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Abstract. The goal of data integration is to provide a uniform access to a set of
heterogeneous data sources, freeing the user from the knowledge about where the
data are, how they are stored, and how they can be accessed. One of the outcomes
of the research work carried out on data integration in the last years is a clear
architecture, comprising a global schema, the source schema, and the mapping
between the source and the global schema. Although in many research works
and commercial tools the global schema is simply a data structure integrating the
data at the sources, we argue that the global schema should represent, instead,
the conceptual model of the domain. However, to fully pursue such an approach,
several challenging issues are to be addressed. The main goal of this paper is to
analyze one of them, namely, how to express the conceptual model representing
the global schema. We start our analysis with the case where such a schema is
expressed in terms of a UML class diagram, and we end up with a proposal of a
particular Description Logic, called DL-LiteA,id. We show that the data integra-
tion framework based on such a logic has several interesting properties, including
the fact that both reasoning at design time, and answering queries at run time can
be done efficiently.

1 Introduction

The goal of data integration is to provide a uniform access to a set of heterogeneous
data sources, freeing a client from the knowledge about where the data are, how they
are stored, and how they can be accessed. The problem of designing effective data in-
tegration solutions has been addressed by several research and development projects in
the last years. However, data integration is still one of the major challenges in Infor-
mation Technology [5]. One of the reasons is that large amounts of heterogeneous data
are nowadays available within an organization, but these data have been often collected
and stored by different applications and systems. Therefore, on the one hand the need
of accessing data by means of flexible and unified mechanisms is becoming more and
more important, and, on the other hand, current commercial data integration tools have
several drawbacks.

Starting from the late 90s, research in data integration has mostly focused on declar-
ative approaches (as opposed to procedural ones) [32, 26]. One of the outcomes of this
research work is a clear architecture for (mediator-based1) data integration. Accord-
ing to this architecture [26], the main components of a data integration system are the

1 Other architectures, e.g. [4], are outside the scope of this paper.



global schema, the sources, and the mapping. Roughly speaking, the sources represent
the repositories where the data are, the global schema represents the unified structure
presented to the client, and the mapping relates the source data with the global schema.
There are at least two different approaches to the design of the global schema. In the
first approach, the global schema is expressed in terms of a database model (e.g., the
relational model, or a semistructured data model), and represents a sort of unified data
structure accommodating the various data at the sources. In the second approach the
global schema provides a conceptual representation of the application domain [6], rather
than a specification of a data structure. Thus, in this approach the distinction between
the global schema and the data sources reflects the separation between the conceptual
level (the one presented to the client), and the logical/physical level of the informa-
tion system (the one stored in the sources), with the mapping acting as the reconciling
structure between the two levels.

Although most of the research projects and the commercial data integration tools
follow the first approach, we argue that designing the system in such a way that the
global schema represents the conceptual model of the domain has several interesting
advantages, both in the design and in the operation of the data integration system.

The first advantage is that a conceptual level in the architecture for data integration
is the obvious means for pursuing a declarative approach to integration. As a conse-
quence, all the advantages deriving from making various aspects of the system explicit
are obtained, including the crucial fact that the conceptual level provides a system inde-
pendent specification of the domain of interest to the client. By making the representa-
tion of the domain explicit we gain re-usability of the acquired knowledge, which is not
achieved when the global schema is simply a unified description of the underlying data
sources. This may also have consequences on the design of the user interface. Indeed,
conceptual models are naturally expressed in a graphical form, and graphical tools that
adequately present the overall information scenario are key factors in user interfaces.

A second advantage is the use of the mapping component of the system for ex-
plicitly specifying the relationships between the data sources and the domain concepts.
The importance of this clearly emerges when looking at large organizations where the
information about data is widespread into separate pieces of documentation that are
often difficult to access and non necessarily conforming to common standards. The
conceptual model built for data integration can thus provide a common ground for the
documentation of the enterprise data stores and can be seen as a formal specification for
mediator design. Obviously, the above advantages carry over in the maintenance phase
of the data integration system (sources change, hence “design never ends”).

A third advantage has to do with incrementality and extensibility of the system.
One criticism that is often raised to mediator-based data integration is that it requires
merging and integrating the source data, and this merging process can be very costly.
However, the conceptual approach to data integration does not impose to fully integrate
the data sources at once. Rather, after building the domain model, one can incrementally
add new sources or new elements therein, when they become available, or when needed,
thus amortizing the cost of integration. Therefore, the overall design can be regarded as
the incremental process of understanding and representing the domain on the one hand,
and the available data on the other hand.



We believe that all the advantages outlined above represent convincing arguments
supporting the conceptual approach to data integration. However, to fully pursue such
an approach, several challenging issues are to be addressed. The goal of this paper is
to analyze one of them, namely, how to express the conceptual model representing the
global schema.

We start our analysis with the case where the global schema of the data integration
system is expressed in terms of a UML class diagram. Notably, we show that the ex-
pressive power of UML class diagrams is enough to get intractability of various tasks,
including query answering. We then present a specific proposal of a logic-based lan-
guage for expressing conceptual models. The language, called DL-LiteA,id, is a tractable
Description Logic, specifically defined for achieving tractability of the reasoning tasks
that are relevant in data integration. The proposed data integration framework, based
on such a logic, has several interesting properties, including the fact that both reason-
ing at design time, and answering queries at run time can be done efficiently. Also, we
study possible extensions to the data integration framework based on DL-LiteA,id, and
show that our proposal basically represents an optimal compromise between expressive
power and computational complexity.

The paper is organized as follows. In Section 2, we describe a general architecture
for data integration, and the basic features of Description Logics, which are the logics
we use to formally express conceptual models. In Section 3, we analyze the case where
the global schema of the data integration system is expressed in terms of a UML class
diagram. In Section 4, we illustrate the basic characteristics of the Description Logic
DL-LiteA,id, and in Section 5, we illustrate a specific proposal of data integration system
based on such a logic. In Section 6, we study possible extensions to such data integration
framework, whereas in Section 7, we conclude the paper with a discussion on related
and future work.

2 The data integration framework

The goal of this section is to describe a general architecture for data integration. We
restrict our attention to data integration systems based on a so-called global schema,
or mediated schema. In other words, we refer to data integration systems whose aim
is providing the user with a representation of the domain of interest to the system, and
connecting such a representation to the data residing at the sources. Thus, the global
schema implicitly provides a reconciled view of all data, which can be queried by the
user. One of the theses of this paper is that the global schema can be profitably expressed
in terms of a conceptual model of the domain, and such a conceptual model can be
formalized in specialized logics, called Description Logics. Therefore, another goal of
this section is to illustrate the basic features of such logics.

2.1 Architecture for data integration

According to [26], we formalize a data integration system J in terms of a triple
〈G,S,M〉, where



– G is the global schema, expressed in a language LG over an alphabet AG . The
alphabet comprises a symbol for each element of G (i.e., relation if G is relational,
class if G is object-oriented, etc.).

