
1

Actions and Programs over Description Logic
Knowledge Bases: A Functional Approach
DIEGO CALVANESE, GIUSEPPE DE GIACOMO, MAURIZIO LENZERINI,
AND RICCARDO ROSATI

ABSTRACT. We aim at reasoning about actions and about high-level programs over
knowledge bases (KBs) expressed in Description Logics (DLs). This is a critical is-
sue that has resisted good, robust solutions for a long time. In particular, while well-
developed theories of actions and high-level programs exist in AI, e.g., the ones based
on the Situation Calculus, these theories do not apply to DL KBs, since these impose
very rich state constraints (all the intensional part of the ontology itself). Here we pro-
pose a radical solution: we assume a Levesque’s functional view of KBs and see them
as systems that allow for two kinds of operations: ASK, which returns the (certain)
answer to a query, and TELL, which produces a new knowledge base as the result of
the application of an atomic action. In particular, we consider DL KBs formed by two
components: a TBox, providing the intensional knowledge about the domain of inter-
est, which we assume to be immutable over time; and an ABox, providing (incomplete)
information at the extensional level, which we assume to be changed by atomic actions
based on generic forms of instance level updates. The only requirement that we pose on
such updates is that the resulting ABox is still expressible in the original DL language.
We demonstrate the effectiveness of the approach by introducing Golog/ConGolog-like
high-level programs on DL KBs, characterizing the notion of single-step executability
of such programs, and devising nice methods for reasoning about sequences of actions
generated by such programs. All our basic results are parametric wrt the specific DL
language. Though for concreteness we present them using a particularly well behaved
DL, namely DL-LiteA,id.

1 Introduction
In this paper we look at reasoning about actions over Description Logic (DL) knowledge
bases (KBs). In doing so, we merge two areas to which Hector Levesque has profoundly
contributed: that of DLs, where the Brachman & Levesque’s seminal paper on the trade-
off between expressiveness and computational complexity in DLs, presented at AAAI’84
[Brachman and Levesque 1984], has shaped nearly all successive research in the field; and
that of high-level programs directly based on logics, in particular Golog and ConGolog
based on the Situation Calculus (SitCalc), where the work of Levesque and Reiter has
demonstrated, possibly for the first time, the maturity of the area of reasoning about ac-
tions [Levesque et al. 1997; De Giacomo et al. 2000; Reiter 2001]. Interestingly, in order
to make reasoning about actions over DL KBs feasible, we resort to a third foundational
contribution by Hector Levesque: the so-called “functional view of knowledge bases” pre-
sented in [Levesque 1984], in which KBs are seen as sophisticated objects whose basic

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati

operation are “ASK”, to extract knowledge from the KB, and “TELL”, to update the knowl-
edge in the KB, and where both operation are based on well characterized logical reasoning
tasks.

In fact, research on reasoning about actions over DL KBs is currently of particular in-
terest. Indeed, DL KBs [Baader et al. 2003] are generally advocated as the right tool to ex-
press ontologies, and this belief is one of the cornerstones of the Semantic Web [Smith et al.
2004; Horrocks et al. 2003]. Notably, semantic web services [Martin et al. 2004] constitute
another cornerstone of the Semantic Web. These are essentially high-level descriptions of
computations that abstract from the technological issues of the actual programs that realize
them. An obvious concern is to combine in some way the static descriptions of the informa-
tion provided by ontologies with the dynamic descriptions of the computations provided by
semantic web services. However, such a critical issue has resisted good solutions for a long
time, and even big efforts such as OWL-S [Martin et al. 2004] have not really succeeded.

In AI, the importance of combining static and dynamic knowledge has been recognized
early [McCarthy 1962; McCarthy and Hayes 1969]. By now, well developed theories of
actions and high-level programs, such as Levesque and others’ Golog/ConGolog, exist.
Note that high-level programs share with semantic web services the emphasis on abstract-
ing from the technological issues of actual programs, and are indeed abstract descriptions
of computations over a domain of interest. Unfortunately, these theories do not apply easily
to general DL KBs, which impose a very rich kind of state constraints.

DL KBs are formed by two components, a TBox and an ABox. The TBox provides
intensional knowledge about the domain of interest, expressed in terms of assertions about
concepts, denoting sets (or classes) of individuals, and roles, denoting binary relationships
(or associations) between individuals in such classes. The ABox provides facts asserting
the membership of single individuals to classes or of pairs of individuals to roles. Such facts
constitute an incomplete description of the information about the domain of interest at the
extensional level. The TBox assertions in a DL KB typically do not provide definitions
of concepts and roles, but only interrelations between them (cf. cyclic TBox interpreted
according to the so-called descriptive semantics [Baader et al. 2003]). Such non-definitorial
nature of DL KBs makes them one of the most difficult kinds of domain descriptions for
reasoning about actions, since to come with them means to come with complex forms of
state constraints that must be maintained over time [Baader et al. 2005; Liu et al. 2006a].

As mentioned, here we propose a radical solution: we assume a functional view [Levesque
1984] of KBs and see them as systems that allow for two kinds of operations: ASK, which
returns the (certain) answer to a query over teh KB, and TELL, which produces a new KB
as a result of the application of an atomic action. Observe that this approach, whose ori-
gins come from [De Giacomo et al. 1996; Giuseppe and Rosati 1999; Petrick and Bacchus
2004; van Riemsdijk et al. 2006], has some subtle limitations, due to the fact that we
lose the possibility of distinguishing between “knowledge” and “truth” as pointed out in
[Sardiña et al. 2006]. On the other hand, it has a major advantage: it decouples reasoning
on the static knowledge from reasoning on the dynamics of the computations over such
knowledge. As a result, we gain the ability of lifting to DLs many of the results developed
in reasoning about actions in the years.

