,Θ |= Q[X ] if and only if J ,Θ |= Q[X ] .

The determinacy of a query with respect to a source database represented in a DBox
corresponds to the notion of implicit definability of a formula from a set of predicates
(the database predicates) as introduced by Beth [5]. The correspondence between
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exact reformulations and finite determinacy has been indeed first studied as projective
definability by Beth himself in 1953 [5].

Intuitively, the answer of a finitely determined query does not depend on the
interpretation of non-database predicates. Once the database and a domain are fixed,
it is never the case that a substitution would make the query true in some model
of the ontology and false in others, since the truth value of a finitely determined
query depends only on the interpretation of the database predicates and constants
and on the domain (which are fixed). In practice, by focussing on finite determinacy
of queries we guarantee that the answers are interpreted as being not only certain,
but also exact—namely that whatever is not in the answer can never be part of the
answer in any possible world.

But howcanwe characterise the existence of a domain independent exact reformu-
lation of a query? This is needed because we want to evaluate the exact reformulation
using standard SQL relational technology. The following characterisation theorem
answers exactly this question.

Theorem 3 (Semantic characterisation) Given a set PD of database predicates, a
domain independent ontology K, and a query Q[X ], a domain independent exact
reformulation Q̂[X ] of Q[X ] over PD under K exists if and only if Q[X ] is (i) finitely
determined by PD under K, and (ii) domain independent with respect to K.

The above theorem shows us the semantic conditions to have an exact domain
independent reformulation of a query, but it does not give us a method to compute
such reformulation and its equivalent safe-range form. The following theorem gives
us sufficient conditions for the existence of an exact safe-range reformulation in any
decidable fragment of FOL(C,P) and gives us a constructive way to compute it, if
it exists.

Below, we use Q̃ to denote the formula obtained from a formula Q by uniformly
replacing every occurrence of each non-DBox predicate P with a fresh new predicate
symbol P̃ . We extend this renaming operator ·̃ to any set of formulas in a natural
way. Also, we focus on ontologies and queries in those fragments of FOL(C,P)

for which determinacy under models with a finite interpretation of DBox predicates
(finite determinacy) anddeterminacyundermodelswith anunrestricted interpretation
of DBox predicates (unrestricted determinacy) coincide.We say that these fragments
have finitely controllable determinacy.

Theorem 4 (Constructive) If all the following conditions hold:

1. K ∪ K̃ |= ∀X. Q[X ] ↔ Q̃[X ] (that is, Q[X ] is determined),
2. Q[X ] is safe-range (that is, Q[X ] is domain independent),
3. K is safe-range (that is, K is domain independent),

then there exists an exact reformulation Q̂[X ] of Q[X ] as a safe-range query in
FOL(C,P) over PD under K, and Q̂[X ] can be obtained constructively.

We conclude by mentioning the two decidable description logics ALCHOI and
ALCHOQ, which have a well defined and intuitive syntactic fragment (based on a
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notion of “safe-range” similar to the one in first-order logic) characterising exactly
their domain independent fragment, and which have finitely controllable determi-
nacy. So, these two logic are excellent candidates to play the role of ontology lan-
guages on top of databases represented as DBoxes.

Theorem 5 (Description logics version of Codd’s Theorem) The domain indepen-
dent fragments ofALCHOI andALCHOQ are equally expressive to the safe-range
fragments of respectively ALCHOI and ALCHOQ and they have finitely control-
lable determinacy.
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