– S is the source schema, expressed in a language LS over an alphabet AS . The
alphabet AS includes a symbol for each element of the sources.

– M is the mapping between G and S, constituted by a set of assertions of the forms

qS ; qG ,
qG ; qS ,

where qS and qG are two queries of the same arity, respectively over the source
schema S, and over the global schema G. Queries qS are expressed in a query
language LM,S over the alphabet AS , and queries qG are expressed in a query
language LM,G over the alphabet AG . Intuitively, an assertion qS ; qG specifies
that the concept represented by the query qS over the sources corresponds to the
concept in the global schema represented by the query qG (similarly for an assertion
of type qG ; qS ).

The global schema provides a description of the domain of interest, and not simply
a unified representation of the source data. The source schema describes the structure
of the sources, where the real data are. The assertions in the mapping establish the
connection between the elements of the global schema and those of the source schema.

The semantics of a data integration system is based on the notion of interpretation
in logic. Indeed, in this paper we assume that G is formalized as a logical theory, and
therefore, given a source database D (i.e., a database for S), the semantics of the whole
system coincides with the set of interpretations that satisfy all the assertions of G (i.e.,
they are logical models of G) and all the assertions ofM with respect to D. Such a set
of interpretations, denoted semD(J ), is called the set of models of J relative to D.

There are two basic tasks concerning a data integration system that we consider in
this paper. The first task is relevant in the design phase of the system, and concerns
the possibility of reasoning over the global schema: given G and a logical assertion
α, check whether α holds in every model of G. The second task is query answering,
which is crucial during the run-time of the system. Queries to J are posed in terms
of the global schema G, and are expressed in a query language LQ over the alphabet
AG . A query is intended to provide the specification of which extensional information
to extract from the domain of interest in the data integration system. More precisely,
given a source database D, the answer qJ ,D to a query q in J with respect to D is the
set of tuples t of objects such that t ∈ qB (i.e., t is an answer to q over B) for every
model B of J relative to D. The set qJ ,D is called the set of certain answers to q in J
with respect to D. Note that, from the point of view of logic, finding certain answers is
a logical implication problem: check whether the fact that t satisfies the query logically
follows from the information on the sources and on the mapping.

The above definition of data integration system is general enough to capture virtu-
ally all approaches in the literature. Obviously, the nature of a specific approach de-
pends on the characteristics of the mapping, and on the expressive power of the various
schema and query languages. For example, the language LG may be very simple (ba-
sically allowing for the definition of a set of relations), or may allow for various forms



of integrity constraints to be expressed over the symbols of AG . Analogously, the type
(e.g., relational, semistructured, etc.) and the expressive power of LS varies from one
approach to another.

2.2 Description Logics

Description Logics [2] (DLs) were introduced in the early 80s in the attempt to provide
a formal ground to Semantic Networks and Frames. Since then, they have evolved into
knowledge representation languages that are able to capture virtually all class-based
representation formalisms used in Artificial Intelligence, Software Engineering, and
Databases. One of the distinguishing features of the work on these logics is the detailed
computational complexity analysis both of the associated reasoning algorithms, and of
the logical implication problem that the algorithms are supposed to solve. By virtue
of this analysis, most of these logics have optimal reasoning algorithms, and practical
systems implementing such algorithms are now used in several projects. In DLs, the do-
main of interest is modeled by means of concepts and roles (i.e., binary relationships),
which denote classes of objects and binary relations between classes of objects, respec-
tively. Concepts and roles can be denoted using expressions of a specified languages,
and the various DLs differ in the expressive power of such a language. The DLs con-
sidered in this paper are subsets of a DL calledALCQIbid.ALCQIbid is an expressive
DL that extends the basic DL language AL (attributive language) with negation of ar-
bitrary concepts (indicated by the letter C), qualified number restrictions (indicated by
the letter Q), inverse of roles (indicated by the letter I), boolean combinations of roles
(indicated by the letter b), and identification assertions (indicated by the subscript id).
More in detail, concepts and roles in ALCQIbid are formed according to the following
syntax:

C,C ′ −→ A | ¬C | C u C ′ | C t C ′ |
∀R.C | ∃R.C | > nR.C | 6 nR.C

R,R′ −→ P | P− | R ∩R′ | R ∪R′ | R \R′

whereA denotes an atomic concept, P an atomic role, P− the inverse of an atomic role,
C, C ′ arbitrary concepts, and R, R′ arbitrary roles. Furthermore, ¬C denotes concept
negation, C u C ′ concept intersection, C t C ′ concept union, ∀R.C value restriction,
∃R.C qualified existential quantification on roles, and > nR.C and 6 nR.C so-called
number restrictions. We use>, denoting the top concept, as an abbreviation forAt¬A,
for some concept A. An arbitrary role can be an atomic role or its inverse, or a role
obtained combining roles through set theoretic operators, i.e., intersection (“∩”), union
(“∪”), and difference (“\”). W.l.o.g., we assume difference applied only to atomic roles
and their inverses.

As an example, consider the atomic concepts Man and Woman, and the atomic
roles HAS-HUSBAND, representing the relationship between a woman and the man
with whom she is married, and HAS-CHILD, representing the parent-child relation-
ship. Then, intuitively, the inverse of HAS-HUSBAND, i.e., HAS-HUSBAND−, rep-
resents the relationship between a man and his wife. Also, Man t Woman is a con-
cept representing people (considered the union of men and women), whereas the
concept ∃HAS-CHILD.Woman represents those having a daughter, and the concept



> 2 HAS-CHILD.Woman u 6 4 HAS-CHILD.> represents those having at least two
daughters and at most four children.

Like in any DL, an ALCQIbid knowledge base (KB) is a pair K = 〈T ,A〉, where
T , the TBox, is a finite set of intensional assertions, and A, the ABox, is a finite set of
extensional (or, membership) assertions.

The TBox may contain intensional assertions of two types, namely inclusion as-
sertions, and local identification assertions (see [13] for the meaning of “local” in this
context).

– An inclusion assertion has the form C v C ′, with C and C ′ arbitrary ALCQIbid

concepts, or the formR v R′, withR andR′ arbitraryALCQIbid roles. Intuitively,
an inclusion assertion states that, in every model of T , each instance of the left-hand
side expression is also an instance of the right-hand side expression. For example,
the inclusions Woman v 6 1 HAS-HUSBAND.> and ∃HAS-HUSBAND−.> v
Man respectively specifies that women may have at most one husband and that
husbands are men.