We demonstrate such an approach in this paper. Specifically, we assume the TBox of a
KB to be immutable over time, while the ABox might be changed by atomic actions used by
the TELL operation and based on generic forms of instance level updates. The only require-
ment that we pose on such updates is that the resulting ABox is still expressible in the orig-

Actions and Programs over Description Logic Knowledge Bases

inal KB language. Building on this functional view, we introduce Golog/ConGolog-like
high level programs over DL KBs, we characterize the notion of single-step executability
of such programs, and we devise methods for reasoning about sequences of actions gen-
erated by such programs. All our basic results are parametric with respect to the specific
DL language. Though for concreteness we present them using a particularly well behaved
DL, namely DL-LiteA,id, which is an expressive member of the DL-Lite family [Calvanese
et al. 2007b], a family of DLs that enjoys particularly nice computational properties when
reasoning about knowledge at the instance level. We stress that this paper is really an illus-
tration of what a functional view on KBs can bring about in combining static and dynamic
aspects in the context of DL KBs, and that many extensions of this work can be investigated
(we will mention some of them in the conclusions).

2 Preliminaries

DL ontologies. Description Logics (DLs) [Baader et al. 2003] are knowledge representa-
tion formalisms that are tailored for representing the domain of interest in terms of concepts
(or classes), which denote sets of objects, and roles (or relations), which denote denote bi-
nary relations between objects. DLs knowledge bases (KBs) are based on an alphabet of
object, concept, and role symbols, and are formed by two distinct parts: the so-called TBox,
which represents the intensional level of the KB, and contains an intensional description of
the domain of interest; and the so-called ABox, which represents the instance level of the
KB, and contains extensional information.

We give the semantics of a DL KB in terms of interpretations over a fixed infinite domain
∆ of objects. We assume to have one constant in the alphabet for each object in ∆ denoting
exactly that object. In this way we blur the distinction between constants and objects, so
that we can use them interchangeably (with a little abuse of notation), without causing
confusion (cf. standard names [Levesque and Lakemeyer 2001]).

An interpretation I = 〈∆, ·I〉 consists of a first order structure over ∆, and an inter-
pretation function ·I , mapping each concept to a subset of ∆ and each role to a subset of
∆ ×∆. We say that I is a model of a (TBox or ABox) assertion α, or also that I satisfies
α, if α is true in I. We say that I is a model of the KB K = 〈T ,A〉, or also that I satisfies
K, if I is a model of all the assertions in T and A. Given a set S of (TBox or ABox)
assertions, we denote by Mod(S) the set of interpretations that are models of all assertions
in S. In particular, the set of models of K, denoted Mod(K), is the set of models of all
assertions in T and A, i.e., Mod(K) = Mod(〈T ,A〉) = Mod(T ∪ A). A KB K is consis-
tent if Mod(K) 6= ∅, i.e., it has at least one model. We say that a KB K logically implies
an expression α (e.g., an assertion, an instantiated conjunctive query (CQ), or an instanti-
ated union of conjunctive queries (UCQ), etc.), written K |= α, if for every interpretation
I ∈ Mod(K), we have that I ∈ Mod(α), i.e., all the models of K are also models of α.

When dealing with queries, we are interested in query answering (for CQs and UCQs):
given a KB K and a query q(~x) over K, return the certain answers to q(~x) over K, i.e., all
tuples ~t of elements of ∆ such that K |= q(~t), where q(~t) denotes the query obtained from
q(~x) by substituting ~x with ~t.

DL-LiteA,id. The DL-Lite family [Calvanese et al. 2007b] is a family of low complexity
DLs particularly suited for dealing with KBs with very large ABoxes, and forms the basis
of OWL 2 QL, one of the profiles of OWL 2, the official ontology specification language

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati

of the World-Wide-Web Consortium (W3C)1.
We now present the DL DL-LiteA,id [Calvanese et al. 2008], which is the most expres-

sive logic in the family. Expressions in DL-LiteA,id are formed according to the following
syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)

C −→ B | ¬B F −→ >D | T1 | · · · | Tn
Q −→ P | P− V −→ U | ¬U

R −→ Q | ¬Q

where A, P , and U denote respectively an atomic concept name, an atomic role name, and
an attribute name, T1, . . . , Tn are the value-domains allowed in the logic (which correspond
to the data types adopted by Resource Description Framework (RDF)2), >D denotes the
union of all domain values, P− denotes the inverse of P , ∃Q denotes the objects related
to some object by the role Q, ¬ denotes negation of concepts, roles, or attributes, δ(U)
denotes the domain of U , i.e., the set of objects that U relates to values, and ρ(U) denotes
the range of U , i.e., the set of values to which U relates objects.

A DL-LiteA,id TBox T contains intensional assertions of three types, namely inclusion
assertions, functionality assertions, and identification assertions (IDs) [Calvanese et al.
2008]. More precisely, DL-LiteA,id assertions are of the form:

B v C concept inclusion assertion

E v F value-domain inclusion assertion

Q v R role inclusion assertion

(funct Q) role functionality assertion

(funct U) attribute functionality assertion

(id B π1, ..., πn) identification assertions

In the identification assertions, π denotes a path, which is an expression built according to
the following syntax rule:

π −→ S | B? | π1 ◦ π2

where S denotes an atomic role, the inverse of an atomic role, or an atomic attribute, π1◦π2
denotes the composition of the paths π1 and π2, and B?, called test relation, represents the
identity relation on instances of the concept B. The length of a path is inductively defined
as follows: the length of a path whose form is S or B? is 1; the length of a path of the form
π1 ◦ π2 is the sum of the lengths of π1 and of π2. In DL-LiteA,id, identification assertions
are local, i.e., at least one πi ∈ {π1, ..., πn} has length 1. In what follows, we only refer to
IDs which are local.

1http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/
2http://www.w3.org/RDF/

Actions and Programs over Description Logic Knowledge Bases

A concept inclusion assertion specifies that a (basic) concept B is subsumed by a (gen-
eral) concept C. Analogously for the other types of inclusion assertions. Attribute func-
tionality assertions are used to impose that attributes are actually functions from objects to
domain values. Finally, an ID (id B π1, ..., πn) asserts that for any two different instances
a, b of B, there is at least on πi such that a and b differ in the set of their πi-fillers.

In order to guarantee the good computational properties of the DLs of the DL-Lite family,
a DL-LiteA,id TBox T has to satisfy the following conditions:

• for each atomic role P , if either (funct P) or (funct P−) occur in T , then T does
not contain assertions of the form Q v P or Q v P−, where Q is a basic role;

• for each ID α in T , every role that occurs (in either direct or inverse direction) in a
path of α, does not appear in the right-hand side of assertions of the form Q v Q′.

Intuitively, these conditions say that, in DL-LiteA,id TBoxes, roles occurring in functionality
or identification assertions cannot be specialized.

We observe that DL-LiteA,id is able to capture all essential features of conceptual mod-
eling formalisms, such as UML Class Diagrams or Entity-Relationship schemas, with the
notable exception of covering constraints in generalization hierarchies, which would re-
quire the introduction of disjunction. Indeed, it can be shown that, if disjunction was added
to DL-LiteA,id, then query answering would become intractable with respect to the size of
the ABox [Calvanese et al. 2006].

A DL-LiteA,id ABoxA is a finite set of assertions of the formA(a), P (a, b), andU(a, v),
where A, P , and U are as above, a and b are object constants, and v is a value constant.
Answering EQL-Lite(UCQ) queries over DL-LiteA,id knowledge bases. As query lan-
guage, here we consider EQL-Lite(UCQ) [Calvanese et al. 2007a]. This language is essen-
tially formed by full (domain-independent) FOL query expressions built on top of atoms
that have the form Kα, where α is a union of conjunctive queries3. The operator K is
a minimal knowledge operator [Levesque 1984; Reiter 1990; Levesque and Lakemeyer
2001], which is used to formalize the epistemic state of the KB. Informally, the formula
Kα is read as “α is known to hold” or “α is logically implied by the knowledge base”.

Note that answering EQL-Lite(UCQ) queries over DL-LiteA,id KBs K = 〈T ,A〉 is
LOGSPACE with respect to the size ofA. Notably, query answering can be reduced to eval-
uating (pure) FOL queries over the ABox, considered as a database. We refer to [Calvanese
et al. 2007a] for more details.
DL instance-level update and erasure. Besides answering queries, Description Logic
systems should be able to cope with the evolution of the KB. There are two types of evolu-
tion operators, corresponding to inserting and deleting chunks of knowledge, respectively.
In the case of insertion, the aim is to incorporate new knowledge into the KB, and the
corresponding operator should be defined in such a way to compute a consistent KB that
supports the new knowledge. In the case of deletion, the aim is to come up with a consistent
KB where the retracted knowledge is not valid. Many recent papers demonstrate that the
interest towards a well-defined approach to KB evolution is growing significantly [Flouris
et al. 2008; Liu et al. 2006b; De Giacomo et al. 2009; Wang et al. 2010; Calvanese et al.
2010].

Following the tradition of the work on knowledge revision and update [Katsuno and
Mendelzon 1991], all the above papers advocate some minimality criterion in the changes

3For queries consisting of only one atom Kα, the K operator is omitted.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati

of the KB that must be undertaken to realize the evolution operations. In other words, the
need is commonly perceived of keeping the distance between the original KB and the KB
resulting from the application of an evolution operator minimal. There are two main ap-
proaches to define such a distance, called model-based and formula-based, respectively. In
the model-based approaches, the result of an evolution operation applied to the KBK is de-
fined in terms of a set of models, with the idea that such a set should be as close as possible
to the models of K. One basic problem with this approach is to characterize the language
needed to express the KB that exactly captures the resulting set of models. Conversely,
in the formula-based approaches, the result is explicitly defined in terms of a formula, by
resorting to some minimality criterion with respect to the formula expressing K. Here, the
basic problem is that the formula constituting the result of an evolution operation is not
unique in general.

Virtually all model-based approaches suffer from the expressibility problem (see, e.g.,
[Liu et al. 2006b; De Giacomo et al. 2009; Calvanese et al. 2010]). For this reason,
we adopt here a formula-based approach, inspired in particular by the work developed in
[Fagin et al. 1983] for updating logical theories. As in [Fagin et al. 1983], we consider
both insertions and deletions, but we limit our attention to insertions and deletions of ABox
assertions. In other words, we consider the evolution of the ABox of a KB under an invari-
ant TBox, on the basis of the fact that, in many applications, the TBox represents a stable
representation of the intensional knowledge about the domain. The specific approach we
take is inspired by two recent methods proposed for the evolution of KBs expressed in the
DL-Lite family [Calvanese et al. 2010; Lenzerini and Savo 2011]. Both methods follow the
formula-based approach, and guarantee that the result of the evolution of a KB is always
expressible in the DL used to specify the original KB.