– A local identification assertion (or, simply, identification assertion or identification
constraint – IdC) makes use of the notion of path. A path is an expression built
according to the following syntax,

π −→ S | D? | π ◦ π (1)

where S denotes an atomic role or the inverse of an atomic role, and π1 ◦ π2

denotes the composition of the paths π1 and π2. Finally, D denotes a concept,
and the expression D? is called a test relation, which represents the identity re-
lation on instances of D. Test relations are used in all those cases in which one
wants to impose that a path involves instances of a certain concept. For example,
HAS-CHILD ◦Woman? is the path connecting someone with his/her daughters.
A path π denotes a complex property for the instances of concepts: given an object
o, every object that is reachable from o by means of π is called a π-filler for o. Note
that for a certain o there may be several distinct π-fillers, or no π-fillers at all.
If π is a path, the length of π, denoted length(π), is 0 if π has the form C?, is 1 if
π has the form S, and is length(π1) + length(π2) if π has the form π1 ◦ π2. With
the notion of path in place, we are ready for the definition of local identification
assertion, which is an assertion of the form

(id C π1, . . . , πn)

where C is an arbitrary concept, n ≥ 1, and π1, . . . , πn (called the components
of the identifier) are paths such that length(πi) ≥ 1 for all i ∈ {1, . . . , n}, and
length(πi) = 1 for at least one i ∈ {1, . . . , n}. Intuitively, such a constraint asserts
that for any two different instances o, o′ of C, there is at least one πi such that o
and o′ differ in the set of their πi-fillers. The term “local” emphasizes that at least
one of the paths refers to a local property of C.
For example, the identification assertion (id Woman HAS-HUSBAND) says that a
woman is identified by her husband, i.e., there are not two different women with



AI ⊆ ∆I

¬CI = ∆I \ CI
(C u C′)I = CI ∩ C′I
(C t C′)I = CI ∩ C′I
(∀R.C)I = { o | ∀o′. (o, o′) ∈ RI ⊃ o′ ∈ CI }
(∃R.C)I = { o | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI }

(> nR.C)I = { o | |{o′ ∈ CI | (o, o′) ∈ RI}| ≥ n }
(6 nR.C)I = { o | |{o′ ∈ CI | (o, o′) ∈ RI}| ≤ n }

P I ⊆ ∆I ×∆I
(P−)I = {(o, o′) | (o′, o) ∈ P I}

(R ∩R′)I = RI ∩R′I
(R ∪R′)I = RI ∪R′I
(R \R′)I = RI \R′I

Fig. 1. Interpretation of ALCQIbid concepts and roles

the same husband, whereas the identification assertion (id Man HAS-CHILD) says
that a man is identified by his children, i.e., there are not two men with a child in
common. We can also say that there are not two men with the same daughters by
means of the identification (id Man HAS-CHILD ◦Woman?).

The ABox consists of a set of extensional assertions, which are used to state the
instances of concepts and roles. Each such assertion has the form A(a), P (a, b), a = b,
or a 6= b, with A and P respectively an atomic concept and an atomic role occurring in
T , and a, b constants.

We now turn to the semantics of ALCQIbid, which is given in terms of interpre-
tations. An interpretation I = (∆I , ·I) consists of a non-empty interpretation domain
∆I and an interpretation function ·I , which assigns to each concept C a subset CI of
∆I , and to each role R a binary relation RI over ∆I is such a way that the conditions
specified in Figure 1 are satisfied. The semantics of an ALCQIbid KB K = 〈T ,A〉 is
the set of models of K, i.e., the set of interpretations satisfying all assertions in T and
A. It remains to specify when an interpretation satisfies an assertion.

An interpretation I satisfies an inclusion assertion C v C ′ (resp., R v R′), if
CI ⊆ C ′I (resp., RI ⊆ R′I).

In order to define the semantics of IdCs, we first define the semantics of paths, and
then specify the conditions for an interpretation to satisfy an IdC. The extension πI of
a path π in an interpretation I is defined as follows:

– if π = S, then πI = SI ,
– if π = D?, then πI = { (o, o) | o ∈ DI },
– if π = π1 ◦ π2, then πI = πI1 ◦ πI2 , where ◦ denotes the composition operator on

relations.

As a notation, we write πI(o) to denote the set of π-fillers for o in I, i.e., πI(o) =
{o′ | (o, o′) ∈ πI}. Then, an interpretation I satisfies the IdC (id C π1, . . . , πn) if for
all o, o′ ∈ CI , πI1 (o)∩πI1 (o′) 6= ∅∧ · · · ∧πIn(o)∩πIn(o′) 6= ∅ implies o = o′. Observe
that this definition is coherent with the intuitive reading of IdCs discussed above, in
particular by sanctioning that two different instances o, o′ of C differ in the set of their
πi-fillers when such sets are disjoint.
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Fig. 2. Diagrammatic representation of the football leagues example

Finally, to specify the semantics of ALCQIbid ABox assertions, we extend the
interpretation function to constants, by assigning to each constant a an object aI ∈ ∆I .
An interpretation I satisfies a membership assertion A(a) if aI ∈ AI , a membership
assertion P (a, b) if (aI , bI) ∈ P I , an assertion of the form a = b if aI = bI , and an
assertion of the form a 6= b if aI 6= bI .

We also note that, as in many DLs, reasoning in ALCQIbid, i.e., checking whether
an assertion holds in every model of a KB, is decidable in deterministic exponential
time (see [2]).

We conclude this section with an example in which we present anALCQIbid TBox
modeling the annual national football2 championships in Europe, where the champi-
onship for a specific nation is called league (e.g., the Spanish Liga). A league is struc-
tured in terms of a set of rounds. Every round contains a set of matches, each one
characterized by one home team and one host team. We distinguish between scheduled
matches, i.e., matches that have still to be played, and played matches. Obviously, a
match falls in exactly one of these two categories.

In Figure 2, we show a schematic representation of (part of) the ontology for the
football leagues domain. In this figure, the black arrow represents a partition of one
concept into a set of sub-concepts. The TBox assertions in ALCQIbid capturing the

2 Football is called “soccer” in the United States.

INCLUSION ASSERTIONS
league v ∃OF.>
∃OF.> v league
∃OF−.> v nation

round v ∃BELONGS-TO.>
∃BELONGS-TO.> v round
∃BELONGS-TO−.> v league

match v ∃PLAYED-IN.>
∃PLAYED-IN.> v match
∃PLAYED-IN−.> v round

match v ∃HOME.>
∃HOME.> v match
∃HOME−.> v team

∃HOST.> v match
∃HOST−.> v team

match v ∃HOST.>
playedMatch v match

scheduledMatch v match
playedMatch v ¬scheduledMatch

match v playedMatch t scheduledMatch
> v 6 1 OF.>
> v 6 1 BELONGS-TO.>
> v 6 1 PLAYED-IN.>
> v 6 1 HOME.>
> v 6 1 HOST.>

IDENTIFICATION ASSERTIONS
(id match HOME, PLAYED-IN)
(id match HOST, PLAYED-IN)

Fig. 3. The TBox in ALCQIbid for the football leagues example



above aspects are shown in Figure 3. In particular, the identification constraints model
the fact that a team is the home team of at most one match per round, and the host team
of at most one match per round.

3 UML class diagram as global schema

In this section, we discuss the case where the global schema of a data integration system
is a UML class diagram.