3 Atomic actions
Under Levesque’s functional view, KBs are seen as systems that are able to perform two
basic kinds of operations, namely ASK and TELL operations [Levesque 1984; Levesque and
Lakemeyer 2001]:

• ASK: given a KB and a query (in the query language recognized by the KB), returns
a finite set of tuples of objects (constituting the answers to the query over the KB).

• TELL: given a KB and an atomic action, returns a new KB resulting from executing
the action, if the action is executable wrt the given KB.

We consider KBs expressed in arbitrary DLs languages, except that we require that they
are able to deal with EQL-Lite(UCQ) as query language. This implies that they need to
be able to handle certain answers of unions of conjunctive queries in a decidable/effective
way. With this assumption in place, we base ASK on certain answers to EQL-Lite(UCQ).
Specifically, we denote by q(~x) an (EQL-Lite(UCQ)) query with distinguished variables
~x. For a KB K, we define ASK(q(~x),K) = {~t | K |= q(~t)}, where ~t denotes a tuple of
constants of the same arity as ~x. We denote by φ queries with no distinguished variables.
Such queries are called boolean queries and return either true (i.e., the empty tuple) or false
(i.e., no tuples at all).

As for TELL, we base atomic actions on instance level update and erasure [De Giacomo
et al. 2006; De Giacomo et al. 2007]. Specifically, we allow for atomic actions of the form

updateop L(~x) where q(~x)

Actions and Programs over Description Logic Knowledge Bases

where q(~x) stands for a query with ~x as distinguished variables, L(~x) stands for a set of
membership assertions on constants and variables in ~x, and updateop is an update operator
that makes use of L(~x) to update the KB.

We allow for several update operators, for various forms of update and erasure [Katsuno
and Mendelzon 1991; Eiter and Gottlob 1992]. However, we require that by applying one
such update operator updateop to a KBK = (T ,A) we get a single new KBK′ = (T ,A′)
with A′ still in the same DL language of K, or we fail. The new ABox is defined as
A′ = fop(L(~x), q(~x),K), where fop characterizes the semantics of the update operator
updateop . If for any reason fop(L(~x), q(~x),K) is not defined, then the update fails, and
the action is not executable.

Requiring that the result of the update is still a single KB in the same language as the
original one is somehow a severe restriction, since we know that most classical knowledge
update operators [Katsuno and Mendelzon 1991; Eiter and Gottlob 1992] applied to DL
KBs produce results that are not expressible in the DL of the original KB [De Giacomo
et al. 2006; De Giacomo et al. 2007]. On the other hand, from a pragmatical point of view,
such an assumption is essential, since it guarantees that by applying the update we can still
use the reasoning techniques/algorithms that we used for the original KB. Dropping such
assumption would have a disruptive effect on the system: the reasoning techniques in the
various states of our system would need to be different.4

Let K = (T ,A), then we define:

TELL([updateop L(~x) where q(~x)],K) =

 ⊥, if fop(L(~x), q(~x),K) is undefined

(T , fop(L(~x), q(~x),K), otherwise

If ⊥ is returned by the TELL operation, we say that the atomic action a is not executable in
K. We extend ASK with expressions of the form ASK([executable(a)],K), so as to be able
to check executability of actions. Observe that the executability of actions as defined above
can indeed be checked on the KB.

We close the section by discussing these notions on DL-LiteA,id KBs. First DL-LiteA,id

allows for computing certain answers of EQL-Lite(UCQ) in LOGSPACE in data complex-
ity (as in relational databases) and PTIME in KB complexity, making ASK particularly
effective (we assume the size of the query fixed). As for TELL we consider two forms of
updates in DL-LiteA,id: updateadd is based on the notion of update mentioned above, and
updateerase is based on the notion of erasure. Both these operation can be done in poly-
nomial time wrt the KB, and hence also TELL is polynomial (again we assume the size of
the query fixed).

4 Programs
We now consider how atomic actions can be organized within a program. In particular,
we focus on a variant of Golog [Levesque et al. 1997; De Giacomo et al. 2000; Sardiña
et al. 2004] tailored to work on KBs. Instead of situations, we consider KBs, or, to be
more precise, KB states. We recall that when considering KBs we assume the TBox to be
invariant, so the only part of the KB that can change as a result of an action (or a program)
is the ABox.

4In fact one aspect of this assumption could be dropped: the fact that the update results in a single resulting
ABox. We could possibly assume that the resulting ABoxes could be many. Now if they could be finitely many,
then the results here could be easily extended, if they could be infinitely many, then more work needs to be done.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati

While all constructs of the original Golog/ConGolog have a counterpart in our variant,
here for brevity we concentrate on a core fragment only, namely:

a atomic actions

ε the empty sequence of actions

δ1; δ2 sequential composition

if φ then δ1 else δ2 if-then-else

while φ do δ while

pick q(~x).δ[~x] pick

where a is an atomic instruction that corresponds to the execution of the atomic action a;
ε is an empty sequence of instructions (needed for technical reasons); if φ then δ1 else δ2
and while φ do δ are the standard constructs for conditional choice and iteration, where
the test condition is a boolean query (or an executability check) to be asked to the current
KB; finally, pick q(~x).δ[~x] picks a tuple ~t in the answer to q(~x), instantiates the rest of
the program δ by substituting ~x with ~t and executes δ. The latter construct is a variant of
the pick construct in Golog: the main difference being that ~t is bounded by a query to the
KB. Also, while in Golog such a choice is nondeterministic, here we think of it as possibly
made interactively, see below.

The general approach we follow is the structural operational semantics approach based
on defining a single step of program execution [Plotkin 1981; De Giacomo et al. 2000].
This single-step semantics is often called transition semantics or computation semantics.
Namely, to formally define the semantics of our programs we make use of a transition
relation, named Trans , and denoted by “−−−→”:

(δ,K)
a−−−→(δ′,K′)

where δ is a program,K is a KB in which the program is executed, a is the executed atomic
action, K′ is the KB obtained by executing a in K, and δ′ is what remains to be executed
of δ after having executed a.

We also make use of a final predicate, named Final , and denoted by “·
√

”:

(δ,K)
√

where δ is a program that can be considered (successfully) terminated with the KB K.
Such a relation and predicate can be defined inductively in a standard way, using the so

called transition (structural) rules. The structural rules for defining the transition relation
and the final predicate are given in Figure 1 and Figure 2 respectively. All structural rules
have the following schema:

CONSEQUENT

ANTECEDENT
if SIDE-CONDITION

which is to be interpreted logically as:

∀(ANTECEDENT ∧ SIDE-CONDITION → CONSEQUENT)

Actions and Programs over Description Logic Knowledge Bases

act :
(a,K)

a−−−→(ε, TELL(a,K))

true
if a is executable in K

seq :
(δ1; δ2, K)

a−−−→(δ′1; δ2,K′)

(δ1,K)
a−−−→(δ′1;K′)

(δ1; δ2, K)
a−−−→(δ′2,K′)

(δ2,K)
a−−−→(δ′2;K′)

if (δ1,K)
√

if :
(if φ then δ1else δ2,K)

a−−−→(δ′1,K′)

(δ1,K)
a−−−→(δ′1,K′)

if ASK(φ,K) = true

(if φ then δ1else δ2,K)
a−−−→(δ′2,K′)

(δ2,K)
a−−−→(δ′2,K′)

if ASK(φ,K) = false

while :
(while φ do δ,K)

a−−−→(δ′; while φ do δ,K′)

(δ,K)
a−−−→(δ′,K′)

if ASK(φ,K) = true

pick :
(pick q(~x). δ[x],K)

a−−−→(δ′[~t],K′)

(δ[~t],K)
a−−−→(δ′[~t],K′)

(for ~t = CHOICE[ASK(q(~x),K)])

Figure 1. Transition rules

where ∀Q stands for the universal closure of all free variables occurring inQ, and, typically,
ANTECEDENT, SIDE-CONDITION, and CONSEQUENT share free variables. The structural
rules define inductively a relation, namely the smallest relation satisfying the rules.

Observe the use of the parameter CHOICE, which denotes a choice function, to deter-
mine the tuple to be picked in executing the pick constructs of programs. More precisely,
CHOICE stands for any function, depending on an arbitrary number of parameters, return-
ing a tuple from the set ASK(q(~x),K). In the original Golog/ConGolog proposal [Levesque
et al. 1997; De Giacomo et al. 2000] such a choice function (there also extended to other
nondeterministic constructs) is implicit, the idea there being that Golog executions use a
choice function that would lead to the termination of the program (angelic nondetermin-
ism). In [Sardiña et al. 2004], a choice function is also implicit, but based on the idea that
choices are done randomly (devilish nondeterminism). Here, we make use of choice func-
tions explicitly, so as to have control on nondeterministic choices. Indeed, one interesting
use of CHOICE is to model the delegation of choices to the client of the program, with the
idea that the pick construct is interactive: it presents the result of the query to the client,
who chooses the tuple s/he is interested in. For example, if the query is about hotels that
are available in Rome, the client sees the list of available hotels resulting from the query
and chooses the one s/he likes most.5 We say that a program is deterministic when no pick
instructions are present or a fixed choice function for CHOICE is considered.

5Note that, since the query q is an EQL-Lite(UCQ) query, it is range restricted by definition (cf. [Calvanese
et al. 2007a]).

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati

ε :
(ε,K)

√

true
seq :

(δ1; δ2, K)
√

(δ1,K)
√
∧ (δ2;K)

√

if :
(if φ then δ1else δ2,K)

√

(δ1,K)
√ if ASK(φ,K) = true

(if φ then δ1else δ2,K)
√

(δ2,K)
√ if ASK(φ,K) = false

while :
(while φ do δ,K)

√

true
if ASK(φ,K) = false

(while φ do δ,K)
√

(δ,K)
√ if ASK(φ,K) = true

pick :
(pick q(~x). δ[~x],K)

√

(δ[~t],K)
√ (for ~t = CHOICE[ASK(q(~x),K)])

Figure 2. Final rules

Examples. Let us look at some simple examples of programs. Consider the KB on com-
panies and grants shown in Figure 3, also depicted graphically in Figure 4.