Since we concentrate on class diagrams from the data integration perspective, we do
not deal with those features that are more relevant for the software engineering perspec-
tive, such as operations (methods) associated to classes, or public, protected, and private
qualifiers for methods and attributes. Also, for sake of brevity and to smooth the presen-
tation we make some simplifying assumptions that could all be lifted without changing
the results presented here (we refer to [3] for further details). In particular, we will not
deal explicitly with associations of arity greater than 2, and we will only deal with the
following multiplicities: 0..∗ (unconstrained), functional participation 0..1, mandatory
participation 1..∗, and one-to-one correspondence 1..1. These multiplicities are partic-
ularly important since they convey meaningful semantic aspects in modeling, and thus
are the most commonly used ones.

Our goal is twofold. One the one hand, we aim at showing how class diagrams
can be expressed in DLs. On the other hand, we aim at understanding which is the
complexity of the two tasks we are interested in for a data integration system, when
the global schema is a UML class diagram. We will show that the formalization in DLs
helps us in deriving complexity results for both tasks.

3.1 Representing UML class diagrams in DLs

A class in a UML class diagram denotes a sets of objects with common features. The
specification of a class contains its name and its attributes, each denoted by a name
(possibly followed by the multiplicity, between square brackets) and with an associated
type, which indicates the domain of the attribute values.

A UML class is represented by a DL concept. This follows naturally from the fact
that both UML classes and DL concepts denote sets of objects.

A UML attribute a of type T for a class C associates to each instance of C, zero,
one, or more instances of a class T . An optional multiplicity [i..j] for a specifies that
a associates to each instance of C, at least i and most j instances of T . When the
multiplicity for an attribute is missing, [1..1] is assumed, i.e., the attribute is mandatory
and single-valued.

To formalize attributes, we have to think of an attribute a of type T for a class C as
a binary relation between instances of C and instances of T . We capture such a binary
relation by means of a DL role ac. To specify the type of the attribute we use the DL
assertions

∃aC v C, ∃a−C v T.

Such assertions specify precisely that, for each instance (c, v) of the role aC , the object
c is an instance of C, and the value v is an instance of T . Notice that in DL, the type T
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Fig. 4. Association in UML

is represented as a concept, although containing values. Note that the attribute name a
is not necessarily unique in the whole diagram, and hence two different classes, say C
andC ′ could both have attribute a, possibly of different types. This situation is correctly
captured in the DL formalization, where the attribute is contextualized to each class with
a distinguished role, i.e., aC and aC′ .

To specify that the attribute is mandatory (i.e., multiplicity [1..∗]), we add the asser-
tion

C v ∃aC ,
which specifies that each instance of C participates necessarily at least once to the role
aC . To specify that the attribute is single-valued (i.e., multiplicity [0..1]), we add the
assertion

(funct aC),

which is an abbreviation for > v 6 1 aC .>. Finally, if the attribute is both mandatory
and single-valued (i.e., multiplicity [1..1]), we use both assertions together:

C v ∃aC , (funct aC).

An association in UML is a relation between the instances of two (or more) classes.
An association often has a related association class that describes properties of the asso-
ciation, such as attributes, operations, etc. A binary associationA between the instances
of two classes C1 and C2 is graphically rendered as in Figure 4(a), where the multiplic-
ity m`..mu specifies that each instance of class C1 can participate at least m` times and
at most mu times to association A. The multiplicity n`..nu has an analogous meaning
for class C2.

An association A between classes C1 and C2 is formalized in DL by means of a
role A on which we enforce the assertions

∃A v C1, ∃A− v C2.

To express the multiplicity m`..mu on the participation of instances of C2 for each
given instance of C1, we use the assertion C1 v ∃A, if m` = 1, and (funct A), if
mu = 1. We can use similar assertions for the multiplicity n`..nu on the participation
of instances of C1 for each given instance of C2, i.e., C2 v ∃A−, if n` = 1, and
(funct A−), if nu = 1.

Next we focus on an association with a related association class, as shown in Fig-
ure 4(b), where the class A is the association class related to the association, and RA,1



and RA,2, if present, are the role names of C1 and C2 respectively, i.e., they specify the
role that each class plays within the association A.

We formalize in DL an association A with an association class, by reifying it into a
DL concept A and introducing two DL roles RA,1, RA,2, one for each role of A, which
intuitively connect an object representing an instance of the association to the instances
of C1 and C2, respectively, that participate to the association3. Then, we enforce that
each instance of A participates exactly once both to RA,1 and to RA,2, by means of the
assertions

A v ∃RA,1, (funct RA,1), A v ∃RA,2, (funct RA,2).

To represent that the association A is between classes C1 and C2, we use the assertions

∃RA,1 v A, ∃R−A,1 v C1, ∃RA,2 v A, ∃R−A,2 v C2.

Finally, we use the assertion
(id A RA,1, RA,2)

to specify that each instance of the concept A represents a distinct tuple in C1 × C2.4

We can easily represent in DL multiplicities on an association with association class,
by imposing suitable assertions on the inverses of the DL roles modeling the roles of
the association. For example, to say that there is a one-to-one participation of instances
of C1 in the association (with related association class) A, we assert

C1 v ∃R−A,1, (funct R−A,1).

In UML, one can use generalization between a parent class and a child class to
specify that each instance of the child class is also an instance of the parent class. Hence,
the instances of the child class inherit the properties of the parent class, but typically
they satisfy additional properties that in general do not hold for the parent class.

Generalization is naturally supported in DLs. If a UML class C2 generalizes a class
C1, we can express this by the DL assertion

C1 v C2.

Inheritance between DL concepts works exactly as inheritance between UML classes.
This is an obvious consequence of the semantics ofv, which is based on subsetting. As
a consequence, in the formalization, each attribute of C2 and each association involving
C2 is correctly inherited by C1. Observe that the formalization in DL also captures
directly inheritance among association classes, which are treated exactly as all other
classes, and multiple inheritance between classes (including association classes).

Moreover in UML, one can group several generalizations into a class hierarchy, as
shown in Figure 5. Such a hierarchy is captured in DL by a set of inclusion assertions,
one between each child class and the parent class, i.e.,

Ci v C, for each i ∈ {1, . . . , n}.
3 If the roles of the association are not available, we may use an arbitrary DL role name.
4 Notice that such an approach can immediately be used to represent an association of any arity:

it suffices to repeat the above for every component.
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Fig. 5. A class hierarchy in UML

Often, when defining generalizations between classes, we need to add additional as-
sertions among the involved classes. For example, for the class hierarchy in Figure 5, an
assertion may express that C1, . . . , Cn are mutually disjoint. In DL, such a relationship
can be expressed by the assertions

Ci v ¬Cj , for each i, j ∈ {1, . . . , n} with i 6= j.

Moreover, we may want to express that a generalization hierarchy is complete, i.e.,
that the subclasses C1, . . . , Cn are a covering of the superclass C. We can represent
such a situation in DL by including the additional assertion

C v C1 t · · · t Cn.