The first program we write aims at populating the concept IllegalOwner with those
companies that own themselves, either directly or indirectly. We assume temp to be an
additional role in the alphabet of the TBox. Then, the following deterministic program
ComputeIllegalOwners can be used to populate IllegalOwner :

ComputeIllegalOwners =
UPDATEerase temp(x1,x2) where q(x1,x2) <- temp(x1,x2);
UPDATEerase IllegalOwner(x) where q(x) <- IllegalOwner(x);
UPDATEadd temp(x1,x2) where q(x1,x2) <- owns(x1,x2);
while (q() <- K(temp(y1,z), owns(z,y2)), not K(temp(y1,y2))) do (
UPDATEadd temp(x1,x2) where

q(x1,x2) <- K(temp(x1,z), owns(z,x2)), not K(temp(x1,x2))
);

UPDATEadd IllegalOwner(x) where q(x) <- temp(x,x)

The second program we look at is a program that, given a research group r and a com-
pany c, interactively—through a suitable choice function for CHOICE—selects a public
company owned by c to ask a grant to; if c does not own public companies, then it selects
the company c itself:

askNewGrant(r,c) =
if (q() <- owns(c,y), PublicCompany(y)) then (
pick (q(x) <- owns(c,x), PublicCompany(x)). (

Actions and Programs over Description Logic Knowledge Bases

∃owns v Company
∃owns− v Company

(funct owns−)
PublicCompany v Company
PrivateCompany v Company
PublicCompany v ¬PrivateCompany

IllegalOwner v Company
∃grantAsked v ResearchGroup
∃grantAsked− v Company
ResearchGroup v ∃grantAsked
∃belongsTo v ResearchGroup
∃belongsTo− v ResearchDept

ResearchGroup v ∃belongsTo
(funct belongsTo)
δ(rid) v ResearchGroup
ρ(rid) v String

(id ResearchGroup rid , belongsTo)

Figure 3. A simple DL-LiteA,id TBox

UPDATEadd grantAsked(r,x) where true
)

)
else UPDATEadd grantAsked(r,c) where true

Finally, consider the case of a program that erases a pair (g, d) from the belongsTo
role, where g is an instance of ResearchGroup and d an instance of ResearchDept . Since
belongsTo is a functional role, in the models ofK before the erasure operation, there cannot
be any other object d′ connected to g via belongsTo. However, the inclusion assertion
ResearchGroup v ∃belongsTo in the TBox “enforces” in all models the existence of such
an object, possibly an existentially implied one. Notice also that this does not lead in any
way to a violation of the ID (id ResearchGroup rid , belongsTo).

Company
IllegalOwner

ResearchGroup
grantAsked

owns

PublicCompany PrivateCompany

{disjoint}

0..1

1..*

ResearchDept

belongsTo1..1

rid:String

Figure 4. The DL-LiteA,id TBox of Figure 3 rendered as a UML Class Diagram

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati

5 Results
In this section, we assume that KBs are expressed in DL-LiteA,id and that the ASK and TELL
operations are defined for DL-LiteA,id using query answering, update (add), and erasure
discussed in Section 2 and Section 3.

Given a KB K and a program δ, we define the set next step, denoted by Next , as:

Next(δ,K) = {〈a, δ′,K′〉 | (δ,K)
a−−−→(δ′,K′)}

The following two theorems tell us that programs are indeed computable.

THEOREM 1. Let K be a KB and δ a program. Then, the set Next(δ,K) has a finite
cardinality, and can be computed in polynomial time in K and δ (considering the size of
the queries in δ fixed). Moreover, if δ is deterministic then, for each action a, the number
of tuples 〈a, δ′,K′〉 ∈ Next(δ,K) is at most one (one if a is executable, zero otherwise).

THEOREM 2. Let K be a KB and δ a program. Then, checking (δ,K)
√

can be done in
polynomial time in K and δ (considering the size of the queries in δ fixed).

Given a KB K0 and a sequence ρ = a1 · · · an of actions, we say that ρ is a run of a
program δ0 over the KB K0 if there are (δi,Ki), for i = 1, . . . , n, such that

(δ0,K0)
a1−−−→(δ1,K1)

a2−−−→· · · an−−−→(δn,Kn)

We call δn and Kn above respectively the program and the KB resulting from the run ρ. If
(δn,Kn) is final (i.e., (δn,Kn)

√
), then we say that ρ is a terminating run. Note that, if the

program δ0 is deterministic, then (δn,Kn) is functionally determined by (δ0,K0) and ρ.

THEOREM 3. Let K0 be a KB, δ0 a deterministic program, and ρ = a1 · · · an a sequence
of actions. Then checking whether ρ is a run of δ0 starting from K0 can be done in polyno-
mial time in the size of K0, ρ, and δ0 (considering the size of the queries in δ0 fixed)

THEOREM 4. Let K0 be a KB, δ0 a deterministic program, and ρ a run of δ0 starting
from K0. Then, computing the resulting program δn and the resulting KB Kn, as well as
checking (δn,Kn)

√
and computing a query q(~x) over Kn, can be done in polynomial time

in the size of K0, ρ, and δ0 (considering the size of the queries in δ0 fixed).

For nondeterministic programs, i.e., when we do not fix a choice function for CHOICE,
Theorems 3 and 4 do not hold anymore. Indeed, it can be shown the problems in the
theorems become NP-complete.

We conclude this section by turning to the two classical problem in reasoning about
actions, namely the executability problem and the projection problem [Reiter 2001]. In our
setting such problems are phrased as follows:

• executability problem: check whether a sequence of actions is executable in a KB;

• projection problem: compute the result of a query in the KB obtained by executing a
sequence of actions in an initial KB.

Now, considering that a sequence of actions can be seen as a simple deterministic program,
from the theorems above we get the following result:

THEOREM 5. LetK0 be a KB and ρ a sequence of actions. Then, checking the executabil-
ity of ρ in K0, and computing the result of a query q(~x) over the KB obtained by executing
ρ in K0, can both be done in polynomial time in the size of K0 and ρ.

Actions and Programs over Description Logic Knowledge Bases

In fact, all the above results can be immediately extended (with different complexity
bounds) to virtually every DL and associated ASK and TELL operations, as long as ASK
and TELL are decidable and conform to the requirements mentioned in Section 3.

6 Conclusion

In this paper we have laid the foundations for an effective approach to reasoning about
actions and programs over KBs, based on Levesque’s functional view of the KB. Namely,
the KB is seen as a system that can perform two kinds of operations: ASK and TELL. We
have focused on DL-Lite, but the approach applies to more expressive DLs. It suffices
to have a decidable ASK, i.e., decidable query answering on the chosen query and KB
languages, and a decidable TELL, i.e., define atomic actions so that, through their effects,
they produce one successor KB (or, in fact, a finite number of successor KBs) and such that
their executability can be decided. Works such as those reported in [Baader et al. 2005;
Liu et al. 2006a; Gu and Soutchanski 2007] are certainly relevant.

Our approach (and the results for DL-LiteA,id) can be extended to all other programming
constructs studied within Golog (i.e., non determinism, procedures) [Levesque et al. 1997],
ConGolog (i.e., concurrency, prioritized interrupts) [De Giacomo et al. 2000] and, with
some care –see the discussion on analysis and synthesis below– even to those in IndiGolog
(search) [Sardiña et al. 2004].

Also, the works on forms of execution developed within Golog/ConGolog/IndiGolog
can be lifted to DL KBs by applying the proposed approach. Specifically, notions like
online execution [Sardiña et al. 2004], offline execution [Levesque et al. 1997; De Giacomo
et al. 2000], monitored execution [De Giacomo et al. 1998], can all be lifted to the setting
studied here.

Golog/ConGolog-like programs do not have a store to keep memory of previous results
of queries to the KB. An interesting extension would be to introduce such a store, i.e.,
variables for storing results of queries or partial computations. Notice that this would make
also the program infinite state in general (the KB is already infinite state). Also, this would
make such programs much more alike programs in standard procedural languages such as
C or Java, which manipulate global data structures—in our case the KB—and local data
structures, in our case the information stored in the variables of the program.

Finally, we can adopt the functional view of KBs also to specify interactive and nonter-
minating processes acting on them, similarly to what is done when specifying web services
on relational databases [Berardi et al. 2005; Deutsch et al. 2009].

We close the paper by noticing that the KB is not finite state if we allow for introducing
new individuals in its updates. This infinite state nature makes tasks related to automated
analysis and automated synthesis of programs (e.g., verifying executability on every KB,
verifying termination, synthesizing a plan that achieves a goal, or synthesizing a service
that fulfills a certain specification) difficult in general. This difficulty is shared with Situ-
ation Calculus based and Golog/ConGolog-like high-level programs. On the other hand if
we bound the number of new individuals that can be introduced by updates then the KB
becomes finite state. It is not obvious whether we can in practice bound the numbers of in-
dividual a priori, but if we cannot, we could still make use of forms of abstraction, studied
in verification (see e.g.,. [Zuck and Pnueli 2004]), to force finite states.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati

References
Baader, F., D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider (Eds.)

[2003]. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press.

Baader, F., C. Lutz, M. Milicic, U. Sattler, and F. Wolter [2005]. Integrating descrip-
tion logics and action formalisms: First results. In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pp. 572–577.

Berardi, D., D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella [2005]. Automatic
composition of transition-based Semantic Web services with messaging. In Proc. of
the 31st Int. Conf. on Very Large Data Bases (VLDB 2005), pp. 613–624.

Brachman, R. J. and H. J. Levesque [1984]. The tractability of subsumption in frame-
based description languages. In Proc. of the 4th Nat. Conf. on Artificial Intelligence
(AAAI’84), pp. 34–37.

Calvanese, D., G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati [2006]. Data
complexity of query answering in description logics. In Proc. of the 10th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 260–
270.

Calvanese, D., G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati [2007a]. EQL-
Lite: Effective first-order query processing in description logics. In Proc. of the 20th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), pp. 274–279.

Calvanese, D., G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati [2007b].
Tractable reasoning and efficient query answering in description logics: The DL-
Lite family. J. of Automated Reasoning 39(3), 385–429.

Calvanese, D., G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati [2008]. Path-
based identification constraints in description logics. In Proc. of the 11th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2008), pp. 231–
241.

Calvanese, D., E. Kharlamov, W. Nutt, and D. Zheleznyakov [2010]. Evolution of DL-
Lite knowledge bases. In Proc. of the 9th Int. Semantic Web Conf. (ISWC 2010),
Volume 6496 of Lecture Notes in Computer Science, pp. 112–128. Springer.

De Giacomo, G., L. Iocchi, D. Nardi, and R. Rosati [1996]. Moving a robot: the KR&R
approach at work. In Proc. of the 5th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’96), pp. 198–209.

De Giacomo, G., M. Lenzerini, A. Poggi, and R. Rosati [2006]. On the update of de-
scription logic ontologies at the instance level. In Proc. of the 21st Nat. Conf. on
Artificial Intelligence (AAAI 2006), pp. 1271–1276.

De Giacomo, G., M. Lenzerini, A. Poggi, and R. Rosati [2007]. On the approximation
of instance level update and erasure in description logics. In Proc. of the 22nd AAAI
Conf. on Artificial Intelligence (AAAI 2007), pp. 403–408.