Such an assertion models a form of disjunctive information: each instance of C is either
an instance of C1, or an instance of C2, . . . or an instance of Cn.

Similarly to generalization between classes, UML allows one to state subset asser-
tions between associations. A subset assertion between two associations A and A′ can
be modeled in DL by means of the role inclusion assertion A v A′, involving the two
roles A and A′ representing the associations. When the two associations A and A′ are
represented by means of association classes, we need to use the concept inclusion as-
sertionA v A′, together with the role inclusion assertions between corresponding roles
of A and A′.

3.2 Reasoning and query answering

The fact that UML class diagrams can be captured by DLs enables the possibility of
performing sound and complete reasoning to do formal verification at design time and
query answering at runtime. Hence, one can exploit such ability to get support during
the design phase of the global schema, and to take the information in the global schema
fully into account during query answering.

It was shown in [3] that, unfortunately, reasoning (in particular checking the consis-
tency of the diagram, a task to which other typical reasoning tasks of interest reduce)
is EXPTIME-hard. What this result tells us is that, if the global schema is expressed in
UML, then the support at design time for a data integration system may be impossible
if the schema has a reasonable size.

Turning to query answering, the situation is even worse. The results in [11] imply
that answering conjunctive queries in the presence of a UML class diagram formed by



a single generalization with covering assertion is coNP-hard in the size of the instances
of classes and associations. Hence, query answering over even moderately large data
sets is again infeasible in practice. It is not difficult to see that this implies that, in a data
integration system where the global schema is expressed as a UML diagram, answering
conjunctive queries is coNP-hard with respect to the size of the source data.

Actually, as we will see in the next section, the culprit of such a high complexity
is mainly the ability of expressing covering assertions, which induces reasoning by
cases. Once we disallow covering and suitably restrict the simultaneous use of subset
constraints between associations and multiplicities, not only the sources of exponential
complexity disappear, but actually query answering becomes reducible to standard SQL
evaluation over a relational database.

4 A Tractable DL: DL-LiteA,id

We have seen that in a data integration system where the global schema is expressed as
a UML class diagram, reasoning is too complex. Thus, a natural question arising at this
point is: which is the right language to express the global schema of a data integration
system?

In this section, we present DL-LiteA,id, a DL of the DL-Lite family [12, 11], en-
riched with identification constraints (idCs) [12], and show that it is very well suited for
conceptual modeling in data integration, in particular for its ability of balancing expres-
sive power with efficiency of reasoning, i.e., query answering, which can be managed
through relational database technology.

DL-LiteA,id is essentially a subset of ALCQIbid, but, contrary to the DL presented
in Section 2, it distinguishes concepts from value-domains, which denote sets of (data)
values, and roles from attributes, which denote binary relations between objects and
values. Concepts, roles, attributes, and value-domains in this DL are formed according
to the following syntax5:

B −→ A | ∃Q | δ(U)
C −→ B | ¬B
Q −→ P | P−
R −→ Q | ¬Q

E −→ ρ(U)
F −→ >D | T1 | · · · | Tn
V −→ U | ¬U

In such rules, A, P , and P− respectively denote an atomic concept, an atomic role, and
the inverse of an atomic role, Q and R respectively denote a basic role and an arbitrary
role, whereasB denotes a basic concept,C an arbitrary concept, U an atomic attribute,
V an arbitrary attribute, E a basic value-domain, and F an arbitrary value-domain.
Furthermore, δ(U) denotes the domain of U , i.e., the set of objects that U relates to
values; ρ(U) denotes the range of U , i.e., the set of values that U relates to objects;
>D is the universal value-domain; T1, . . . , Tn are n pairwise disjoint unbounded value-
domains, corresponding to RDF data types, such as xsd:string, xsd:integer,
etc.

5 The results mentioned in this paper apply also to DL-LiteA,id extended with role attributes
(cf. [9]), which are not considered here for the sake of simplicity.



In a DL-LiteA,id TBox, assertions have the forms

B v C Q v R E v F U v V
(funct Q) (funct U) (id C π1, . . . , πn)

The assertions above, from left to right, respectively denote inclusions between con-
cepts, roles, value-domains, and attributes, (global) functionality on roles and on at-
tributes, and identification constraints6. Notice that paths occurring in DL-LiteA,id iden-
tification assertions may involve also attributes and value-domains, which are instead
not among the constructs present in ALCQIbid. More precisely, the symbol S in equa-
tion (1) now can be also an attribute or the inverse of an attribute, and the symbol D
in (1) now can be also a basic or an arbitrary value-domain.

As for the ABox, beside assertions of the form A(a), P (a, b), with A an atomic
concept, P and atomic role, and a, b constants, in DL-LiteA,id we may also have asser-
tions of the form U(a, v), where U is an atomic attribute, a a constant, and v a value.
Notice however that assertions of the form a = b or a 6= b are not allowed.

We are now ready to define what a DL-LiteA,id KB is.

Definition 1. A DL-LiteA,id KB K is a pair 〈T ,A〉, where T is a DL-LiteA,id TBox, A
is a DL-LiteA,id ABox, and the following conditions are satisfied:

(1) for each atomic role P , if either (funct P ) or (funct P−) occur in T , then T does
not contain assertions of the form Q v P or Q v P−, where Q is a basic role;

(2) for each atomic attribute U , if (funct U) occurs in T , then T does not contain
assertions of the form U ′ v U , where U ′ is an atomic attribute;

(3) all concepts identified in T are basic concepts, i.e., in each IdC (id C π1, . . . , πn)
of T , the concept C is of the form A, ∃Q, or δ(U);

(4) all concepts or value-domains appearing in the test relations in T are of the form
A, ∃Q, δ(U), ρ(U), >D, T1, . . ., or Tn;

(5) for each IdC α in T , every role or attribute that occurs (in either direct or inverse
direction) in a path of α is not specialized in T ′, i.e., it does not appear in the
right-hand side of assertions of the form Q v Q′ or U v U ′.

Intuitively, the conditions stated at points (1-2) (resp., (5)) say that, in DL-LiteA,id
TBoxes, roles and attributes occurring in functionality assertions (resp., in paths of
IdCs) cannot be specialized. All the above conditions are crucial for the tractability of
reasoning in our logic.

The semantics of a DL-LiteA,id TBox is standard, except that it adopts the unique
name assumption: for every interpretation I, and distinct constants a, b, we have that
aI 6= bI . Moreover, it takes into account the distinction between objects and values by
partitioning the interpretation domain in two sets, containing objects and values, respec-
tively. Note that the adoption of the unique name assumption in DL-LiteA,id makes it
meaningless to use ABox assertions of the form a = b and a 6= b, which instead occur in
ALCQIbid knowledge bases. Indeed, assertions of the first form cannot be satisfied by
DL-LiteA,id interpretations, thus immediately making the knowledge base inconsistent,
whereas assertions of the second form are always satisfied and are therefore implicit.

6 We remind the reader that the identification constraints referred to in this paper are local.
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Fig. 6. Diagrammatic representation of the football leagues ontology

We finally recall a notable result given in [13], characterizing the complexity of
query answering of UCQs over DL-LiteA,id knowledge bases. We remind the reader that
AC0 is the complexity class that corresponds to the complexity in the size of the data
of evaluating a first-order (i.e., SQL) query over a relational database (see, e.g., [1]).

Theorem 1 ([13]). Answering UCQs in DL-LiteA,id can be done in AC0 with respect
to the size of ABox.

The above result is proved by showing that it is possible to reduce the query an-
swering problem to the evaluation of a FOL query, directly translatable to SQL, over
the database corresponding to the ABox assertions, thus exploiting standard commer-
cial relational database technology.

Let us consider again the example on football leagues introduced in Section 2, and
model it as a DL-LiteA,id TBox. By virtue of the characteristics of DL-LiteA,id we can
now explicitly consider also attributes of concepts. In particular, we assume that when a
scheduled match takes place, it is played in a specific date, and that for every match that
has been played, the number of goals scored by the home team and by the host team
are given. Note that different matches scheduled for the same round can be played in
different dates. Also, we want to distinguish football championships on the basis of the
nation and the year in which a championship takes place (e.g., the 2008 Spanish Liga).
Finally, we assume that both matches and rounds have codes. In Figure 6, we show a
schematic representation of (part of) the new ontology for the football leagues domain,
whereas in Figure 7 the TBox assertions in DL-LiteA,id capturing the above aspects are
shown. Note that, beside the new assertions involving attributes, Figure 7 lists all asser-
tions given in Figure 37, which provide the ALCQIbid TBox modeling of the football
ontology, with the exception of the assertion match v scheduledMatcht playedMatch.
This is actually the price to pay to maintain reasoning tractable in DL-LiteA,id, and in
particular conjunctive query answering in AC0. Indeed, the above assertion expresses
the covering of the concept match with the concepts scheduledMatch and playedMatch,

7 We have used ∃R instead of ∃R.>, and inclusions of the form> v 6 1R.> are expressed as
functional assertions of the form (funct R).



INCLUSION ASSERTIONS
league v ∃OF
∃OF v league
∃OF− v nation
round v ∃BELONGS-TO

∃BELONGS-TO v round
∃BELONGS-TO− v league

match v ∃PLAYED-IN
∃PLAYED-IN v match
∃PLAYED-IN− v round

match v ∃HOME
∃HOME v match
∃HOME− v team

match v ∃HOST
∃HOST v match
∃HOST− v team

playedMatch v match
scheduledMatch v match

playedMatch v ¬scheduledMatch

league v δ(year)
match v δ(code)
round v δ(code)

playedMatch v δ(playedOn)
playedMatch v δ(homeGoals)
playedMatch v δ(hostGoals)

ρ(playedOn) v xsd:date
ρ(homeGoals) v xsd:nonNegativeInteger
ρ(hostGoals) v xsd:nonNegativeInteger

ρ(code) v xsd:positiveInteger
ρ(year) v xsd:positiveInteger

FUNCTIONAL ASSERTIONS
(funct OF)
(funct BELONGS-TO)
(funct PLAYED-IN)
(funct HOME)
(funct HOST)

(funct year)
(funct code)
(funct playedOn)
(funct homeGoals)
(funct hostGoals)

IDENTIFICATION CONSTRAINTS

1. (id league OF, year)
2. (id round BELONGS-TO, code)
3. (id match PLAYED-IN, code)
4. (id match HOME, PLAYED-IN)
5. (id match HOST, PLAYED-IN)

6. (id playedMatch playedOn, HOST)
7. (id playedMatch playedOn, HOME)

8. (id league year, BELONGS-TO− ◦ PLAYED-IN− ◦ HOME)

9. (id league year, BELONGS-TO− ◦ PLAYED-IN− ◦ HOST)
10. (id match HOME, HOST, PLAYED-IN ◦ BELONGS-TO ◦ year)

Fig. 7. The TBox in DL-LiteA,id for the football leagues example

but as said in Section 3, the presence of covering assertions makes query answering
coNP-hard in the size of the ABox.

The identification constraints given in Figure 7 model the following aspects:

1. No nation has two leagues in the same year.
2. Within a league, the code associated to a round is unique.
3. Every match is identified by its code within its round.
4. A team is the home team of at most one match per round.
5. As above for the host team.
6. No home team participates in different played matches in the same date
7. As above for the host team.
8. No home team plays in different leagues in the same year.
9. As above for the host team.

10. No pair (home team, host team) plays different matches in the same year.

5 Data Integration with DL-LiteA,id

In this section, we illustrate a specific proposal of data integration system based on
DL-LiteA,id, by describing the three components of the system. The choice for the lan-
guages used in the three components is tailored towards the goal of an optimal trade-off
between expressive power and complexity. After the description of the three compo-
nents, we briefly illustrate the algorithm for answering queries in our approach, and we
discuss its computational complexity.



5.1 The global schema

As said before, one of the basic characteristics of the approach to data integration ad-
vocated in this paper is that the global schema represents the conceptual model of the
domain of interest, rather than a mere description of a unified view of the source data.
We have also discussed the advantages of expressing the conceptual model in terms
of a DL. Finally, we have seen in the previous section that DL-LiteA,id represents a
valuable choice as a formalism for expressing the global schema of a data integration
system. Therefore, in our approach to data integration, the global schema is expressed
in terms of a DL-LiteA,id TBox. It is interesting to observe that most of the properties of
class diagrams discussed in Section 3 can indeed be expressed in DL-LiteA,id. The only
modeling construct that cannot be fully represented is covering. In other words, gen-
eralizations expressible in DL-LiteA,id are not complete. Also, functional associations
cannot be specialized.

5.2 The source schema

If J = 〈G,S,M〉 is a data integration system in our approach, S is assumed to be a flat
relational database schema, representing the schemas of all the data sources. Actually,
this is not a limitation of the system, since the source schema can always be thought
of as the schema managed by a relational data federation tool. Specifically, we assume
that a data federation tool is in charge of interacting with the data sources, presenting
them as a single relational database schema. Such a schema is obtained by wrapping
physical sources, possibly heterogeneous, and not necessarily in relational format. Fur-
thermore, the data federation tool is in charge of answering queries formulated over
the source schema, by suitably transforming such queries, forwarding them to the right
sources, and finally combining the single results into the overall answer. In other words,
the data federation tool makes the whole system independent from the physical nature
of the sources, by providing a logical representation of them (physical independence),
whereas the other components of the system make all the logical aspects transparent to
the user, by maintaining the conceptual global schema separate from the logical feder-
ated schema, and connecting them via suitable mappings (logical independence).

5.3 The mapping

The mappings in our approach establish the relationship between the source schema
and the global schema, thus specifying how data stored at the sources are linked to
the instances of the concepts and the roles in the global schema. More specifically, we
follow the GAV (global-as-view) approach for specifying mappings, which requires to
describe the meaning of every element of the global schema by associating to it a view
over the sources. The dual approach, called LAV (local-as-view), would require the
sources to be defined as views over the global schema.