De Giacomo, G., M. Lenzerini, A. Poggi, and R. Rosati [2009]. On instance-level update
and erasure in description logic ontologies. J. of Logic and Computation, Special
Issue on Ontology Dynamics 19(5), 745–770.

Actions and Programs over Description Logic Knowledge Bases

De Giacomo, G., Y. Lespérance, and H. J. Levesque [2000]. ConGolog, a concurrent
programming language based on the situation calculus. Artificial Intelligence 121(1–
2), 109–169.

De Giacomo, G., R. Reiter, and M. Soutchanski [1998]. Execution monitoring of high-
level robot programs. In Proc. of the 6th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’98), pp. 453–465.

Deutsch, A., R. Hull, F. Patrizi, and V. Vianu [2009]. Automatic verification of data-
centric business processes. In Proc. of the 12th Int. Conf. on Database Theory
(ICDT 2009), pp. 252–267.

Eiter, T. and G. Gottlob [1992]. On the complexity of propositional knowledge base
revision, updates and counterfactuals. Artificial Intelligence 57, 227–270.

Fagin, R., J. D. Ullman, and M. Y. Vardi [1983]. On the semantics of updates in
databases. In Proc. of the 2nd ACM SIGACT SIGMOD Symp. on Principles of
Database Systems (PODS’83), pp. 352–365.

Flouris, G., D. Manakanatas, H. Kondylakis, D. Plexousakis, and G. Antoniou [2008].
Ontology change: Classification and survey. Knowledge Engineering Review 23(2),
117–152.

Giuseppe, D. G. and R. Rosati [1999]. Minimal knowledge approach to reasoning about
actions and sensing. Electronic Trans. on Artificial Intelligence 3(C), 1–18.

Gu, Y. and M. Soutchanski [2007]. Decidable reasoning in a modified situation calculus.
In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), pp. 1891–
1897.

Horrocks, I., P. F. Patel-Schneider, and F. van Harmelen [2003]. From SHIQ and RDF
to OWL: The making of a web ontology language. J. of Web Semantics 1(1), 7–26.

Katsuno, H. and A. Mendelzon [1991]. On the difference between updating a knowledge
base and revising it. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’91), pp. 387–394.

Lenzerini, M. and F. Savo [2011]. On the evolution of the instance level of DL-Lite
knowledge bases. Submitted for publication.

Levesque, H. J. [1984]. Foundations of a functional approach to knowledge representa-
tion. Artificial Intelligence 23, 155–212.

Levesque, H. J. and G. Lakemeyer [2001]. The Logic of Knowledge Bases. The MIT
Press.

Levesque, H. J., R. Reiter, Y. Lesperance, F. Lin, and R. Scherl [1997]. GOLOG: A logic
programming language for dynamic domains. J. of Logic Programming 31, 59–84.

Liu, H., C. Lutz, M. Milicic, and F. Wolter [2006a]. Reasoning about actions using
description logics with general TBoxes. In Proc. of the 10th Eur. Conference on
Logics in Artificial Intelligence (JELIA 2006), Volume 4160 of Lecture Notes in
Computer Science. Springer.

Liu, H., C. Lutz, M. Milicic, and F. Wolter [2006b]. Updating description logic ABoxes.
In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2006), pp. 46–56.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati

Martin, D., M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness,
B. Parsia, T. Payne, M. Sabou, Solanki, N. Srinivasan, and K. Sycara [2004]. Bring-
ing semantics to web services: The OWL-S approach. In Proc. of the 1st Int. Work-
shop on Semantic Web Services and Web Process Composition (SWSWPC 2004).

McCarthy, J. [1962]. Towards a mathematical science of computation. In Proc. of the
IFIP Congress, pp. 21–28.

McCarthy, J. and P. J. Hayes [1969]. Some philosophical problems from the standpoint
of aritificial intelligence. Machine Intelligence 4, 463–502.

Petrick, R. P. A. and F. Bacchus [2004]. Extending the knowledge-based approach to
planning with incomplete information and sensing. In Proc. of the 9th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR 2004), pp. 613–622.

Plotkin, G. D. [1981]. A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus.

Reiter, R. [1990]. What should a database know? J. of Logic Programming 14, 127–153.

Reiter, R. [2001]. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press.

Sardiña, S., G. De Giacomo, Y. Lespérance, and H. J. Levesque [2004]. On the semantics
of deliberation in IndiGolog - from theory to implementation. Ann. of Mathematics
and Artificial Intelligence 41(2–4), 259–299.

Sardiña, S., G. De Giacomo, Y. Lespérance, and H. J. Levesque [2006]. On the limits
of planning over belief states under strict uncertainty. In Proc. of the 10th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 463–
471.

Smith, M. K., C. Welty, and D. L. McGuiness [2004, February). OWL Web Ontology
Language guide. W3C Recommendation, World Wide Web Consortium. Available
at http://www.w3.org/TR/owl-guide/.

van Riemsdijk, M. B., F. S. de Boer, M. Dastani, and J.-J. C. Meyer [2006]. Prototyping
3APL in the Maude term rewriting language. In Proc. of 5th Int. Joint Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2006), pp. 1279–1281.

Wang, Z., K. Wang, and R. W. Topor [2010]. A new approach to knowledge base
revision in DL-Lite. In Proc. of the 24th AAAI Conf. on Artificial Intelligence
(AAAI 2010).

Zuck, L. D. and A. Pnueli [2004]. Model checking and abstraction to the aid of param-
eterized systems (a survey). Computer Languages, Systems & Structures 30(3–4),
139–169.