Moreover, our mapping specification language takes suitably into account the
impedance mismatch problem, i.e., the mismatch between the way in which data is
(and can be) represented in a data source, and the way in which the corresponding
information is rendered through the global schema.



The mapping assertions keep data value constants separate from object identifiers,
and construct identifiers as (logic) terms over data values. More precisely, object iden-
tifiers in our approach are terms of the form f(d1, . . . , dn), called object terms, where
f is a function symbol of arity n > 0, and d1, . . . , dn are data values stored at the
sources. Note that this idea traces back to the work done in deductive object-oriented
databases [24].

We detail below the above ideas. The mapping component is specified through a set
of mapping assertions, each of the form

Φ(v) ; G(w)

where

– Φ(v), called the body of the mapping, is a first-order logic (FOL) query of arity
n > 0, with distinguished variables v, over the source schema S (we will write
such query in the SQL syntax), and

– G(w), called the head, is an atom where G can be an atomic concept, an atomic
role, or an atomic attribute occurring in the global schema G, and w is a sequence
of terms.

We define three different types of mapping assertions:

– Concept mapping assertions, in which the head is a unary atom of the form
A(f(v)), where A is an atomic concept and f is a function symbol of arity n;

– Role mapping assertions, in which the head is a binary atom of the form
P (f1(v′), f2(v′′)), where P is an atomic role, f1 and f2 are function symbols of
arity n1, n2 > 0, and v′ and v′′ are sequences of variables appearing in v;

– Attribute mapping assertions, in which the head is a binary atom of the form
U(f(v′), v′′ : Ti), where U is an atomic attribute, f is a function symbol of ar-
ity n′ > 0, v′ is a sequence of variables appearing in v, v′′ is a variable appearing
in v, and Ti is an RDF data type.

In words, such mapping assertions are used to map source relations (and the tuples
they store), to concepts, roles, and attributes of the ontology (and the objects and the
values that constitute their instances), respectively. Note that an attribute mapping also
specifies the type of values retrieved from the source database, in order to guarantee
coherency of the system.

We conclude this section with an example of mapping assertions, referring again
to the football domain. Suppose that the source schema contains the relational ta-
ble TABLE(mcode,league,round,home,host), where a tuple (m, l, r, h1, h2)
with l > 0 represents a match with code m of league l and round r, and with home
team h1 and host team h2. If we want to map the tuples from the table TABLE to the
global schema shown in Figure 7, the mapping assertions might be as shown in Figure 8.
M1 is a concept mapping assertion that selects from TABLE the code and the round of
matches (only for the appropriate tuples), and then uses such data to build instances of
the concept match, using the function symbol m. M2 is an attribute mapping assertion
that is used to “populate” the attribute code for the objects that are instances of match.



M1: SELECT T.mcode,
T.round,
T.league

FROM TABLE T
WHERE T.league > 0 ; match(m(T.mcode,T.round,T.league))

M2: SELECT T.mcode,
T.round,
T.league

FROM TABLE T
WHERE T.league > 0 ; code(m(T.mcode,T.round,T.league),

T.mcode : xsd:string)

M3: SELECT T.mcode,
T.round,
T.league

FROM TABLE T
WHERE T.league > 0 ; PLAYED-IN(m(T.mcode,T.round,T.league),

r(T.round,T.league))

Fig. 8. Example of mapping assertions

Finally, M3 is a role mapping assertion relating TABLE to the atomic role PLAYED-IN,
where instances of round are denoted by means of the function symbol r. We notice that
in the mapping assertionM2, the mapping designer had to specify a correct DL-LiteA,id
data type for the values extracted from the source.

We point out that, during query answering, the body of each mapping assertion is
never really evaluated in order to extract values from the sources to build instances of
the global schema, but rather it is used to unfold queries posed over the global schema,
rewriting them into queries posed over the source schema. We discuss this aspect next.

5.4 Query answering

We sketch here our query answering technique (more details can be found in [30, 10]).
Consider a data integration system J = 〈G,S,M〉 and a databaseD for S, and assume
that J is satisfiable with respect to D, i.e., semD(J ) 6= ∅ (cf. Section 2.1).

We start with the following observation. Suppose we evaluate (over D) the queries
in the left-hand sides of the mapping assertions, and we materialize accordingly the
corresponding assertions in the right-hand sides. This would lead to a set of ground
assertions, denoted by AM,D, that can be considered as a DL-LiteA,id ABox. It can be
shown that query answering over J and D can be reduced to query answering over the
DL-LiteA,id knowledge base constituted by the TBox G and the ABoxAM,D. However,
due to the materialization of AM,D, the query answering algorithm resulting from this
approach would be polynomial in the size of D. On the contrary, our idea is to avoid
any ABox materialization, but rather answerQ by reformulating it into a new query that
can be afterwards evaluated directly over the databaseD. The resulting query answering
algorithm is much more efficient than the one sketched above, and is constituted by four



steps, which are called rewriting, filtering, unfolding, and evaluation, and are described
in the following.

Rewriting. Given a UCQ Q over a data integration system J = 〈G,S,M〉, and a
source databaseD for J , the rewriting step computes a new UCQQ1 over J , where the
assertions of G are compiled in. In computing the rewriting, only inclusion assertions
of the form B1 v B2, Q1 v Q2, and U1 v U2 are taken into account, where Bi,
Qi, and Ui, with i ∈ {1, 2}, are a basic concept, a basic role, and an atomic attribute,
respectively. Intuitively, the query Q is rewritten according to the knowledge specified
in G that is relevant for answering Q, in such a way that the rewritten query Q1 is such
that Q〈∅,S,M〉,D1 = QJ ,D, i.e., the rewriting allows to get rid of G.

We refer to [30, 12] for a formal description of the query rewriting algorithm and
for a proof of its soundness and completeness. We only notice here that the rewriting
procedure does not depend on the source database D, runs in polynomial time in the
size of G, and returns a query Q1 whose size is at most exponential in the size of Q.

Filtering. Let Q1 be the UCQ produced by the rewriting step above. In the filtering
step we take care of a particular problem that the disjuncts, i.e., conjunctive queries,
in Q1 might have. Specifically, a conjunctive query cq is called ill-typed if it has at
least one join variable x appearing in two incompatible positions in cq, i.e., such that
the TBox G of our data integration system logically implies that x is both of type Ti,
and of type Tj , with Ti 6= Tj (remember that in DL-LiteA,id data types are pairwise
disjoint). The purpose of the filtering step is to remove from the UCQ Q1 all the ill-
typed conjunctive queries. Intuitively, such a step is needed because the query Q1 has
to be unfolded and then evaluated over the source database D (cf. the next two steps of
the query answering algorithm, described below). These last two steps, performed for
an ill-typed conjunctive query might produce incorrect results.

Unfolding. Given the UCQ Q2 over J computed by the filtering step, the unfolding
step computes, by using logic programming techniques, an SQL query Q3 over the
source schema S, that possibly returns object terms. It can be shown [30] that Q3 is
such that QD3 = Q

〈∅,S,M〉,D
2 , i.e., unfolding allows us to get rid ofM. Moreover, the

unfolding procedure does not depend on D, runs in polynomial time in the size ofM,
and returns a query whose size is polynomial in the size of Q2.

Evaluation. The evaluation step consists in simply delegating the evaluation of the SQL
queryQ3, produced by the unfolding step, to the data federation tool managing the data
sources. Formally, such a tool returns the set QD3 , i.e., the set of tuples obtained from
the evaluation of Q3 over D.

5.5 Correctness and complexity of query answering

It can be shown that the query answering procedure described above correctly com-
putes the certain answers to UCQs. Based on the computational properties of such an
algorithm, we can then characterize the complexity of our query answering method.



Theorem 2. Let J = 〈G,S,M〉 be a data integration system, and D a source
database for J . Answering a UCQ over J with respect to D can be reduced to the
evaluation of an SQL query over D, and can be done in AC0 in the size of D.

In other words, the above theorem says that UCQs in our approach are FO-
rewritable.

Finally, we remark that, as we said at the beginning of this section, we have as-
sumed that the data integration system J is consistent with respect to the database D,
i.e., semD(J ) is non-empty. Notably, it can be shown that all the machinery we have
devised for query answering can also be used for checking consistency of J with re-
spect to D. Therefore, checking consistency can also be reduced to sending appropriate
SQL queries to the source database [30, 13].

6 Extending the data integration framework

We now analyze the possibility of extending the data integration setting presented above
without affecting the complexity of query answering. In particular, we investigate pos-
sible extensions for the language for expressing the global schema, the language for
expressing the mappings, and the language for expressing the source schema.

We start by dealing with extending the global schema language. There are two pos-
sible ways of extending DL-LiteA,id. The first one corresponds to a proper language
extension, i.e., adding new DL constructs to DL-LiteA,id, while the second one consists
of changing/strengthening the semantics of the formalism.

Concerning language extensions, the results in [11] show that it is not possible to
add any of the usual DL constructs to DL-LiteA,id while keeping the data complexity
of query answering within AC0. This means that DL-LiteA,id is essentially the most
expressive DL allowing for data integration systems where query answering is FO-
rewritable.

Concerning the possibility of strengthening the semantics, we briefly analyze the
consequences of removing the unique name assumption (UNA), i.e., the assumption
that, in every interpretation of a data integration system, two distinct object terms and
two distinct value constants denote two different domain elements. Unfortunately, this
leads query answering out of LOGSPACE, and therefore, this leads to loosing FO-
rewritability of queries.

Theorem 3 ([10]). Let J = 〈G,S,M〉 be a DL-LiteA,id data integration system ex-
tended by removing the UNA, and D a database for S. Computing the certain answers
to a query constituted by a single atom in J with respect to D is NLOGSPACE-hard in
the size of D.

Next we consider extensions to the mapping language. The possibility of extending
the language used to express the mapping has been analyzed in [10], which considers
the so-called GLAV mappings, i.e., assertions that relate conjunctive queries over the
sources to conjunctive queries over the global schema. Such assertions are therefore an
extension of both GAV and LAV mappings. Unfortunately, even with LAV mappings
only, it has been shown that instance checking and query answering are no more in



LOGSPACE with respect to data complexity. Thus, with LAV mappings, we again loose
FO-rewritability of UCQs.

Theorem 4 ([10]). Let J = 〈G,S,M〉 be a DL-LiteA,id data integration system ex-
tended with LAV mapping assertions, and D a database for S. Computing the certain
answers to a query constituted by a single atom in J with respect toD is NLOGSPACE-
hard in the size of D.

Finally, we consider the possibility of handling source schemas beyond the rela-
tional model. The data integration architecture referred to in this paper assumes to deal
with relational sources, managed by a relational data federation tool. It is not hard to
see, however, that all the results mentioned here apply also if we consider federation
tools that provide a representation of the data at the sources according to a different
data model (e.g., XML). Obviously, depending on the specific data model adopted by
the data federation tool, we have to resort to a suitable query language for expressing
the source queries appearing in the mapping assertions. To adhere to the framework
adopted in this paper, the only constraint imposed on the query language (that is triv-
ially satisfied by virtually all query languages used in practice) is that it is able to extract
tuples of values from the sources.

7 Discussion and conclusions

Starting from the late 90s, research in data integration has mostly focused on declarative
approaches (as opposed to procedural ones) [32, 26], such as the one advocated here.
The GAV approach for specifying mappings has been proposed e.g., in [15, 20, 31, 22],
while the LAV approach is at the basis of the work in [25, 18, 14].

Although in the present work we make use of GAV mappings, the presence of
constraints expressed in a rich ontology language in the global schema, makes query
answering in our setting more similar to what is carried out in LAV data integration
systems rather than in GAV systems. Indeed, while in general GAV systems have been
realized as (simple) hierarchies of wrappers and mediators, query answering in LAV
can be considered a form of reasoning in the presence of incomplete information, and
thus significantly more complex. Early systems based on this approach, like Informa-
tion Manifold [28, 29], or INFOMASTER [21, 19], have implemented algorithms [28]
for rewriting queries using views (where the views are the ones specified through the
CQs in the mappings). The relationship between LAV and GAV data integration sys-
tems is explored in [7], where it is indeed shown that a LAV system can be converted
into a GAV one by introducing suitable inclusion dependencies in the global schema. If
no functionality assertions are present in the global schema, such inclusion dependen-
cies can then be dealt with in a way similar to what is done here for concept and role
inclusions in DL-LiteA,id. Note that this is no longer possible, instead, in the presence
of functionality assertions.

The approach illustrated in this paper has been implemented in a prototype sys-
tem called MASTRO-I (see [13]). We conclude the paper by mentioning some aspects
that are important for the problem of semantic data integration, but that have not been
addressed yet in the development of the system.



A first important point is handling inconsistencies in the data, possibly using a
declarative, rather than an ad-hoc procedural approach. An interesting proposal is the
one of the INFOMIX system [27] for the integration of heterogeneous data sources
(e.g., relational, XML, HTML) accessed through a relational global schema with pow-
erful forms of integrity constraints. The query answering technique proposed in such a
system is based on query rewriting in Datalog enriched with negation and disjunction,
under stable model semantics [8, 23].

A second interesting issue for further work is looking at “write-also” data inte-
gration tools. Indeed, while the techniques presented in this paper provide support for
answering queries posed to the data integration system, it could be of interest to also
deal with updates expressed on the global schema (e.g., according to the approach de-
scribed in [16, 17]). The most challenging issue to be addressed in this context is to
design mechanisms for correctly reformulating an update expressed over the ontology
into a series of insert and delete operations on the data sources.
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